幼兒教師教育網(wǎng),為您提供優(yōu)質(zhì)的幼兒相關(guān)資訊

一元二次不等式課件

發(fā)布時(shí)間:2024-07-30 一元二次不等式課件 一元不等式課件 不等式課件

一元二次不等式課件(必備9篇)。

經(jīng)過多次優(yōu)化我們?yōu)槟谱髁诉@份精選的“一元二次不等式課件”,本篇文章希望能夠?yàn)槟墓ぷ骱蜕钐峁椭C總€(gè)老師需要在上課前弄好自己的教案課件,沒有寫的老師就需要抓緊完成了。設(shè)計(jì)教案需要關(guān)注課堂互動(dòng)和學(xué)生參與度的提高。

一元二次不等式課件(篇1)

教學(xué)內(nèi)容

3.2一元二次不等式及其解法

三維目標(biāo)

一、知識(shí)與技能

1.鞏固一元二次不等式的解法和解法與二次函數(shù)的關(guān)系、一元二次不等式解法的步驟、解法與二次函數(shù)的關(guān)系兩者之間的區(qū)別與聯(lián)系;

2.能熟練地將分式不等式轉(zhuǎn)化為整式不等式(組),正確地求出分式不等式的解集;

3.會(huì)用列表法,進(jìn)一步用數(shù)軸標(biāo)根法求解分式及高次不等式;

4.會(huì)利用一元二次不等式,對(duì)給定的與一元二次不等式有關(guān)的問題,嘗試用一元二次不等式解法與二次函數(shù)的有關(guān)知識(shí)解題.

二、過程與方法

1.采用探究法,按照思考、交流、實(shí)驗(yàn)、觀察、分析得出結(jié)論的方法進(jìn)行啟發(fā)式教學(xué);

2.發(fā)揮學(xué)生的主體作用,作好探究性教學(xué);

3.理論聯(lián)系實(shí)際,激發(fā)學(xué)生的學(xué)習(xí)積極性.

三、情感態(tài)度與價(jià)值觀

1.進(jìn)一步提高學(xué)生的運(yùn)算能力和思維能力;

2.培養(yǎng)學(xué)生分析問題和解決問題的能力;

3.強(qiáng)化學(xué)生應(yīng)用轉(zhuǎn)化的數(shù)學(xué)思想和分類討論的數(shù)學(xué)思想.

教學(xué)重點(diǎn)

1.從實(shí)際問題中抽象出一元二次不等式模型.

2.圍繞一元二次不等式的解法展開,突出體現(xiàn)數(shù)形結(jié)合的思想.

教學(xué)難點(diǎn)

1.深入理解二次函數(shù)、一元二次方程與一元二次不等式的關(guān)系.

教學(xué)方法

啟發(fā)、探究式教學(xué)

教學(xué)過程

復(fù)習(xí)引入

師:上一節(jié)課我們通過具體的問題情景,體會(huì)到現(xiàn)實(shí)世界存在大量的不等量關(guān)系,并且研究了用不等式或不等式組來表示實(shí)際問題中的不等關(guān)系?;仡櫹碌缺葦?shù)列的性質(zhì)。

生:略

師:某同學(xué)要把自己的計(jì)算機(jī)接入因特網(wǎng),現(xiàn)有兩種ISP公司可供選擇,公司A每小時(shí)收費(fèi)1.5元(不足1小時(shí)按1小時(shí)計(jì)算),公司B的收費(fèi)原則是第1小時(shí)內(nèi)(含恰好1小時(shí),下同)收費(fèi)1.7元,第2小時(shí)內(nèi)收費(fèi)1.6元以后每小時(shí)減少0.1元(若用戶一次上網(wǎng)時(shí)間超過17小時(shí),按17小時(shí)計(jì)算)那么,一次上網(wǎng)在多少時(shí)間以內(nèi)能夠保證選擇公司A的上網(wǎng)費(fèi)用小于等于選擇公司B所需費(fèi)用。

學(xué)生自己討論

點(diǎn)題,板書課題

新課學(xué)習(xí)

1.一元二次不等式

只有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是2的不等式。

2.三個(gè)“二次”之間的關(guān)系及一元二次不等式的解法

師在前面我們已經(jīng)學(xué)習(xí)過一元二次不等的解法,發(fā)現(xiàn)一元二次方程及對(duì)應(yīng)的二次函數(shù)有關(guān)系,那么同學(xué)們課本打開到p77填表格。

生略

師學(xué)生討論歸納出解一元二次不等式的步驟

一看:看二次項(xiàng)系數(shù)的正負(fù),并且變形為

二算:,判斷正負(fù),有根則求并畫出對(duì)應(yīng)的函數(shù)圖象

三寫:寫出原不等式的解集

練習(xí)反饋

[例題剖析]

例1解下列不等式

(1)(2)

(3)(4)

(5)(6)

課本80頁練習(xí)

例2已知不等式的解集為試解不等式

變式:

已知

課堂

小結(jié)

1.三個(gè)“二次的關(guān)系”

2.解二次不等式的步驟

作業(yè)布置

課本第80頁習(xí)題3.2A組第1.2.4題B組1

練習(xí)調(diào)配

設(shè)計(jì)42頁全做,43頁例1例2隨堂練習(xí)2.3,4,5測(cè)評(píng)1、3、4、5、6、7、8、

一元二次不等式課件(篇2)

解一元二次不等式化為標(biāo)準(zhǔn)型。判斷△的符號(hào)。若△<0,則不等式是在R上恒成立或恒不成立。

若△>0,則求出兩根,在數(shù)軸上標(biāo)出,每個(gè)根上畫一條豎線,再?gòu)挠业阶笙嚅g標(biāo)正負(fù)號(hào),不等式大于0則取標(biāo)正的范圍,小于0則取標(biāo)負(fù)的范圍。

2.解簡(jiǎn)單一元高次不等式

a.化為標(biāo)準(zhǔn)型。

b.將不等式分解成若干個(gè)因式的積。

c.求出各個(gè)根,在數(shù)軸上標(biāo)出,每個(gè)根上畫一條豎線,再?gòu)挠业阶笙嚅g標(biāo)正負(fù)號(hào),不等式大于0則取標(biāo)正的范圍,小于0則取標(biāo)負(fù)的范圍。

3.解分式不等式的解

a.化為標(biāo)準(zhǔn)型。

b.可將分式化為整式,將整式分解成若干個(gè)因式的積。

c.求出各個(gè)根,在數(shù)軸上標(biāo)出,每個(gè)根上畫一條豎線,再?gòu)挠业阶笙嚅g標(biāo)正負(fù)號(hào),不等式大于0則取標(biāo)正的范圍,小于0則取標(biāo)負(fù)的范圍。(如果不等式是非嚴(yán)格不等式,則要注意分式分母不等于0。)

4.解含參數(shù)的一元二次不等式

a.對(duì)二次項(xiàng)系數(shù)a的討論。

若二次項(xiàng)系數(shù)a中含有參數(shù),則須對(duì)a的符號(hào)進(jìn)行分類討論。分為a>0,a=0,a<0。

b.對(duì)判別式△的討論

若判別式△中含有參數(shù),則須對(duì)△的符號(hào)進(jìn)行分類討論。分為△>0,△=0,△<0。

c.對(duì)根大小的討論

若不等式對(duì)應(yīng)的方程的根x1、x2中含有參數(shù),則須對(duì)x1、x2的大小進(jìn)行分類討論。分為x1>x2,x1=x2,x1<x2。

5.一元二次方程的根的分布問題

a.將方程化為標(biāo)準(zhǔn)型。(a的符號(hào))

b.畫圖觀察,若有區(qū)間端點(diǎn)對(duì)應(yīng)的函數(shù)值小于0,則只須討論區(qū)間端點(diǎn)的函數(shù)值。

若沒有區(qū)間端點(diǎn)對(duì)應(yīng)的函數(shù)值小于0,則須討論區(qū)間端點(diǎn)的函數(shù)值、△、軸。

6.一元二次不等式的應(yīng)用

⑴在R上恒成立問題(恒不成立問題相反,在某區(qū)間恒成立可轉(zhuǎn)化為實(shí)根分布問題)

a.對(duì)二次項(xiàng)系數(shù)a的符號(hào)進(jìn)行討論,分為a=0與a≠0。

b.a(chǎn)=0時(shí),把a(bǔ)=0帶入,檢驗(yàn)不等式是否成立,判斷a=0是否屬于不等式解集。

a≠0時(shí),則轉(zhuǎn)化為二次函數(shù)圖像全在x軸上方或下方。

若f(x)>0,則要求a>0,△<0。

若f(x)<0,則要求a<0,△<0。

⑵特殊題型:已知一不等式的解集(含有字母),求另一不等式的解集(與原不等式系數(shù)大小相同,位置不同)。a.寫出原不等式對(duì)應(yīng)的方程,由韋達(dá)定理得出解集字母與方程系數(shù)間的關(guān)系。

b.寫出變換后不等式對(duì)應(yīng)的方程,由由韋達(dá)定理得出解集字母與方程系數(shù)間的關(guān)系。

c.將a中得到的關(guān)系變化后帶入b的關(guān)系中,得到變換后方程的兩根。

d.判斷兩根的大小,變換后不等式二次項(xiàng)的系數(shù),從而寫出所求解集。

一元二次不等式課件(篇3)

《一元二次不等式及其解法》

教 學(xué) 設(shè) 計(jì) 說 明

《一元二次不等式及其解法》教學(xué)設(shè)計(jì)說明

一.教學(xué)內(nèi)容分析:

1.本節(jié)課內(nèi)容在整個(gè)教材中的地位和作用.

必修五第三章不等式第二節(jié)一元二次不等式及其解法共有三個(gè)課時(shí),本節(jié)課是第一課時(shí),教學(xué)內(nèi)容的地位體現(xiàn)在它的基礎(chǔ)性,作用體現(xiàn)在它的工具性.一元二次不等式的解法是初中一元一次不等式或一元一次不等式組的延續(xù)和深化,對(duì)已學(xué)習(xí)過的集合知識(shí)的鞏固和運(yùn)用具有重要的作用.許多問題的解決都會(huì)借助一元二次不等式的解法.因此,一元二次不等式的解法在整個(gè)高中數(shù)學(xué)教學(xué)中具有很強(qiáng)的基礎(chǔ)性,體現(xiàn)出很大的工具作用. 2.教學(xué)目標(biāo)定位.

根據(jù)教學(xué)大綱要求、高考考試大綱說明、新課程標(biāo)準(zhǔn)精神、高一學(xué)生已有的知識(shí)儲(chǔ)備狀況和學(xué)生心理認(rèn)知特征,我確定了四個(gè)層面的教學(xué)目標(biāo).第一層面是面向全體學(xué)生的知識(shí)目標(biāo):熟練掌握一元二次不等式的解法,正確理解一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系.第二層面是能力目標(biāo),培養(yǎng)學(xué)生運(yùn)用數(shù)形結(jié)合與分類討論等數(shù)學(xué)思想方法解決問題的能力,提高運(yùn)算和作圖能力.第三層面是德育目標(biāo),通過對(duì)解不等式過程中等與不等對(duì)立統(tǒng)一關(guān)系的認(rèn)識(shí),向?qū)W生逐步滲透辨證唯物主義思想.第四層面是情感目標(biāo),在教師的啟發(fā)引導(dǎo)下,學(xué)生自主探究,交流討論,培養(yǎng)學(xué)生的合作意識(shí)和創(chuàng)新精神. 3.教學(xué)重點(diǎn)、難點(diǎn)確定.

本節(jié)課是在復(fù)習(xí)了一元二次方程和二次函數(shù)之后,利用二次函數(shù)的圖象研究一元二次不等式的解法.只要學(xué)生能夠理解一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系,并利用其關(guān)系解不等式即可.因此,我確定本節(jié)課的教學(xué)重點(diǎn)為一元二次不等式的解法,關(guān)鍵是一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系. 二.教法學(xué)法分析:

數(shù)學(xué)是發(fā)展學(xué)生思維、培養(yǎng)學(xué)生良好意志品質(zhì)和美好情感的重要學(xué)科,在教學(xué)中,我們不僅要使學(xué)生獲得知識(shí)、提高解題能力,還要讓學(xué)生在教師的啟發(fā)引導(dǎo)下學(xué)會(huì)學(xué)習(xí)、樂于學(xué)習(xí),感受數(shù)學(xué)學(xué)科的人文思想,使學(xué)生在學(xué)習(xí)中培養(yǎng)堅(jiān)強(qiáng)的意志品質(zhì)、形成良好的道德情感.為了更好地體現(xiàn)課堂教學(xué)中“教師為主導(dǎo),學(xué)生為主體”的教學(xué)關(guān)系和“以人為本,以學(xué)定教”的教學(xué)理念,在本節(jié)課的教學(xué)過程中,將緊緊圍繞教師組織——啟發(fā)引導(dǎo),學(xué)生探究——交流發(fā)現(xiàn),組織開展教學(xué)活動(dòng).我設(shè)計(jì)了①回憶舊知,服務(wù)新知,②創(chuàng)設(shè)情境,提出問題,③合作交流,探究新知,④數(shù)學(xué)運(yùn)用,深化認(rèn)知,⑤練習(xí)檢測(cè),反饋新知,⑥談?wù)勈斋@,強(qiáng)化思想,⑦布置作業(yè),實(shí)踐新知,環(huán)環(huán)相扣、層層深入的教學(xué)環(huán)節(jié),在教學(xué)中注意關(guān)注整個(gè)過程和全體學(xué)生,充分調(diào)動(dòng)學(xué)生積極參與教學(xué)過程的每個(gè)環(huán)節(jié). 三.教學(xué)過程分析:

(一)聯(lián)系舊知,構(gòu)建新知

設(shè)置一系列的問題喚起學(xué)生對(duì)舊知識(shí)的回憶. 問題1:一元二次方程的解法有哪些呢?

(意圖:讓學(xué)生回顧一元二次方程的解法,為解一元二次不等式做準(zhǔn)備.)

問題2:同學(xué)們還記得二次函數(shù)嗎?二次函數(shù)的形式是怎樣的?你記得二次函數(shù)的性質(zhì)嗎?

(意圖:引導(dǎo)學(xué)生從圖象的角度出發(fā),并啟發(fā)學(xué)生二次函數(shù)的圖象是一條拋物線,其開口方向由二次項(xiàng)系數(shù)決定,為突出重點(diǎn)做準(zhǔn)備)

(二)創(chuàng)設(shè)情景,提出問題

1、讓學(xué)生動(dòng)手畫直角坐標(biāo)系,然后沿x軸方向上下對(duì)折這張紙,觀察它們的值有什么特點(diǎn)?

22、請(qǐng)?jiān)趧偛诺淖鴺?biāo)系中畫出y=x-7x+6的圖像 問題1:

(1)x軸上方有無圖像?若有請(qǐng)用紅線描出。這部分圖像對(duì)應(yīng)的y值如何?(2)x軸下方有無圖像?若有請(qǐng)用藍(lán)線描出。這部分圖像對(duì)應(yīng)的y值如何?(3)紅線與藍(lán)線有無交點(diǎn)?若有請(qǐng)用綠色標(biāo)出。

(4)你能找出上述各種情況的x的取值范圍嗎?請(qǐng)?jiān)趫D中寫出。

問題2:你能說一說這兩個(gè)不等式有何共同特點(diǎn)么?(1)含有一個(gè)未知數(shù)x;

(2)未知數(shù)的最高次數(shù)為2。通過兩問題得出一元二次不等式的概念:一般地,只含有一個(gè)未知數(shù),且未知數(shù)的最高次數(shù)為2的不等式,叫做一元二次不等式。

問題3:判斷下列式子是不是一元二次不等式?

問題4:一元二次函數(shù)、一元二次方程之間有何聯(lián)系呢?

一元二次方程的解即一元二次函數(shù)圖象與x軸交點(diǎn)的橫坐標(biāo),也就是說方程的解即對(duì)應(yīng)函數(shù)的零點(diǎn)。

問題5:一元二次不等式如何求解呢?

(三)合作交流,探究新知

1. 探究一元二次不等式x2?x?2?0的解.

容易知道:一元二次方程x2?x?2?0的有兩個(gè)實(shí)數(shù)根:x1??1或x2?2. 二次函數(shù)y?x2?x?2與x軸有兩個(gè)交點(diǎn):??1,0?和?2,0?. 思考1:觀察圖象一元二次方程的根與二次函數(shù)之間有什么關(guān)系? 思考2:觀察圖象,當(dāng)x為何值時(shí),y?0;

當(dāng)x為何值時(shí),y?0; 當(dāng)x為何值時(shí),y?0.

(設(shè)計(jì)意圖 : ①體現(xiàn)學(xué)生的主體性;②有利于加強(qiáng)對(duì)圖象的認(rèn)識(shí),從而加強(qiáng)數(shù)形結(jié)合的數(shù)學(xué)思想 ;③有利于加強(qiáng)學(xué)生理解一元二次不等式的解相關(guān)的三個(gè)因素;④為歸納解一元二次不等式做好準(zhǔn)備.根據(jù)前面探討的問題引導(dǎo)學(xué)生歸納一元二次不等式的解.)

2. 探究一元二次不等式ax2?bx?c?0或ax2?bx?c?0?a?0?的解法. 組織討論:從上面的例子出發(fā),綜合學(xué)生的意見,可以歸納出確定一元二次不等式的解集,關(guān)鍵要考慮:

2拋物線y?ax?bx?c與x軸的相關(guān)位置的情況,也就是一元二次方程2ax2?bx?c=0的根的情況,而一元二次方程根的情況是由判別式??b?4ac三 3 種取值情況(??0,??0,??0)來確定.

(設(shè)計(jì)意圖:這里我將運(yùn)用多媒體圖標(biāo)的形式來展現(xiàn)出其解法思路,學(xué)生有一個(gè)完整的邏輯思維,讓學(xué)生在探究中建立知識(shí)間的聯(lián)系,體會(huì)數(shù)形結(jié)合,強(qiáng)調(diào)突出本節(jié)的難點(diǎn).)

(四)數(shù)學(xué)運(yùn)用,深化認(rèn)知.

2例1.求不等式2x?3x?2?0的解集. 2變式為:求不等式2x?3x?2?0的解集.

2例2.解不等式?x?2x?3?0.

(設(shè)計(jì)意圖:先讓學(xué)生來解答例題,若教師巡視、指導(dǎo),講評(píng)學(xué)生完成情況,尋找學(xué)生中的閃光點(diǎn),給予熱情表揚(yáng).)總結(jié):

解一元二次不等式的步驟:

一化:化二次項(xiàng)前的系數(shù)為正(a>0).二判:判斷對(duì)應(yīng)方程的根.三求:求對(duì)應(yīng)方程的根.四畫:畫出對(duì)應(yīng)函數(shù)的圖象.五解集:根據(jù)圖象寫出不等式的解集.(五)練習(xí)檢測(cè),鞏固收獲

(設(shè)計(jì)意圖:為了鞏固和加深一元二次不等式的解法,讓學(xué)生學(xué)以致用,接下來及時(shí)組織學(xué)生進(jìn)行課堂練習(xí).然后就學(xué)生在解題中出現(xiàn)的問題共同糾正.)

(六)歸納小結(jié),強(qiáng)化思想

設(shè)計(jì)意圖:梳理本節(jié)課的知識(shí)點(diǎn),總結(jié)一元二次不等式解法的步驟:“一化,二判,三求根,四畫圖,五寫解集”的口訣來幫助學(xué)生記憶和歸納,讓學(xué)生掌握嚴(yán)謹(jǐn)?shù)淖鲱}方法,知曉本節(jié)課的重難點(diǎn).

(七)布置作業(yè),拓展延伸

必做題:課本第80頁習(xí)題A組 1,2.選做題:(1)若關(guān)于m的一元二次方程x

2?(m?1)x?m?0有兩個(gè)不相 等的實(shí)數(shù)根,求m的取值范圍.2(2)已知不等式x?ax?b?0的解集為x2?x?3?,求a,b的

?值.(設(shè)計(jì)意圖:以作業(yè)的鞏固性和發(fā)展性為出發(fā)點(diǎn),我設(shè)計(jì)了必做題和選做題,必做題是對(duì)本節(jié)課內(nèi)容的反饋,選做題是對(duì)本節(jié)課知識(shí)的延伸,整體的設(shè)計(jì)意圖是反饋教學(xué),鞏固提高.)四.教學(xué)總結(jié)

本節(jié)課的所有內(nèi)容以習(xí)題的形式展現(xiàn)給學(xué)生,學(xué)生始終在解題中探究,在解題中發(fā)現(xiàn),學(xué)生參與教學(xué)的全過程,成為課堂教學(xué)的主體和學(xué)習(xí)的主人,而老師只須時(shí)刻關(guān)注學(xué)生的活動(dòng)過程,不時(shí)給予引導(dǎo),及時(shí)糾正.

一元二次不等式課件(篇4)

《一元二次不等式及其解法(第1課時(shí))》教學(xué)設(shè)計(jì)

Eric 一 內(nèi)容分析

本節(jié)課內(nèi)容的地位體現(xiàn)在它的基礎(chǔ)性,作用體現(xiàn)在它的工具性。一元二次不等式的解法是初中一元一次不等式或一元一次不等式組的延續(xù)和深化,對(duì)已學(xué)習(xí)過的集合知識(shí)的鞏固和運(yùn)用具有重要的作用,也與后面的函數(shù)、數(shù)列、三角函數(shù)、線形規(guī)劃、直線與圓錐曲線以及導(dǎo)數(shù)等內(nèi)容密切相關(guān)。許多問題的解決都會(huì)借助一元二次不等式的解法。因此,一元二次不等式的解法在整個(gè)高中數(shù)學(xué)教學(xué)中具有很強(qiáng)的基礎(chǔ)性,體現(xiàn)出很大的工具作用。

二 學(xué)情分析

學(xué)生已經(jīng)掌握了高中所學(xué)的基本初等函數(shù)的圖象及其性質(zhì), 能利用函數(shù)的圖象及其性質(zhì)解決一些問題。學(xué)生知道不等關(guān)系, 掌握了不等式的性質(zhì), 通過這部分內(nèi)容的學(xué)習(xí), 學(xué)生將學(xué)會(huì)利用二次函數(shù)的圖象, 通過數(shù)形結(jié)合的思想, 掌握一元二次不等式的解法。

三 教學(xué)目標(biāo)

1.知識(shí)與技能目標(biāo):(1)熟練應(yīng)用二次函數(shù)圖象解一元二次不等式的方法(2)了解一元二次不等式與相應(yīng)函數(shù), 方程的聯(lián)系 2.過程與方法:(1)通過學(xué)生已學(xué)過的一元一次不等式為例引入一元二次不等式的有關(guān)概及解法(2)讓學(xué)生觀察二次函數(shù),在此基礎(chǔ)上, 找到一元二次不等式的解法并掌握此解法(3)在學(xué)生尋找一元二次不等式的過中程中培養(yǎng)學(xué)生數(shù)形結(jié)合的數(shù)學(xué)思想 3.情感與價(jià)值目標(biāo):(1)通過新舊知識(shí)的聯(lián)系獲取新知,使學(xué)生體會(huì)溫故而知新的道理

(2)通過對(duì)解不等式過程中等與不等對(duì)立統(tǒng)一關(guān)系的認(rèn)識(shí),向?qū)W生逐步滲透辨證唯物主義思想。

(3)在教師的啟發(fā)引導(dǎo)下,學(xué)生自主探究,交流討論,培養(yǎng)學(xué)生的合作意識(shí)和創(chuàng)新精神。YJS21.com

四 教學(xué)重點(diǎn)、難點(diǎn) 1.重點(diǎn)

一元二次不等式的解法 2.難點(diǎn)

理解元二次方程與一元二次不等式解集的關(guān)系

五 教學(xué)方法

啟發(fā)式教學(xué)法,討論法,講授法

六 教學(xué)過程

1.創(chuàng)設(shè)情景,提出問題(約10分鐘)

師:在初中,我們解過一元一次不等式,如解不等式x – 1 > 0,現(xiàn)在請(qǐng)同學(xué)們先畫出函數(shù)y = x – 1 的圖象,并通過觀察圖象回答以下問題: 1)x 為何值時(shí),y = 0;2)x 為何值時(shí),y > 0;3)x 為何值時(shí),y 0的解集能從函數(shù)y = x – 1上看出來嗎?

學(xué)生畫圖,思考。先把問題交給學(xué)生自主探究,過一段時(shí)間,再小組交流,此間教師巡視并指導(dǎo)。提問學(xué)生代表。

通過對(duì)上述問題的探究,學(xué)生得出以下結(jié)論:

因?yàn)樯鲜龇匠蘹 – 1 = 0以及不等式x – 1 > 0的左邊恰好是上述函數(shù)y = x3x – 2 > 0;2)4x23x – 2 = 0的解是x1 =-1/2, x2 = 2.所以2x24x + 1 = 0 的解是x1 = x2 = 1/2, 所以不等式4x22x + 3

練習(xí):課本80頁練習(xí)第1題(1)-(3)【靈活掌握】.師:今天我們這節(jié)課的內(nèi)容有兩個(gè): 1)會(huì)一元二次不等式的解法 2)理解三個(gè)“二次”的關(guān)系

作業(yè):課本第80頁 習(xí)題 A

4.板書設(shè)計(jì)

§ 一元二次不等式及其解法

解不等式x2 – x – 6 > 0, 請(qǐng)先畫出二次函數(shù) y = x2 – x – 6的圖像,并回答以下問題: 1)x 為何值時(shí),y = 0;y > 0;y 0的解集呢?

七 教學(xué)反思

組1、2題 例,解不等式:

1)2x24x + 1 > 0;3)-x2 + 2x – 3

解:1)因?yàn)棣?=(-3)2 – 4×2×(-2)= 25 > 0, 方程的2x23x – 2 > 0的解集是{x| x1 2}.2)因?yàn)棣?= 0,方程4x24x + 1 > 0的解集是{x|x ≠ 1/2}.

一元二次不等式課件(篇5)

1、一元二次不等式解法的探索

[師] 你知道二次函數(shù)的草圖是怎樣畫出的嗎?(用"特殊點(diǎn)法"而非課本上的"列表描點(diǎn)法")你能回答以下問題嗎?二次函數(shù) y=x2-4x+3的圖象如下:

填表:方程x2-4x+3=0(即y=0)的解是

不等式x2-4x+3>0(即y>0)的解集是

不等式x2-4x+3

注:學(xué)生類比前面的知識(shí),能根據(jù)二次函數(shù)的圖象確定與x軸的交點(diǎn),確定對(duì)應(yīng)的一元二次方程的根,從而確定一元二次不等式的解集。(邊說邊畫y>0,y

[師]現(xiàn)在如果我變動(dòng)這條拋物線,請(qǐng)大家觀察拋物線與x軸的交點(diǎn)有何變化?

注:引導(dǎo)學(xué)生發(fā)現(xiàn)一元二次方程的根有三種情況,其對(duì)應(yīng)的二次函數(shù)圖象與x軸的位置關(guān)系也有三種情況,是由 >0, =0,

2、講解例題

[師]接下來請(qǐng)同學(xué)們?cè)賮矸治鰩讉€(gè)具體例子

(板書)例:解下列各不等式

(1)2x2-3x-2>0;

(2) -3x2+6x>2;

(3)4x2-4x+1>0;

(4)-x2+2x-3>0.

注:跟學(xué)生共同詳細(xì)分析(1),強(qiáng)調(diào)解題規(guī)范性,其余(2)(3)(4)由學(xué)生完成,并小組討論。

解:(1)方程2x2-3x-2=0的兩根為x1=- 或 x2=2,(畫草圖,結(jié)合圖象)

所以原不等式的解集是{x| x2 }

注:問題要順利求解,應(yīng)先考慮對(duì)應(yīng)方程

的根的情況,然后畫出草圖,結(jié)合不等式寫出解集。

(以下學(xué)生試著解決,并回答)

(2)分析一:結(jié)合開口向下的拋物線求解。

分析二:引導(dǎo)學(xué)生能否轉(zhuǎn)化為熟知類型,與(1)中二次項(xiàng)系數(shù)作比較,只要不等式兩邊同乘以-1,并注意不等式要改變方向。

解:原不等式可變?yōu)?3x2-6x+2

方程3x2-6x+2=0的兩根為 x1=1- , x2=1+

原不等式解集為: {x | 1-

(3)方程 4x2-4x+1=0有兩等根 x1=x2=

所以原不等式的解集是{x |x }

變式訓(xùn)練:改成4x2-4x+1 0,請(qǐng)學(xué)生回答(使學(xué)生知道不等式的解也可能是一個(gè)值)。

(4)將原不等式變形為:x2-2x+3

方程x2-2x+3=0無實(shí)根

原不等式的解集是

變式訓(xùn)練: -x2+2x-3

[師]上述幾例都有各自的特點(diǎn),反映在哪兩方面呢?注:引導(dǎo)學(xué)生總結(jié):一是二次項(xiàng)系數(shù),二是判別式 ,一般要先將二次項(xiàng)系數(shù)轉(zhuǎn)化為正數(shù)。

一元二次不等式課件(篇6)

1.復(fù)習(xí)一元一次方程、一元一次不等式與一次函數(shù)的關(guān)系

[師]前面我們已經(jīng)學(xué)習(xí)了絕對(duì)值不等式的解法,今天開始研究一元二次不等式的解法。(板書課題)記得在初中我們已學(xué)習(xí)了一元一次不等式的解法,還記得是用什么方法解的嗎?

學(xué)生可能回答是代數(shù)方法,也可能說是利用直線圖象。

[師]初中學(xué)習(xí)了一次函數(shù)的圖象,使得我們對(duì)一元一次不等式的解法有了更深入的了解。首先請(qǐng)同學(xué)們畫出 y=2x-7

[師]請(qǐng)同學(xué)們畫出圖象,并回答問題。

一次函數(shù)y=2x-7的圖象如下:

填表:

當(dāng)x 時(shí),y = 0,即 2x-7 0;

當(dāng)x 時(shí),y

當(dāng)x 時(shí),y > 0,即 2x-7 0;

注:(1)引導(dǎo)學(xué)生由圖象得出結(jié)論(數(shù)形結(jié)合)

(2)由學(xué)生填空(一邊演示y0部分圖象)

從上例的特殊情形,你能得出什么結(jié)論?

注:教師引導(dǎo)下學(xué)生發(fā)現(xiàn)其結(jié)論,并由學(xué)生嘗試敘述:一元一次方程ax+b=0的根實(shí)質(zhì)上就是直線y=ax+b與x軸交點(diǎn)的橫坐標(biāo);一元一次不等式ax+b>0(或ax+b

2.新課導(dǎo)入

[師]我們可以利用一次函數(shù)的圖象快速準(zhǔn)確地求出一元一次不等式的解集,那能否也可以借助二次函數(shù)的圖象來解一元二次不等式呢?

一元二次不等式課件(篇7)

1.創(chuàng)設(shè)情景——引入新課。我們常說“興趣是最好的老師”,長(zhǎng)期以來,學(xué)生對(duì)學(xué)習(xí)數(shù)學(xué)缺乏興趣,甚至失去信心,一個(gè)重要的原因,是老師在教學(xué)中不重視學(xué)生對(duì)學(xué)習(xí)的情感體驗(yàn),教學(xué)應(yīng)該充分考慮學(xué)生的情感和需要,想方設(shè)法讓學(xué)生在學(xué)習(xí)中樹立信心,感受學(xué)習(xí)的樂趣。根據(jù)教材內(nèi)容的安排,我以學(xué)生熟悉的畫一次函數(shù)圖象、求一次方程和一次不等式的解為背景知識(shí)切入,設(shè)置一個(gè)練習(xí)題組,一方面讓學(xué)生總結(jié)復(fù)習(xí)已有知識(shí),為后面學(xué)習(xí)二次不等式的解法打下基礎(chǔ),做好鋪墊,另一方面,使學(xué)生在自己熟悉的問題中首先獲得解題成功的快樂體驗(yàn),然后以20xx年江蘇省的一道高考試題為引子,引入本節(jié)課的新授內(nèi)容。對(duì)于本題,引導(dǎo)學(xué)生,利用上面解練習(xí)題組1的方法,畫出二次函數(shù)圖象來解答。二次函數(shù)是初中數(shù)學(xué)的重要內(nèi)容,本題又給出了函數(shù)圖象上許多點(diǎn),相信學(xué)生畫出圖象應(yīng)該不成問題,只要教師適當(dāng)點(diǎn)撥,學(xué)生不難得到正確答案。以高考試題為背景引入新課,可以提高學(xué)生興趣,抓住學(xué)生眼球,吸引學(xué)生注意力,還可以讓學(xué)生實(shí)實(shí)在在感受到,高考題就在我們的課本中,就在我們平常的練習(xí)中。

2.探究交流——發(fā)現(xiàn)規(guī)律。從特殊到一般是我們發(fā)現(xiàn)問題、尋求規(guī)律、揭示問題本質(zhì)最常用的方法之一。我把課本例題1、2編為練習(xí)題組(一),交由學(xué)生用上面解高考題的方法——圖象法去解,學(xué)生由于熟知二次函數(shù)圖象,求解應(yīng)該不會(huì)有太大的問題。在這個(gè)過程中,教師要啟發(fā)引導(dǎo)學(xué)生注意對(duì)比兩題的異同,組織引導(dǎo)學(xué)生展開交流討論,探討第(2)題能不能先把二次項(xiàng)系數(shù)化正以后再構(gòu)造函數(shù)畫圖求解。然后達(dá)成共識(shí),如果二次項(xiàng)系數(shù)為負(fù)數(shù)時(shí),先做等價(jià)轉(zhuǎn)化,把二次項(xiàng)系數(shù)化為正數(shù)再解,課本19頁例3、例4作為題組(二),繼續(xù)讓學(xué)生用上面的圖象法,由學(xué)生自己求解,這時(shí)我及時(shí)提示學(xué)生注意這兩題與題組(一)中兩題的不同(例1、例2對(duì)應(yīng)方程都有兩個(gè)不等實(shí)根,例3對(duì)應(yīng)方程有兩相等實(shí)根,例4對(duì)應(yīng)方程無實(shí)根)。兩個(gè)題組的練習(xí)之后,可以尋求解二次不等式的一般規(guī)律。

3.啟發(fā)引導(dǎo)——形成結(jié)論。前面兩個(gè)題組的四個(gè)小題,基本涵蓋了一般一元二次不等式解的各種情況,進(jìn)一步啟發(fā)引導(dǎo)學(xué)生將特殊、具體題目的結(jié)論做一般化總結(jié),與學(xué)生一起就△>0,△<0,△=0的三種情況,總結(jié)二次不等式ax2+bx+c>0或ax2+bx+c<0(a>0)的解的情況應(yīng)該水到渠成。至此,學(xué)生可以感受到,解二次不等式只須①將二次項(xiàng)系數(shù)化為正數(shù),②求解二次方程ax2+bx+c=0的.根。③根據(jù)①后的二次不等式的符號(hào)寫出解集即可,必要時(shí)也可以結(jié)合圖象寫解集。這樣我們就得到了二次不等式的另外一種解法(可稱為“三步曲”法)。

4.訓(xùn)練小結(jié)——鞏固深化。為了鞏固和加深二次不等式的兩種解法,接下來及時(shí)組織學(xué)生進(jìn)行課堂練習(xí),完成課本21頁練習(xí)1—4題。本環(huán)節(jié)請(qǐng)不同層次的學(xué)生在黑板上書寫解題過程,之后師生共同糾正問題,規(guī)范解題過程的書寫。

5.延伸拓寬——提高能力。課堂教學(xué)既要面向全體學(xué)生,又應(yīng)關(guān)注學(xué)生的個(gè)體差異。體現(xiàn)分類推進(jìn),分層教學(xué)的原則。為此,我又設(shè)計(jì)了一個(gè)提高練習(xí)題組,共有三道備選題目,以供程度較好學(xué)有余力的學(xué)生能夠更好的展示自己的解題能力,取得更進(jìn)一步的提高。

一元二次不等式課件(篇8)

教學(xué)目標(biāo):

(1)透徹理解、掌握一元二次方程、一元二次不等式與二次函數(shù)的內(nèi)在聯(lián)系,會(huì)解一元二次不等式;

(2)培養(yǎng)學(xué)生數(shù)學(xué)的數(shù)形結(jié)合思想和轉(zhuǎn)化能力,學(xué)會(huì)主動(dòng)探求問題和尋找解決問題的方法。

教學(xué)重點(diǎn):一元二次不等式的解法(圖象法)

教學(xué)難點(diǎn):

(1)一元二次方程、一元二次不等式與二次函數(shù)的關(guān)系;

(2)數(shù)形結(jié)合思想的滲透

教學(xué)方法與教學(xué)手段:

嘗試探索教學(xué)法、歸納概括。

教學(xué)過程:

一、復(fù)習(xí)引入

1.復(fù)習(xí)一元一次方程、一元一次不等式與一次函數(shù)的關(guān)系

[師]前面我們已經(jīng)學(xué)習(xí)了絕對(duì)值不等式的解法,今天開始研究一元二次不等式的解法。(板書課題)記得在初中我們已學(xué)習(xí)了一元一次不等式的解法,還記得是用什么方法解的'嗎?

學(xué)生可能回答是代數(shù)方法,也可能說是利用直線圖象。

[師]初中學(xué)習(xí)了一次函數(shù)的圖象,使得我們對(duì)一元一次不等式的解法有了更深入的了解。首先請(qǐng)同學(xué)們畫出 y=2x-7

[師]請(qǐng)同學(xué)們畫出圖象,并回答問題。

一次函數(shù)y=2x-7的圖象如下:

填表:

當(dāng)x 時(shí),y = 0,即 2x-7 0;

當(dāng)x 時(shí),y

當(dāng)x 時(shí),y > 0,即 2x-7 0;

注:(1)引導(dǎo)學(xué)生由圖象得出結(jié)論(數(shù)形結(jié)合)

(2)由學(xué)生填空(一邊演示y0部分圖象)

從上例的特殊情形,你能得出什么結(jié)論?

注:教師引導(dǎo)下學(xué)生發(fā)現(xiàn)其結(jié)論,并由學(xué)生嘗試敘述:一元一次方程ax+b=0的根實(shí)質(zhì)上就是直線y=ax+b與x軸交點(diǎn)的橫坐標(biāo);一元一次不等式ax+b>0(或ax+b

2.新課導(dǎo)入

[師]我們可以利用一次函數(shù)的圖象快速準(zhǔn)確地求出一元一次不等式的解集,那能否也可以借助二次函數(shù)的圖象來解一元二次不等式呢?

二、講解新課

1、一元二次不等式解法的探索

[師] 你知道二次函數(shù)的草圖是怎樣畫出的嗎?(用"特殊點(diǎn)法"而非課本上的"列表描點(diǎn)法")你能回答以下問題嗎?二次函數(shù) y=x2-4x+3的圖象如下:

填表:方程x2-4x+3=0(即y=0)的解是

不等式x2-4x+3>0(即y>0)的解集是

不等式x2-4x+3

注:學(xué)生類比前面的知識(shí),能根據(jù)二次函數(shù)的圖象確定與x軸的交點(diǎn),確定對(duì)應(yīng)的一元二次方程的根,從而確定一元二次不等式的解集。(邊說邊畫y>0,y

[師]現(xiàn)在如果我變動(dòng)這條拋物線,請(qǐng)大家觀察拋物線與x軸的交點(diǎn)有何變化?

注:引導(dǎo)學(xué)生發(fā)現(xiàn)一元二次方程的根有三種情況,其對(duì)應(yīng)的二次函數(shù)圖象與x軸的位置關(guān)系也有三種情況,是由 >0, =0,

2、講解例題

[師]接下來請(qǐng)同學(xué)們?cè)賮矸治鰩讉€(gè)具體例子

(板書)例:解下列各不等式

(1)2x2-3x-2>0;

(2) -3x2+6x>2;

(3)4x2-4x+1>0;

(4)-x2+2x-3>0.

注:跟學(xué)生共同詳細(xì)分析(1),強(qiáng)調(diào)解題規(guī)范性,其余(2)(3)(4)由學(xué)生完成,并小組討論。

解:(1)方程2x2-3x-2=0的兩根為x1=- 或 x2=2,(畫草圖,結(jié)合圖象)

所以原不等式的解集是{x| x2 }

四、課后作業(yè):書P21/習(xí)題1.5/1.3.5.6

五、教學(xué)設(shè)計(jì)說明:

1、本節(jié)課教學(xué)設(shè)計(jì)力圖體現(xiàn)以學(xué)生發(fā)展為本,遵循學(xué)生的認(rèn)知規(guī)律,體現(xiàn)循序漸進(jìn)的教學(xué)原則,通過對(duì)原有知識(shí)的復(fù)習(xí),引導(dǎo)學(xué)生類比探索新的知識(shí),激發(fā)學(xué)生的求知欲望,調(diào)動(dòng)學(xué)生的積極性。

2、本節(jié)課采用在教師引導(dǎo)下啟發(fā)學(xué)生探索發(fā)現(xiàn),體會(huì)解題過程中形結(jié)合思想方法,使之獲得內(nèi)心感受。

3、本節(jié)課的重點(diǎn)是利用圖象解一元二次不等式,讓學(xué)生明確一元二次方程、一元二次不等式與二次函數(shù)之間的聯(lián)系。在思維訓(xùn)練方面,注重從特殊到一般,從具體到抽象思維的培養(yǎng)。歸納總結(jié)可以訓(xùn)練學(xué)生的收斂思維,有助于完善學(xué)生的思維結(jié)構(gòu)。

4、本節(jié)課的例題及課堂練習(xí)是課本上的習(xí)題,其目的在于落實(shí)基礎(chǔ),提高運(yùn)算能力。

一元二次不等式課件(篇9)

一、教材分析

(一)教材的地位和作用

“一元二次不等式解法”既是初中一元一次不等式解法在知識(shí)上的延伸和發(fā)展,又是本章集合知識(shí)的運(yùn)用與鞏固,也為下一章函數(shù)的定義域和值域教學(xué)作鋪墊,起著鏈條的作用。同時(shí),這部分內(nèi)容較好地反映了方程、不等式、函數(shù)知識(shí)的內(nèi)在聯(lián)系和相互轉(zhuǎn)化,蘊(yùn)含著歸納、轉(zhuǎn)化、數(shù)形結(jié)合等豐富的數(shù)學(xué)思想方法,能較好地培養(yǎng)學(xué)生的觀察能力、概括能力、探究能力及創(chuàng)新意識(shí)。

(二)教學(xué)內(nèi)容

本節(jié)內(nèi)容分2課時(shí)學(xué)習(xí)。本課時(shí)通過二次函數(shù)的圖象探索一元二次不等式的解集。通過復(fù)習(xí)“三個(gè)一次”的關(guān)系,即一次函數(shù)與一元一次方程、一元一次不等式的關(guān)系;以舊帶新尋找“三個(gè)二次”的關(guān)系,即二次函數(shù)與一元二次方程、一元二次不等式的關(guān)系;采用“畫、看、說、用”的思維模式,得出一元二次不等式的解集,品味數(shù)學(xué)中的和諧美,體驗(yàn)成功的樂趣。

二、教學(xué)目標(biāo)分析

根據(jù)教學(xué)大綱的要求、本節(jié)教材的特點(diǎn)和高一學(xué)生的認(rèn)知規(guī)律,本節(jié)課的教學(xué)目標(biāo)確定為:

知識(shí)目標(biāo)——理解“三個(gè)二次”的關(guān)系;掌握看圖象找解集的方法,熟悉一元二次不等式的解法。

能力目標(biāo)——通過看圖象找解集,培養(yǎng)學(xué)生“從形到數(shù)”的轉(zhuǎn)化能力,“從具體到抽象”、“從特殊到一般”的歸納概括能力。

情感目標(biāo)——?jiǎng)?chuàng)設(shè)問題情景,激發(fā)學(xué)生觀察、分析、探求的學(xué)習(xí)激情、強(qiáng)化學(xué)生參與意識(shí)及主體作用。

三、重難點(diǎn)分析

一元二次不等式是高中數(shù)學(xué)中最基本的不等式之一,是解決許多數(shù)學(xué)問題的重要工具。本節(jié)課的重點(diǎn)確定為:一元二次不等式的解法。

要把握這個(gè)重點(diǎn)。關(guān)鍵在于理解并掌握利用二次函數(shù)的圖象確定一元二次不等式解集的方法——圖象法,其本質(zhì)就是要能利用數(shù)形結(jié)合的思想方法認(rèn)識(shí)方程的解,不等式的解集與函數(shù)圖象上對(duì)應(yīng)點(diǎn)的橫坐標(biāo)的內(nèi)在聯(lián)系。由于初中沒有專門研究過這類問題,高一學(xué)生比較陌生,要真正掌握有一定的難度。因此,本節(jié)課的難點(diǎn)確定為:“三個(gè)二次”的關(guān)系。要突破這個(gè)難點(diǎn),讓學(xué)生歸納“三個(gè)一次”的關(guān)系作鋪墊。

四、教法與學(xué)法分析

(一)學(xué)法指導(dǎo)

教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會(huì)學(xué)是目的。因此在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會(huì)學(xué)習(xí)。本節(jié)課主要是教給學(xué)生“動(dòng)手畫、動(dòng)眼看、動(dòng)腦想、動(dòng)口說、善提煉、勤鉆研”的研討式學(xué)習(xí)方法,這樣做增加了學(xué)生自主參與,合作交流的機(jī)會(huì),教給了學(xué)生獲取知識(shí)的途徑、思考問題的方法,使學(xué)生真正成了教學(xué)的主體;只有這樣做,才能使學(xué)生“學(xué)”有新“思”,“思”有新“得”,“練”有新“獲”,學(xué)生也才會(huì)逐步感受到數(shù)學(xué)的美,會(huì)產(chǎn)生一種成功感,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;也只有這樣做,課堂教學(xué)才富有時(shí)代特色,才能適應(yīng)素質(zhì)教育下培養(yǎng)“創(chuàng)新型”人才的需要。

(二)教法分析

本節(jié)課設(shè)計(jì)的指導(dǎo)思想是:現(xiàn)代認(rèn)知心理學(xué)——建構(gòu)主義學(xué)習(xí)理論。

建構(gòu)主義學(xué)習(xí)理論認(rèn)為:應(yīng)把學(xué)習(xí)看成是學(xué)生主動(dòng)的建構(gòu)活動(dòng),學(xué)生應(yīng)與一定的知識(shí)背景即情景相聯(lián)系,在實(shí)際情景下進(jìn)行學(xué)習(xí),可以使學(xué)生利用已有知識(shí)與經(jīng)驗(yàn)同化和索引出當(dāng)前要學(xué)習(xí)的新知識(shí),這樣獲取的知識(shí),不但便于保持,而且易于遷移到陌生的問題情景中。

本節(jié)課采用“誘思引探教學(xué)法”。把問題作為出發(fā)點(diǎn),指導(dǎo)學(xué)生“畫、看、說、用”。較好地探求一元二次不等式的解法。

五、課堂設(shè)計(jì)

本節(jié)課的教學(xué)設(shè)計(jì)充分體現(xiàn)以學(xué)生發(fā)展為本,培養(yǎng)學(xué)生的觀察、概括和探究能力,遵循學(xué)生的認(rèn)知規(guī)律,體現(xiàn)理論聯(lián)系實(shí)際、循序漸進(jìn)和因材施教的教學(xué)原則,通過問題情境的創(chuàng)設(shè),激發(fā)興趣,使學(xué)生在問題解決的探索過程中,由學(xué)會(huì)走向會(huì)學(xué),由被動(dòng)答題走向主動(dòng)探究。

(一)創(chuàng)設(shè)情景,引出“三個(gè)一次”的關(guān)系

本節(jié)課開始,先讓學(xué)生解一元二次方程x2—x—6=0,如果我把“=”改成“>”則變成一元二次不等式x2—x—6>0讓學(xué)生解,學(xué)生肯定感到很突然。但是“思維往往是從驚奇和疑問開始”,這樣直奔主題,目的在于構(gòu)造懸念,激活學(xué)生的思維興趣。

為此,我設(shè)計(jì)了以下幾個(gè)問題:

1、請(qǐng)同學(xué)們解以下方程和不等式:

①2x—7=0;②2x—7>0;③2x—7

Yjs21.Com更多幼兒園教案擴(kuò)展閱讀

一元二次不等式課件教案合集(9篇)


教師會(huì)將課本中的主要教學(xué)內(nèi)容整理到教案課件中,因此,教師需要精心計(jì)劃每份教案課件的重點(diǎn)和難點(diǎn)。詳實(shí)的教案能夠幫助教師記錄學(xué)生的學(xué)習(xí)進(jìn)度。如果想要寫一份教案課件,需要具備哪些步驟呢?欄目小編推薦閱讀一元二次不等式課件教案,希望能對(duì)你有所幫助!

一元二次不等式課件教案 篇1

教學(xué)內(nèi)容

3.2一元二次不等式及其解法

三維目標(biāo)

一、知識(shí)與技能

1.鞏固一元二次不等式的解法和解法與二次函數(shù)的關(guān)系、一元二次不等式解法的步驟、解法與二次函數(shù)的關(guān)系兩者之間的區(qū)別與聯(lián)系;

2.能熟練地將分式不等式轉(zhuǎn)化為整式不等式(組),正確地求出分式不等式的解集;

3.會(huì)用列表法,進(jìn)一步用數(shù)軸標(biāo)根法求解分式及高次不等式;

4.會(huì)利用一元二次不等式,對(duì)給定的與一元二次不等式有關(guān)的問題,嘗試用一元二次不等式解法與二次函數(shù)的有關(guān)知識(shí)解題.

二、過程與方法

1.采用探究法,按照思考、交流、實(shí)驗(yàn)、觀察、分析得出結(jié)論的方法進(jìn)行啟發(fā)式教學(xué);

2.發(fā)揮學(xué)生的主體作用,作好探究性教學(xué);

3.理論聯(lián)系實(shí)際,激發(fā)學(xué)生的學(xué)習(xí)積極性.

三、情感態(tài)度與價(jià)值觀

1.進(jìn)一步提高學(xué)生的運(yùn)算能力和思維能力;

2.培養(yǎng)學(xué)生分析問題和解決問題的能力;

3.強(qiáng)化學(xué)生應(yīng)用轉(zhuǎn)化的數(shù)學(xué)思想和分類討論的數(shù)學(xué)思想.

教學(xué)重點(diǎn)

1.從實(shí)際問題中抽象出一元二次不等式模型.

2.圍繞一元二次不等式的解法展開,突出體現(xiàn)數(shù)形結(jié)合的思想.

教學(xué)難點(diǎn)

1.深入理解二次函數(shù)、一元二次方程與一元二次不等式的關(guān)系.

教學(xué)方法

啟發(fā)、探究式教學(xué)

教學(xué)過程

復(fù)習(xí)引入

師:上一節(jié)課我們通過具體的問題情景,體會(huì)到現(xiàn)實(shí)世界存在大量的不等量關(guān)系,并且研究了用不等式或不等式組來表示實(shí)際問題中的不等關(guān)系?;仡櫹碌缺葦?shù)列的性質(zhì)。

生:略

師:某同學(xué)要把自己的計(jì)算機(jī)接入因特網(wǎng),現(xiàn)有兩種ISP公司可供選擇,公司A每小時(shí)收費(fèi)1.5元(不足1小時(shí)按1小時(shí)計(jì)算),公司B的收費(fèi)原則是第1小時(shí)內(nèi)(含恰好1小時(shí),下同)收費(fèi)1.7元,第2小時(shí)內(nèi)收費(fèi)1.6元以后每小時(shí)減少0.1元(若用戶一次上網(wǎng)時(shí)間超過17小時(shí),按17小時(shí)計(jì)算)那么,一次上網(wǎng)在多少時(shí)間以內(nèi)能夠保證選擇公司A的上網(wǎng)費(fèi)用小于等于選擇公司B所需費(fèi)用。

學(xué)生自己討論

點(diǎn)題,板書課題

新課學(xué)習(xí)

1.一元二次不等式

只有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是2的不等式。

2.三個(gè)“二次”之間的關(guān)系及一元二次不等式的解法

師在前面我們已經(jīng)學(xué)習(xí)過一元二次不等的解法,發(fā)現(xiàn)一元二次方程及對(duì)應(yīng)的二次函數(shù)有關(guān)系,那么同學(xué)們課本打開到p77填表格。

生略

師學(xué)生討論歸納出解一元二次不等式的步驟

一看:看二次項(xiàng)系數(shù)的正負(fù),并且變形為

二算:,判斷正負(fù),有根則求并畫出對(duì)應(yīng)的函數(shù)圖象

三寫:寫出原不等式的解集

練習(xí)反饋

[例題剖析]

例1解下列不等式

(1)(2)

(3)(4)

(5)(6)

課本80頁練習(xí)

例2已知不等式的解集為試解不等式

變式:

已知

課堂

小結(jié)

1.三個(gè)“二次的關(guān)系”

2.解二次不等式的步驟

作業(yè)布置

課本第80頁習(xí)題3.2A組第1.2.4題B組1

練習(xí)調(diào)配

設(shè)計(jì)42頁全做,43頁例1例2隨堂練習(xí)2.3,4,5測(cè)評(píng)1、3、4、5、6、7、8、

一元二次不等式課件教案 篇2

1.創(chuàng)設(shè)情景——引入新課。我們常說“興趣是最好的老師”,長(zhǎng)期以來,學(xué)生對(duì)學(xué)習(xí)數(shù)學(xué)缺乏興趣,甚至失去信心,一個(gè)重要的原因,是老師在教學(xué)中不重視學(xué)生對(duì)學(xué)習(xí)的情感體驗(yàn),教學(xué)應(yīng)該充分考慮學(xué)生的情感和需要,想方設(shè)法讓學(xué)生在學(xué)習(xí)中樹立信心,感受學(xué)習(xí)的樂趣。根據(jù)教材內(nèi)容的安排,我以學(xué)生熟悉的畫一次函數(shù)圖象、求一次方程和一次不等式的解為背景知識(shí)切入,設(shè)置一個(gè)練習(xí)題組,一方面讓學(xué)生總結(jié)復(fù)習(xí)已有知識(shí),為后面學(xué)習(xí)二次不等式的解法打下基礎(chǔ),做好鋪墊,另一方面,使學(xué)生在自己熟悉的問題中首先獲得解題成功的快樂體驗(yàn),然后以20xx年江蘇省的一道高考試題為引子,引入本節(jié)課的新授內(nèi)容。對(duì)于本題,引導(dǎo)學(xué)生,利用上面解練習(xí)題組1的方法,畫出二次函數(shù)圖象來解答。二次函數(shù)是初中數(shù)學(xué)的重要內(nèi)容,本題又給出了函數(shù)圖象上許多點(diǎn),相信學(xué)生畫出圖象應(yīng)該不成問題,只要教師適當(dāng)點(diǎn)撥,學(xué)生不難得到正確答案。以高考試題為背景引入新課,可以提高學(xué)生興趣,抓住學(xué)生眼球,吸引學(xué)生注意力,還可以讓學(xué)生實(shí)實(shí)在在感受到,高考題就在我們的課本中,就在我們平常的練習(xí)中。

2.探究交流——發(fā)現(xiàn)規(guī)律。從特殊到一般是我們發(fā)現(xiàn)問題、尋求規(guī)律、揭示問題本質(zhì)最常用的方法之一。我把課本例題1、2編為練習(xí)題組(一),交由學(xué)生用上面解高考題的方法——圖象法去解,學(xué)生由于熟知二次函數(shù)圖象,求解應(yīng)該不會(huì)有太大的問題。在這個(gè)過程中,教師要啟發(fā)引導(dǎo)學(xué)生注意對(duì)比兩題的異同,組織引導(dǎo)學(xué)生展開交流討論,探討第(2)題能不能先把二次項(xiàng)系數(shù)化正以后再構(gòu)造函數(shù)畫圖求解。然后達(dá)成共識(shí),如果二次項(xiàng)系數(shù)為負(fù)數(shù)時(shí),先做等價(jià)轉(zhuǎn)化,把二次項(xiàng)系數(shù)化為正數(shù)再解,課本19頁例3、例4作為題組(二),繼續(xù)讓學(xué)生用上面的圖象法,由學(xué)生自己求解,這時(shí)我及時(shí)提示學(xué)生注意這兩題與題組(一)中兩題的不同(例1、例2對(duì)應(yīng)方程都有兩個(gè)不等實(shí)根,例3對(duì)應(yīng)方程有兩相等實(shí)根,例4對(duì)應(yīng)方程無實(shí)根)。兩個(gè)題組的練習(xí)之后,可以尋求解二次不等式的一般規(guī)律。

3.啟發(fā)引導(dǎo)——形成結(jié)論。前面兩個(gè)題組的四個(gè)小題,基本涵蓋了一般一元二次不等式解的各種情況,進(jìn)一步啟發(fā)引導(dǎo)學(xué)生將特殊、具體題目的結(jié)論做一般化總結(jié),與學(xué)生一起就△>0,△<0,△=0的三種情況,總結(jié)二次不等式ax2+bx+c>0或ax2+bx+c<0(a>0)的解的情況應(yīng)該水到渠成。至此,學(xué)生可以感受到,解二次不等式只須①將二次項(xiàng)系數(shù)化為正數(shù),②求解二次方程ax2+bx+c=0的.根。③根據(jù)①后的二次不等式的符號(hào)寫出解集即可,必要時(shí)也可以結(jié)合圖象寫解集。這樣我們就得到了二次不等式的另外一種解法(可稱為“三步曲”法)。

4.訓(xùn)練小結(jié)——鞏固深化。為了鞏固和加深二次不等式的兩種解法,接下來及時(shí)組織學(xué)生進(jìn)行課堂練習(xí),完成課本21頁練習(xí)1—4題。本環(huán)節(jié)請(qǐng)不同層次的學(xué)生在黑板上書寫解題過程,之后師生共同糾正問題,規(guī)范解題過程的書寫。

5.延伸拓寬——提高能力。課堂教學(xué)既要面向全體學(xué)生,又應(yīng)關(guān)注學(xué)生的個(gè)體差異。體現(xiàn)分類推進(jìn),分層教學(xué)的原則。為此,我又設(shè)計(jì)了一個(gè)提高練習(xí)題組,共有三道備選題目,以供程度較好學(xué)有余力的學(xué)生能夠更好的展示自己的解題能力,取得更進(jìn)一步的提高。

一元二次不等式課件教案 篇3

各位評(píng)委、各位老師:

大家好!

我叫,來自。今天我說課的課題是《一元二次不等式的解法》(第一課時(shí))。下面我將圍繞本節(jié)課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個(gè)問題,從教材內(nèi)容分析、教法學(xué)法分析、教學(xué)過程分析和課堂意外預(yù)案等幾個(gè)方面逐一加以分析和說明。

一、教材內(nèi)容分析:

1、本節(jié)課內(nèi)容在整個(gè)教材中的地位和作用。

概括地講,本節(jié)課內(nèi)容的地位體現(xiàn)在它的基礎(chǔ)性,作用體現(xiàn)在它的工具性。一元二次不等式的解法是初中一元一次不等式或一元一次不等式組的延續(xù)和深化,對(duì)已學(xué)習(xí)過的集合知識(shí)的鞏固和運(yùn)用具有重要的作用,也與后面的函數(shù)、數(shù)列、三角函數(shù)、線形規(guī)劃、直線與圓錐曲線以及導(dǎo)數(shù)等內(nèi)容密切相關(guān)。許多問題的解決都會(huì)借助一元二次不等式的解法。因此,一元二次不等式的解法在整個(gè)高中數(shù)學(xué)教學(xué)中具有很強(qiáng)的基礎(chǔ)性,體現(xiàn)出很大的工具作用。

2、教學(xué)目標(biāo)定位。

根據(jù)教學(xué)大綱要求、高考考試大綱說明、新課程標(biāo)準(zhǔn)精神、高一學(xué)生已有的知識(shí)儲(chǔ)備狀況和學(xué)生心理認(rèn)知特征,我確定了四個(gè)層面的教學(xué)目標(biāo)。第一層面是面向全體學(xué)生的知識(shí)目標(biāo):熟練掌握一元二次不等式的兩種解法,正確理解一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系。第二層面是能力目標(biāo),培養(yǎng)學(xué)生運(yùn)用數(shù)形結(jié)合與等價(jià)轉(zhuǎn)化等數(shù)學(xué)思想方法解決問題的能力,提高運(yùn)算和作圖能力。第三層面是德育目標(biāo),通過對(duì)解不等式過程中等與不等對(duì)立統(tǒng)一關(guān)系的認(rèn)識(shí),向?qū)W生逐步滲透辨證唯物主義思想。第四層面是情感目標(biāo),在教師的啟發(fā)引導(dǎo)下,學(xué)生自主探究,交流討論,培養(yǎng)學(xué)生的合作意識(shí)和創(chuàng)新精神。

3、教學(xué)重點(diǎn)、難點(diǎn)確定。

本節(jié)課是在復(fù)習(xí)了一次不等式的解法之后,利用二次函數(shù)的圖象研究一元二次不等式的解法。只要學(xué)生能夠理解一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系,并利用其關(guān)系解不等式即可。因此,我確定本節(jié)課的教學(xué)重點(diǎn)為一元二次不等式的解法,關(guān)鍵是一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系。

二、教法學(xué)法分析:

數(shù)學(xué)是發(fā)展學(xué)生思維、培養(yǎng)學(xué)生良好意志品質(zhì)和美好情感的重要學(xué)科,在教學(xué)中,我們不僅要使學(xué)生獲得知識(shí)、提高解題能力,還要讓學(xué)生在教師的啟發(fā)引導(dǎo)下學(xué)會(huì)學(xué)習(xí)、樂于學(xué)習(xí),感受數(shù)學(xué)學(xué)科的人文思想,使學(xué)生在學(xué)習(xí)中培養(yǎng)堅(jiān)強(qiáng)的意志品質(zhì)、形成良好的道德情感。為了更好地體現(xiàn)課堂教學(xué)中“教師為主導(dǎo),學(xué)生為主體”的教學(xué)關(guān)系和“以人為本,以學(xué)定教”的教學(xué)理念,在本節(jié)課的教學(xué)過程中,我將緊緊圍繞教師組織——啟發(fā)引導(dǎo),學(xué)生探究——交流發(fā)現(xiàn),組織開展教學(xué)活動(dòng)。我設(shè)計(jì)了①創(chuàng)設(shè)情景——引入新課,②交流探究——發(fā)現(xiàn)規(guī)律,③啟發(fā)引導(dǎo)——形成結(jié)論,④練習(xí)小結(jié)——深化鞏固,⑤思維拓展——提高能力,五個(gè)環(huán)環(huán)相扣、層層深入的教學(xué)環(huán)節(jié),在教學(xué)中注意關(guān)注整個(gè)過程和全體學(xué)生,充分調(diào)動(dòng)學(xué)生積極參與教學(xué)過程的每個(gè)環(huán)節(jié)。

一元二次不等式課件教案 篇4

新課程理念下的教學(xué)更多的關(guān)注學(xué)生自主探究、關(guān)注學(xué)生的個(gè)性發(fā)展,鼓勵(lì)學(xué)生勇于提出問題,培養(yǎng)學(xué)生思維的批評(píng)性。在課堂上學(xué)生往往會(huì)提出讓老師感到“意外”的問題,我在平時(shí)的教學(xué)中重視對(duì)“課堂意外預(yù)案”的探索和思考,備課時(shí)盡量設(shè)想課堂中可能會(huì)出現(xiàn)的各種情況,做到有備無患,以免在課堂中學(xué)生提出讓自己出乎意料的問題,使自己陷入被動(dòng)尷尬境地。結(jié)合以往經(jīng)驗(yàn),在本節(jié)課,我提出兩個(gè)“意外預(yù)案”。

1、學(xué)生在做課本練習(xí)1(x+2)(x-3)>0時(shí),可能會(huì)問到轉(zhuǎn)化為不等式組{或{求解對(duì)不對(duì)。學(xué)生提出的問題,想法非常好,應(yīng)給予肯定和鼓勵(lì),這與下節(jié)簡(jiǎn)單分式不等式和高次不等式的解法有關(guān),是解不等式的另一種解法——等價(jià)轉(zhuǎn)化法,不在本節(jié)課之列。

2、根據(jù)以往的經(jīng)驗(yàn),在解(x-1)(x+2)>1一類的不等式的時(shí)候,由于受方程(x+1)(x+2)=0可轉(zhuǎn)化為x-1=0或x+2=0求解的影響,有可能會(huì)出現(xiàn)將不等式轉(zhuǎn)化為不等式組{來求解的錯(cuò)誤做法,教師要關(guān)注學(xué)生,及時(shí)發(fā)現(xiàn)問題并給予糾正,指出上面的轉(zhuǎn)化不是等價(jià)轉(zhuǎn)化。

以上是我對(duì)本節(jié)課的一些粗淺的認(rèn)識(shí)和構(gòu)想,如有不妥之處,懇請(qǐng)各位專家、各位同仁批評(píng)指正。謝謝大家!

一元二次不等式課件教案 篇5

教學(xué)目標(biāo):

(1)透徹理解、掌握一元二次方程、一元二次不等式與二次函數(shù)的內(nèi)在聯(lián)系,會(huì)解一元二次不等式;

(2)培養(yǎng)學(xué)生數(shù)學(xué)的數(shù)形結(jié)合思想和轉(zhuǎn)化能力,學(xué)會(huì)主動(dòng)探求問題和尋找解決問題的方法。

教學(xué)重點(diǎn):一元二次不等式的解法(圖象法)

教學(xué)難點(diǎn):

(1)一元二次方程、一元二次不等式與二次函數(shù)的關(guān)系;

(2)數(shù)形結(jié)合思想的滲透

教學(xué)方法與教學(xué)手段:

嘗試探索教學(xué)法、歸納概括。

教學(xué)過程:

一、復(fù)習(xí)引入

1.復(fù)習(xí)一元一次方程、一元一次不等式與一次函數(shù)的關(guān)系

[師]前面我們已經(jīng)學(xué)習(xí)了絕對(duì)值不等式的解法,今天開始研究一元二次不等式的解法。(板書課題)記得在初中我們已學(xué)習(xí)了一元一次不等式的解法,還記得是用什么方法解的'嗎?

學(xué)生可能回答是代數(shù)方法,也可能說是利用直線圖象。

[師]初中學(xué)習(xí)了一次函數(shù)的圖象,使得我們對(duì)一元一次不等式的解法有了更深入的了解。首先請(qǐng)同學(xué)們畫出 y=2x-7

[師]請(qǐng)同學(xué)們畫出圖象,并回答問題。

一次函數(shù)y=2x-7的圖象如下:

填表:

當(dāng)x 時(shí),y = 0,即 2x-7 0;

當(dāng)x 時(shí),y

當(dāng)x 時(shí),y > 0,即 2x-7 0;

注:(1)引導(dǎo)學(xué)生由圖象得出結(jié)論(數(shù)形結(jié)合)

(2)由學(xué)生填空(一邊演示y0部分圖象)

從上例的特殊情形,你能得出什么結(jié)論?

注:教師引導(dǎo)下學(xué)生發(fā)現(xiàn)其結(jié)論,并由學(xué)生嘗試敘述:一元一次方程ax+b=0的根實(shí)質(zhì)上就是直線y=ax+b與x軸交點(diǎn)的橫坐標(biāo);一元一次不等式ax+b>0(或ax+b

2.新課導(dǎo)入

[師]我們可以利用一次函數(shù)的圖象快速準(zhǔn)確地求出一元一次不等式的解集,那能否也可以借助二次函數(shù)的圖象來解一元二次不等式呢?

二、講解新課

1、一元二次不等式解法的探索

[師] 你知道二次函數(shù)的草圖是怎樣畫出的嗎?(用"特殊點(diǎn)法"而非課本上的"列表描點(diǎn)法")你能回答以下問題嗎?二次函數(shù) y=x2-4x+3的圖象如下:

填表:方程x2-4x+3=0(即y=0)的解是

不等式x2-4x+3>0(即y>0)的解集是

不等式x2-4x+3

注:學(xué)生類比前面的知識(shí),能根據(jù)二次函數(shù)的圖象確定與x軸的交點(diǎn),確定對(duì)應(yīng)的一元二次方程的根,從而確定一元二次不等式的解集。(邊說邊畫y>0,y

[師]現(xiàn)在如果我變動(dòng)這條拋物線,請(qǐng)大家觀察拋物線與x軸的交點(diǎn)有何變化?

注:引導(dǎo)學(xué)生發(fā)現(xiàn)一元二次方程的根有三種情況,其對(duì)應(yīng)的二次函數(shù)圖象與x軸的位置關(guān)系也有三種情況,是由 >0, =0,

2、講解例題

[師]接下來請(qǐng)同學(xué)們?cè)賮矸治鰩讉€(gè)具體例子

(板書)例:解下列各不等式

(1)2x2-3x-2>0;

(2) -3x2+6x>2;

(3)4x2-4x+1>0;

(4)-x2+2x-3>0.

注:跟學(xué)生共同詳細(xì)分析(1),強(qiáng)調(diào)解題規(guī)范性,其余(2)(3)(4)由學(xué)生完成,并小組討論。

解:(1)方程2x2-3x-2=0的兩根為x1=- 或 x2=2,(畫草圖,結(jié)合圖象)

所以原不等式的解集是{x| x2 }

四、課后作業(yè):書P21/習(xí)題1.5/1.3.5.6

五、教學(xué)設(shè)計(jì)說明:

1、本節(jié)課教學(xué)設(shè)計(jì)力圖體現(xiàn)以學(xué)生發(fā)展為本,遵循學(xué)生的認(rèn)知規(guī)律,體現(xiàn)循序漸進(jìn)的教學(xué)原則,通過對(duì)原有知識(shí)的復(fù)習(xí),引導(dǎo)學(xué)生類比探索新的知識(shí),激發(fā)學(xué)生的求知欲望,調(diào)動(dòng)學(xué)生的積極性。

2、本節(jié)課采用在教師引導(dǎo)下啟發(fā)學(xué)生探索發(fā)現(xiàn),體會(huì)解題過程中形結(jié)合思想方法,使之獲得內(nèi)心感受。

3、本節(jié)課的重點(diǎn)是利用圖象解一元二次不等式,讓學(xué)生明確一元二次方程、一元二次不等式與二次函數(shù)之間的聯(lián)系。在思維訓(xùn)練方面,注重從特殊到一般,從具體到抽象思維的培養(yǎng)。歸納總結(jié)可以訓(xùn)練學(xué)生的收斂思維,有助于完善學(xué)生的思維結(jié)構(gòu)。

4、本節(jié)課的例題及課堂練習(xí)是課本上的習(xí)題,其目的在于落實(shí)基礎(chǔ),提高運(yùn)算能力。

一元二次不等式課件教案 篇6

高中數(shù)學(xué)《一元二次不等式的解法(2)》教案

一、教學(xué)目標(biāo)

【知識(shí)與技能】

掌握求解一元二次不等式的簡(jiǎn)單方法,能正確求解一元二次不等式的解集。

【過程與方法】

在探究一元二次不等式的解法的過程中,提升邏輯推理能力。

【情感、態(tài)度與價(jià)值觀】

感受數(shù)學(xué)知識(shí)的前后聯(lián)系,提升學(xué)習(xí)數(shù)學(xué)的熱情。

二、教學(xué)重難點(diǎn)

【重點(diǎn)】一元二次不等式的解法。

【難點(diǎn)】一元二次不等式的解法的探究過程。

三、教學(xué)過程

(一)導(dǎo)入新課

回顧一元二次不等式的一般形式,組織學(xué)生舉例一些簡(jiǎn)單的一元二次不等式。

提問:如何求解?引出課題。

(二)講解新知

結(jié)合課前回顧的一元二次不等式的一般形式,對(duì)比之前所學(xué)內(nèi)容,引導(dǎo)學(xué)生發(fā)現(xiàn)其與一元二次方程和二次函數(shù)的共同特點(diǎn)。

一元二次不等式課件教案 篇7

解一元二次不等式化為標(biāo)準(zhǔn)型。判斷△的符號(hào)。若△<0,則不等式是在R上恒成立或恒不成立。

若△>0,則求出兩根,在數(shù)軸上標(biāo)出,每個(gè)根上畫一條豎線,再?gòu)挠业阶笙嚅g標(biāo)正負(fù)號(hào),不等式大于0則取標(biāo)正的范圍,小于0則取標(biāo)負(fù)的范圍。

2.解簡(jiǎn)單一元高次不等式

a.化為標(biāo)準(zhǔn)型。

b.將不等式分解成若干個(gè)因式的積。

c.求出各個(gè)根,在數(shù)軸上標(biāo)出,每個(gè)根上畫一條豎線,再?gòu)挠业阶笙嚅g標(biāo)正負(fù)號(hào),不等式大于0則取標(biāo)正的范圍,小于0則取標(biāo)負(fù)的范圍。

3.解分式不等式的解

a.化為標(biāo)準(zhǔn)型。

b.可將分式化為整式,將整式分解成若干個(gè)因式的積。

c.求出各個(gè)根,在數(shù)軸上標(biāo)出,每個(gè)根上畫一條豎線,再?gòu)挠业阶笙嚅g標(biāo)正負(fù)號(hào),不等式大于0則取標(biāo)正的范圍,小于0則取標(biāo)負(fù)的范圍。(如果不等式是非嚴(yán)格不等式,則要注意分式分母不等于0。)

4.解含參數(shù)的一元二次不等式

a.對(duì)二次項(xiàng)系數(shù)a的討論。

若二次項(xiàng)系數(shù)a中含有參數(shù),則須對(duì)a的符號(hào)進(jìn)行分類討論。分為a>0,a=0,a<0。

b.對(duì)判別式△的討論

若判別式△中含有參數(shù),則須對(duì)△的符號(hào)進(jìn)行分類討論。分為△>0,△=0,△<0。

c.對(duì)根大小的討論

若不等式對(duì)應(yīng)的方程的根x1、x2中含有參數(shù),則須對(duì)x1、x2的大小進(jìn)行分類討論。分為x1>x2,x1=x2,x1<x2。

5.一元二次方程的根的分布問題

a.將方程化為標(biāo)準(zhǔn)型。(a的符號(hào))

b.畫圖觀察,若有區(qū)間端點(diǎn)對(duì)應(yīng)的函數(shù)值小于0,則只須討論區(qū)間端點(diǎn)的函數(shù)值。

若沒有區(qū)間端點(diǎn)對(duì)應(yīng)的函數(shù)值小于0,則須討論區(qū)間端點(diǎn)的函數(shù)值、△、軸。

6.一元二次不等式的應(yīng)用

⑴在R上恒成立問題(恒不成立問題相反,在某區(qū)間恒成立可轉(zhuǎn)化為實(shí)根分布問題)

a.對(duì)二次項(xiàng)系數(shù)a的符號(hào)進(jìn)行討論,分為a=0與a≠0。

b.a(chǎn)=0時(shí),把a(bǔ)=0帶入,檢驗(yàn)不等式是否成立,判斷a=0是否屬于不等式解集。

a≠0時(shí),則轉(zhuǎn)化為二次函數(shù)圖像全在x軸上方或下方。

若f(x)>0,則要求a>0,△<0。

若f(x)<0,則要求a<0,△<0。

⑵特殊題型:已知一不等式的解集(含有字母),求另一不等式的解集(與原不等式系數(shù)大小相同,位置不同)。a.寫出原不等式對(duì)應(yīng)的方程,由韋達(dá)定理得出解集字母與方程系數(shù)間的關(guān)系。

b.寫出變換后不等式對(duì)應(yīng)的方程,由由韋達(dá)定理得出解集字母與方程系數(shù)間的關(guān)系。

c.將a中得到的關(guān)系變化后帶入b的關(guān)系中,得到變換后方程的兩根。

d.判斷兩根的大小,變換后不等式二次項(xiàng)的系數(shù),從而寫出所求解集。

一元二次不等式課件教案 篇8

展過程一元二次不等式教學(xué)設(shè)計(jì)

一、教學(xué)內(nèi)容分析:

1、教材地位和作用

本節(jié)課是數(shù)學(xué)(基礎(chǔ)模塊)上冊(cè)第二章第三節(jié)《一元二次不等式》。從內(nèi)容上看它是我們初中學(xué)過的一元一次不等式的延伸,同時(shí)它也與一元二次方程、二次函數(shù)之間聯(lián)系緊密,涉及的知識(shí)面較多。從思想層面看,本節(jié)課突出本現(xiàn)了數(shù)形結(jié)合思想。同時(shí)一元二次不等式是解決函數(shù)定義域、值域等問題的重要工具,因此本節(jié)課在整個(gè)中學(xué)數(shù)學(xué)中具有較重要的地位和作用。

2、教學(xué)目標(biāo)

知識(shí)目標(biāo):正確理解一元二次不等式、一元二次方程、二次函數(shù)的關(guān)系。熟練掌握一元二次不等式的解法。

能力目標(biāo):培養(yǎng)數(shù)形結(jié)合思想、抽象思維能力和形象思維能力。

思想目標(biāo):在教學(xué)中滲透由具體到抽象,由特殊到一般,類比猜想、等價(jià)轉(zhuǎn)化的數(shù)學(xué)思想方法。

情感目標(biāo):通過具體情境,使學(xué)生體驗(yàn)數(shù)學(xué)與實(shí)踐的緊密聯(lián)系,感受數(shù)學(xué)魅力,激發(fā)學(xué)生求知欲望。

3、重難點(diǎn)

重點(diǎn):一元二次不等式的解法。

難點(diǎn):一元二次方程,一元二次不等式與二次函數(shù)的關(guān)系。

二、學(xué)生情況分析:

我們的學(xué)生是在學(xué)習(xí)了一元一次不等式,一元一次方程、一元一次函數(shù),一元二次方程的基礎(chǔ)上學(xué)習(xí)一元二次不等式。但大都數(shù)學(xué)生的基礎(chǔ)都不是很好,解一元二次方程有一定的困難。

三、教學(xué)環(huán)境分析:教學(xué)環(huán)境應(yīng)包括和諧的師生關(guān)系、多媒體的合理應(yīng)用、良好的課堂組織、合理的問題情境。創(chuàng)設(shè)和諧的師生關(guān)系有利于提高學(xué)習(xí)效率,我們學(xué)校要建立和諧的師生關(guān)系是需要花很多心思的,特別是就業(yè)班的同學(xué),且要有一個(gè)相當(dāng)長(zhǎng)的適應(yīng)時(shí)間。我們學(xué)校的每位老師都有手提電腦,每間教室都有寬屏電子顯示器,老師都能熟練掌握多媒體設(shè)備的運(yùn)用。運(yùn)用多媒體教學(xué)效果好、學(xué)生容易理解、學(xué)習(xí)的積極性高。上課時(shí)比較注意創(chuàng)設(shè)合適的問題情境,效果會(huì)不錯(cuò),學(xué)生從生活實(shí)際出發(fā),回答所提的問題,不知不覺學(xué)習(xí)了新的知識(shí),他們不會(huì)感覺到學(xué)習(xí)疲勞,反而能積極主動(dòng)地學(xué)習(xí)。

四、教學(xué)目標(biāo)分析:

知識(shí)與技能:正確理解一元二次不等式、一元二次方程、二次函數(shù)的關(guān)系。熟練掌握一元二次不等式的解法。

過程與方法:通過看圖象找解集,培養(yǎng)學(xué)生從從形到數(shù)的轉(zhuǎn)化能力,從具體到抽象、從特殊到一般的歸納概括能力;通過對(duì)問題的思考、探究、交流,培養(yǎng)學(xué)生良好的數(shù)學(xué)交流能力,增強(qiáng)其數(shù)形結(jié)合的思維意識(shí)。在教學(xué)中滲透由具體到抽象,由特殊到一般,類比猜想、等價(jià)轉(zhuǎn)化的數(shù)學(xué)思想方法。

情感態(tài)度與價(jià)值觀:通過具體情境,使學(xué)生體驗(yàn)數(shù)學(xué)與實(shí)踐的緊密聯(lián)系,激發(fā)學(xué)生學(xué)習(xí)研究一元二次不等式的積極性和對(duì)數(shù)學(xué)的情感,使學(xué)生充分體驗(yàn)獲取知識(shí)的成功感受;在探究、討論、交流過程中培養(yǎng)學(xué)生的合作意識(shí)和團(tuán)隊(duì)精神,使其養(yǎng)成嚴(yán)謹(jǐn)?shù)闹螌W(xué)態(tài)度和良好的思維習(xí)慣。

一元二次不等式課件教案 篇9

《一元二次不等式解法》說課稿范文

一、 教材簡(jiǎn)析

1、地位和價(jià)值

一元二次不等式解法是高中數(shù)學(xué)新教材第一冊(cè)(上)第一章第5節(jié)的內(nèi)容。在此之前,學(xué)生在初中已學(xué)習(xí)了一元一次不等式,一元一次不等式組,一元二次方程,二次函數(shù),絕對(duì)值不等式(高中),這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。一元二次不等式解法是解不等式的基礎(chǔ)和核心,它在高中代數(shù)中起著廣泛應(yīng)用的工具作用,蘊(yùn)藏著“數(shù)與形結(jié)合”的重要思想方法,它已成為代數(shù)、三角、解析幾何交匯綜合的重要部分,是高考綜合題的熱點(diǎn)。

2、教材結(jié)構(gòu)簡(jiǎn)介

教材首先以一個(gè)一次函數(shù)圖象的應(yīng)用解一元一次不等式,引出圖象法,然后給出一個(gè)二次函數(shù),通過具體畫圖象,提出問題。再一般地給出了二次函數(shù)圖象解二次不等式的結(jié)論。課本精選了四個(gè)解不等式的例題,并配有相應(yīng)的練習(xí)和習(xí)題。它的后一小節(jié)為解可轉(zhuǎn)化為一元二次不等式的分式不等式。

二、 教育教學(xué)觀

1、 學(xué)生為主體,重學(xué)生參與學(xué)習(xí)活動(dòng)。

2、 重過程。按照認(rèn)知規(guī)律及學(xué)生認(rèn)知特點(diǎn),由淺入深,由表及里,設(shè)計(jì)一系列教學(xué)活動(dòng)過程。體現(xiàn)由“實(shí)踐……觀察……歸納 ……猜想…… 結(jié)論…… 驗(yàn)證應(yīng)用”的循環(huán)往復(fù)的認(rèn)知過程。

3、 重能力與態(tài)度的培養(yǎng),在活動(dòng)中培養(yǎng)學(xué)生自主、交流合作、探究、發(fā)現(xiàn)的能力。重科學(xué)嚴(yán)謹(jǐn)?shù)膫€(gè)性品質(zhì)。重參與學(xué)習(xí)的興趣和體驗(yàn)。

4、 重指導(dǎo)點(diǎn)撥。在學(xué)生自主探究、實(shí)踐的基礎(chǔ)上,相機(jī)啟發(fā),恰當(dāng)點(diǎn)撥,促進(jìn)學(xué)生知識(shí)由感性向理性提升,由具體到概括抽象,形成師生間的有效互動(dòng)。

三、 教學(xué)目標(biāo)

基于上述認(rèn)識(shí),及不等式的基本知識(shí),同時(shí)學(xué)生在初中已學(xué)過二次函數(shù),考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征,制訂如下教學(xué)目標(biāo):

1、 知識(shí)目標(biāo):一元二次方程,一元二次不等式及二次函數(shù)間的聯(lián)系,及利用二次函數(shù)的圖象求解一元二次不等式。

2、 能力目標(biāo):數(shù)形結(jié)合的思想(應(yīng)用二次函數(shù)圖象解不等式)

3、 情感態(tài)度目標(biāo):通過問題解決,培養(yǎng)學(xué)生自主參與學(xué)習(xí),以及嚴(yán)謹(jǐn)求實(shí)的.態(tài)度。

四、 教與學(xué)重點(diǎn)、難點(diǎn)

1、重點(diǎn):用圖象解一元二次不等式。

2、難點(diǎn):圍繞二次函數(shù)圖象、性質(zhì)這一主線,解決三個(gè)“二次”的聯(lián)系和應(yīng)用。

五、 教法與學(xué)法

1、學(xué)情分析及學(xué)法:函數(shù)與圖象應(yīng)用是初中生數(shù)學(xué)的薄弱之處,同時(shí)剛進(jìn)入高中的學(xué)生,對(duì)高中學(xué)習(xí)還很不適應(yīng),需要加強(qiáng)主動(dòng)學(xué)習(xí)的指導(dǎo)?;诖耍趯W(xué)生初中知識(shí)經(jīng)驗(yàn)的基礎(chǔ)上,以舊探新;以一系列問題,促進(jìn)主體的學(xué)習(xí)活動(dòng)(如畫圖象、讀圖等),建構(gòu)知識(shí);以問題情景激勵(lì)學(xué)生參與,在恰當(dāng)時(shí)機(jī)進(jìn)行點(diǎn)撥啟發(fā),練、導(dǎo)結(jié)合,講練結(jié)合;通過學(xué)生自己做數(shù)學(xué),教師啟發(fā)指導(dǎo),以及學(xué)生領(lǐng)悟,實(shí)現(xiàn)學(xué)生對(duì)知識(shí)的再創(chuàng)造和主動(dòng)建構(gòu);具體通過教材中的問題及設(shè)計(jì)的問題情景,給予學(xué)生活動(dòng)的空間,通過這些問題(“腳手架”)的解決,使學(xué)生逐步攀升,達(dá)到知識(shí)與能力的目標(biāo)。

2、教法:數(shù)學(xué)教學(xué)是數(shù)學(xué)教與學(xué)活動(dòng)過程的教學(xué),學(xué)生是在探究與發(fā)現(xiàn)中建構(gòu)知識(shí),發(fā)展能力的,因而確定以“問題解決”為教法。實(shí)現(xiàn)學(xué)生在教師指導(dǎo)下的發(fā)現(xiàn)探索。同時(shí)所學(xué)內(nèi)容適宜用“計(jì)算機(jī)高中數(shù)學(xué)問題處理系統(tǒng)”輔助教學(xué)。

六、教學(xué)手段及工具:

多媒體教學(xué)手段,高中數(shù)學(xué)問題處理系統(tǒng)。

七、教學(xué)設(shè)計(jì)及教學(xué)過程

1、復(fù)習(xí)設(shè)問,引入新課

高中數(shù)學(xué)新教材第一冊(cè)(上)《一元二次不等式解法》(第一課時(shí))說課稿.rar

不等式與不等式組教案必備4篇


每一位教師都必須在上課之前擁有一份完備的教案課件,因此每天都需要按時(shí)按質(zhì)地編寫完善的教案課件。教案作為教育教學(xué)領(lǐng)域中的重要管理和組織工具,其質(zhì)量也至關(guān)重要。如何編寫出優(yōu)質(zhì)的教案課件呢?我相信這份“不等式與不等式組教案”可以滿足您的需求,歡迎借鑒和學(xué)習(xí),同時(shí)希望對(duì)您的教學(xué)工作有所幫助!

不等式與不等式組教案【篇1】

各位領(lǐng)導(dǎo)老師,大家好:(幻燈1)

今天我說課的題目是人教版、七年級(jí)下冊(cè)、第九章,《不等式》中的第一節(jié):《不等式及其解集》。對(duì)于本節(jié)課的處理,我準(zhǔn)備從教材分析、教法學(xué)法、教材處理、教學(xué)過程(幻燈2)這幾個(gè)方面談?wù)勛约旱目捶ǎ?/p>

1 教材分析(幻燈3)

1. 1 教材的地位和作用

本章的主要內(nèi)容是一元一次不等式解法及其簡(jiǎn)單的應(yīng)用,是繼一元一次方程學(xué)習(xí)之后,又一次數(shù)學(xué)建模思想的教學(xué),是進(jìn)一步探究現(xiàn)實(shí)生活中的數(shù)量關(guān)系、培養(yǎng)學(xué)生分析問題和解決問題能力的重要內(nèi)容,也是今后學(xué)習(xí)一元二次方程、函數(shù)、以及進(jìn)一步學(xué)習(xí)不等式知識(shí)的基礎(chǔ)。相等與不等是研究數(shù)量關(guān)系的兩個(gè)重要方面,用不等式表示不等的關(guān)系,是代數(shù)基礎(chǔ)知識(shí)的一個(gè)重要組成部份,它在解決各類實(shí)際問題中有著廣泛的應(yīng)用.

本節(jié)課的內(nèi)容主要介紹不等式及不等式的解的概念及解集的表示方法,是研究不等式的導(dǎo)入課,通過實(shí)例引入,使學(xué)生充分認(rèn)識(shí)到學(xué)習(xí)不等式的重要性和必然性,激發(fā)他們的求知欲望;經(jīng)歷、感受概念形成的過程,使學(xué)生正確抓住不等式的本質(zhì)特征,為進(jìn)一步學(xué)習(xí)不等式的性質(zhì)、解法及簡(jiǎn)單應(yīng)用起到鋪墊作用.

1.2 學(xué)情分析

(1) 學(xué)生對(duì)實(shí)際生活中的不等量關(guān)系、數(shù)量大小的比較等知識(shí),在小學(xué)階段已有所了解.

(2) 學(xué)生已初步具備了“從實(shí)際問題中抽象出數(shù)學(xué)模型,并回到實(shí)際問題解釋和檢驗(yàn)”的數(shù)學(xué)建模能力.

(3) 學(xué)生已初步具備探究和比較的能力.

1.3教學(xué)目標(biāo)分析

本節(jié)課的教學(xué)目標(biāo)是:

1.知識(shí)方面:了解不等式及一元一次不等式概念,并理解不等式的解、解集,能夠正確表示不等式的解集;經(jīng)歷把實(shí)際問題抽象為不等式的過程,能夠列出不等關(guān)系式.

2、能力方面:使學(xué)生進(jìn)一步理解歸納和類比的數(shù)學(xué)方法,以及從具體到抽象獲取知識(shí)的思維方式;初步體會(huì)不等式是刻畫現(xiàn)實(shí)世界中不等關(guān)系的一種有效數(shù)學(xué)模型。3、情感方面:通過對(duì)不等式概念及其解集等有關(guān)概念的探索,加強(qiáng)同學(xué)之間的分工合作與交流.

1.4教學(xué)重難點(diǎn)分析

本節(jié)課的教學(xué)重點(diǎn)是:不等式相關(guān)概念的理解和不等式的解集的表示。

本節(jié)課課的教學(xué)難點(diǎn)是:不等式的解不是一個(gè)或幾個(gè)具體的數(shù)值,而是適合不等式的未知數(shù)的值的全體,具有較高的抽象性,學(xué)生不易理解和接受,是本節(jié)教學(xué)中的難點(diǎn). 2教法和學(xué)法(幻燈4)

2.1 教法:

根據(jù)本節(jié)課教學(xué)內(nèi)容和七年級(jí)學(xué)生的年齡、心理特點(diǎn)及目標(biāo)教學(xué)的要求,本節(jié)課采用引導(dǎo)探究法;讓學(xué)生以觀察實(shí)例為基礎(chǔ),用歸納的方法形成概念,把教學(xué)過程轉(zhuǎn)化為學(xué)生觀察、發(fā)現(xiàn)、探究的過程,再現(xiàn)知識(shí)的“發(fā)生”和“發(fā)現(xiàn)”及“形成”的過程,揭示事物發(fā)展從“特殊”到“一般”再到“特殊”的辯證規(guī)律;既提高了學(xué)生的學(xué)習(xí)興趣,增強(qiáng)了信心,又有利于接受知識(shí);也有益于形成對(duì)問題進(jìn)行探索、研究和解決的能力.

2.2 學(xué)法:

建構(gòu)主義教學(xué)構(gòu)想的核心思想是:通過問題的解決來學(xué)習(xí).根據(jù)本節(jié)課的特點(diǎn),采用自主探究、合作交流的探究式學(xué)習(xí)方法.

3 教材處理(幻燈5)

本節(jié)課是從一個(gè)實(shí)例(問題)的解答來引出不等式及其概念的,為了降低學(xué)生的認(rèn)知難度,我通過不等式與方程的類比教學(xué),主要采用了:實(shí)際問題——列方程解答——改編為問題——列不等式——提出不等式的概念——不等式解的概念,并及時(shí)穿插相對(duì)應(yīng)的例題和練習(xí),加以鞏固.

4 教學(xué)過程

下面我來說說本節(jié)課的教學(xué)過程共同分為五個(gè)環(huán)節(jié)

第一個(gè)環(huán)節(jié) 創(chuàng)設(shè)情境,激發(fā)求知欲

首先通過老師的自我介紹,我們先認(rèn)識(shí)一下,我叫丁文婷,我的年齡嗎------比您們都大,等等。讓學(xué)生體會(huì)到生活中的不等關(guān)系,也讓學(xué)生輕松地找出生活中的不等關(guān)系,既把學(xué)生的注意力帶入本節(jié)課的內(nèi)容,也拉近了與學(xué)生的距離,創(chuàng)建了融洽的教學(xué)氛圍。然后利用兩個(gè)實(shí)際問題讓學(xué)生從列方程到列出不等關(guān)系式。(幻燈6)

(1) 20xx年12月1日起施行修改后的《鐵路旅客運(yùn)輸規(guī)程》,將此前規(guī)定的身高1.1米-1.4米的兒童應(yīng)購(gòu)買兒童票,調(diào)整為身高1.2米-1.5米的兒童應(yīng)購(gòu)買兒童票。這意味著在12月1日新規(guī)實(shí)行后,1.2米以下兒童可免票,1.2米至1.5米的可購(gòu)買半票,1.5米以上則須全票. 問題:現(xiàn)在若用x表示一名兒童的身高,那么

①x滿足______時(shí),他可免票.

②x滿足______時(shí),他該買全票.

⑵已知襄樊與武當(dāng)山的距離為150千米,他們上午10點(diǎn)鐘從襄樊出發(fā),汽車勻速行駛. ①若該車計(jì)劃中午12點(diǎn)準(zhǔn)時(shí)到達(dá)武當(dāng)山,車速應(yīng)滿足什么條件?

設(shè)車速為x千米/小時(shí),可列式子:______________.

②若該車實(shí)際上在中午12點(diǎn)之前已到達(dá)武當(dāng)山,車速應(yīng)滿足什么條件?

設(shè)車速為x千米/小時(shí),可列式子:______________.

考慮學(xué)生實(shí)際情況和題目難度,所以設(shè)置問題串,降低難度.這樣編排教材我認(rèn)為更能體現(xiàn)知識(shí)呈現(xiàn)的序列性,從易到難,讓學(xué)生“列不等式”能力實(shí)現(xiàn)螺旋上升.最后類比方程的概念由學(xué)生總結(jié)出不等式的概念.

第二個(gè)環(huán)節(jié),4.2承上啟下

通過兩組練習(xí),(幻燈7)

①下列式子中哪些是不等式?

(1)a+b=b+a

(2)-3>-5

(3)x≠1

(4)x+3>6 (5)2m<n(6)2x-3

②用不等式表示:

⑴a是正;⑵a是負(fù)數(shù);⑶a與5的和小于7;⑷a與2的差大于-1;

⑸a的4倍大于8;

⑹a的一半小于3.

一是判斷不等式,既鞏固了不等式的概念也補(bǔ)充“≠”“≤”“≥”這些符號(hào)。二是讓學(xué)生用不等式來刻畫題中6個(gè)簡(jiǎn)單的不等關(guān)系,也由此得出一元一次不等式的概念. 學(xué)生得出答案并不難,所以該環(huán)節(jié)讓學(xué)生獨(dú)立完成、互相評(píng)價(jià),同時(shí)進(jìn)一步培養(yǎng)學(xué)生列不等式能力. 第三個(gè)環(huán)節(jié),4.3 合作質(zhì)疑、探索新知

問題1.(幻燈片8)

①判斷下列數(shù)中哪些滿足不等式2x/3>50:

76、73、79、80、74.9、75.1、90、60

②滿足不等式的未知數(shù)的值還有嗎?若有,還有多少?請(qǐng)舉出2—3例.

③.上問中的不等式的解有什么共同特點(diǎn)?若有,怎么表示?你能驗(yàn)證一下你的結(jié)論嗎? ④.②中答案在數(shù)軸上怎么表示?

本環(huán)節(jié)主要任務(wù)是突出重點(diǎn)和突破難點(diǎn). 首先通過一組環(huán)環(huán)相扣,步步深入的問題來實(shí)現(xiàn),第一問四人一組分工合作完成,通過簡(jiǎn)單代值運(yùn)算,使每名學(xué)生都動(dòng)起來,邊代、邊算、邊答、邊交流,調(diào)動(dòng)學(xué)生的學(xué)習(xí)興趣,為每位學(xué)生都創(chuàng)造在數(shù)學(xué)活動(dòng)中獲取成功的體驗(yàn)機(jī)會(huì),并培養(yǎng)學(xué)生觀察能力和數(shù)感. 第二問的設(shè)計(jì),使學(xué)生感受不等式的解不是一個(gè)或幾個(gè)具體數(shù)值,加深對(duì)不等式解的理解。第三問四問突破不等式的解是適合不等式的未知數(shù)的值的全體這一難點(diǎn),使學(xué)生及時(shí)掌握、運(yùn)用新知識(shí)。從而類比方程的解得出不等式的解和解集的概念.尤其第四問的不等式的解集在數(shù)軸上的表示也體現(xiàn)了數(shù)形結(jié)合的思想,連同前面的文字表示,充分體現(xiàn)了數(shù)學(xué)的三種表示形式.

其次通過兩組練習(xí)觀察學(xué)生掌握知識(shí)的情況,及時(shí)反饋,及時(shí)調(diào)節(jié)。整個(gè)環(huán)節(jié)通過“觀察特點(diǎn)——猜想結(jié)論——驗(yàn)證猜想”的思路展開,符合學(xué)生的認(rèn)知過程.

第四個(gè)環(huán)節(jié),4.4 運(yùn)用新知、解決問題(幻燈9)

某班同學(xué)經(jīng)調(diào)查發(fā)現(xiàn),1個(gè)易拉罐瓶可賣0.1元,1名山區(qū)貧困生一年生活費(fèi)用至少是500元。該班同學(xué)今年計(jì)劃資助兩名山區(qū)貧困生一年生活費(fèi)用,他們已集資了450元,不足部分準(zhǔn)備靠回收易拉罐所得。那么他們一年至少要回收多少個(gè)易拉罐?

該環(huán)節(jié)設(shè)置了一個(gè)儉省節(jié)約和助人為樂的實(shí)際問題,通過對(duì)學(xué)生熟悉的生活背景進(jìn)行處理,讓學(xué)生體會(huì)數(shù)學(xué)生活化,能將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題加以解決,培養(yǎng)學(xué)生應(yīng)用意識(shí),同時(shí)也對(duì)學(xué)生進(jìn)行潛移默化的思想品德教育.

第五個(gè)環(huán)節(jié),歸納反思、重組結(jié)構(gòu)(幻燈10)

4.5 歸納反思、重組結(jié)構(gòu)

(1)通過本節(jié)課的學(xué)習(xí),你學(xué)會(huì)了哪些知識(shí)?

(2)通過本節(jié)課的學(xué)習(xí),你最大的收獲是什么?

(3)通過本節(jié)課的學(xué)習(xí),你獲得了哪些學(xué)習(xí)數(shù)學(xué)的`方法?

充分發(fā)揮學(xué)生的主體地位,從學(xué)習(xí)知識(shí)、方法和延伸三方面進(jìn)行歸納。,讓學(xué)生養(yǎng)成“反思”的好習(xí)慣,并培養(yǎng)學(xué)生語言表述能力。

最后分層次設(shè)置作業(yè)讓學(xué)生鞏固所學(xué)內(nèi)容并進(jìn)行自我檢驗(yàn)與評(píng)價(jià),既面向全體學(xué)生,又因材施教,照顧到學(xué)有余力的學(xué)生.

教學(xué)評(píng)價(jià):本節(jié)課主要在第一環(huán)節(jié),學(xué)生有沒有積極思考,嘗試列不等式,能不能歸納出不等式的概念. 第二個(gè)環(huán)節(jié)關(guān)注學(xué)生能不能判斷不等式,歸納出一元一次不等式的概念.第三個(gè)環(huán)節(jié)關(guān)注學(xué)生參與活動(dòng)的積極性和對(duì)數(shù)學(xué)的三種表示的總結(jié),然后通過學(xué)生板演評(píng)價(jià)學(xué)生的知識(shí)的掌握,能力的遷移情況.第四環(huán)節(jié)考察學(xué)生把實(shí)際問題數(shù)學(xué)化的能力.第五環(huán)節(jié)不僅評(píng)價(jià)學(xué)生總結(jié)的知識(shí)點(diǎn) 而且有數(shù)學(xué)思想、數(shù)學(xué)方法等等

最后展示一下我的板書設(shè)計(jì):

不等式及其解集

問題一: 鞏固練習(xí): 練習(xí)1

問題二: 探索新知: 練習(xí)2

不等式的概念: 不等式的解: 反思:

一元一次不等式的概念: 不等式的解在數(shù)軸上的表示

以上,我僅說明了“教什么”和“怎么教”,闡述了“為什么這樣教” 希望各位專家領(lǐng)導(dǎo)對(duì)本堂說課提出寶貴意見

不等式與不等式組教案【篇2】

(第1課時(shí))

一、教材內(nèi)容解析

(一)內(nèi)容

一元一次不等式的概念及解法

(二)內(nèi)容解析

在初中階段,不等式位于一次方程(組)之后,它是進(jìn)一步探究現(xiàn)實(shí)世界數(shù)量關(guān)系的重要內(nèi)容,不等式的研究從最簡(jiǎn)單的一元一次不等式開始,一元一次不等式及其相關(guān)概念是本章的基礎(chǔ)知識(shí),解任何一個(gè)代數(shù)不等式(組)最終都要化歸為解一元一次不等式,因此解一元一次不等式是一項(xiàng)基本技能.另外,不等式解集在數(shù)軸上表示從形的角度描述了不等式的解集,并為解不等式組做了準(zhǔn)備,本節(jié)內(nèi)容是進(jìn)一步學(xué)習(xí)其它不等式(組)的基礎(chǔ).

解一元一次不等式與解一元一次方程在本質(zhì)上是相同的,即依據(jù)不等式的的3個(gè)性質(zhì)(特別是性質(zhì)3,要改變不不等號(hào)的方向),逐步將不等式化為x>a或x<a的形式,從而確定未知數(shù)的取值范圍,這一化繁為簡(jiǎn)的過程,充分體現(xiàn)了化歸的思想.基于以上分析,本節(jié)課的教學(xué)重點(diǎn):一元一次不等式的解法.

二、學(xué)習(xí)目標(biāo)

1·了解一元一次不等式的概念,掌握一元一次不等式的解法;2·在依據(jù)不等式的性質(zhì)探究一元一次不等式的解法的過程中,加深對(duì)化歸思想的體會(huì).

3·依據(jù)不等式的性質(zhì),將一元一次不等式逐步化簡(jiǎn)為x>a或x<a的形式,學(xué)生能借助具體例子,將化歸思想具體化,獲得解一元一次不等式的步驟.

三、教學(xué)重難點(diǎn)

1·教學(xué)重點(diǎn):掌握一元一次方程概念及解法,運(yùn)用化歸思想把形式復(fù)雜的不等式轉(zhuǎn)化為x>a或x<a的形式,逐步將不等式變形為最簡(jiǎn)形式.2·教學(xué)難點(diǎn):解一元一次不等式步驟的確定.

四、教學(xué)方法:

啟發(fā)式、小組合作學(xué)、學(xué)生展講、教師點(diǎn)評(píng)、歸納總結(jié)等模式

五、教學(xué)過程設(shè)計(jì)

(一)新課導(dǎo)入形成概念

問題:觀察下面的不等式,它們有哪些共同特征?

3x—7>26

3x<2x+1x>50

—4x>3

4學(xué)生回答,教師可以引導(dǎo)學(xué)生從不等式中未知數(shù)的個(gè)數(shù)和次數(shù)兩個(gè)方面去觀察不等式的特點(diǎn),并與一元一次方程的定義類比.

師生共同歸納獲得:含有一個(gè)未知數(shù),未知數(shù)的`次數(shù)是1的不等式,叫做一元一次不等式.

設(shè)計(jì)意圖:引導(dǎo)學(xué)生通過觀察給出不等式,歸納出它們的共同特征,進(jìn)而得到一元一次不等式的定義,培養(yǎng)學(xué)生觀察、歸納的能力.

(二)通過類比研究解法

練習(xí):利用不等式的性質(zhì)解不等式x—7>26學(xué)生嘗試獨(dú)立完成練習(xí)

教師結(jié)合解題過程,指出:由x—7>26可得到x>26+7,也就是說解不等式和解方程一樣,也可以“移項(xiàng)”,即把不等式一邊的某項(xiàng)變號(hào)后移到另一邊,而不改變不等號(hào)的方向.

設(shè)計(jì)意圖:通過解簡(jiǎn)單的一元一次不等式,讓學(xué)生回憶利用解方程的過程,教師通過簡(jiǎn)化練習(xí)中的解題步驟,讓學(xué)生明確不等式和解方程一樣可以“移項(xiàng)”,為下面類比解方程形成解不等式的步驟作好準(zhǔn)備.設(shè)問1:解一元一次方程的依據(jù)和一般步驟是什么?

學(xué)生回憶解一元一次方程的依據(jù)是等式的性質(zhì).一般步驟是:去分母,去括號(hào),移項(xiàng),合并同類項(xiàng),系數(shù)化為1.

設(shè)問2:解一元一次不等式能否采用類似的步驟?學(xué)生討論解一元一次不等式是否可以采用類似的步驟,教師再指出:利用不等式的性質(zhì),采取與解一元一次方程類似的步驟,就可以求出一元一次不等式的解集.設(shè)計(jì)意圖:通過回憶解一元一次方程的依據(jù)和一般步驟,讓學(xué)生思考解一元一次不等式能否采用同樣步驟,從而獲得解一元一次不等式的思路.

(三)例題講解

規(guī)范步驟

例:解下列不等式,并在數(shù)軸上表示解集(1)2(1+x)<3(2)

設(shè)問(1):解一元一次不等式的目標(biāo)是什么?

學(xué)生在教師問題的引導(dǎo)下,思考如何將一元一次不等式變形為最簡(jiǎn)形式.設(shè)問(2):你能類比解一元一次方程的步驟,解第(1)小題嗎?由學(xué)生獨(dú)立完成,老師評(píng)講設(shè)問(3)對(duì)比不等式么不同?

設(shè)問(4):怎樣將不等式

變形,使變形后的不等式不含分母?

與2(1+x)<3的兩邊,它們?cè)谛问缴嫌惺残〗M合作交流,老師點(diǎn)撥

設(shè)問(5):你能說出解一元一次不等式的基本步驟嗎?

學(xué)生回答,教師總結(jié):去分母,去括號(hào),移項(xiàng),合并同類項(xiàng),系數(shù)化為1.設(shè)問(6):對(duì)比第(1)小題和第(2)小題的解題過程,系數(shù)化為1時(shí)應(yīng)注意些什么?

學(xué)生回答,教師再?gòu)?qiáng)調(diào):要看未知數(shù)系數(shù)的符號(hào),若未知數(shù)的系數(shù)是正數(shù),則不等號(hào)的方向不變,若是負(fù)數(shù),則不等號(hào)的方向要改變.設(shè)計(jì)意圖:通過解具體的一元一次不等式,引導(dǎo)學(xué)生明確解不等式以化歸思想為指導(dǎo),比較原不等式與目標(biāo)形式(x>a或x<a)的差異,思考如何依據(jù)不等式的性質(zhì)將原不等式通過變形轉(zhuǎn)化為最簡(jiǎn)形式,以獲得解一元一次不等式的步驟.

(四)辨別異同

深化認(rèn)識(shí)

設(shè)問1:解一元一次不等式和解一元一次方程有哪些相同和不同處?

學(xué)生在教師的引導(dǎo)下將解一元一次不等式的過程與解一元一次方程的過程進(jìn)行比較,思考二者的相同和不同處.

相同之處:基本步驟相同:去分母、去括號(hào)、移項(xiàng)、合并同類項(xiàng)、系數(shù)化為1.基本思想相同:都是運(yùn)用化歸思想,都要變?yōu)樽詈?jiǎn)形式.

不同之處:解法依據(jù)不同:解不等式是依據(jù)不等式的性質(zhì),解方程依據(jù)等式的性質(zhì).最簡(jiǎn)形式不同:解一元一次不等式:最簡(jiǎn)形式是x>a或x<a,一元一次方程的最簡(jiǎn)形式是x=a.設(shè)計(jì)意圖:在歸納出一元一次不等式的解法之后,引導(dǎo)學(xué)生對(duì)比一元一次方程的解法,思考二者的異同,加深對(duì)一元一次不等式解法的理解,體會(huì)化歸思想和類比思想.

設(shè)問2:解一元一次不等式每一步變形的依據(jù)是什么?

學(xué)生作答,教師再引導(dǎo)學(xué)生體會(huì)結(jié)合例題的解題過程思考每一步變形的依據(jù).設(shè)計(jì)意圖:通過具體操作,歸納出解一元一次不等式的基本步驟及每一步變形的依據(jù),提高學(xué)生的總結(jié)、歸納能力.

(五)學(xué)以致用,能力提升

課本P124頁的練習(xí)1、2兩題

設(shè)計(jì)意圖:學(xué)生獨(dú)立按照解集一元一次不等式的步驟解不等式,學(xué)以致用.

(六)課堂小結(jié)

(七)布置作業(yè),課外反饋

教科書P126習(xí)題9.2第1,3題

設(shè)計(jì)意圖:通過課后作業(yè),教師及時(shí)了解學(xué)生對(duì)本節(jié)課知識(shí)的掌握情況,以便對(duì)教學(xué)進(jìn)度和方法進(jìn)行適當(dāng)?shù)恼{(diào)整.本節(jié)課教學(xué)反思

通過問題引導(dǎo)讓學(xué)生會(huì)一元一次不等式的解法,由于一元一次不等式的解法與一元一次方程的解法十分相似,解一元一次方程的依據(jù)是等式的性質(zhì),而解一元一次不等式的依據(jù)是不等式的性質(zhì),所以講授新課之前老師先口頭復(fù)習(xí)了等式的性質(zhì),然后通過對(duì)兩個(gè)不等式不等式的式子在左右兩邊同時(shí)加上、減去、乘以、除以某一個(gè)相同有數(shù),讓學(xué)生自己歸納出不等式的性質(zhì),同時(shí)和前面剛復(fù)習(xí)的等式的性質(zhì)比較,對(duì)比掌握。類比一元一次方程的解法學(xué)習(xí)一元一次不等式的解法,讓學(xué)生非常清楚地看到不等式的解法與方程的解法只是最后系數(shù)化為1不同,其它的步驟是相同的,強(qiáng)調(diào)最后一步(用不等式的性質(zhì)2或3)系數(shù)化為1“負(fù)變,正不變”。學(xué)生掌握得很好。并在這一節(jié)重視用數(shù)軸表示不等式的解集。

存在不足:發(fā)現(xiàn)學(xué)生對(duì)不等式及不等式組的解法掌握得較好,但對(duì)不等式的特殊解不是很理解還有在列不等式的時(shí)候很多學(xué)生不懂如何用不等式表示“負(fù)數(shù)”、“正數(shù)”、“非正數(shù)”、“非負(fù)數(shù)”,“不大于”、“不小于”。對(duì)一元一次不等式的應(yīng)用這部分內(nèi)容,我們感覺學(xué)生掌握得最薄弱,這也作為老師的我覺得比較困惑的問題。正在努力尋找行之有效的措施。提出建議:對(duì)將表示不等式的語句轉(zhuǎn)化成不等式要強(qiáng)化訓(xùn)練,如“至多“、“至少”、“不超過”,“剩余”、“不夠”等等,為后面的應(yīng)用題作準(zhǔn)備,我們知道在列一元一次方程或方程組解應(yīng)用題,學(xué)生學(xué)握起來非常困難,主要是等量關(guān)系難找。而在不等式的應(yīng)用題中,不等關(guān)系將更難找,很多表示不等關(guān)系的語句隱藏得較深,所以要提前作好這方面的準(zhǔn)備。

不等式與不等式組教案【篇3】

各位評(píng)委老師大家好!我說課的題目是華東師大版初中數(shù)學(xué)七年級(jí)(下)第八章第二節(jié)《解一元一次不等式》的第一節(jié)《不等式的解集》,下面我從教材分析等方面對(duì)本課的設(shè)計(jì)進(jìn)行說明。

一、教材分析

本節(jié)課研究的是不等式的解集和不等式解集在數(shù)軸上的表示。這之前學(xué)生已經(jīng)初步學(xué)習(xí)了不等式和不等式解,這部分在本章中不但有承上啟下的作用,而且為今后學(xué)習(xí)函數(shù)的應(yīng)用奠定了數(shù)形結(jié)合的基礎(chǔ),因此它在教材中處于非常重要的位置。一元一次不等式的解集是前面一元一次方程解的擴(kuò)展,兩者存在區(qū)別與聯(lián)系。在數(shù)軸上表示不等式的解集,是學(xué)生學(xué)習(xí)數(shù)軸之后,又一次接觸到圖形與數(shù)量的對(duì)應(yīng)關(guān)系,同時(shí)為今后函數(shù)的學(xué)習(xí)提供了方法和依據(jù)。

二、目標(biāo)分析

根據(jù)學(xué)生已有的認(rèn)知基礎(chǔ)和本科教材的地位,由于數(shù)學(xué)教學(xué)不僅是知識(shí)的教學(xué),技能的訓(xùn)練,更能重視能力的培養(yǎng)及情感教育,因此確定教學(xué)目標(biāo)1,2,3。

即:

1、知識(shí)目標(biāo):了解不等式解集的意義和不等式的解集在數(shù)軸上的表示。

2、能力目標(biāo):建立圖形與數(shù)量的對(duì)應(yīng)關(guān)系,能在數(shù)軸上表示不等式的解集,滲透數(shù)形結(jié)合的數(shù)學(xué)思想。

3、情感目標(biāo):引導(dǎo)學(xué)生在獨(dú)立思考的基礎(chǔ)上,參與問題的討論,激發(fā)學(xué)生主動(dòng)獲取知識(shí)的興趣增強(qiáng)學(xué)生學(xué)習(xí)的信心。

教學(xué)重點(diǎn):一元一次不等式的解集和表示。

教學(xué)難點(diǎn):一元一次不等式解集的意義和不等式解集在數(shù)軸上的表示。

教學(xué)難點(diǎn)突破辦法: 通過觀察,分析、概括過程,使學(xué)生對(duì)不等式的解集有了初步的理解,然后通過數(shù)軸直觀地表示出不等式的解集,從而加深了學(xué)生對(duì)不等式的解集的理解。

三、教法分析

為創(chuàng)設(shè)寬松民主的學(xué)習(xí)氣氛,激發(fā)學(xué)生思維的主動(dòng)性,順利完成教學(xué)目標(biāo)根據(jù)學(xué)生特點(diǎn)和學(xué)生的實(shí)際情況采用引導(dǎo)發(fā)現(xiàn)法,計(jì)算機(jī)輔助教學(xué)。將學(xué)生個(gè)體的自我反饋,小組間的合作交流,與師生間的信息及時(shí)聯(lián)系起來,形成多層次多方面的合作交流,共同發(fā)現(xiàn)知識(shí),獲取知識(shí)。學(xué)生知識(shí)掌握過程離不開學(xué)生自身的智力活動(dòng),因此,在教學(xué)中,突出引導(dǎo)學(xué)生觀察,分析,以舊探新,猜測(cè)論證等方法,揭示數(shù)學(xué)問題,并采用個(gè)人思考,分組討論,匯報(bào)結(jié)果等多種形式,使每個(gè)學(xué)生都參與到學(xué)習(xí)中來,學(xué)生在獲得知識(shí)的過程中悟出道理,得出結(jié)論,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的自信心,

四、學(xué)法分析

1.學(xué)生要深刻思考,把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)模型,養(yǎng)成認(rèn)真思考的好習(xí)慣。

2.合作類推法:學(xué)習(xí)過程中學(xué)生共同討論,并用類比推理的方法學(xué)習(xí)。

五、教學(xué)過程

1、創(chuàng)設(shè)情景,提出問題

通過實(shí)際應(yīng)用問題讓學(xué)生在解決的過程中先找出幾個(gè)符合題意的解,然后發(fā)現(xiàn)問題,這樣,既復(fù)習(xí)了不等式,又給新課做好了鋪墊,由此可以發(fā)現(xiàn),不等式的解有許多個(gè),他們組成一個(gè)集合,稱為不等式的解集,這樣既符合認(rèn)知規(guī)律,又能找到最佳切入點(diǎn),使學(xué)生產(chǎn)生探索的欲望,從而引出不等式的解集。

2、探究新知

通過討論、交流、歸納得到:大于3的每個(gè)數(shù)都是不等式x+2>5的解,而小于3的每一個(gè)數(shù)都不是不等式x+2>5的解,因此不等式x+25的解有無限多個(gè),它們組成集合,稱為一元不等式x+25的解集。即表示為x3。

由實(shí)例概括出不等式的解集以及解不等式的概念:一個(gè)不等式的所有解,組成這個(gè)不等式的解的集合,簡(jiǎn)稱為這個(gè)不等式的解集;求不等式的解集過程,叫做解不等式。

我們知道解不等式不能只求個(gè)別解,而應(yīng)求它的解集.一般而言,不等式的解集不是由一個(gè)數(shù)或幾個(gè)數(shù)組成的,而是由無限多個(gè)數(shù)組成的,如x>3.那么如何在數(shù)軸上直觀地表示不等式x+2>5的解集x>3呢? 不等式解集x>3,在數(shù)軸上可以直觀地表示出來。如圖8.2.1

如果某個(gè)不等式x≤-2,也可在數(shù)軸上直觀地表示出來,如圖8.2.2

說明:8.2.1在表示范表演的點(diǎn)畫空心圓圈,表不包括這一點(diǎn),表示大時(shí)就往右拐;圖8.2.2在表示-2的點(diǎn)畫黑點(diǎn)表示包括這一點(diǎn),表示小時(shí)往左拐。

3、講解補(bǔ)充例題,

例1:判斷:

①x=2是不等式4x<9的一個(gè)解.( )

② x=2是不等式4x<9的解集.( )

例2、將下列不等式的解集在數(shù)軸上表示出來:

(1)x<2

(2)x≥-2

(設(shè)計(jì)意圖:例1是讓學(xué)生理解不等式的解與不等式的解集。聯(lián)系與區(qū)別,例2揭示不等式的解集與數(shù)軸上表示數(shù)的范圍的一種對(duì)應(yīng)關(guān)系,從而進(jìn)一步加深學(xué)生對(duì)不等式解集的理解,以使學(xué)生進(jìn)一步領(lǐng)會(huì)到數(shù)形結(jié)合的方法具有形象,直觀,易于說明問題的優(yōu)點(diǎn))

4、鞏固練習(xí):課本44頁練習(xí)2,3題

5、歸納總結(jié),

結(jié)合板書,引導(dǎo)學(xué)生自我總結(jié),重點(diǎn)知識(shí)和學(xué)習(xí)方法,達(dá)到掌握重點(diǎn),順理成章的目的。

6、作業(yè):課本49頁習(xí)題1,2題

設(shè)計(jì)意圖:促進(jìn)學(xué)生及時(shí)地復(fù)習(xí)課文,鞏固和強(qiáng)化所學(xué)知識(shí),提高解決問題的能力。

不等式與不等式組教案【篇4】

課題:§3.2.2均值不等式 課時(shí):第2課時(shí) 授課時(shí)間: 授課類型:新授課

【教學(xué)目標(biāo)】

1.知識(shí)與技能:利用均值定理求極值與證明。

2.過程與方法:培養(yǎng)學(xué)生的探究能力以及分析問題、解決問題的能力。

3.情態(tài)與價(jià)值:激發(fā)學(xué)習(xí)數(shù)學(xué)的熱情,培養(yǎng)善于思考、勤于動(dòng)手的學(xué)習(xí)品質(zhì)。【教學(xué)重點(diǎn)】利用均值定理求極值與證明。【教學(xué)難點(diǎn)】利用均值定理求極值與證明。

【教學(xué)過程】

1、復(fù)習(xí):

定理:如果a,b是正數(shù),那么

a?b?ab(當(dāng)且僅當(dāng)a?b時(shí)取“?”號(hào)).22、利用均值定理求最值應(yīng)注意:“正”,“定”,“等”,靈活的配湊是解題的關(guān)鍵

3、例子:

1)已知x≠0,當(dāng)x取什么值時(shí),x2+2)已知x>1,求y=x+

81的值最小,最小值是多少? 2x1的最小值 x?13)已知x∈R,求y=x2?2x?12的最小值

4)已知x>1,求y=x+116x+2的最小值 xx?15)已知08)要建一個(gè)底面積為12m2,深為3m的長(zhǎng)方體無蓋水池,如果底面造價(jià)每平方米600元,側(cè)面造價(jià)每平方米400元,問怎樣設(shè)計(jì)使總造價(jià)最低,最低總造價(jià)是多少元?9)一段長(zhǎng)為L(zhǎng)m的籬笆圍成一個(gè)一邊靠墻的矩形菜園,問這個(gè)矩形的長(zhǎng)和寬各為多少時(shí),菜園的面積最大,最大面積是多少? 小結(jié):利用均值定理求極值課堂練習(xí):第73頁習(xí)題3-2B:1,2 課后作業(yè):第72頁習(xí)題3-2A:3,4,5 2板書設(shè)計(jì):教學(xué)反思:

基本不等式課件


古人云,工欲善其事,必先利其器。在每學(xué)期開學(xué)之前,幼兒園的老師們都要為自己之后的教學(xué)做準(zhǔn)備。為了防止學(xué)生抓不住重點(diǎn),教案就顯得非常重要,有了教案上課才能夠?yàn)橥瑢W(xué)講更多的,更全面的知識(shí)。所以你在寫幼兒園教案時(shí)要注意些什么呢?以下內(nèi)容是小編特地整理的“基本不等式課件”,在此提醒你收藏本頁,以方便閱讀!

基本不等式課件 篇1

【學(xué)習(xí)目標(biāo)】

1.知識(shí)與技能:學(xué)會(huì)推導(dǎo)并掌握基本不等式,理解這個(gè)基本不等式的幾何意義,并掌握定理中的不等號(hào)“≥”取等號(hào)的條件是:當(dāng)且僅當(dāng)這兩個(gè)數(shù)相等;

2.過程與方法:通過實(shí)例探究抽象基本不等式;

3.情態(tài)與價(jià)值:通過本節(jié)的學(xué)習(xí),體會(huì)數(shù)學(xué)來源于生活,提高學(xué)習(xí)數(shù)學(xué)的興趣

【能力培養(yǎng)】

培養(yǎng)學(xué)生嚴(yán)謹(jǐn)、規(guī)范的學(xué)習(xí)能力,分析問題、解決問題的能力。

【教學(xué)重點(diǎn)】

應(yīng)用數(shù)形結(jié)合的思想理解不等式,并從不同角度探索不等式 的證明過程;及其在求最值時(shí)初步應(yīng)用

【教學(xué)難點(diǎn)】

基本不等式 等號(hào)成立條件

【教學(xué)過程】

一、課題導(dǎo)入

基本不等式 的幾何背景:如圖是在北京召開的第24界國(guó)際數(shù)學(xué)家大會(huì)的會(huì)標(biāo),教師引導(dǎo)學(xué)生從面積的關(guān)系去找不等關(guān)系。

二、講授新課

1.問題探究——探究圖形中的不等關(guān)系。

將圖中的“風(fēng)車”抽象成如圖,在正方形abcd中右個(gè)全等的直角三角形。設(shè)直角三角形的兩條直角邊長(zhǎng)為a,b那么正方形的邊長(zhǎng)為 。這樣,4個(gè)直角三角形的面積的和是2ab,正方形的面積為 。由于4個(gè)直角三角形的面積小于正方形的面積,我們就得到了一個(gè)不等式: 。

當(dāng)直角三角形變?yōu)榈妊苯侨切?,即a=b時(shí),正方形efgh縮為一個(gè)點(diǎn),這時(shí)有 。

2.總結(jié)結(jié)論:一般的,如果

(結(jié)論的得出盡量發(fā)揮學(xué)生自主能動(dòng)性,讓學(xué)生總結(jié),教師適時(shí)點(diǎn)撥引導(dǎo))

3.思考證明:(讓學(xué)生嘗試給出它的證明)

4.特別的,如果a>0,b>0,我們用 分別代替a、b ,可得,

通常我們把上式寫作:

①?gòu)牟坏仁降男再|(zhì)推導(dǎo)基本不等式

用分析法證明:(略)

②理解基本不等式 的幾何意義

探究:對(duì)課本第98頁的“探究”( 幾何證明)

注:在數(shù)學(xué)中,我們稱 為a、b的算術(shù)平均數(shù),稱 為a、b的幾何平均數(shù)。本節(jié)定理還可敘述為:兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)。

5、例:當(dāng)時(shí),取什么值,的值最?。孔钚≈凳嵌嗌??

6、課時(shí)小結(jié)

本節(jié)課,我們學(xué)習(xí)了重要不等式a2+b2≥2ab;兩正數(shù)a、b的算術(shù)平均數(shù)( ),幾何平均數(shù)( )及它們的關(guān)系( ≥ )。它們成立的條件不同,前者只要求a、b都是實(shí)數(shù),而后者要求a、b都是正數(shù)。它們既是不等式變形的基本工具,又是求函數(shù)最值的重要工具(下一節(jié)我們將進(jìn)一步學(xué)習(xí)它們的應(yīng)用)。

7、作業(yè):

課本第100頁習(xí)題[a]組的第1、2題

板書 設(shè) 計(jì)

課題: 3.4基本不等式

一、兩個(gè)不等式

二、例題及練習(xí)

基本不等式課件 篇2

基本不等式是初中數(shù)學(xué)中重要的一個(gè)知識(shí)點(diǎn)。通過學(xué)習(xí)基本不等式,可以幫助學(xué)生更深入地理解不等式的性質(zhì),掌握不等式的解法和應(yīng)用技巧,以及提高數(shù)學(xué)分析和推理能力。下面就從不等式的定義、基本不等式的證明、基本不等式的應(yīng)用等方面來詳細(xì)介紹基本不等式。

一、不等式的定義

不等式是數(shù)學(xué)中的一種基本概念,用來表示兩個(gè)數(shù)之間的大小關(guān)系。比如,如果a>b,則可以表示為a-b>0;如果a≥b,則可以表示為a-b≥0。在不等式中,我們常用符號(hào)“>”、“≥”、“

二、基本不等式的證明

基本不等式是指若a、b為正實(shí)數(shù),那么(a+b)2/4≥ab。這個(gè)不等式在解決很多數(shù)學(xué)問題時(shí)都有非常重要的作用,因此我們需要掌握基本不等式的證明方法。

證明方法1:

(a+b)2/4=(a2+2ab+b2)/4= [(a+b)2-2ab]/4

由于a、b為正實(shí)數(shù),所以(a+b)2和2ab一定是正實(shí)數(shù)。

因此,(a+b)2-2ab≥0,即(a+b)2/4≥ab。

證畢。

證明方法2:

由于a、b為正實(shí)數(shù),所以(a-b)2≥0。根據(jù)這個(gè)不等式,我們可以推導(dǎo)出:

a2+b2≥2ab

(a2+b2)/2≥ab

(a2+2ab+b2)/4≥ab

(a+b)2/4≥ab

證畢。

證明方法3:

設(shè)Δ=a2-2ab+b2=(a-b)2≥0

那么,a2-2ab+b2≥0,即a2+b2≥2ab

(a2+b2)/2≥ab,即(a+b)2/4≥ab

證畢。

通過上述三種證明方法,我們可以看到,基本不等式的證明方法可以有多種,但本質(zhì)上是一樣的。

三、基本不等式的應(yīng)用

1.求解最優(yōu)解

在某些問題中,需要求解若干變量的最大值或最小值,例如某個(gè)產(chǎn)品的利潤(rùn)最大化問題、最短路徑問題等,這時(shí)我們可以將問題轉(zhuǎn)化為一個(gè)不等式問題,然后運(yùn)用基本不等式來簡(jiǎn)化求解過程。

2.推導(dǎo)其他不等式

基本不等式可以作為其他不等式的推導(dǎo)依據(jù)。例如,在求證某個(gè)不等式時(shí),我們可以使用基本不等式將其轉(zhuǎn)化為更簡(jiǎn)單的形式,從而更容易得到證明。

3.證明集合的包含關(guān)系

當(dāng)我們需要證明兩個(gè)集合的包含關(guān)系時(shí),可以通過基本不等式來構(gòu)造出一些包含于其中一個(gè)集合但不包含于另一個(gè)集合的數(shù)列,這樣就容易得出它們之間的包含關(guān)系。

總之,基本不等式在數(shù)學(xué)中有著非常重要的作用,深入了解和掌握基本不等式,不僅可以提高數(shù)學(xué)思維能力,也可以幫助我們更好地理解和應(yīng)用各種數(shù)學(xué)知識(shí)。

基本不等式課件 篇3

基本不等式是中學(xué)數(shù)學(xué)中的重要內(nèi)容,它們可以作用于多種數(shù)學(xué)領(lǐng)域,包括代數(shù)、幾何、概率等等。這種不等式是一個(gè)基本性質(zhì),它提供了一種有效地組織和比較數(shù)字和數(shù)學(xué)表達(dá)式的方式。本文將探討基本不等式,并解釋其重要性和應(yīng)用范圍。

基本不等式是指一個(gè)簡(jiǎn)單的數(shù)學(xué)規(guī)律,即對(duì)于任何正實(shí)數(shù)a和b,有如下關(guān)系式:

(a + b)2 ≥ 4ab

當(dāng)a和b相等時(shí)等式被取得,此時(shí)有a = b = (a + b) / 2。

這個(gè)不等式看上去非常簡(jiǎn)單,但它有它的特殊地位和應(yīng)用。它是所有不等式中最基本也是最重要的,它可以應(yīng)用到各種自然科學(xué)和社會(huì)科學(xué)領(lǐng)域中。例如,基本不等式可以用于優(yōu)化無線網(wǎng)絡(luò)傳輸速度和縮短計(jì)算機(jī)作業(yè)響應(yīng)時(shí)間,還可以在物理和金融領(lǐng)域中被用來研究變化率和波動(dòng)性等特征。

作為一個(gè)系統(tǒng)的理論工具,基本不等式的價(jià)值和應(yīng)用遠(yuǎn)不止于此。尤其是它的推廣版Sylvester不等式,將基本不等式引向了更復(fù)雜多樣的領(lǐng)域。Sylvester不等式是基本不等式在矩陣學(xué)科中的一個(gè)推廣。它是一個(gè)矩陣不等式,描述了不同形式的矩陣之間的比較規(guī)律。從線性代數(shù)、概率、統(tǒng)計(jì)以及其他領(lǐng)域中的應(yīng)用可以看出,矩陣不等式在各種學(xué)科中都有越來越廣泛的應(yīng)用。

基本不等式是解決一些數(shù)學(xué)難題的一個(gè)強(qiáng)大工具,在應(yīng)用中經(jīng)常運(yùn)用到。因此,學(xué)生無論是在數(shù)學(xué)課堂中還是考試中,都應(yīng)該掌握這個(gè)基本數(shù)學(xué)概念,并了解它的應(yīng)用。通過培養(yǎng)學(xué)生使用基本不等式和它的推廣Sylvester不等式的能力,可以幫助他們更好地掌握高等數(shù)學(xué)中更復(fù)雜的概念和算法。

因此,掌握和理解基本不等式以及它的推廣Sylvester不等式對(duì)數(shù)學(xué)學(xué)習(xí)者來說非常重要。通過對(duì)基本不等式的學(xué)習(xí)和掌握,可以幫助學(xué)生完成更復(fù)雜的數(shù)學(xué)問題,進(jìn)一步培養(yǎng)他們?cè)跀?shù)學(xué)領(lǐng)域的創(chuàng)造性和解決問題的能力。

基本不等式課件 篇4

基本不等式是初中數(shù)學(xué)中的一個(gè)重要內(nèi)容,也被稱為柯西-施瓦茨不等式。它的意義不僅限于初中數(shù)學(xué),在高中數(shù)學(xué)、大學(xué)數(shù)學(xué)等領(lǐng)域都有廣泛的應(yīng)用?;静坏仁绞菙?shù)學(xué)中非?;A(chǔ)的概念,我們可以通過以下的主題范文來深入了解。

主題一:基本不等式的概念及其應(yīng)用

基本不等式是初中數(shù)學(xué)中的基礎(chǔ)概念,它是數(shù)學(xué)不等式中的重要內(nèi)容。它起源于柯西-施瓦茨不等式,可以用于證明不等式以及優(yōu)化問題?;静坏仁降谋举|(zhì)是數(shù)學(xué)中的向量?jī)?nèi)積,具有非常廣泛的應(yīng)用,比如在概率論、統(tǒng)計(jì)學(xué)、矩陣論、函數(shù)論、微積分等方面都有應(yīng)用。

主題二:基本不等式的證明方法

基本不等式的證明方法主要有兩種。一種是基于二次函數(shù)的方法,另一種是基于向量?jī)?nèi)積的方法。無論采用哪種方法,都需要通過簡(jiǎn)單的代數(shù)變化、平方等方法,將式子變形成為已知的不等式形式。利用這種方法,我們就可以推出基本不等式,從而應(yīng)用到不等式證明等問題中。

主題三:基本不等式在函數(shù)極值問題中的應(yīng)用

基本不等式在函數(shù)極值問題中也有廣泛的應(yīng)用。函數(shù)的極值可以通過求導(dǎo)數(shù)和函數(shù)值來求解,而基本不等式可以在求解函數(shù)極值過程中起到優(yōu)化作用。通過基本不等式,可以很好地規(guī)避一些數(shù)學(xué)中的陷阱,從而獲得更精確的結(jié)果。因此,基本不等式在函數(shù)極值問題中的應(yīng)用是非常重要的。

主題四:基本不等式在概率論和統(tǒng)計(jì)學(xué)中的應(yīng)用

基本不等式在概率論和統(tǒng)計(jì)學(xué)中也有廣泛的應(yīng)用。概率論中的卡方分布、t分布等都是基于基本不等式的優(yōu)化結(jié)果。在統(tǒng)計(jì)學(xué)的研究中,基本不等式可以用于特征值的計(jì)算、回歸分析等方面。因此,基本不等式在概率論和統(tǒng)計(jì)學(xué)中的應(yīng)用也是非常重要的。

主題五:用基本不等式解決數(shù)學(xué)中的“熱點(diǎn)”問題

基本不等式是數(shù)學(xué)中的熱點(diǎn)問題之一,因?yàn)樗诮鉀Q很多復(fù)雜的數(shù)學(xué)問題中都起到了重要作用。比如,在組合數(shù)學(xué)中,基本不等式用于計(jì)算多重組合數(shù)。在三角函數(shù)中,基本不等式用于計(jì)算三角函數(shù)的冪的和。在數(shù)值分析中,基本不等式用于優(yōu)化函數(shù)逼近等方面。因此,我們可以用基本不等式解決數(shù)學(xué)中的一些“熱點(diǎn)”問題,從而獲得更深入的數(shù)學(xué)技巧。

總的來說,基本不等式是數(shù)學(xué)中一個(gè)非常重要的內(nèi)容,它可以用于解決不等式證明、函數(shù)極值、概率論和統(tǒng)計(jì)學(xué)等領(lǐng)域的問題。同時(shí),基本不等式也是數(shù)學(xué)中的“熱點(diǎn)”問題之一,它為我們提供了更深入的數(shù)學(xué)技巧和思維方式。掌握基本不等式不僅可以提高數(shù)學(xué)水平,而且可以在其他領(lǐng)域帶來更多的收獲。

基本不等式課件 篇5

一、基本不等式的簡(jiǎn)介

基本不等式是初中數(shù)學(xué)中的一項(xiàng)重要內(nèi)容,是不等式的基礎(chǔ)。它可以幫助我們?cè)趯W(xué)習(xí)不等式的過程中更加輕松的理解和掌握其他不等式的相關(guān)知識(shí)。它的基本形式是:

對(duì)于任意實(shí)數(shù)a1, a2, …, an,有

(a1^2 + a2^2 + … + an^2)×n ≥ (a1 + a2+ … + an)^2

二、基本不等式的證明

基本不等式的證明有多種方法,下面將以幾何證明法和數(shù)學(xué)歸納法為例進(jìn)行講解。

幾何證明法:

首先,我們根據(jù)勾股定理和三角形面積公式有:

a1^2=(a1 cos B1)^2+(a1 sin B1)^2

a2^2=(a2 cos B2)^2+(a2 sin B2)^2

……

an^2=(an cos Bn)^2+(an sin Bn)^2

因?yàn)檎嘞液瘮?shù)在第一象限內(nèi)單調(diào)遞增,所以有:

sinB1

sinB2

……

sinBn

把以上不等式累加起來并乘以n,則有:

n(a1^2+a2^2+…+an^2)>=〖(a1cosB1+a2cosB2+…+an cosBn)〗^2+n(a1^2sin^2 B1+…..+an^2sin^2 Bn)

顯然,n(a1^2sin^2B1+….+an^2sin^2Bn)=n(a1sinB1+…+ansinBn)^2

因此,原不等式即證。

數(shù)學(xué)歸納法:

當(dāng)n = 2時(shí),有

a^2 + b^2 >= 2ab

(a - b)^2 >= 0

顯然成立。

假設(shè)n = k - 1時(shí)原不等式成立,即

(a1^2 + a2^2 + … + ak-1^2) × (k - 1) >= (a1 + a2 + … + ak-1)^2

當(dāng)n = k時(shí),原不等式變?yōu)椋?/p>

(a1^2 + a2^2 + … + ak-1^2 + ak^2) × k >= (a1 + a2 + … + ak-1 + ak)^2

因?yàn)?a1^2 + a2^2 + … + ak-1^2) × (k - 1) >= (a1 + a2 + … + ak-1)^2

又因?yàn)?a1^2 + a2^2 + … + ak^2) × 1 >= ak^2

因此有:

(a1^2 + a2^2 + … + ak-1^2) × (k - 1) + (a1^2 + a2^2 + … + ak^2) × 1 >= (a1 + a2 + … + ak-1)^2 + ak^2

(a1^2 + a2^2 + … + ak^2) × k >= (a1 + a2 + … + ak)^2

因此,當(dāng)n = k時(shí),原不等式也成立。

綜合上述兩種證明方法,我們可知,基本不等式是正確的。

三、應(yīng)用基本不等式需要注意的問題

1. 基本不等式只適用于a1, a2, …, an均為實(shí)數(shù)的情形,不適用于其中有虛數(shù)的情形。

2. 如果不等式兩側(cè)都除以n的話,可以得到一個(gè)均值不等式:

(a1 + a2 + … + an) / n >= √(a1^2 + a2^2 + … + an^2)

這就是均值不等式的形式。

3. 基本不等式是一個(gè)有力的數(shù)學(xué)工具,它可以用于解決許多數(shù)學(xué)問題。 但在應(yīng)用時(shí),我們需要注意題目的條件,判斷是否可以應(yīng)用,以免掉進(jìn)錯(cuò)誤的陷阱。

四、結(jié)語

綜上所述,基本不等式在初中數(shù)學(xué)中是一項(xiàng)基礎(chǔ)性的內(nèi)容,它的正確性是數(shù)學(xué)歸納法和幾何證明法所證明的。應(yīng)用時(shí)需要注意題目的條件,判斷是否可以應(yīng)用。相信通過學(xué)習(xí)和掌握基本不等式,我們可以更加輕松的掌握其他不等式的相關(guān)知識(shí)。

基本不等式課件 篇6

教學(xué)目的

掌握不等式的基本性質(zhì),會(huì)用不等式的基本性質(zhì)進(jìn)行不等式的變形。

教學(xué)過程

師:我們已學(xué)過等式,不等式,現(xiàn)在我們來看兩組式子(教師出示小黑板中的兩組式子),請(qǐng)同學(xué)們觀察,哪些是等式?哪些是不等式?

第一組:1+2=3; a+b=b+a; S =ab; 4+x =7。

第二組:-7 1+4; 2x ≤6, a+2 ≥0; 3≠4。

生:第一組都是等式,第二組都是不等式。

師:那么,什么叫做等式?什么叫做不等式?

生:表示相等關(guān)系的式子叫做等式;表示不等式的式子叫做不等式。

師:在數(shù)學(xué)熾,我們用等號(hào)“=”來表示相等關(guān)系,用不等式號(hào)“〈”、“〉”或“≠”表示不等關(guān)系,其中“>”和“<”表示大小關(guān)系。表示大小關(guān)系的不等式是我們中學(xué)教學(xué)所要研究的。

前面我們學(xué)過了等式,同學(xué)們還記得等式的性質(zhì)嗎?

生:等式有這樣的性質(zhì):等式兩邊都加上,或都減去,或都乘以,或都除以( 除數(shù)不為零)同一個(gè)數(shù),所得到的仍是等式。

師:很好!當(dāng)我們開始研究不等式的時(shí)候,自然會(huì)聯(lián)想到,是否有與等式相類似的性質(zhì),也就是說,如果在不等式的兩邊都加上,或都減去,或都乘以,或都除經(jīng)(除數(shù)不為零)同一個(gè)數(shù),結(jié)果將會(huì)如何呢?讓我們先做一些試驗(yàn)練習(xí)。

練習(xí)1 (回答)用小于號(hào)“”填空。

(1)7 ___ 4;

(2)- 2____6;

(3)- 3_____ -2;

(4)- 4_____-6

練習(xí)2(口答)分別從練習(xí)1中四個(gè)不等式出發(fā),進(jìn)行下面的運(yùn)算。

(1)兩邊都加上(或都減去)5,結(jié)果怎樣?不等號(hào)的方向改變了嗎?

(2)兩邊都乘以(或都除以)5,結(jié)果怎樣?不等號(hào)的方向改變了嗎?

(3)兩邊都乘以(或都除以)(-5),結(jié)果怎樣?不等號(hào)的方向改變了嗎?

生:我們發(fā)現(xiàn):在練習(xí)2中,第(1)、(2)題的結(jié)果是不等號(hào)的方向不變;在第(3)題中,結(jié)果是不等號(hào)的方向改變了!

師:同學(xué)們觀察得很認(rèn)真,大家再進(jìn)一步探討一下,在什么情況下不等號(hào)的方向就會(huì)發(fā)生改變呢?

生甲:在原不等式的兩邊都乘以(或除以)一個(gè)負(fù)數(shù)的情況下,不等號(hào)的方向要改變。

師:有沒有不同的意見?大家都同意他的看法嗎?可能還有同學(xué)不放心,讓我們?cè)僮鲆恍┰囼?yàn)。

練習(xí)3(口答)分別在下面四個(gè)不等式的兩邊都以乘以(可除以)-2,看看不等號(hào)的方向是否改變:

7>4;-2<6;-3<-2;-4>-6。

師:現(xiàn)在我們可以歸納出不等式的基本性質(zhì),一般地說,不等式的基本性質(zhì)有三條:

性質(zhì)1:不等式的兩邊都加上(或都減去)同一個(gè)數(shù),不等號(hào)的方向 。

(讓同學(xué)回答。)

性質(zhì)2:不等式的兩邊都乘以(或都除以)同一個(gè)正數(shù),不等號(hào)的方向 。(讓同學(xué)回答。)

性質(zhì)3:不等式的兩邊都乘以(或都除以)同一個(gè)負(fù)數(shù),不等號(hào)的方向 。(讓同學(xué)回答。)

現(xiàn)在請(qǐng)大家翻開課本,一起朗讀用黑體字寫的三條基本性質(zhì)。

不等式的這三條基本性質(zhì),都可以用數(shù)學(xué)語言表達(dá)出來,先請(qǐng)一位同學(xué)說一說第一條基本性質(zhì)。

生:如果a<b。那么a+c<b+c(或a-c<b-c;如果a>b,那么a+c>b+c(或a-c>b-c)。

師:對(duì)a和b有什么要求嗎?對(duì)c有什么要求?

生:沒有什么要求。

師:哪位同學(xué)來回答第二、三條性質(zhì)?

生甲:如果a0, 那么acb,且c>0,那么ac>bc(或

生乙:如果abc(或 );如果a>b,且cb,且c>0,那么ac>bd;(2)如果a>b,那么ac2>bc2;(3)如果ac2>bc2,那么a>b;(4)如果a>b,那么a-b>0;(5)如果ax>b,且a≠0,那么xa;生甲:(1)不對(duì),當(dāng)c=d≤0時(shí),ac>bd不成立。生乙:(2)也不對(duì),因?yàn)閏2是一個(gè)非負(fù)數(shù),當(dāng)c=0時(shí),ac2>bc2不成立。生丙:(3)對(duì),因?yàn)閍c2>bc2成立,則c2一定大于零,根據(jù)不等式基本性質(zhì)2,得a>b出。(4)對(duì),根據(jù)不等式基本性質(zhì),由a>b,兩邊減去b得a-b>0。(5)不對(duì),當(dāng)a<0時(shí),根據(jù)不等式基本性質(zhì)3,得。(6)不對(duì),因?yàn)楫?dāng)b<0時(shí),根據(jù)不等式基本性質(zhì)1,得a+b<a;而當(dāng)b=0時(shí),則有a+b=a。師:同學(xué)們回答得很好。今天我們學(xué)習(xí)了不等式的基本性質(zhì),我們不僅要理解這三條性質(zhì),還要能靈活運(yùn)用。課外做以下作業(yè):略。教案說明(1) 不等式的基本性質(zhì)的教學(xué),是分成兩個(gè)階段進(jìn)行的。在初中階段,對(duì)不等式的基本性質(zhì),并不作證明,只引導(dǎo)學(xué)生用試驗(yàn)的方法,歸納出三條基本性質(zhì)。通過試驗(yàn),由特殊到一般,由具體到抽象,這是一種認(rèn)識(shí)事物規(guī)律的重要方法??茖W(xué)上的許多發(fā)現(xiàn),大多離不開試驗(yàn)和觀察。大數(shù)學(xué)家歐拉說過:“數(shù)學(xué)這門科學(xué),需要觀察,也需要試驗(yàn)。”通過教學(xué)培養(yǎng)學(xué)生掌握由試驗(yàn)發(fā)現(xiàn)規(guī)律的方法,具有重要的意義。當(dāng)然通過幾個(gè)特殊的試驗(yàn),就得出一般的結(jié)論,是不嚴(yán)密的。但對(duì)初中學(xué)生來說,初次接觸不等式,是不能要求那么嚴(yán)密的。(2) 不等式的基本性質(zhì)的教學(xué),還應(yīng)采用對(duì)比的方法。學(xué)生已學(xué)過等式和等式的性質(zhì),為了便于和加深對(duì)不等式基本性質(zhì)的理解,在教學(xué)過程中,應(yīng)將不等式的性質(zhì)與等式的性質(zhì)加以比較:強(qiáng)調(diào)等式的兩邊都加上或減去,都乘以或除以(除數(shù)不能為零)同一個(gè)數(shù),所得到的仍是等式,這個(gè)數(shù)可以是正數(shù)、負(fù)數(shù)或零;而在不等式的兩邊都加上或減去,都乘以或除以(除數(shù)不能為零)同一個(gè)數(shù),當(dāng)這個(gè)數(shù)是正數(shù)、負(fù)數(shù)或零時(shí),對(duì)不等式的方向,有什么不同的影響。通過這樣的對(duì)比,不但可以復(fù)習(xí)已學(xué)過的等式有關(guān)知識(shí),便于引入新課,而且也有利于掌握不等式的基本性質(zhì)。對(duì)比的方法,也是學(xué)習(xí)數(shù)學(xué)的一種重要方法。(3) 在應(yīng)用不等式的基本性質(zhì)對(duì)不等式進(jìn)行變形時(shí),學(xué)生對(duì)不等式兩邊是具體數(shù),判定大小關(guān)系比較容易。因?yàn)檫@實(shí)際上是有理數(shù)大小的比較。對(duì)于不等式兩邊是含字母的代數(shù)式時(shí),根據(jù)題給的條件,運(yùn)用不等式基本性質(zhì)判別大小關(guān)系或不等號(hào)方向,就比較困難。因?yàn)樗容^抽象,特別是在運(yùn)用不等式的基本性質(zhì)2和性質(zhì)3時(shí),學(xué)生必須考慮不等式兩邊同乘(或同除)的這個(gè)用字母表示的數(shù)的符號(hào)是什么,或者還要對(duì)這個(gè)用字母表示的數(shù),按正數(shù)、負(fù)數(shù)或零三種情況加以討論。在教學(xué)過程中,對(duì)于這類題目,采用討論法是比較好的。因?yàn)樵谟懻摃r(shí),學(xué)生可以充分發(fā)表各種見解。對(duì)于正確的見解,教師可以讓學(xué)生說出解題的依據(jù);對(duì)于錯(cuò)誤的見解,教師可以進(jìn)行啟發(fā)引導(dǎo),發(fā)動(dòng)學(xué)生自己找出錯(cuò)誤的原因,自己修正見解。這樣,有利于發(fā)現(xiàn)問題,有的放矢地解決問題,有利于深化對(duì)不等式基本性質(zhì)的認(rèn)識(shí)。

基本不等式課件 篇7

基本不等式教學(xué)設(shè)計(jì)

數(shù)學(xué)與應(yīng)用數(shù)學(xué) 鐘林

課題:人教A版必修5第3章4節(jié),基本不等式

【教學(xué)目標(biāo)】

1.通過兩個(gè)探究實(shí)例,引導(dǎo)學(xué)生從幾何圖形中獲得兩個(gè)基本不等式,了解基本不等式的幾何背景,體會(huì)數(shù)形結(jié)合的思想。

2.進(jìn)一步提煉、完善基本不等式,并從代數(shù)角度給出不等式的證明,組織學(xué)生分析證明方法,加深對(duì)基本不等式的認(rèn)識(shí),提高邏輯推理論證能力。 3.結(jié)合課本的探究圖形,引導(dǎo)學(xué)生進(jìn)一步探究基本不等式的幾何解釋,強(qiáng)化數(shù)形結(jié)合的思想。

4.借助例1嘗試用基本不等式解決簡(jiǎn)單的最值問題,通過例2及其變式引導(dǎo)學(xué)生

a?b領(lǐng)會(huì)運(yùn)用基本不等式ab?的三個(gè)限制條件(一正二定三相等)在解決最

2值中的作用,提升解決問題的能力,體會(huì)方法與策略。

【重點(diǎn)難點(diǎn)】

重點(diǎn):應(yīng)用數(shù)形結(jié)合的思想理解基本不等式,并從不同角度探索不等式a?bab?的證明過程。

2難點(diǎn):在幾何背景下抽象出基本不等式,并理解基本不等式。

【教學(xué)設(shè)計(jì)】

(一)問題導(dǎo)入

欣賞2002年國(guó)際數(shù)學(xué)家大會(huì)會(huì)徽,會(huì)徽是根據(jù)中國(guó)古代數(shù)學(xué)家趙爽的弦圖設(shè)計(jì)的,顏色的明暗使它看上去象一個(gè)風(fēng)車,代表中國(guó)人民熱情好客。你能發(fā)現(xiàn)它是什么圖形構(gòu)成的嗎?請(qǐng)根據(jù)會(huì)徽探索一些常見相等或不等關(guān)系。

探究一:在這張“弦圖”中能找出一些相等關(guān)系和不等關(guān)系嗎? 在正方形ABCD中有4個(gè)全等的直角三角形.設(shè)直角三角形兩條直角邊長(zhǎng)為,a,b。

22a?b那么正方形的邊長(zhǎng)為。

于是,4個(gè)直角三角形的面積之和S1?2ab。 正方形的面積S2?a2?b2。 由圖可知S2?S1,即a2?b2?2ab。

當(dāng)直角三角形變?yōu)榈妊苯侨切?,即時(shí),正方形EFGH縮為一個(gè)點(diǎn),這時(shí) a2?b2?2ab

所以a2?b2?2ab。

探究二:如下圖所示的梯形中,EF是梯形ABCD的中位線,梯形ABGH相似于梯 形GHDC。

梯形ABCD的上底是a,下底是b。讓同學(xué)們自主研究GH和EF的大小關(guān)系。

a?b因?yàn)镋F是中位線,所以EF?,

2由相似,可以得出GH?ab, 同樣因?yàn)橄嗨?,?/p>

AGABa, ??GDGHb又因?yàn)閍?b,所以AG?GD,即AG?AE,

a?b。 2顯然,當(dāng)AB逐漸趨近CD的時(shí)候,GH也逐漸向EF靠近, 當(dāng)AB=CD的時(shí)候,即ABCD是矩形的時(shí)候,GH與EF重合。

a?b即,當(dāng)且僅當(dāng)a?b時(shí),ab?。

2a?b所以,ab?,當(dāng)且僅當(dāng)a?b時(shí),等號(hào)成立。

2所以GH?EF,即ab?

(二)概念深入

根據(jù)上述兩個(gè)幾何背景,初步形成不等式結(jié)論:

若a,b?R?,則a2?b2?2ab。(當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立)

a?b。(當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立) 2請(qǐng)同學(xué)們運(yùn)用代數(shù)法證明: 作法一(作差法): 若a,b?R?,則ab?a2?b2?2ab?(a?b)2?0a?b?2ab22

當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立。且發(fā)現(xiàn)這里且a和b可以是全體實(shí)數(shù)、單項(xiàng)式、多項(xiàng)式。

作法二(分析法):

要證明a?b?ab, 2只需證明a?b?2ab, 即證a?b-2ab?0, 即為?a-b?2?0,該式顯然成立,所以,當(dāng)a?b時(shí)取等號(hào)。

于是有這樣的結(jié)論:

稱ab為a,b的幾何平均數(shù);稱基本不等式ab?a?b為a,b的算術(shù)平均數(shù), 2a?b又可敘述為: 2兩個(gè)正數(shù)的幾何平均數(shù)不大于它們的算術(shù)平均數(shù)

作法三(幾何法):

如圖,AB是圓O的直徑,點(diǎn)C是AB上一點(diǎn),AC=a,BC=b.過點(diǎn)C作 垂直于AB的弦DE,連接AD,BD。 從而有CD?ab,OD?a?b。 2a?b。 2a?b當(dāng)且僅當(dāng)C點(diǎn)與圓心O點(diǎn)重合時(shí),即a=b時(shí),ab?

2故再次證明:

a?ba?0,b?0,ab?,當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立。

2a?b也說明了ab?的幾何意義:半徑不小于半弦。

2由于直角三角形COD中,直角邊CD

(三)例題講解

例1.(1)用籬笆圍一個(gè)面積為100平方米的矩形菜園,問這個(gè)矩形的長(zhǎng)、寬各為多少時(shí),所用籬笆最短,最短的籬笆是多少?

(2)一段長(zhǎng)為36米的籬笆圍成一個(gè)矩形菜園,問這個(gè)矩形的長(zhǎng)、寬為多少時(shí),菜園的面積最大,最大面積是多少?

(通過例1的講解,總結(jié)歸納利用基本不等式求最值問題的特征,實(shí)現(xiàn)積與和的轉(zhuǎn)化)

對(duì)于x,y?R?,

(1)若xy?p(定值),則當(dāng)且僅當(dāng)x?y時(shí),x?y有最小值2p;

s2(2)若x?y?s(定值),則當(dāng)且僅當(dāng)x?y時(shí),xy有最大值。

4(鼓勵(lì)學(xué)生自己探索推導(dǎo),不但可使他們加深基本不等式的理解,還鍛煉了他們的思維,培養(yǎng)了勇于探索的精神。)

1例2.求y?x?(x?0)的值域。

x1變式1.若x?2,求x?的最小值.

x?21在運(yùn)用基本不等式解題的基礎(chǔ)上,利用幾何畫板展示y?x?(x?0)的函數(shù)

x圖象,使學(xué)生再次感受數(shù)形結(jié)合的數(shù)學(xué)思想。

a?b并通過例2及其變式引導(dǎo)學(xué)生領(lǐng)會(huì)運(yùn)用基本不等式ab?的三個(gè)限制

2條件(一正二定三相等)在解決最值問題中的作用,提升解決問題的能力,體會(huì)方法與策略。

(四)歸納小結(jié)&課后作業(yè) 基本不等式:

若a,b?R?,則a2?b2?2ab。(當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立)

a?b。(當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立) 2(1)基本不等式的幾何解釋(數(shù)形結(jié)合思想); (2)運(yùn)用基本不等式解決簡(jiǎn)單最值問題的基本方法。

作業(yè):A組第4題,B組第1題,第2題

若a,b?R?,則ab?

基本不等式課件 篇8

基本不等式課件

基本不等式是初中數(shù)學(xué)中的重要知識(shí)點(diǎn)之一,在學(xué)習(xí)這個(gè)知識(shí)點(diǎn)之前,我們先來了解下基本不等式的定義和公式:

定義:若a1,a2,...,an是n個(gè)非負(fù)實(shí)數(shù),則有

(a1+a2+...+an)/n≥(a1×a2×...×an)的n次方根。

公式:(a1+a2+...+an)/n≥(a1×a2×...×an)的n次方根。

這個(gè)公式的意義是,當(dāng)n個(gè)數(shù)的平均值不小于這n個(gè)數(shù)的相乘積的n次方根時(shí),我們就稱這個(gè)不等式為基本不等式。

基本不等式的意義很重要,它是一種實(shí)用的數(shù)學(xué)工具,能夠結(jié)合實(shí)際問題進(jìn)行運(yùn)用。在統(tǒng)計(jì)學(xué)中,我們經(jīng)常需要對(duì)數(shù)據(jù)進(jìn)行分析,計(jì)算某一組數(shù)的平均值?;静坏仁礁嬖V我們,對(duì)于一組非負(fù)實(shí)數(shù),它們的平均值一定不小于它們的幾何平均數(shù)。

下面我們來看一個(gè)簡(jiǎn)單的實(shí)例:

假設(shè)有兩組數(shù),分別為2,3,4和1,2,8,現(xiàn)在我們需要比較這兩組數(shù)哪一組平均值較大。

我們可用基本不等式進(jìn)行求解:

對(duì)于2,3,4,有(2+3+4)/3=3,(2×3×4)的1/3次方≈2.83,所以有3≥2.83。

對(duì)于1,2,8,有(1+2+8)/3=3.67,(1×2×8)的1/3次方≈2.19,所以有3.67≥2.19。

通過比較,我們可以發(fā)現(xiàn),第一組數(shù)的平均值是小于第二組數(shù)的平均值的。

基本不等式雖然簡(jiǎn)單,但是在實(shí)際應(yīng)用中有著廣泛的應(yīng)用。例如在金融學(xué)、經(jīng)濟(jì)學(xué)、醫(yī)學(xué)等領(lǐng)域中,我們需要對(duì)數(shù)據(jù)進(jìn)行分析,計(jì)算平均值?;静坏仁侥軌驇椭覀冞M(jìn)行更加精確的計(jì)算,從而提高研究的準(zhǔn)確性和可靠性。

在數(shù)學(xué)競(jìng)賽中,基本不等式也是一道基礎(chǔ)題,掌握好它的原理和應(yīng)用方法,就能夠輕松應(yīng)對(duì)數(shù)學(xué)競(jìng)賽中的各種不等式題,提升自己的數(shù)學(xué)能力。

綜上所述,基本不等式是一項(xiàng)非常實(shí)用的數(shù)學(xué)工具,它能夠幫助我們進(jìn)行數(shù)據(jù)分析和計(jì)算,提高研究的準(zhǔn)確性和可靠性。在數(shù)學(xué)的應(yīng)用和研究中,掌握好基本不等式的原理和應(yīng)用方法非常重要。

基本不等式課件 篇9

課題:3.4.3 基本不等式 的應(yīng)用(二) 科目:數(shù)學(xué) 教學(xué)對(duì)象:高二(290)學(xué)生 課時(shí):1課時(shí) 提供者:劉和安 單位: 姚安一中 一、教學(xué)內(nèi)容分析 本節(jié)課的研究是起到了對(duì)學(xué)生以前所學(xué)知識(shí)與方法的復(fù)習(xí)、應(yīng)用,進(jìn)而構(gòu)建他們更完善的知識(shí)網(wǎng)絡(luò)。數(shù)學(xué)建模能力的培養(yǎng)與鍛煉是數(shù)學(xué)教學(xué)的一項(xiàng)長(zhǎng)期而艱苦的任務(wù),這一點(diǎn),在本節(jié)課是真正得到了體現(xiàn)和落實(shí)。?

根據(jù)本節(jié)課的教學(xué)內(nèi)容,應(yīng)用觀察、閱讀、歸納、邏輯分析、思考、合作交流、探究,對(duì)基本不等式展開實(shí)際應(yīng)用,進(jìn)行啟發(fā)、探究式教學(xué)并使用投影儀輔助。? 二、教學(xué)目標(biāo) (一)知識(shí)目標(biāo):構(gòu)建基本不等式解決函數(shù)的值域、最值問題;

(二)能力目標(biāo):讓學(xué)生探究用基本不等式解決實(shí)際問題

(三)情感、態(tài)度和價(jià)值觀目標(biāo):

通過具體問題的解決,讓學(xué)生去感受、體驗(yàn)現(xiàn)實(shí)世界和日常生活中存在著大量的不等量關(guān)系并需要從理性的角度去思考,鼓勵(lì)學(xué)生用數(shù)學(xué)觀點(diǎn)進(jìn)行類比、歸納、抽象,使學(xué)生感受數(shù) 學(xué)、走進(jìn)數(shù)學(xué)、培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)學(xué)習(xí)習(xí)慣和良好的思維習(xí)慣;? 三、學(xué)習(xí)者特征分析 在本節(jié)課的教學(xué)過程中,仍應(yīng)強(qiáng)調(diào)不等式的現(xiàn)實(shí)背景和實(shí)際應(yīng)用,真正地把不等式作為刻畫現(xiàn)實(shí)世界中不等關(guān)系的工具。通過實(shí)際問題的分析解決,讓學(xué)生去體會(huì)基本不等式所具有的廣泛的實(shí)用價(jià)值,同時(shí),也讓學(xué)生去感受數(shù)學(xué)的應(yīng)用價(jià)值,從而激發(fā)學(xué)生去熱愛數(shù)學(xué)、研究數(shù)學(xué)。而不是覺得數(shù)學(xué)只是一門枯燥無味的推理學(xué)科。在解決實(shí)際問題的過程中,既要求學(xué)生能用數(shù)學(xué)的眼光、觀點(diǎn)去看待現(xiàn)實(shí)生活中的許多問題,又會(huì)涉及與函數(shù)、方程、三角等許多數(shù)學(xué)本身的知識(shí)與方法的處理 四、教學(xué)策略選擇與設(shè)計(jì) 1.采用探究法,按照觀察、閱讀、歸納、思考、交流、邏輯分析、抽象應(yīng)用的方法進(jìn)行啟發(fā)式教學(xué);?

2.教師提供問題、素材,并及時(shí)點(diǎn)撥,發(fā)揮老師的主導(dǎo)作用和學(xué)生的主體作用;?

3.設(shè)計(jì)較典型的具有挑戰(zhàn)性的問題,激發(fā)學(xué)生去積極思考,從而培養(yǎng)他們的數(shù)學(xué)學(xué)習(xí)興趣。?? 五、教學(xué)重點(diǎn)及難點(diǎn) 教學(xué)重點(diǎn):1.構(gòu)建基本不等式解決函數(shù)的值域、最值問題。?

2.讓學(xué)生探究用基本不等式解決實(shí)際問題;?

教學(xué)難點(diǎn):1.讓學(xué)生探究用基本不等式解決實(shí)際問題;?

2.基本不等式應(yīng)用時(shí)等號(hào)成立條件的考查;?

六、教學(xué)過程 教師活動(dòng) 學(xué)生活動(dòng) 設(shè)計(jì)意圖 (一)導(dǎo)入新課

(二)推進(jìn)新課

已知 ,若ab為常數(shù)k,那么a+b的值如何變化?

若a+b為常數(shù)s,那么ab的值如何變化?

老師用投影儀給出本節(jié)課的第一組問題

(1)求函數(shù)y=2x2+ (x>0)的最小值。?

(2)求函數(shù)y=x2+ (x>0)的最小值。?

(3)求函數(shù)y=3x2-2x3(0

(4)求函數(shù)y=x(1-x2)(0

(5)設(shè)a>0,b>0,且a2+ =1,求 的最大值。?

(三)合作探究 我們來考慮運(yùn)用正數(shù)的算術(shù)平均數(shù)與幾何平均數(shù)之間的關(guān)系來解答這些問題。根據(jù)函數(shù)最值的含義,我們不難發(fā)現(xiàn)若平均值不等式的某一端為常數(shù),則當(dāng)?shù)忍?hào)能夠取到時(shí),這個(gè)常數(shù)即為另一端的一個(gè)最值。 ?

(四)例題精析?

【例】某工廠要建造一個(gè)長(zhǎng)方體形無蓋貯水池,其容積為4 800 m3,深為 3 m.如果池底每平方米的造價(jià)為150元,池壁每平方米的造價(jià)為120元,怎樣設(shè)計(jì)水池能使總造價(jià)最低?最低總造價(jià)是多少?

當(dāng)且僅當(dāng)a=b時(shí),a+b就有最小值為2k.?

當(dāng)且僅當(dāng)a=b時(shí),ab就有最大值 (或ab有 最大值 ).?

學(xué)生完成

留五分鐘的時(shí)間讓學(xué)生思考,合作交流

(根據(jù)學(xué)生完成的典型情況,找五位學(xué)生到黑板板演,然后老師根據(jù)學(xué)生到黑板板演的完成情況再一次作點(diǎn)評(píng))?

學(xué)生思考、回答,

2025二元一次方程課件


我們聽了一場(chǎng)關(guān)于“二元一次方程課件”的演講讓我們思考了很多,經(jīng)過閱讀本頁你的認(rèn)識(shí)會(huì)更加全面。老師會(huì)對(duì)課本中的主要教學(xué)內(nèi)容整理到教案課件中,所以老師寫教案可不能隨便對(duì)待。教案是評(píng)估學(xué)生學(xué)習(xí)效果的有效依據(jù)。

二元一次方程課件 篇1

(二)難點(diǎn)

靈活運(yùn)用代入法的技巧.

(三)疑點(diǎn)

如何“消元”,把“二元”轉(zhuǎn)化為“一元”.

(四)解決辦法

一方面復(fù)習(xí)用一個(gè)未知量表示另一個(gè)未知量的方法,另一方面學(xué)會(huì)選擇用一個(gè)系數(shù)較簡(jiǎn)單的方程進(jìn)行變形:

四、課時(shí)安排

一課時(shí).

五、教具學(xué)具準(zhǔn)備

電腦或投影儀、自制膠片.

六、師生互動(dòng)活動(dòng)設(shè)計(jì)

1.教師設(shè)問怎樣用一個(gè)未知量表示另一個(gè)未知量,并比較哪種表示形式更簡(jiǎn)單,如 等.

2.通過課本中香蕉、蘋果的應(yīng)用問題,引導(dǎo)學(xué)生列出一元一次方程或二元一次方程組,并通過比較、嘗試,探索出化二元為一元的解方程組的方法.

3.再通過比較、嘗試,探索出選一個(gè)系數(shù)較簡(jiǎn)單的方程變形,通過代入法求方程組解的辦法更簡(jiǎn)便,并尋找出求解的規(guī)律.

七、教學(xué)步驟

(-)明確目標(biāo)

本節(jié)課我們將學(xué)習(xí)用代入法求二元一次方程組的解.

(二)整體感知

從復(fù)習(xí)用一個(gè)未知量表達(dá)另一個(gè)未知量的方法,從而導(dǎo)入 ?運(yùn)用代入法化二元為一元方程的求解過程,即利用代入消元法求二元一次方程組的解的辦法.

(三)教學(xué)步驟

1.創(chuàng)設(shè)情境,復(fù)習(xí)導(dǎo)入

(1)已知方程 ,先用含 的代數(shù)式表示 ,再用含 的代數(shù)式表示 .并比較哪一種形式比較簡(jiǎn)單.

(2)選擇題:

二元一次方程組 的解是

A. B. C. D.

【教法說明】 第(1)題為用代入法解二元一次方程組打下基礎(chǔ);第(2)題既復(fù)習(xí)了上節(jié)課的重點(diǎn),又成為導(dǎo)入 ?新課的材料.

通過上節(jié)課的學(xué)習(xí),我們會(huì)檢驗(yàn)一對(duì)數(shù)值是否為某個(gè)二元一次方程組的解.那么,已知一個(gè)二元一次方程組,應(yīng)該怎樣求出它的解呢?這節(jié)課我們就來學(xué)習(xí).

這樣導(dǎo)入 ?,可以激發(fā)學(xué)生的求知欲.

2.探索新知,講授新課

香蕉的售價(jià)為5元/千克,蘋果的售價(jià)為3元/千克,小華共買了香蕉和蘋果9千克,付款33元,香蕉和蘋果各買了多少千克?

學(xué)生活動(dòng):分別列出一元一次方程和二元一次方程組,兩個(gè)學(xué)生板演.

設(shè)買了香蕉 千克,那么蘋果買了 千克,根據(jù)題意,得

設(shè)買了香蕉 千克,買了蘋果 千克,得

上面的一元一次方程我們會(huì)解,能否把二元一次方程組轉(zhuǎn)化為一元一次方程呢,由方程①可以得到 ? ?③,把方程②中的 轉(zhuǎn)換成 ,也就是把方程③代入方程②,就可以得到 .這樣,我們就把二元一次方程組轉(zhuǎn)化成了一元一次方程,由這個(gè)方程就可以求出 了.

解:由①得: ? ? ?③

把③代入②,得:

把 代入③,得:

【教法說明】解二元一次方程組與解一元一次方程相比較,向?qū)W生展示了知識(shí)的發(fā)生過程,這對(duì)于學(xué)生知識(shí)的形成十分重要.

上面解二元一次方程組的方法,就是代入消元法.你能簡(jiǎn)單說說用代入法解二元一次方程組的基本思路嗎?

學(xué)生活動(dòng):小組討論,選代表發(fā)言,教師進(jìn)行指導(dǎo).糾正后歸納:設(shè)法消去一個(gè)未知數(shù),把二元一次方程組轉(zhuǎn)化為一元一次方程.

例1 ?解方程組

(1)觀察上面的方程組,應(yīng)該如何消元?(把①代入②)

(2)把①代入②后可消掉 ,得到關(guān)于 的一元一次方程,求出 .

(3)求出 后代入哪個(gè)方程中求 比較簡(jiǎn)單?(①)

學(xué)生活動(dòng):依次回答問題后,教師板書

解:把①代入②,得

把 代入①,得

如何檢驗(yàn)得到的結(jié)果是否正確?

學(xué)生活動(dòng):口答檢驗(yàn).

教師:要把所得結(jié)果分別代入原方程組的每一個(gè)方程中.

【教法說明】給出例1后提出的三個(gè)問題,恰好是學(xué)生的思維過程,明確了解題思路;教師板演例1,規(guī)范了解二元一次方程組的解題格式;通過檢驗(yàn),可使學(xué)生養(yǎng)成嚴(yán)謹(jǐn)認(rèn)真的學(xué)習(xí)習(xí)慣.

例2 ?解方程組

要把某個(gè)方程化成如例1中方程①的形式后,代入另一個(gè)方程中才能消元.方程②中 的系數(shù)是1,比較簡(jiǎn)單.因此,可以先將方程②變形,用含 的代數(shù)式表示 ,再代入方程①求解.

學(xué)生活動(dòng):嘗試完成例2.

教師巡視指導(dǎo),發(fā)現(xiàn)并糾正學(xué)生的問題,把書寫過程規(guī)范化.

解:由②,得 ? ? ③

把③代入①,得

把 代入③,得

檢驗(yàn)后,師生共同討論:

(1)由②得到③后,再代入②可以嗎?(不可以)為什么?(得到的是恒等式,不能求解)

(2)把 代入①或②可以求出 嗎?(可以)代入③有什么好處?(運(yùn)算簡(jiǎn)便)

學(xué)生活動(dòng):根據(jù)例1、例2的解題過程,嘗試總結(jié)用代入法解二元一次方程組的一般步驟,討論后選代表發(fā)言.之后,看課本第12頁,用幾個(gè)字概括每個(gè)步驟.

教師板書:

(1)變形( )

(2)代入消元( )

(3)解一元一次方程得( )

(4)把 代入 求解

練習(xí):P13 ?1.(1)(2);P14 ?2.(1)(2).

3.變式訓(xùn)練,培養(yǎng)能力

①由 可以得到用 表示 .

②在 中,當(dāng) 時(shí), ;當(dāng) 時(shí), ,則 ; .

③選擇:若 是方程組 的解,則( )

A. B. C. D.

(四)總結(jié)、擴(kuò)展

1.解二元一次方程組的思想: .

二元一次方程課件 篇2

一。教學(xué)目標(biāo)

(一)教學(xué)知識(shí)點(diǎn)

1、代入消元法解二元一次方程組。

2、解二元一次方程組時(shí)的消元思想,化未知為已知的化歸思想。

(二)能力訓(xùn)練要求

1、會(huì)用代入消元法解二元一次方程組。

2、了解解二元一次方程組的消元思想,初步體會(huì)數(shù)學(xué)研究中化未知為已知的化歸思想。

(三)情感與價(jià)值觀要求

1、在學(xué)生了解二元一次方程組的消元思想,從而初步理解化未知為已知和化復(fù)雜問題為簡(jiǎn)單問題的化歸思想中,享受學(xué)習(xí)數(shù)學(xué)的樂趣,提高學(xué)習(xí)數(shù)學(xué)的信心。

2、培養(yǎng)學(xué)生合作交流,自主探索的良好習(xí)慣。

二。教學(xué)重點(diǎn)

1、會(huì)用代入消元法解二元一次方程組。

2、了解解二元一次方程組的消元思想,初步體現(xiàn)數(shù)學(xué)研究中化未知為已知的化歸思想。

三。教學(xué)難點(diǎn)

1、消元的思想。

2、化未知為已知的化歸思想。

四。教學(xué)方法

啟發(fā)自主探索相結(jié)合。

教師引導(dǎo)學(xué)生回憶一元一次方程解決實(shí)際問題的方法并從中啟發(fā)學(xué)生如果能將二元一次方程組轉(zhuǎn)化為一元一次方程。二元一次方程便可獲解,從而通過學(xué)生自主探索總結(jié)用代入消元法解二元一次方程組的步驟。

五。教具準(zhǔn)備

投影片兩張:

第一張:例題(記作7。2A);

第二張:?jiǎn)栴}串(記作7。2B)。

六。教學(xué)過程

Ⅰ。提出疑問,引入新課

[師生共憶]上節(jié)課我們討論過一個(gè)希望工程義演的問題;沒去觀看義演的成人有x個(gè),兒童有y個(gè),我們得到了方程組成人和兒童到底去了多少人呢?

[生]在上一節(jié)課的做一做中,我們通過檢驗(yàn)是不是方程x+y=8和方程5x+3y=34,得知這個(gè)解既是x+y=8的解,也是5x+3y=34的解,根據(jù)二元一次方程組解的定義得出是方程組的解。所以成人和兒童分別去了5個(gè)人和3個(gè)人。

[師]但是,這個(gè)解是試出來的。我們知道二元一次方程的解有無數(shù)個(gè)。難道我們每個(gè)方程組的解都去這樣試?

[生]太麻煩啦。

[生]不可能。

[師]這就需要我們學(xué)習(xí)二元一次方程組的解法。

Ⅱ。講授新課

[師]在七年級(jí)第一學(xué)期我們學(xué)過一元一次方程,也曾碰到過希望工程義演問題,當(dāng)時(shí)是如何解的呢?

[生]解:設(shè)成人去了x個(gè),兒童去了(8-x)個(gè),根據(jù)題意,得:

5x+3(8-x)=

解得x=

將x=5代入8-x=8-5=

答:成人去了5個(gè),兒童去了3個(gè)。

[師]同學(xué)們可以比較一下:列二元一次方程組和列一元一次方程設(shè)未知數(shù)有何不同?列出的方程和方程組又有何聯(lián)系?對(duì)你解二元一次方程組有何啟示?

[生]列二元一次方程組設(shè)出有兩個(gè)未知數(shù)成人去了x個(gè),兒童去了y個(gè)。列一元一次方程設(shè)成人去了x個(gè),兒童去了(8-x)個(gè)。y應(yīng)該等于(8-x)。而由二元一次方程組的一個(gè)方程x+y=8根據(jù)等式的性質(zhì)可以推出y=8-x。

[生]我還發(fā)現(xiàn)一元一次方程中5x+3(8-x)=34與方程組中的第二個(gè)方程5x+3y=34相比較,把5x+3y=34中的y用8-x代替就轉(zhuǎn)化成了一元一次方程。

[師]太好了。我們發(fā)現(xiàn)了新舊知識(shí)之間的聯(lián)系,便可尋求到解決新問題的方法即將新知識(shí)轉(zhuǎn)化為舊知識(shí)便可。如何轉(zhuǎn)化呢?

[生]上一節(jié)課我們就已知道方程組的兩個(gè)未知數(shù)所包含的意義是相同的。所以將中的①變形,得y=8-x③我們把y=8-x代入方程②,即將②中的y用8-x代替,這樣就有5x+3(8-x)=34。二元化成一元。

二元一次方程課件 篇3

一 內(nèi)容和內(nèi)容解析

1.內(nèi)容

二元一次方程, 二元一次方程組概念

2.內(nèi)容解析

二元一次方程組是解決含有兩個(gè)提供運(yùn)算未知數(shù)的問題的有力工具,也是解決后續(xù)一些數(shù)學(xué)問題的基礎(chǔ)。直接設(shè)兩個(gè)未知數(shù),列方程,方程組更加直觀,本章就從這個(gè)想法出發(fā)引入新內(nèi)容.

本節(jié)課一以引言中的問題開始,引導(dǎo)學(xué)生思考“問題中包含的等量關(guān)系”以及“設(shè)兩個(gè)未知數(shù)后如何用方程表示等量關(guān)系”.繼而深入探究二元一次方程, 二元一次方程組的解.

本節(jié)課的教學(xué)重點(diǎn)是:二元一次方程, 二元一次方程組的概念

二、目標(biāo)和目標(biāo)解析

1.教學(xué)目標(biāo)

(1)會(huì)設(shè)兩個(gè)未知數(shù)后用方程表示等量關(guān)系列二元一次方程, 二元一次方程組.

(2)理解解二元一次方程, 二元一次方程組的解的概念.

2. 教學(xué)目標(biāo)解析

(1)學(xué)生能掌握設(shè)兩個(gè)未知數(shù)后,分析問題中包含的等量關(guān)系”以及“用方程表示等量關(guān)系”.

(2)要讓學(xué)生經(jīng)歷探究的過程.體會(huì)二元一次方程組的解, 二元一次方程組的解是實(shí)際意義.

三、教學(xué)問題診斷分?jǐn)?/strong>

1.學(xué)生過去已遇到二元問題,但只設(shè)一個(gè)未知數(shù),再表示出另一個(gè)未知數(shù),用一元一次方程解決. 現(xiàn)在如何引導(dǎo)學(xué)生設(shè)兩個(gè)未知數(shù)。需要結(jié)合實(shí)際問題進(jìn)行分析。由于方程組的兩個(gè)方程中同一個(gè)未知數(shù)表示的是同一數(shù)量,通過觀察對(duì)照,可以發(fā)現(xiàn)一元一次方程向二元一次方程組轉(zhuǎn)化的思路

2.結(jié)合一元一次方程的解向二元一次方程, 二元一次方程組的解轉(zhuǎn)化,學(xué)習(xí)知識(shí)的遷移.

本節(jié)教學(xué)難點(diǎn):

1.把一元向二元的轉(zhuǎn)化,設(shè)兩個(gè)未知數(shù).結(jié)合實(shí)際問題進(jìn)行分析,列二元一次方程, 二元一次方程組.

2.二元一次方程組的解的意義

四、教學(xué)過程設(shè)計(jì)

1.創(chuàng)設(shè)情境,提出問題

問題1 籃球聯(lián)賽中,每場(chǎng)都要分出勝負(fù),每隊(duì)勝1場(chǎng)得2分,負(fù)1場(chǎng)得1分,某隊(duì)10場(chǎng)比賽中得到16分,那么這個(gè)隊(duì)勝負(fù)場(chǎng)數(shù)分別是多少?你能用一元一次方程解決這個(gè)問題嗎?

師生活動(dòng):學(xué)生回答:能。設(shè)勝x場(chǎng),負(fù)(10-x)場(chǎng)。根據(jù)題意,得2x+(10-x)=16

x=6,則勝6場(chǎng),負(fù)4場(chǎng)

教師追問:你能根據(jù)兩個(gè)問題中的等量關(guān)系設(shè)兩個(gè)未知數(shù)列出二個(gè)反映題意的方程嗎?

師生活動(dòng):學(xué)生回答:能。設(shè)勝x場(chǎng),負(fù)場(chǎng)。根據(jù)題意,得x+=10 , 2x+=16.

教師歸納:像這樣,每個(gè)方程都含有兩個(gè)未知數(shù)(x和)并且含有未知數(shù)的項(xiàng)的次數(shù)都是1的方程叫做二元一次方程。

設(shè)計(jì)意圖:用引言的問題引人本節(jié)課內(nèi)容,先列一元一次方程解決這個(gè)問題,轉(zhuǎn)變思路,再列二元一次方程,為后面教學(xué)做好了鋪墊.

問題2:對(duì)比兩個(gè)方程,你能發(fā)現(xiàn)它們之間的關(guān)系嗎?

師生活動(dòng):通過對(duì)實(shí)際問題的分析,認(rèn)識(shí)方程組中的兩個(gè)x,都是這個(gè)隊(duì)的勝,負(fù)場(chǎng)

數(shù),它們必須同時(shí)滿足這兩個(gè)方程,這樣,連在一起寫成

就組成了一個(gè)方程組 。這個(gè)方程組中每個(gè)方程都含有兩個(gè)未知數(shù)(x和)并且含有未知數(shù)的項(xiàng)的次數(shù)都是1,像這樣的方程組叫做二元一次方程組 。

設(shè)計(jì)意圖:從實(shí)際出發(fā),引入方程組的概念,切合學(xué)生的認(rèn)知過程。

問題3 : 探究

滿足了方程①,且符合問題的實(shí)際意義的x,的值有哪些?把它們填入表中

x

(3) 當(dāng) =12時(shí),x的值

師生活動(dòng):小組討論,然后每組各派一名代表上黑板完成.

設(shè)計(jì)意圖:借助本題,充分發(fā)揮學(xué)生的合作探究精神通過比較,進(jìn)一步體會(huì)二元一次方程及二元一次方程的解的意義.

3加深認(rèn)識(shí),鞏固提高

練習(xí): 一條船順流航行,每小時(shí)行20 ,逆流航行,每小時(shí)行16 .求船在靜水中的速度和水的流速。

師生活動(dòng):分兩小組討論.一組用一元一次方程解決,另一組嘗試列方程組(不要求求解),為解二元一次方程組埋下伏筆。然后每組各派一名代表上黑板完成。

設(shè)計(jì)意圖:提醒并指導(dǎo)學(xué)生要先分析問題的兩個(gè)未知數(shù)關(guān)系,嘗試結(jié)合題意,尋找到兩個(gè)等量關(guān)系,列方程組。體會(huì)直接設(shè)兩個(gè)未知數(shù),列方程,方程組更加直觀,

4歸納總結(jié)

師生活動(dòng):共同回顧本節(jié)課的學(xué)習(xí)過程,并回答以下問題

1.二元一次方程, 二元一次方程組的概念

2.二元一次方程, 二元一次方程組的解的概念.

3.在探究的過程中用到了哪些思想方法?

4.你還有哪些收獲?

設(shè)計(jì)意圖:通過這一活動(dòng)的設(shè)計(jì),提高學(xué)生對(duì)所學(xué)知識(shí)的遷移能力和應(yīng)用意識(shí);培養(yǎng)學(xué)生自我歸納概括的能力.

5. 布置作業(yè)

教科書第90頁第3,4題

五、目標(biāo)檢測(cè)設(shè)計(jì)

1.填表,使上下每對(duì)x,的值是方程3x+=5的解

x

2.選擇題

二元一次方程組的解為( )

A. B. C. D.

設(shè)計(jì)意圖:考查學(xué)生二元一次方程組的解的掌握情況.

二元一次方程課件 篇4

知識(shí)要點(diǎn)

1、二元一次方程:含有兩個(gè)未知數(shù),并且所含未知數(shù)的項(xiàng)的次數(shù)都是一次的整式方程叫做~

2、二元一次方程的解:適合二元一次方程的一組未知數(shù)的值叫做這個(gè)二元一次方程的一個(gè)解;

3、二元一次方程組:由幾個(gè)一次方程組成并含有兩個(gè)未知數(shù)的方程組叫做二元一次方程組

4、二元一次方程組的解:適合二元一次方程組里各個(gè)方程的一對(duì)未知數(shù)的值,叫做這個(gè)方程組里各個(gè)方程的公共解,也叫做這個(gè)方程組的解(注意:①書寫方程組的解時(shí),必需用“”把各個(gè)未知數(shù)的值連在一起,即寫成的形式;②一元方程的解也叫做方程的根,但是方程組的解只能叫解,不能叫根)

5、解方程組:求出方程組的解或確定方程組沒有解的過程叫做解方程組

6、解二元一次方程組的基本方法是代入消元法和加減消元法(簡(jiǎn)稱代入法和加減法)

(1)代入法解題步驟:把方程組里的一個(gè)方程變形,用含有一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù);把這個(gè)代數(shù)式代替另一個(gè)方程中相應(yīng)的未知數(shù),得到一個(gè)一元一次方程,可先求出一個(gè)未知數(shù)的值;把求得的這個(gè)未知數(shù)的值代入第一步所得的式子中,可求得另一個(gè)未知數(shù)的值,這樣就得到了方程的解

(2)加減法解題步驟:把方程組里一個(gè)(或兩個(gè))方程的兩邊都乘以適當(dāng)?shù)臄?shù),使兩個(gè)方程里的某一個(gè)未知數(shù)的系數(shù)的絕對(duì)值相等;把所得到的兩個(gè)方程的兩邊分別相加(或相減),消去一個(gè)未知數(shù),得到含另一個(gè)未知數(shù)的一元一次方程(以下步驟與代入法相同)

一、例題精講

分別用代入法和加減法解方程組

解:代入法:由方程②得:③

將方程③代入方程①得:

解得x=2

將x=2代入方程②得:4-3y=1

解得y=1

所以方程組的解為

加減法:

例2.從少先隊(duì)夏令營(yíng)到學(xué)校,先下山再走平路,一少先隊(duì)員騎自行車以每小時(shí)12公里的速度下山,以每小時(shí)9公里的速度通過平路,到學(xué)校共用了55分鐘,回來時(shí),通過平路速度不變,但以每小時(shí)6公里的速度上山,回到營(yíng)地共花去了1小時(shí)10分鐘,問夏令營(yíng)到學(xué)校有多少公里?

分析:路程分為兩段,平路和坡路,來回路程不變,只是上山和下山的轉(zhuǎn)變導(dǎo)致時(shí)間的不同,所以設(shè)平路長(zhǎng)為x公里,坡路長(zhǎng)為y公里,表示時(shí)間,利用兩個(gè)不同的過程列兩個(gè)方程,組成方程組

解:設(shè)平路長(zhǎng)為x公里,坡路長(zhǎng)為y公里

依題意列方程組得:

解這個(gè)方程組得:

經(jīng)檢驗(yàn),符合題意

x+y=9

答:夏令營(yíng)到學(xué)校有9公里二、課堂小結(jié):

回顧本章內(nèi)容,總結(jié)二元一次方程組的解法和應(yīng)用。

三、作業(yè)布置:

P25A組習(xí)題

二元一次方程課件 篇5

教學(xué)目標(biāo)

1、弄懂二元一次方程、二元一次方程組和它們的解的含義,并會(huì)檢驗(yàn)一對(duì)數(shù)是不是某個(gè)二元一次方程組的解;

2、學(xué)會(huì)用類比的方法遷移知識(shí);體驗(yàn)二元一次方程組在處理實(shí)際問題中的優(yōu)越性,感受數(shù)學(xué)的樂趣.

教學(xué)難點(diǎn)弄懂二元一次方程組解的含義。

知識(shí)重點(diǎn)二元一次方程、二元一次方程組及其解的含義。

教學(xué)過程(師生活動(dòng))

設(shè)計(jì)理念

創(chuàng)設(shè)情境

導(dǎo)入課題幻燈:古老的“雞兔同籠問題”

“今有雞兔同籠,上有三十五頭,下有九十四足.問雞、兔各幾何?”

師:這是我國(guó)古代數(shù)學(xué)著作《孫子算經(jīng)》中記載的數(shù)學(xué)名題.它曾在好幾個(gè)世紀(jì)里引起過人們的興趣,這個(gè)問題也一定會(huì)使在座的各位同學(xué)感興趣.怎樣來解答這個(gè)問題呢?

學(xué)生思考自行解答,教師巡視.最后,在學(xué)生動(dòng)手動(dòng)腦的基礎(chǔ)上,班級(jí)集體討論給出各種解決方案.

方案一:算術(shù)方法

把兔子都看成雞,則多出94-35×2=24只腳,每只兔子比雞多出兩只腳,故,由此可先求出兔子有24÷2=12只,

進(jìn)而雞有35-12=23只.

或類似的也可以先求雞的數(shù)量.

35×4-94=46,46÷2=23

方案二:列一元一次方程解

設(shè)有x只雞,則有(35-x)只兔.根據(jù)題意,得

2x十4(35-x)=94.

(解方程略)

教師不失時(shí)機(jī)地復(fù)習(xí)一元一次方程的有關(guān)概念,“元”是指什么?“次”是指什么?以古老的數(shù)學(xué)名題引入,可以增強(qiáng)學(xué)生的民族自豪感,激發(fā)學(xué)好數(shù)學(xué)的感情

能用方案本來解的學(xué)生算術(shù)功底比較好,應(yīng)給予高度贊賞.

方案二既是對(duì)一元一次方程的復(fù)習(xí)與鞏固,又為二元一次方程組的引出做好鋪墊在。

分析問題(一)討論二元一次方程、二元一次方程組的概念

師:上面的問題可以用一元一次方程來解,還有其他方法嗎?(若學(xué)生想不到,教師要引導(dǎo)學(xué)生,要求的是兩個(gè)未知數(shù),能否設(shè)兩個(gè)未知數(shù)列方程求解呢?讓學(xué)生自己設(shè)未知數(shù),列方程)

方案三:設(shè)有x只雞,y只兔,依題意得

x+y=35,①

2x+4y=94.②

針對(duì)學(xué)生列出的這兩個(gè)方程,提出如下問題:

(1)、你能給這兩個(gè)方程起個(gè)名字嗎?

(2)為什么叫二元一次方程呢?

(3)什么樣的方程叫二元一次方程呢?

結(jié)合學(xué)生的回答,教師板書定義1:含有兩個(gè)未知數(shù),并且未知數(shù)的指數(shù)都是1的方程,叫做二元一次方程.

師:在上面的問題中,雞、兔的只數(shù)必須同時(shí)滿足①②兩個(gè)方程.把①②兩個(gè)二元一次方程結(jié)合在一起,用花括號(hào)來連接.我們也給它起個(gè)名字,叫什么好呢?

定義2:把兩個(gè)二元一次方程合在一起,就組成了一個(gè)二元一次方程組.

(二)討論二元一次方程、二元一次方程組的解的概念

探究活動(dòng):滿足x+y=35的值有哪些?請(qǐng)?zhí)钊氡碇校?/p>

教師啟發(fā):

(1)若不考慮此方程與上面實(shí)際問題的聯(lián)系,還可以取哪些值?

(2)你能模仿一元一次方程的解給二元一次方程的解下定義嗎?

(3)它與一元一次方程的解有什么區(qū)別?

定義3:使二元一次方程兩邊相等的兩個(gè)未知數(shù)的值,叫二元一次方程的解,記為

師:那么什么是二元一次方程組的解呢?

學(xué)生討論達(dá)成共識(shí):二元一次方程組的解必須同時(shí)滿足方程組中的兩個(gè)方程.即:既是方程①又是方程②的解.

定義4:二元一次方程組的兩個(gè)方程的公共解叫做二元一次方程組的解.

比如:從方案一,我們知道,x=23,y=12使方程組中每一個(gè)方程成立.所以我們把x=23,y=12叫做

的解記為:

注意:二元一次方程組的解是成對(duì)出現(xiàn)的,用花括號(hào)來連接,表示“且”.

議一議:將上述“雞兔同籠”問題的三種方案進(jìn)行優(yōu)劣對(duì)比,你有哪些想法呢?

引導(dǎo)學(xué)生利用一元一次方程進(jìn)行知識(shí)的遷移與奚比,讓學(xué)生用原有的認(rèn)知結(jié)構(gòu)去同化新知識(shí),符合建構(gòu)主義理念

通過探究活動(dòng)得出結(jié)論:

1、二元一次方程的解是成對(duì)出現(xiàn)的;2、二元一次方程的解有無

數(shù)多個(gè).這與一元一次方程有顯

著的區(qū)別.

通過對(duì)比,讓學(xué)生體臉到從算術(shù)方法到代數(shù)方法是一種進(jìn)步.而當(dāng)我們遇到求多個(gè)未知量,而且數(shù)量關(guān)系較復(fù)雜時(shí),列二元一次方程組比列一元一次方程容易,它大大減輕了我們的思維負(fù)擔(dān).

鞏固新知例1下列各對(duì)數(shù)值中是二元一次方程x+2y=2的解是()

ABCD

解法分析:

將A、B,C,D中各對(duì)數(shù)值逐一代人方程檢驗(yàn)是否滿足方程,選A,B,C.

變式:其中是二元一次方程組解是()

解法分析:

在例1的基礎(chǔ)上,進(jìn)一步檢驗(yàn)A、B、C中各對(duì)值是否滿足方程2x+y=-2,使學(xué)生明確認(rèn)識(shí)到二元一次方程組的解必須同時(shí)滿足兩個(gè)方程.

例2(教材102頁練習(xí))

解答過程略

本例先檢驗(yàn)二元一次方程的解,再檢臉二元一次方程組的解,符合從簡(jiǎn)單到復(fù)雜的認(rèn)知規(guī)律.使學(xué)生更深刻地理解二元一次方程組的解的概念.

目的在于培養(yǎng)分析等量關(guān)系并列方程組的能力;培養(yǎng)觀察估算能力;使學(xué)生進(jìn)一步熟悉二元一次方程組及其解的概

小結(jié)提高在學(xué)生暢所欲言話收獲的基礎(chǔ)上,通過老師進(jìn)行補(bǔ)充的方式進(jìn)行.

本節(jié)課學(xué)習(xí)了哪些內(nèi)容?你有哪些收獲?

(什么叫二元一次方程?什么叫二元一次方程組?什么叫二元一次方程組的解?)發(fā)揮學(xué)生主體意識(shí),培養(yǎng)學(xué)生歸納小結(jié)的能力。

布置作業(yè)1、必做題:教科書102頁習(xí)題8.1第1、2題.

2、選做題:教科書102頁習(xí)題8.1第3題.

3、備選題:

(1)根據(jù)下列語句,列出二元一次方程:

①甲數(shù)的一半與乙數(shù)的.的和為11

②甲數(shù)和乙數(shù)的2倍的差為17

(2)方程x+2y=7在自然數(shù)范圍內(nèi)的解()

A有無數(shù)個(gè)B有一個(gè)C有兩個(gè)D有三個(gè)

(3)若mx+y=1是關(guān)于x,y的二元一次方程,那么m

的值應(yīng)是()

A.m≠OB.m=0C.m是正有理數(shù)D.m是負(fù)有理數(shù)

(4)李平和張力從學(xué)校同時(shí)出發(fā)到郊區(qū)某公園游玩,兩人從出發(fā)到回來所用的時(shí)間相同,但是,李平游玩的時(shí)間是張力騎車時(shí)間的4倍,而張力游玩的時(shí)間是李平騎車時(shí)間的5倍,請(qǐng)問他倆人中誰騎車的速度快?

不同層次的學(xué)生根據(jù)自身的需要選擇不同的備用題,實(shí)現(xiàn)不同的人在數(shù)學(xué)上獲得不同的發(fā)展的教學(xué)理念.

本課教育評(píng)注(課堂設(shè)計(jì)理念,實(shí)際教學(xué)效果及改進(jìn)設(shè)想)

本課的設(shè)計(jì)是從提出“雞兔同籠”的求解問題人手,激發(fā)學(xué)生的學(xué)習(xí)興趣與民族自豪感,讓學(xué)生經(jīng)歷從不同角度尋求不同的解決方法的過程,體現(xiàn)出解決問題策略的多樣性,激發(fā)了學(xué)生的學(xué)習(xí)興趣.以算術(shù)的方法襯托出方程解法的優(yōu)越性,以列一元一次方程解法襯托出列二元一次方程組解法的優(yōu)越性,更使學(xué)生感到二元一次方程組的引人順理成章.

本課內(nèi)容是在學(xué)生已經(jīng)掌握了一元一次方程的基礎(chǔ)知識(shí),初步具有提取數(shù)學(xué)信息、解決實(shí)際問題的能力后展開的.根據(jù)建構(gòu)主義理念,學(xué)生完全有能力利用自己原有的知識(shí)去同化新知識(shí),主動(dòng)地將其納人自己的知識(shí)體系中.所以本課的通篇整體設(shè)計(jì),突出了一元一次方程的樣板作用,讓學(xué)生在類比中,主動(dòng)遷移知識(shí),建立起新的概念.使得基礎(chǔ)知識(shí)和基本技能在學(xué)生頭腦中留下較深刻的印象是很有必要的。

二元一次方程課件 篇6

教學(xué)目標(biāo):

知識(shí)與技能目標(biāo):

通過對(duì)實(shí)際問題的分析,使學(xué)生進(jìn)一步體會(huì)方程組是刻畫現(xiàn)實(shí)世界的有效數(shù)學(xué)模型,初步掌握列二元一次方程組解應(yīng)用題.初步體會(huì)解二元一次方程組的基本思想“消元”。

培養(yǎng)學(xué)生列方程組解決實(shí)際問題的意識(shí),增強(qiáng)學(xué)生的數(shù)學(xué)應(yīng)用能力。

過程與方法目標(biāo):

經(jīng)歷和體驗(yàn)列方程組解決實(shí)際問題的過程,進(jìn)一步體會(huì)方程(組)是刻畫現(xiàn)實(shí)世界的有效數(shù)學(xué)模型。

情感態(tài)度與價(jià)值觀目標(biāo):

1.進(jìn)一步豐富學(xué)生數(shù)學(xué)學(xué)習(xí)的成功體驗(yàn),激發(fā)學(xué)生對(duì)數(shù)學(xué)學(xué)習(xí)的好奇心,進(jìn)一步形成積極參與數(shù)學(xué)活動(dòng)、主動(dòng)與他人合作交流的意識(shí).

2.通過"雞兔同籠",把同學(xué)們帶入古代的數(shù)學(xué)問題情景,學(xué)生體會(huì)到數(shù)學(xué)中的"趣";進(jìn)一步強(qiáng)調(diào)課堂與生活的聯(lián)系,突出顯示數(shù)學(xué)教學(xué)的實(shí)際價(jià)值,培養(yǎng)學(xué)生的人文精神。重點(diǎn):

經(jīng)歷和體驗(yàn)列方程組解決實(shí)際問題的過程;增強(qiáng)學(xué)生的數(shù)學(xué)應(yīng)用能力。

難點(diǎn):

確立等量關(guān)系,列出正確的二元一次方程組。

教學(xué)流程:

課前回顧

復(fù)習(xí):列一元一次方程解應(yīng)用題的一般步驟

情境引入

探究1:今有雞兔同籠,

上有三十五頭,

下有九十四足,

問雞兔各幾何?

“雉兔同籠”題:今有雉(雞)兔同籠,上有35頭,下有94足,問雉兔各幾何?

(1)畫圖法

用表示頭,先畫35個(gè)頭

將所有頭都看作雞的,用表示腿,畫出了70只腿

還剩24只腿,在每個(gè)頭上在加兩只腿,共12個(gè)頭加了兩只腿

四條腿的是兔子(12只),兩條腿的是雞(23只)

(2)一元一次方程法:

雞頭+兔頭=35

雞腳+兔腳=94

設(shè)雞有x只,則兔有(35-x)只,據(jù)題意得:

2x+4(35-x)=94

比算術(shù)法容易理解

想一想:那我們能不能用更簡(jiǎn)單的方法來解決這些問題呢?

回顧上節(jié)課學(xué)習(xí)過的二元一次方程,能不能解決這一問題?

(3)二元一次方程法

今有雞兔同籠,上有三十五頭,下有九十四足,問雞兔各幾何?

(1)上有三十五頭的意思是雞、兔共有頭35個(gè),

下有九十四足的意思是雞、兔共有腳94只.

(2)如設(shè)雞有x只,兔有y只,那么雞兔共有(x+y)只;

雞足有2x只;兔足有4y只.

解:設(shè)籠中有雞x只,有兔y只,由題意可得:

雞兔合計(jì)頭xy35足2x4y94

解此方程組得:

練習(xí)1:

1.設(shè)甲數(shù)為x,乙數(shù)為y,則“甲數(shù)的二倍與乙數(shù)的一半的和是15”,列出方程為_2x+05y=15

2.小剛有5角硬幣和1元硬幣各若干枚,幣值共有六元五角,設(shè)5角有x枚,1元有y枚,列出方程為05x+y=65.

合作探究

探究2:以繩測(cè)井。若將繩三折測(cè)之,繩多五尺;若將繩四折測(cè)之,繩多一尺。繩長(zhǎng)、井深各幾何?

題目大意:用繩子測(cè)水井深度,如果將繩子折成三等份,一份繩長(zhǎng)比井深多5尺;如果將繩子折成四等份,一份繩長(zhǎng)比井深多1尺。問繩長(zhǎng)、井深各是多少尺?

找出等量關(guān)系:

解:設(shè)繩長(zhǎng)x尺,井深y尺,則由題意得

x=48

將x=48y=11。

所以繩長(zhǎng)4811尺。

想一想:找出一種更簡(jiǎn)單的創(chuàng)新解法嗎?

引導(dǎo)學(xué)生逐步得出更簡(jiǎn)單的方法:

找出等量關(guān)系:

(井深+5)×3=繩長(zhǎng)

(井深+1

解:設(shè)繩長(zhǎng)x尺,井深y尺,則由題意得

3(y+5)=x

4(y+1)=x

x=48

y=11

所以繩長(zhǎng)48尺,井深11尺。

練習(xí)2:甲、乙兩人賽跑,若乙先跑10米,甲跑5秒即可追上乙;若乙先跑2秒,則甲跑4秒就可追上乙.設(shè)甲速為x米/秒,乙速為y米/秒,則可列方程組為(B).

歸納:

列二元一次方程解決實(shí)際問題的一般步驟:

審:審清題目中的等量關(guān)系.

設(shè):設(shè)未知數(shù).

列:根據(jù)等量關(guān)系,列出方程組.

解:解方程組,求出未知數(shù).

答:檢驗(yàn)所求出未知數(shù)是否符合題意,寫出答案。

二元一次方程課件 篇7

教學(xué)目標(biāo):

1.會(huì)用加減消元法解二元一次方程組.

2.能根據(jù)方程組的特點(diǎn),適當(dāng)選用代入消元法和加減消元法解二元一次方程組.

3.了解解二元一次方程組的消元方法,經(jīng)歷從“二元”到“一元”的轉(zhuǎn)化過程,體會(huì)解二元一次方程組中化“未知”為“已知”的“轉(zhuǎn)化”的思想方法.

教學(xué)重點(diǎn):

加減消元法的理解與掌握

教學(xué)難點(diǎn):

加減消元法的靈活運(yùn)用

教學(xué)方法:

引導(dǎo)探索法,學(xué)生討論交流

教學(xué)過程:

一、情境創(chuàng)設(shè)

買3瓶蘋果汁和2瓶橙汁共需要23元,買5瓶蘋果汁和2瓶橙汁共需33元,每瓶蘋果汁和每瓶橙汁售價(jià)各是多少?

設(shè)蘋果汁、橙汁單價(jià)為x元,y元。

我們可以列出方程3x+2y=23

5x+2y=33

問:如何解這個(gè)方程組?

二、探索活動(dòng)

活動(dòng)一:1、上面“情境創(chuàng)設(shè)”中的方程,除了用代入消元法解以外,還有其他方法求解嗎?

2、這些方法與代入消元法有何異同?

3、這個(gè)方程組有何特點(diǎn)?

解法一:3x+2y=23①

5x+2y=33②

由①式得③

把③式代入②式

33

解這個(gè)方程得:y=4

把y=4代入③式

所以原方程組的解是x=5

y=4

解法二:3x+2y=23①

5x+2y=33②

由①—②式:

3x+2y-(5x+2y)=23-33

3x-5x=-10

解這個(gè)方程得:x=5

把x=5代入①式,

3×5+2y=23

解這個(gè)方程得y=4

所以原方程組的解是x=5

y=4

把方程組的兩個(gè)方程(或先作適當(dāng)變形)相加或相減,消去其中一個(gè)未知數(shù),把解二元一次方程組轉(zhuǎn)化為解一元一次方程,這種解方程組的方法叫做加減消元法,簡(jiǎn)稱加減法.

三、例題教學(xué):

例1.解方程組x+2y=1①

3x-2y=5②

解:①+②得,4x=6

將代入①,得

解這個(gè)方程得:

所以原方程組的解是

鞏固練習(xí)(一):練一練1.(1)

例2.解方程組5x-2y=4①

2x-3y=-5②

解:①×3,得

15x-6y=12③

②×3,得

4x-6y=-10④

③—④,得:

11x=22

解這個(gè)方程得x=2

將x=2代入①,得

5×2-2y=4

解這個(gè)方程得:y=3

所以原方程組的解是x=2

y=3

鞏固練習(xí)(二):練一練1.(2)(3)(4)2

四、思維拓展:

解方程組:

五、小結(jié):

1、掌握加減消元法解二元一次方程組

2、靈活選用代入消元法和加減消元法解二元一次方程組

六、作業(yè)

習(xí)題10.31.(3)(4)2

二元一次方程課件 篇8

【教學(xué)目標(biāo)】

知識(shí)目標(biāo): 1、通過觀察,歸納二元一次方程的概念 ,會(huì)把二元一次方程化為用一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù)的形式。

2、二元一次方程解的不定性和相關(guān)性,即二元一次方程的解有無數(shù)個(gè),但又不是任意兩個(gè)數(shù)是它的解。

過程與方法:通過與一元一次方程的比較,加強(qiáng)學(xué)生的類比的思想方法。

情感態(tài)度與價(jià)值觀:通過“合作學(xué)習(xí)”,使學(xué)生認(rèn)識(shí)數(shù)學(xué)是根據(jù)實(shí)際的需要而產(chǎn)生發(fā)展的觀點(diǎn)。

【教學(xué)重點(diǎn)、難點(diǎn)】

重點(diǎn):二元一次方程的意義及二元一次方程的解的概念。

難點(diǎn):把一個(gè)二元一次方程變形成用關(guān)于一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù)的形式,其實(shí)質(zhì)是解一個(gè)含有字母系數(shù)的方程。

【教學(xué)過程】

一、 復(fù)習(xí)引入:

(1) 方程的概念;一元一次方程的概念;什么是方程的解?一元一次方程的解如何表示?

(2) 合作學(xué)習(xí):

①小紅到郵局寄掛號(hào)信,需要郵資3元8角。小紅有票額為6角和8角的郵票若干張,問各需要多少?gòu)堖@兩種面額的郵票?

這個(gè)問題中有幾個(gè)未知數(shù),能列一元一次方程求解嗎?

如果設(shè)需要票額為6角的郵票x張,需要票額為8角的郵票y張,你能列出方程嗎?

②在高速公路上,一輛轎車行駛2時(shí)的路程比一輛卡車行駛3時(shí)的路程還多20千米,如果設(shè)轎車的速度是a千米/小時(shí),卡車的速度是b千米/小時(shí),你能列出方程嗎?

二、 新課教學(xué)

這就是我們今天要學(xué)習(xí)的4、1二元一次方程(板書課題)

(1) 觀察上述兩個(gè)方程,歸納特點(diǎn)

(2) 討論選擇正確概念

① 含有兩個(gè)未知數(shù)的方程叫二元一次方程。

② 含有兩個(gè)未知數(shù),且含有未知數(shù)的項(xiàng)的次數(shù)都是1次的`方程叫二元一次方程。

(3) 做一做P86——1,2

(4) 例:已知方程3x+2y=10

① 用關(guān)于x的代數(shù)式表示y (分析:只要把方程3x+2y=10看作未知數(shù)是y的一元一次方程,解關(guān)于y的方程)

② 求當(dāng)x=-2,0,3時(shí),對(duì)應(yīng)的y的值

(提問:把x=-2,y=8代入方程3x+2y=10,能否使其左右兩邊相等?

回憶方程解的概念,得出x=-2,y=8是二元一次方程3x+2y=10的一個(gè)解,記作 。

同理試寫出該方程的兩個(gè)解(注意寫法格式)

思考:方程3x+2y=10的解有多少個(gè)?

師歸納:二元一次方程解具不定性和相關(guān)性

(5) 練習(xí):P88——課內(nèi)練習(xí)1,2

(6) 補(bǔ)充練習(xí):P89---作業(yè)題4(說明:方程的解須是正整數(shù))

已知 ,是方程2x+3y=5的一個(gè)解,那么由此可知道些什么?

(說明:1.本例是根據(jù)教科書P89---B組第5題改編。原題要求a的值,但學(xué)

生常常有困難,因此這里把原題改為開放式命題,看起來似乎比原

題要求高了,其實(shí)有利于各類學(xué)生參與并尋求結(jié)論。

三、 課堂小結(jié):

二元一次方程的意義及二元一次方程的解的概念(注意書寫格式)

二元一次方程解的不定性和相關(guān)性

會(huì)把二元一次方程化為用一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù)的形式

四、 作業(yè) :

課堂作業(yè)本

二元一次方程課件 篇9

教學(xué)建議

1.教材分析

(1)知識(shí)結(jié)構(gòu)

(2)重點(diǎn)、難點(diǎn)分析

重點(diǎn):本小節(jié)的重點(diǎn)是使學(xué)生學(xué)會(huì)用加減法解二元一次方程組.這也是一種全新的知識(shí),與在一元一次方程兩邊都加上、減去同一個(gè)數(shù)或同一個(gè)整式,或者都乘以、除以同一個(gè)非零數(shù)的情況是不一樣的,但運(yùn)用這項(xiàng)知識(shí)(這里也表現(xiàn)為一種方法),有時(shí)可以簡(jiǎn)捷地求出二元一次方程組的解,因此學(xué)生同樣會(huì)表現(xiàn)出一種極大的興趣.必須充分利用學(xué)生學(xué)會(huì)這種方法的積極性.加減(消元)法是解二元一次方程組的基本方法之一,因此要讓學(xué)生學(xué)會(huì),并能靈活運(yùn)用.這種方法同樣是解三元一次方程組和某些二元二次方程組的基本方法,在教學(xué)中必須引起足夠重視.

難點(diǎn):靈活運(yùn)用加減法的技巧,以便將方程變形為比較簡(jiǎn)單和計(jì)算比較簡(jiǎn)便,這也要通過一定數(shù)量的練習(xí)來解決.

2.教法建議

(1)本節(jié)是通過一個(gè)引例,介紹了加減法解方程組的基本思想和解題過程.教學(xué)時(shí),要引導(dǎo)學(xué)生觀察這個(gè)方程組中未知數(shù)系數(shù)的特點(diǎn).通過觀察讓學(xué)生說出,在兩個(gè)方程中y的系數(shù)互為相反數(shù)或在兩個(gè)方程中x的系數(shù)相等,讓學(xué)生自己動(dòng)腦想一想,怎么消元比較簡(jiǎn)便,然后引出加減消元法.

(2)講完加減法后,課本通過三個(gè)例題加以鞏固,這三個(gè)例題是由淺入深的,講解時(shí)也要先讓學(xué)生觀察每個(gè)方程組未知數(shù)系數(shù)的特點(diǎn),然后讓學(xué)生說出每個(gè)方程組的解法,例題1老師自己板書,剩下的兩個(gè)例題讓學(xué)生上黑板板書,然后老師點(diǎn)評(píng).

(3)講解完本節(jié)后,教師應(yīng)引導(dǎo)學(xué)生比較代入法與加減法這兩種方法,這兩種方法雖有不同,但實(shí)質(zhì)都是消元,即通過消去一個(gè)未知數(shù),把“二元”轉(zhuǎn)化為“一元”.也就是說:

這時(shí)學(xué)生對(duì)解題方法比較熟悉,但還沒有上升到理論的高度,這時(shí)教師應(yīng)及時(shí)點(diǎn)撥、滲透化歸轉(zhuǎn)化的思想,并指出這是具有普遍意義的分析問題、解決問題的思想方法.?

教學(xué)設(shè)計(jì)示例

(第一課時(shí))

一、素質(zhì)教育目標(biāo)

(一)知識(shí)教學(xué)點(diǎn)

二元一次方程課件 篇10

【教學(xué)目標(biāo)】

【知識(shí)目標(biāo)】

了解二元一次方程、二元一次方程組及其解等有關(guān)概念,并會(huì)判斷一組數(shù)是不是某個(gè)二元一次方程組的解。

【能力目標(biāo)】

通過討論和練習(xí),進(jìn)一步培養(yǎng)學(xué)生的觀察、比較、分析的能力。

【情感目標(biāo)】

通過對(duì)實(shí)際問題的分析,使學(xué)生進(jìn)一步體會(huì)方程是刻畫現(xiàn)實(shí)世界的有效數(shù)學(xué)模型,培養(yǎng)學(xué)生良好的數(shù)學(xué)應(yīng)用意識(shí)。

【重點(diǎn)】

二元一次方程組的含義

【難點(diǎn)】

判斷一組數(shù)是不是某個(gè)二元一次方程組的解,培養(yǎng)學(xué)生良好的數(shù)學(xué)應(yīng)用意識(shí)。

【教學(xué)過程】

一、引入、實(shí)物投影

1、師:在一望無際呼倫貝爾大草原上,一頭老牛和一匹小馬馱著包裹吃力地行走著,老牛喘著氣吃力地說:“累死我了”,小馬說:“你還累,這么大的個(gè),才比我多馱2個(gè)”老牛氣不過地說:“哼,我從你背上拿來一個(gè),我的包裹就是你的2倍!”,小馬天真而不信地說:“真的?!”同學(xué)們,你們能否用數(shù)學(xué)知識(shí)幫助小馬解決問題呢?

2、請(qǐng)每個(gè)學(xué)習(xí)小組討論(討論2分鐘,然后發(fā)言)

這個(gè)問題由于涉及到老牛和小馬的馱包裹的兩個(gè)未知數(shù),我們?cè)O(shè)老牛馱x個(gè)包裹,小馬馱y個(gè)包裹,老牛的包裹數(shù)比小馬多2個(gè),由此得方程x-y=2,若老牛從小馬背上拿來1個(gè)包裹,這時(shí)老牛的包裹是小馬的2倍,得方程:x+1=2(y-1)

師:同學(xué)們能用方程的方法來發(fā)現(xiàn)、解決問題這很好,上面所列方程有幾個(gè)未知數(shù)?含未知數(shù)的項(xiàng)的次數(shù)是多少?(含有兩個(gè)未知數(shù),并且所含未知數(shù)項(xiàng)的次數(shù)是1)

師:含有兩個(gè)未知數(shù),并且含未知數(shù)項(xiàng)的次數(shù)都是1的方程叫做二元一次方程

注意:這個(gè)定義有兩個(gè)地方要注意①、含有兩個(gè)未知數(shù),②、含未知數(shù)的次數(shù)是一次

練習(xí)(投影)

下列方程有哪些是二元一次方程

+2y=1xy+x=13x-=5x2-2=3x

xy=12x(y+1)=c2x-y=1x+y=0

二、議一議、

師:上面的方程中x-y=2,x+1=2(y-1)的x含義相同嗎?y呢?

師:由于x、y的含義分別相同,因而必同時(shí)滿足x-y=2和x+1=2(y-1),我們把這兩個(gè)方程用大括號(hào)聯(lián)立起來,寫成

x-y=2

x+1=2(y-1)

像這樣含有兩個(gè)未知數(shù)的兩個(gè)一次方程所組成的一組方程,叫做二元一次方程組。

如:2x+3y=35x+3y=8

x-3y=0x+y=8

三、做一做、

1、x=6,y=2適合方程x+y=8嗎?x=5,y=3呢?x=4,y=4呢?你還能找到其他x,y值適合x+y=8方程嗎?

2、X=5,y=3適合方程5x+3y=34嗎?x=2,y=8呢?

你能找到一組值x,y同時(shí)適合方程x+y=8和5x+3y=34嗎?

x=6,y=2是方程x+y=8的一個(gè)解,記作x=6同樣,x=5

y=2y=3

也是方程x+y=8的一個(gè)解,同時(shí)x=5又是方程5x+3y=34的一個(gè)解,

y=3

四、隨堂練習(xí)(P103)

五、小結(jié):

1、含有兩未知數(shù),并且含有未知數(shù)的項(xiàng)的次數(shù)是一次的整式方程叫做二元一次方程。

2、二元一次方程的解是一個(gè)互相關(guān)聯(lián)的兩個(gè)數(shù)值,它有無數(shù)個(gè)解。

3、含有兩個(gè)未知數(shù)的兩個(gè)二元一次方程組成的一組方程,叫做二元一次方程組,它的解是兩個(gè)方程的公共解,是一組確定的值。

二元一次方程課件 篇11

(第1課時(shí))

【學(xué)習(xí)目標(biāo)】

1.知道用方程組解決實(shí)際問題的一般步驟.

2.會(huì)找出簡(jiǎn)單的實(shí)際問題中的數(shù)量關(guān)系,列出方程組,得出問題的解答.

【重點(diǎn)難點(diǎn)】

重點(diǎn) :會(huì)用列方程組的方法解決實(shí)際問題.

難點(diǎn):會(huì)找出簡(jiǎn)單的實(shí)際問題中的數(shù)量關(guān)系.

(第2課時(shí))

【學(xué)習(xí)目標(biāo)】

1.體會(huì)一題多解,學(xué)習(xí)從多種角度考慮問題.

2.讀懂并找出簡(jiǎn)單的實(shí)際問題中的數(shù)量關(guān)系,列出方程組,得出問題的解答.

【重點(diǎn)難點(diǎn)】

重點(diǎn):會(huì)從多種角度考慮用列方程組的方法解決實(shí)際問題.

難點(diǎn):會(huì)找出簡(jiǎn)單的實(shí)際問題中的數(shù)量關(guān)系.

【學(xué)前準(zhǔn)備】

1.小麥、玉米兩種作物的單位面積產(chǎn)量的比是1:1.5,你能說明它的含義嗎?(可以舉例說明)

2.“甲、乙兩種作物的總產(chǎn)量的比是3 : 4”是什么意思?

3.總產(chǎn)量與哪些量有關(guān)?

4. 閱讀課本106頁探究2, 按題的要求你能有幾種 方法劃分這塊土地,請(qǐng)你試著畫出草圖并思考:本題中有哪些等量關(guān)系?

(第3課時(shí))

【學(xué)習(xí)目標(biāo)】

1.體會(huì)方程組是解決含有多個(gè)未知數(shù)問題的重要工具.

2.讀懂并能找出實(shí) 際問題中的各種形式表達(dá)的數(shù)量關(guān)系,列出方程組,得出問題的解答.

【重點(diǎn)難點(diǎn)】

重點(diǎn):用列方程組的方法解決實(shí)際問題.

難點(diǎn):會(huì)找出簡(jiǎn)單的實(shí)際問題中的數(shù)量關(guān)系.

《8.3再探實(shí)際問題與二元一次方程組》課堂練習(xí)題

1.(懷化中考)小明從今年1月初起刻苦練習(xí)跳遠(yuǎn),每個(gè)月的跳遠(yuǎn)成績(jī)都比上一個(gè)月有所增加,而且增加的距離相同,2月份、5月份他的跳遠(yuǎn)成績(jī)分別是4.1 m,4.7 m,則小明1月份的跳遠(yuǎn)成績(jī)?yōu)?.9m,每個(gè)月增加的距離為0.2m.

知識(shí)點(diǎn)2 利用二元一次方程組的解做決策

2.(婁底中考)假如婁底市的出租車是這樣收費(fèi)的:起步價(jià)所包含的路程為0~1.5千米,超過1.5千米的部分按每千米另收費(fèi).

小劉說:“我乘出租車從市政府到婁底汽車站走了4.5千米,付車費(fèi)10.5元.”

小李說:“我乘出租車從市政府到婁底火車站走了6.5千米,付車費(fèi)14.5元.”

問:(1)出租車的起步價(jià)是多少元?超過1.5千米后每千米收費(fèi)多少元?

(2)小張乘出租車從市政府到婁底南站(高鐵站)走了5.5千米,應(yīng)付費(fèi)多少元?

3.為建設(shè)資源節(jié)約型、環(huán)境友好型社會(huì),克服因干旱而造成的電力緊張困難,切實(shí)做好節(jié)能減排工作.某地決定對(duì)居民家庭用電實(shí)行“階梯電價(jià)”,電力公司規(guī)定:居民家庭每月用電量在80千瓦時(shí)以下(含80千瓦時(shí),1千瓦時(shí)俗稱1度)時(shí),實(shí)行“基本電價(jià)”;當(dāng)居民家庭月用電量超過80千瓦時(shí)時(shí),超過部分實(shí)行“提高電價(jià)”.

(1)小張家2016年4月份用電100千瓦時(shí),上繳電費(fèi)68元;5月份用電120千瓦時(shí),上繳電費(fèi)88元.求“基本電價(jià)”和“提高電價(jià)”分別為多少元/千瓦時(shí)?

(2)若6月份小張家預(yù)計(jì)用電130千瓦時(shí),請(qǐng)預(yù)算小張家6月份應(yīng)上繳的電費(fèi).

《8.3實(shí)際問題與二元一次方程組》同步練習(xí)題

14.某工廠接受了20天內(nèi)生產(chǎn)1200臺(tái)GH型電子產(chǎn)品的總?cè)蝿?wù).已知每臺(tái)GH型產(chǎn)品由4個(gè)G型裝置和3個(gè)H型裝置配套組成.工廠現(xiàn)有80名工人,每個(gè)工人每天能加工6個(gè)G型裝置或3個(gè)H型裝置.工廠將所有工人分成兩組同時(shí)開始加工,每組分別加工一種裝置,并要求每天加工的G、H型裝置數(shù)量正好全部配套組成GH型產(chǎn)品.

(1)按照這樣的生產(chǎn)方式,工廠每天能配套組成多少套GH型電子產(chǎn)品?請(qǐng)列出二元一次方程組解答此問題.

(2)為了在規(guī)定期限內(nèi)完成總?cè)蝿?wù),工廠決定補(bǔ)充一些新工人,這些新工人只能獨(dú)立進(jìn)行G型裝置的加工,且每人每天只能加工4個(gè)G型裝置.1.設(shè)原來每天安排x名工人生產(chǎn)G型裝置,后來補(bǔ)充m名新工人,求x的值(用含m的代數(shù)式表示)2.請(qǐng)問至少需要補(bǔ)充多少名新工人才能在規(guī)定期內(nèi)完成總?cè)蝿?wù)?

二元一次方程課件 篇12

教學(xué)目標(biāo)

1.會(huì)列出二元一次方程組解簡(jiǎn)單應(yīng)用題,并能檢驗(yàn)結(jié)果的合理性。

2.知道二元一次方程組是反映現(xiàn)實(shí)世界量之間相等關(guān)系的一種有效的數(shù)學(xué)模型20xx年-20xx學(xué)年七年級(jí)數(shù)學(xué)下冊(cè)全冊(cè)教案(人教版)20xx年-20xx學(xué)年七年級(jí)數(shù)學(xué)下冊(cè)全冊(cè)教案(人教版)。

3.引導(dǎo)學(xué)生關(guān)注身邊的數(shù)學(xué),滲透將來未知轉(zhuǎn)達(dá)化為已知的辯證思想。

教學(xué)重點(diǎn)

1.列二元一次方程組解簡(jiǎn)單問題。

2.徹底理解題意

教學(xué)難點(diǎn)

找等量關(guān)系列二元一次方程組。

教學(xué)過程

一、情境引入。

小剛與小玲一起在水果店買水果,小剛買了3千克蘋果,2千克梨,共花了18.8元。小玲買了2千克蘋果,3千克梨,共花了18.2元?;丶衣飞?,他們遇上了好朋友小軍,小軍問蘋果、梨各多少錢1千克?他們不講,只講各自買的幾千克水果和總共的錢,要小軍猜。聰明的同學(xué)們,小軍能猜出來嗎?

二、建立模型。

1.怎樣設(shè)未知數(shù)?

2.找本題等量關(guān)系?從哪句話中找到的?

3.列方程組。

4.解方程組。

5.檢驗(yàn)寫答案。

思考:怎樣用一元一次方程求解?

比較用一元一次方程求解,用二元一次方程組求解誰更容易?

三、練習(xí)。

1.根據(jù)問題建立二元一次方程組。

(1)甲、乙兩數(shù)和是40差是6,求這兩數(shù)。

(2)80班共有64名學(xué)生,其中男生比女生多8人,求這個(gè)班男生人數(shù),女生人數(shù)。

(3)已知關(guān)于求x、y的方程,

是二元一次方程。求a、b的值。

2.P38練習(xí)第1題。

四、小結(jié)。

小組討論:列二元一次方程組解應(yīng)用題有哪些基本步驟?

五、作業(yè)。

P42。習(xí)題2.3A組第1題。

后記:

2.3二元一次方程組的應(yīng)用(2)

相關(guān)推薦

  • 一元一次不等式課件 每位老師不可或缺的課件是教案課件,因此教案課件可能就需要每天都去寫。教案是課程開展的向?qū)?。今天小編為大家?guī)砹艘黄P(guān)于“一元一次不等式課件”的相關(guān)文章,如果你希望長(zhǎng)期關(guān)注我的分享請(qǐng)不要忘記將它收藏起來!...
    2024-04-06 閱讀全文
  • 一元一次不等式課件教案9篇 俗話說,凡事預(yù)則立,不預(yù)則廢。作為幼兒園老師的我們的課堂上能更好的發(fā)揮教學(xué)效果,最好的解決辦法就是準(zhǔn)備好教案來加強(qiáng)學(xué)習(xí)效率,。教案有助于老師在之后的上課教學(xué)中井然有序的進(jìn)行。那么如何寫好我們的幼兒園教案呢?經(jīng)過整理,小編為你呈上一元一次不等式課件教案9篇,僅供參考,歡迎大家閱讀本文。教學(xué)目標(biāo)1.能夠...
    2023-04-30 閱讀全文
  • 一元二次不等式課件教案合集(9篇) 教師會(huì)將課本中的主要教學(xué)內(nèi)容整理到教案課件中,因此,教師需要精心計(jì)劃每份教案課件的重點(diǎn)和難點(diǎn)。詳實(shí)的教案能夠幫助教師記錄學(xué)生的學(xué)習(xí)進(jìn)度。如果想要寫一份教案課件,需要具備哪些步驟呢?欄目小編推薦閱讀一元二次不等式課件教案,希望能對(duì)你有所幫助!...
    2023-06-08 閱讀全文
  • 一元一次不等式組課件優(yōu)選13篇 幼兒教師教育網(wǎng)今天為大家介紹的是一篇有關(guān)“一元一次不等式組課件”的文章。對(duì)于新入職的老師而言,教案課件還是很重要的,因此教案課件不是隨便寫寫就可以的。只有高質(zhì)量的教案才能帶來好的教學(xué)效果。希望本文能夠?yàn)槟峁┮恍?shí)用建議!...
    2024-06-14 閱讀全文
  • 2023一元一次不等式課件(熱門五篇) 對(duì)于對(duì)“一元一次不等式課件”感興趣的讀者來說,本篇幼兒教師教育網(wǎng)編輯精選的文章絕對(duì)是必讀之選。熱情歡迎您光臨本網(wǎng)站,希望您在這里度過愉快的時(shí)光。根據(jù)教學(xué)要求,老師在上課前需要準(zhǔn)備好教案和課件,教案和課件的內(nèi)容是老師自己去完善的。學(xué)生的反饋可以幫助教師及時(shí)評(píng)估自己的教學(xué)效果。...
    2023-12-06 閱讀全文

每位老師不可或缺的課件是教案課件,因此教案課件可能就需要每天都去寫。教案是課程開展的向?qū)?。今天小編為大家?guī)砹艘黄P(guān)于“一元一次不等式課件”的相關(guān)文章,如果你希望長(zhǎng)期關(guān)注我的分享請(qǐng)不要忘記將它收藏起來!...

2024-04-06 閱讀全文

俗話說,凡事預(yù)則立,不預(yù)則廢。作為幼兒園老師的我們的課堂上能更好的發(fā)揮教學(xué)效果,最好的解決辦法就是準(zhǔn)備好教案來加強(qiáng)學(xué)習(xí)效率,。教案有助于老師在之后的上課教學(xué)中井然有序的進(jìn)行。那么如何寫好我們的幼兒園教案呢?經(jīng)過整理,小編為你呈上一元一次不等式課件教案9篇,僅供參考,歡迎大家閱讀本文。教學(xué)目標(biāo)1.能夠...

2023-04-30 閱讀全文

教師會(huì)將課本中的主要教學(xué)內(nèi)容整理到教案課件中,因此,教師需要精心計(jì)劃每份教案課件的重點(diǎn)和難點(diǎn)。詳實(shí)的教案能夠幫助教師記錄學(xué)生的學(xué)習(xí)進(jìn)度。如果想要寫一份教案課件,需要具備哪些步驟呢?欄目小編推薦閱讀一元二次不等式課件教案,希望能對(duì)你有所幫助!...

2023-06-08 閱讀全文

幼兒教師教育網(wǎng)今天為大家介紹的是一篇有關(guān)“一元一次不等式組課件”的文章。對(duì)于新入職的老師而言,教案課件還是很重要的,因此教案課件不是隨便寫寫就可以的。只有高質(zhì)量的教案才能帶來好的教學(xué)效果。希望本文能夠?yàn)槟峁┮恍?shí)用建議!...

2024-06-14 閱讀全文

對(duì)于對(duì)“一元一次不等式課件”感興趣的讀者來說,本篇幼兒教師教育網(wǎng)編輯精選的文章絕對(duì)是必讀之選。熱情歡迎您光臨本網(wǎng)站,希望您在這里度過愉快的時(shí)光。根據(jù)教學(xué)要求,老師在上課前需要準(zhǔn)備好教案和課件,教案和課件的內(nèi)容是老師自己去完善的。學(xué)生的反饋可以幫助教師及時(shí)評(píng)估自己的教學(xué)效果。...

2023-12-06 閱讀全文