一元二次不等式課件教案
發(fā)布時間:2023-06-08 一元不等式課件教案一元二次不等式課件教案合集(9篇)。
教師會將課本中的主要教學(xué)內(nèi)容整理到教案課件中,因此,教師需要精心計劃每份教案課件的重點和難點。詳實的教案能夠幫助教師記錄學(xué)生的學(xué)習(xí)進度。如果想要寫一份教案課件,需要具備哪些步驟呢?欄目小編推薦閱讀一元二次不等式課件教案,希望能對你有所幫助!
一元二次不等式課件教案 篇1
教學(xué)內(nèi)容
3.2一元二次不等式及其解法
三維目標
一、知識與技能
1.鞏固一元二次不等式的解法和解法與二次函數(shù)的關(guān)系、一元二次不等式解法的步驟、解法與二次函數(shù)的關(guān)系兩者之間的區(qū)別與聯(lián)系;
2.能熟練地將分式不等式轉(zhuǎn)化為整式不等式(組),正確地求出分式不等式的解集;
3.會用列表法,進一步用數(shù)軸標根法求解分式及高次不等式;
4.會利用一元二次不等式,對給定的與一元二次不等式有關(guān)的問題,嘗試用一元二次不等式解法與二次函數(shù)的有關(guān)知識解題.
二、過程與方法
1.采用探究法,按照思考、交流、實驗、觀察、分析得出結(jié)論的方法進行啟發(fā)式教學(xué);
2.發(fā)揮學(xué)生的主體作用,作好探究性教學(xué);
3.理論聯(lián)系實際,激發(fā)學(xué)生的學(xué)習(xí)積極性.
三、情感態(tài)度與價值觀
1.進一步提高學(xué)生的運算能力和思維能力;
2.培養(yǎng)學(xué)生分析問題和解決問題的能力;
3.強化學(xué)生應(yīng)用轉(zhuǎn)化的數(shù)學(xué)思想和分類討論的數(shù)學(xué)思想.
教學(xué)重點
1.從實際問題中抽象出一元二次不等式模型.
2.圍繞一元二次不等式的解法展開,突出體現(xiàn)數(shù)形結(jié)合的思想.
教學(xué)難點
1.深入理解二次函數(shù)、一元二次方程與一元二次不等式的關(guān)系.
教學(xué)方法
啟發(fā)、探究式教學(xué)
教學(xué)過程
復(fù)習(xí)引入
師:上一節(jié)課我們通過具體的問題情景,體會到現(xiàn)實世界存在大量的不等量關(guān)系,并且研究了用不等式或不等式組來表示實際問題中的不等關(guān)系。回顧下等比數(shù)列的性質(zhì)。
生:略
師:某同學(xué)要把自己的計算機接入因特網(wǎng),現(xiàn)有兩種ISP公司可供選擇,公司A每小時收費1.5元(不足1小時按1小時計算),公司B的收費原則是第1小時內(nèi)(含恰好1小時,下同)收費1.7元,第2小時內(nèi)收費1.6元以后每小時減少0.1元(若用戶一次上網(wǎng)時間超過17小時,按17小時計算)那么,一次上網(wǎng)在多少時間以內(nèi)能夠保證選擇公司A的上網(wǎng)費用小于等于選擇公司B所需費用。
學(xué)生自己討論
點題,板書課題
新課學(xué)習(xí)
1.一元二次不等式
只有一個未知數(shù),并且未知數(shù)的最高次數(shù)是2的不等式。
2.三個“二次”之間的關(guān)系及一元二次不等式的解法
師在前面我們已經(jīng)學(xué)習(xí)過一元二次不等的解法,發(fā)現(xiàn)一元二次方程及對應(yīng)的二次函數(shù)有關(guān)系,那么同學(xué)們課本打開到p77填表格。
生略
師學(xué)生討論歸納出解一元二次不等式的步驟
一看:看二次項系數(shù)的正負,并且變形為
二算:,判斷正負,有根則求并畫出對應(yīng)的函數(shù)圖象
三寫:寫出原不等式的解集
練習(xí)反饋
[例題剖析]
例1解下列不等式
(1)(2)
(3)(4)
(5)(6)
課本80頁練習(xí)
例2已知不等式的解集為試解不等式
變式:
已知
課堂
小結(jié)
1.三個“二次的關(guān)系”
2.解二次不等式的步驟
作業(yè)布置
課本第80頁習(xí)題3.2A組第1.2.4題B組1
練習(xí)調(diào)配
設(shè)計42頁全做,43頁例1例2隨堂練習(xí)2.3,4,5測評1、3、4、5、6、7、8、
一元二次不等式課件教案 篇2
1.創(chuàng)設(shè)情景——引入新課。我們常說“興趣是最好的老師”,長期以來,學(xué)生對學(xué)習(xí)數(shù)學(xué)缺乏興趣,甚至失去信心,一個重要的原因,是老師在教學(xué)中不重視學(xué)生對學(xué)習(xí)的情感體驗,教學(xué)應(yīng)該充分考慮學(xué)生的情感和需要,想方設(shè)法讓學(xué)生在學(xué)習(xí)中樹立信心,感受學(xué)習(xí)的樂趣。根據(jù)教材內(nèi)容的安排,我以學(xué)生熟悉的畫一次函數(shù)圖象、求一次方程和一次不等式的解為背景知識切入,設(shè)置一個練習(xí)題組,一方面讓學(xué)生總結(jié)復(fù)習(xí)已有知識,為后面學(xué)習(xí)二次不等式的解法打下基礎(chǔ),做好鋪墊,另一方面,使學(xué)生在自己熟悉的問題中首先獲得解題成功的快樂體驗,然后以20xx年江蘇省的一道高考試題為引子,引入本節(jié)課的新授內(nèi)容。對于本題,引導(dǎo)學(xué)生,利用上面解練習(xí)題組1的方法,畫出二次函數(shù)圖象來解答。二次函數(shù)是初中數(shù)學(xué)的重要內(nèi)容,本題又給出了函數(shù)圖象上許多點,相信學(xué)生畫出圖象應(yīng)該不成問題,只要教師適當點撥,學(xué)生不難得到正確答案。以高考試題為背景引入新課,可以提高學(xué)生興趣,抓住學(xué)生眼球,吸引學(xué)生注意力,還可以讓學(xué)生實實在在感受到,高考題就在我們的課本中,就在我們平常的練習(xí)中。
2.探究交流——發(fā)現(xiàn)規(guī)律。從特殊到一般是我們發(fā)現(xiàn)問題、尋求規(guī)律、揭示問題本質(zhì)最常用的方法之一。我把課本例題1、2編為練習(xí)題組(一),交由學(xué)生用上面解高考題的方法——圖象法去解,學(xué)生由于熟知二次函數(shù)圖象,求解應(yīng)該不會有太大的問題。在這個過程中,教師要啟發(fā)引導(dǎo)學(xué)生注意對比兩題的異同,組織引導(dǎo)學(xué)生展開交流討論,探討第(2)題能不能先把二次項系數(shù)化正以后再構(gòu)造函數(shù)畫圖求解。然后達成共識,如果二次項系數(shù)為負數(shù)時,先做等價轉(zhuǎn)化,把二次項系數(shù)化為正數(shù)再解,課本19頁例3、例4作為題組(二),繼續(xù)讓學(xué)生用上面的圖象法,由學(xué)生自己求解,這時我及時提示學(xué)生注意這兩題與題組(一)中兩題的不同(例1、例2對應(yīng)方程都有兩個不等實根,例3對應(yīng)方程有兩相等實根,例4對應(yīng)方程無實根)。兩個題組的練習(xí)之后,可以尋求解二次不等式的一般規(guī)律。
3.啟發(fā)引導(dǎo)——形成結(jié)論。前面兩個題組的四個小題,基本涵蓋了一般一元二次不等式解的各種情況,進一步啟發(fā)引導(dǎo)學(xué)生將特殊、具體題目的結(jié)論做一般化總結(jié),與學(xué)生一起就△>0,△<0,△=0的三種情況,總結(jié)二次不等式ax2+bx+c>0或ax2+bx+c<0(a>0)的解的情況應(yīng)該水到渠成。至此,學(xué)生可以感受到,解二次不等式只須①將二次項系數(shù)化為正數(shù),②求解二次方程ax2+bx+c=0的.根。③根據(jù)①后的二次不等式的符號寫出解集即可,必要時也可以結(jié)合圖象寫解集。這樣我們就得到了二次不等式的另外一種解法(可稱為“三步曲”法)。
4.訓(xùn)練小結(jié)——鞏固深化。為了鞏固和加深二次不等式的兩種解法,接下來及時組織學(xué)生進行課堂練習(xí),完成課本21頁練習(xí)1—4題。本環(huán)節(jié)請不同層次的學(xué)生在黑板上書寫解題過程,之后師生共同糾正問題,規(guī)范解題過程的書寫。
5.延伸拓寬——提高能力。課堂教學(xué)既要面向全體學(xué)生,又應(yīng)關(guān)注學(xué)生的個體差異。體現(xiàn)分類推進,分層教學(xué)的原則。為此,我又設(shè)計了一個提高練習(xí)題組,共有三道備選題目,以供程度較好學(xué)有余力的學(xué)生能夠更好的展示自己的解題能力,取得更進一步的提高。
一元二次不等式課件教案 篇3
各位評委、各位老師:
大家好!
我叫,來自。今天我說課的課題是《一元二次不等式的解法》(第一課時)。下面我將圍繞本節(jié)課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個問題,從教材內(nèi)容分析、教法學(xué)法分析、教學(xué)過程分析和課堂意外預(yù)案等幾個方面逐一加以分析和說明。
一、教材內(nèi)容分析:
1、本節(jié)課內(nèi)容在整個教材中的地位和作用。
概括地講,本節(jié)課內(nèi)容的地位體現(xiàn)在它的基礎(chǔ)性,作用體現(xiàn)在它的工具性。一元二次不等式的解法是初中一元一次不等式或一元一次不等式組的延續(xù)和深化,對已學(xué)習(xí)過的集合知識的鞏固和運用具有重要的作用,也與后面的函數(shù)、數(shù)列、三角函數(shù)、線形規(guī)劃、直線與圓錐曲線以及導(dǎo)數(shù)等內(nèi)容密切相關(guān)。許多問題的解決都會借助一元二次不等式的解法。因此,一元二次不等式的解法在整個高中數(shù)學(xué)教學(xué)中具有很強的基礎(chǔ)性,體現(xiàn)出很大的工具作用。
2、教學(xué)目標定位。
根據(jù)教學(xué)大綱要求、高考考試大綱說明、新課程標準精神、高一學(xué)生已有的知識儲備狀況和學(xué)生心理認知特征,我確定了四個層面的教學(xué)目標。第一層面是面向全體學(xué)生的知識目標:熟練掌握一元二次不等式的兩種解法,正確理解一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系。第二層面是能力目標,培養(yǎng)學(xué)生運用數(shù)形結(jié)合與等價轉(zhuǎn)化等數(shù)學(xué)思想方法解決問題的能力,提高運算和作圖能力。第三層面是德育目標,通過對解不等式過程中等與不等對立統(tǒng)一關(guān)系的認識,向?qū)W生逐步滲透辨證唯物主義思想。第四層面是情感目標,在教師的啟發(fā)引導(dǎo)下,學(xué)生自主探究,交流討論,培養(yǎng)學(xué)生的合作意識和創(chuàng)新精神。
3、教學(xué)重點、難點確定。
本節(jié)課是在復(fù)習(xí)了一次不等式的解法之后,利用二次函數(shù)的圖象研究一元二次不等式的解法。只要學(xué)生能夠理解一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系,并利用其關(guān)系解不等式即可。因此,我確定本節(jié)課的教學(xué)重點為一元二次不等式的解法,關(guān)鍵是一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系。
二、教法學(xué)法分析:
數(shù)學(xué)是發(fā)展學(xué)生思維、培養(yǎng)學(xué)生良好意志品質(zhì)和美好情感的重要學(xué)科,在教學(xué)中,我們不僅要使學(xué)生獲得知識、提高解題能力,還要讓學(xué)生在教師的啟發(fā)引導(dǎo)下學(xué)會學(xué)習(xí)、樂于學(xué)習(xí),感受數(shù)學(xué)學(xué)科的人文思想,使學(xué)生在學(xué)習(xí)中培養(yǎng)堅強的意志品質(zhì)、形成良好的道德情感。為了更好地體現(xiàn)課堂教學(xué)中“教師為主導(dǎo),學(xué)生為主體”的教學(xué)關(guān)系和“以人為本,以學(xué)定教”的教學(xué)理念,在本節(jié)課的教學(xué)過程中,我將緊緊圍繞教師組織——啟發(fā)引導(dǎo),學(xué)生探究——交流發(fā)現(xiàn),組織開展教學(xué)活動。我設(shè)計了①創(chuàng)設(shè)情景——引入新課,②交流探究——發(fā)現(xiàn)規(guī)律,③啟發(fā)引導(dǎo)——形成結(jié)論,④練習(xí)小結(jié)——深化鞏固,⑤思維拓展——提高能力,五個環(huán)環(huán)相扣、層層深入的教學(xué)環(huán)節(jié),在教學(xué)中注意關(guān)注整個過程和全體學(xué)生,充分調(diào)動學(xué)生積極參與教學(xué)過程的每個環(huán)節(jié)。
一元二次不等式課件教案 篇4
新課程理念下的教學(xué)更多的關(guān)注學(xué)生自主探究、關(guān)注學(xué)生的個性發(fā)展,鼓勵學(xué)生勇于提出問題,培養(yǎng)學(xué)生思維的批評性。在課堂上學(xué)生往往會提出讓老師感到“意外”的問題,我在平時的教學(xué)中重視對“課堂意外預(yù)案”的探索和思考,備課時盡量設(shè)想課堂中可能會出現(xiàn)的各種情況,做到有備無患,以免在課堂中學(xué)生提出讓自己出乎意料的問題,使自己陷入被動尷尬境地。結(jié)合以往經(jīng)驗,在本節(jié)課,我提出兩個“意外預(yù)案”。
1、學(xué)生在做課本練習(xí)1(x+2)(x-3)>0時,可能會問到轉(zhuǎn)化為不等式組{或{求解對不對。學(xué)生提出的問題,想法非常好,應(yīng)給予肯定和鼓勵,這與下節(jié)簡單分式不等式和高次不等式的解法有關(guān),是解不等式的另一種解法——等價轉(zhuǎn)化法,不在本節(jié)課之列。
2、根據(jù)以往的經(jīng)驗,在解(x-1)(x+2)>1一類的不等式的時候,由于受方程(x+1)(x+2)=0可轉(zhuǎn)化為x-1=0或x+2=0求解的影響,有可能會出現(xiàn)將不等式轉(zhuǎn)化為不等式組{來求解的錯誤做法,教師要關(guān)注學(xué)生,及時發(fā)現(xiàn)問題并給予糾正,指出上面的轉(zhuǎn)化不是等價轉(zhuǎn)化。
以上是我對本節(jié)課的一些粗淺的認識和構(gòu)想,如有不妥之處,懇請各位專家、各位同仁批評指正。謝謝大家!
一元二次不等式課件教案 篇5
教學(xué)目標:
(1)透徹理解、掌握一元二次方程、一元二次不等式與二次函數(shù)的內(nèi)在聯(lián)系,會解一元二次不等式;
(2)培養(yǎng)學(xué)生數(shù)學(xué)的數(shù)形結(jié)合思想和轉(zhuǎn)化能力,學(xué)會主動探求問題和尋找解決問題的方法。
教學(xué)重點:一元二次不等式的解法(圖象法)
教學(xué)難點:
(1)一元二次方程、一元二次不等式與二次函數(shù)的關(guān)系;
(2)數(shù)形結(jié)合思想的滲透
教學(xué)方法與教學(xué)手段:
嘗試探索教學(xué)法、歸納概括。
教學(xué)過程:
一、復(fù)習(xí)引入
1.復(fù)習(xí)一元一次方程、一元一次不等式與一次函數(shù)的關(guān)系
[師]前面我們已經(jīng)學(xué)習(xí)了絕對值不等式的解法,今天開始研究一元二次不等式的解法。(板書課題)記得在初中我們已學(xué)習(xí)了一元一次不等式的解法,還記得是用什么方法解的'嗎?
學(xué)生可能回答是代數(shù)方法,也可能說是利用直線圖象。
[師]初中學(xué)習(xí)了一次函數(shù)的圖象,使得我們對一元一次不等式的解法有了更深入的了解。首先請同學(xué)們畫出 y=2x-7
[師]請同學(xué)們畫出圖象,并回答問題。
一次函數(shù)y=2x-7的圖象如下:
填表:
當x 時,y = 0,即 2x-7 0;
當x 時,y
當x 時,y > 0,即 2x-7 0;
注:(1)引導(dǎo)學(xué)生由圖象得出結(jié)論(數(shù)形結(jié)合)
(2)由學(xué)生填空(一邊演示y0部分圖象)
從上例的特殊情形,你能得出什么結(jié)論?
注:教師引導(dǎo)下學(xué)生發(fā)現(xiàn)其結(jié)論,并由學(xué)生嘗試敘述:一元一次方程ax+b=0的根實質(zhì)上就是直線y=ax+b與x軸交點的橫坐標;一元一次不等式ax+b>0(或ax+b
2.新課導(dǎo)入
[師]我們可以利用一次函數(shù)的圖象快速準確地求出一元一次不等式的解集,那能否也可以借助二次函數(shù)的圖象來解一元二次不等式呢?
二、講解新課
1、一元二次不等式解法的探索
[師] 你知道二次函數(shù)的草圖是怎樣畫出的嗎?(用"特殊點法"而非課本上的"列表描點法")你能回答以下問題嗎?二次函數(shù) y=x2-4x+3的圖象如下:
填表:方程x2-4x+3=0(即y=0)的解是
不等式x2-4x+3>0(即y>0)的解集是
不等式x2-4x+3
注:學(xué)生類比前面的知識,能根據(jù)二次函數(shù)的圖象確定與x軸的交點,確定對應(yīng)的一元二次方程的根,從而確定一元二次不等式的解集。(邊說邊畫y>0,y
[師]現(xiàn)在如果我變動這條拋物線,請大家觀察拋物線與x軸的交點有何變化?
注:引導(dǎo)學(xué)生發(fā)現(xiàn)一元二次方程的根有三種情況,其對應(yīng)的二次函數(shù)圖象與x軸的位置關(guān)系也有三種情況,是由 >0, =0,
2、講解例題
[師]接下來請同學(xué)們再來分析幾個具體例子
(板書)例:解下列各不等式
(1)2x2-3x-2>0;
(2) -3x2+6x>2;
(3)4x2-4x+1>0;
(4)-x2+2x-3>0.
注:跟學(xué)生共同詳細分析(1),強調(diào)解題規(guī)范性,其余(2)(3)(4)由學(xué)生完成,并小組討論。
解:(1)方程2x2-3x-2=0的兩根為x1=- 或 x2=2,(畫草圖,結(jié)合圖象)
所以原不等式的解集是{x| x2 }
四、課后作業(yè):書P21/習(xí)題1.5/1.3.5.6
五、教學(xué)設(shè)計說明:
1、本節(jié)課教學(xué)設(shè)計力圖體現(xiàn)以學(xué)生發(fā)展為本,遵循學(xué)生的認知規(guī)律,體現(xiàn)循序漸進的教學(xué)原則,通過對原有知識的復(fù)習(xí),引導(dǎo)學(xué)生類比探索新的知識,激發(fā)學(xué)生的求知欲望,調(diào)動學(xué)生的積極性。
2、本節(jié)課采用在教師引導(dǎo)下啟發(fā)學(xué)生探索發(fā)現(xiàn),體會解題過程中形結(jié)合思想方法,使之獲得內(nèi)心感受。
3、本節(jié)課的重點是利用圖象解一元二次不等式,讓學(xué)生明確一元二次方程、一元二次不等式與二次函數(shù)之間的聯(lián)系。在思維訓(xùn)練方面,注重從特殊到一般,從具體到抽象思維的培養(yǎng)。歸納總結(jié)可以訓(xùn)練學(xué)生的收斂思維,有助于完善學(xué)生的思維結(jié)構(gòu)。
4、本節(jié)課的例題及課堂練習(xí)是課本上的習(xí)題,其目的在于落實基礎(chǔ),提高運算能力。
一元二次不等式課件教案 篇6
高中數(shù)學(xué)《一元二次不等式的解法(2)》教案
一、教學(xué)目標
【知識與技能】
掌握求解一元二次不等式的簡單方法,能正確求解一元二次不等式的解集。
【過程與方法】
在探究一元二次不等式的解法的過程中,提升邏輯推理能力。
【情感、態(tài)度與價值觀】
感受數(shù)學(xué)知識的前后聯(lián)系,提升學(xué)習(xí)數(shù)學(xué)的熱情。
二、教學(xué)重難點
【重點】一元二次不等式的解法。
【難點】一元二次不等式的解法的探究過程。
三、教學(xué)過程
(一)導(dǎo)入新課
回顧一元二次不等式的一般形式,組織學(xué)生舉例一些簡單的一元二次不等式。
提問:如何求解?引出課題。
(二)講解新知
結(jié)合課前回顧的一元二次不等式的一般形式,對比之前所學(xué)內(nèi)容,引導(dǎo)學(xué)生發(fā)現(xiàn)其與一元二次方程和二次函數(shù)的共同特點。
一元二次不等式課件教案 篇7
解一元二次不等式化為標準型。判斷△的符號。若△<0,則不等式是在R上恒成立或恒不成立。
若△>0,則求出兩根,在數(shù)軸上標出,每個根上畫一條豎線,再從右到左相間標正負號,不等式大于0則取標正的范圍,小于0則取標負的范圍。
2.解簡單一元高次不等式
a.化為標準型。
b.將不等式分解成若干個因式的積。
c.求出各個根,在數(shù)軸上標出,每個根上畫一條豎線,再從右到左相間標正負號,不等式大于0則取標正的范圍,小于0則取標負的范圍。
3.解分式不等式的解
a.化為標準型。
b.可將分式化為整式,將整式分解成若干個因式的積。
c.求出各個根,在數(shù)軸上標出,每個根上畫一條豎線,再從右到左相間標正負號,不等式大于0則取標正的范圍,小于0則取標負的范圍。(如果不等式是非嚴格不等式,則要注意分式分母不等于0。)
4.解含參數(shù)的一元二次不等式
a.對二次項系數(shù)a的討論。
若二次項系數(shù)a中含有參數(shù),則須對a的符號進行分類討論。分為a>0,a=0,a<0。
b.對判別式△的討論
若判別式△中含有參數(shù),則須對△的符號進行分類討論。分為△>0,△=0,△<0。
c.對根大小的討論
若不等式對應(yīng)的方程的根x1、x2中含有參數(shù),則須對x1、x2的大小進行分類討論。分為x1>x2,x1=x2,x1<x2。
5.一元二次方程的根的分布問題
a.將方程化為標準型。(a的符號)
b.畫圖觀察,若有區(qū)間端點對應(yīng)的函數(shù)值小于0,則只須討論區(qū)間端點的函數(shù)值。
若沒有區(qū)間端點對應(yīng)的函數(shù)值小于0,則須討論區(qū)間端點的函數(shù)值、△、軸。
6.一元二次不等式的應(yīng)用
⑴在R上恒成立問題(恒不成立問題相反,在某區(qū)間恒成立可轉(zhuǎn)化為實根分布問題)
a.對二次項系數(shù)a的符號進行討論,分為a=0與a≠0。
b.a(chǎn)=0時,把a=0帶入,檢驗不等式是否成立,判斷a=0是否屬于不等式解集。
a≠0時,則轉(zhuǎn)化為二次函數(shù)圖像全在x軸上方或下方。
若f(x)>0,則要求a>0,△<0。
若f(x)<0,則要求a<0,△<0。
⑵特殊題型:已知一不等式的解集(含有字母),求另一不等式的解集(與原不等式系數(shù)大小相同,位置不同)。a.寫出原不等式對應(yīng)的方程,由韋達定理得出解集字母與方程系數(shù)間的關(guān)系。
b.寫出變換后不等式對應(yīng)的方程,由由韋達定理得出解集字母與方程系數(shù)間的關(guān)系。
c.將a中得到的關(guān)系變化后帶入b的關(guān)系中,得到變換后方程的兩根。
d.判斷兩根的大小,變換后不等式二次項的系數(shù),從而寫出所求解集。
一元二次不等式課件教案 篇8
展過程一元二次不等式教學(xué)設(shè)計
一、教學(xué)內(nèi)容分析:
1、教材地位和作用
本節(jié)課是數(shù)學(xué)(基礎(chǔ)模塊)上冊第二章第三節(jié)《一元二次不等式》。從內(nèi)容上看它是我們初中學(xué)過的一元一次不等式的延伸,同時它也與一元二次方程、二次函數(shù)之間聯(lián)系緊密,涉及的知識面較多。從思想層面看,本節(jié)課突出本現(xiàn)了數(shù)形結(jié)合思想。同時一元二次不等式是解決函數(shù)定義域、值域等問題的重要工具,因此本節(jié)課在整個中學(xué)數(shù)學(xué)中具有較重要的地位和作用。
2、教學(xué)目標
知識目標:正確理解一元二次不等式、一元二次方程、二次函數(shù)的關(guān)系。熟練掌握一元二次不等式的解法。
能力目標:培養(yǎng)數(shù)形結(jié)合思想、抽象思維能力和形象思維能力。
思想目標:在教學(xué)中滲透由具體到抽象,由特殊到一般,類比猜想、等價轉(zhuǎn)化的數(shù)學(xué)思想方法。
情感目標:通過具體情境,使學(xué)生體驗數(shù)學(xué)與實踐的緊密聯(lián)系,感受數(shù)學(xué)魅力,激發(fā)學(xué)生求知欲望。
3、重難點
重點:一元二次不等式的解法。
難點:一元二次方程,一元二次不等式與二次函數(shù)的關(guān)系。
二、學(xué)生情況分析:
我們的學(xué)生是在學(xué)習(xí)了一元一次不等式,一元一次方程、一元一次函數(shù),一元二次方程的基礎(chǔ)上學(xué)習(xí)一元二次不等式。但大都數(shù)學(xué)生的基礎(chǔ)都不是很好,解一元二次方程有一定的困難。
三、教學(xué)環(huán)境分析:教學(xué)環(huán)境應(yīng)包括和諧的師生關(guān)系、多媒體的合理應(yīng)用、良好的課堂組織、合理的問題情境。創(chuàng)設(shè)和諧的師生關(guān)系有利于提高學(xué)習(xí)效率,我們學(xué)校要建立和諧的師生關(guān)系是需要花很多心思的,特別是就業(yè)班的同學(xué),且要有一個相當長的適應(yīng)時間。我們學(xué)校的每位老師都有手提電腦,每間教室都有寬屏電子顯示器,老師都能熟練掌握多媒體設(shè)備的運用。運用多媒體教學(xué)效果好、學(xué)生容易理解、學(xué)習(xí)的積極性高。上課時比較注意創(chuàng)設(shè)合適的問題情境,效果會不錯,學(xué)生從生活實際出發(fā),回答所提的問題,不知不覺學(xué)習(xí)了新的知識,他們不會感覺到學(xué)習(xí)疲勞,反而能積極主動地學(xué)習(xí)。
四、教學(xué)目標分析:
知識與技能:正確理解一元二次不等式、一元二次方程、二次函數(shù)的關(guān)系。熟練掌握一元二次不等式的解法。
過程與方法:通過看圖象找解集,培養(yǎng)學(xué)生從從形到數(shù)的轉(zhuǎn)化能力,從具體到抽象、從特殊到一般的歸納概括能力;通過對問題的思考、探究、交流,培養(yǎng)學(xué)生良好的數(shù)學(xué)交流能力,增強其數(shù)形結(jié)合的思維意識。在教學(xué)中滲透由具體到抽象,由特殊到一般,類比猜想、等價轉(zhuǎn)化的數(shù)學(xué)思想方法。
情感態(tài)度與價值觀:通過具體情境,使學(xué)生體驗數(shù)學(xué)與實踐的緊密聯(lián)系,激發(fā)學(xué)生學(xué)習(xí)研究一元二次不等式的積極性和對數(shù)學(xué)的情感,使學(xué)生充分體驗獲取知識的成功感受;在探究、討論、交流過程中培養(yǎng)學(xué)生的合作意識和團隊精神,使其養(yǎng)成嚴謹?shù)闹螌W(xué)態(tài)度和良好的思維習(xí)慣。
一元二次不等式課件教案 篇9
《一元二次不等式解法》說課稿范文
一、 教材簡析
1、地位和價值
一元二次不等式解法是高中數(shù)學(xué)新教材第一冊(上)第一章第5節(jié)的內(nèi)容。在此之前,學(xué)生在初中已學(xué)習(xí)了一元一次不等式,一元一次不等式組,一元二次方程,二次函數(shù),絕對值不等式(高中),這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。一元二次不等式解法是解不等式的基礎(chǔ)和核心,它在高中代數(shù)中起著廣泛應(yīng)用的工具作用,蘊藏著“數(shù)與形結(jié)合”的重要思想方法,它已成為代數(shù)、三角、解析幾何交匯綜合的重要部分,是高考綜合題的熱點。
2、教材結(jié)構(gòu)簡介
教材首先以一個一次函數(shù)圖象的應(yīng)用解一元一次不等式,引出圖象法,然后給出一個二次函數(shù),通過具體畫圖象,提出問題。再一般地給出了二次函數(shù)圖象解二次不等式的結(jié)論。課本精選了四個解不等式的例題,并配有相應(yīng)的練習(xí)和習(xí)題。它的后一小節(jié)為解可轉(zhuǎn)化為一元二次不等式的分式不等式。
二、 教育教學(xué)觀
1、 學(xué)生為主體,重學(xué)生參與學(xué)習(xí)活動。
2、 重過程。按照認知規(guī)律及學(xué)生認知特點,由淺入深,由表及里,設(shè)計一系列教學(xué)活動過程。體現(xiàn)由“實踐……觀察……歸納 ……猜想…… 結(jié)論…… 驗證應(yīng)用”的循環(huán)往復(fù)的認知過程。
3、 重能力與態(tài)度的培養(yǎng),在活動中培養(yǎng)學(xué)生自主、交流合作、探究、發(fā)現(xiàn)的能力。重科學(xué)嚴謹?shù)膫€性品質(zhì)。重參與學(xué)習(xí)的興趣和體驗。
4、 重指導(dǎo)點撥。在學(xué)生自主探究、實踐的基礎(chǔ)上,相機啟發(fā),恰當點撥,促進學(xué)生知識由感性向理性提升,由具體到概括抽象,形成師生間的有效互動。
三、 教學(xué)目標
基于上述認識,及不等式的基本知識,同時學(xué)生在初中已學(xué)過二次函數(shù),考慮到學(xué)生已有的認知結(jié)構(gòu)心理特征,制訂如下教學(xué)目標:
1、 知識目標:一元二次方程,一元二次不等式及二次函數(shù)間的聯(lián)系,及利用二次函數(shù)的圖象求解一元二次不等式。
2、 能力目標:數(shù)形結(jié)合的思想(應(yīng)用二次函數(shù)圖象解不等式)
3、 情感態(tài)度目標:通過問題解決,培養(yǎng)學(xué)生自主參與學(xué)習(xí),以及嚴謹求實的.態(tài)度。
四、 教與學(xué)重點、難點
1、重點:用圖象解一元二次不等式。
2、難點:圍繞二次函數(shù)圖象、性質(zhì)這一主線,解決三個“二次”的聯(lián)系和應(yīng)用。
五、 教法與學(xué)法
1、學(xué)情分析及學(xué)法:函數(shù)與圖象應(yīng)用是初中生數(shù)學(xué)的薄弱之處,同時剛進入高中的學(xué)生,對高中學(xué)習(xí)還很不適應(yīng),需要加強主動學(xué)習(xí)的指導(dǎo)?;诖?,在學(xué)生初中知識經(jīng)驗的基礎(chǔ)上,以舊探新;以一系列問題,促進主體的學(xué)習(xí)活動(如畫圖象、讀圖等),建構(gòu)知識;以問題情景激勵學(xué)生參與,在恰當時機進行點撥啟發(fā),練、導(dǎo)結(jié)合,講練結(jié)合;通過學(xué)生自己做數(shù)學(xué),教師啟發(fā)指導(dǎo),以及學(xué)生領(lǐng)悟,實現(xiàn)學(xué)生對知識的再創(chuàng)造和主動建構(gòu);具體通過教材中的問題及設(shè)計的問題情景,給予學(xué)生活動的空間,通過這些問題(“腳手架”)的解決,使學(xué)生逐步攀升,達到知識與能力的目標。
2、教法:數(shù)學(xué)教學(xué)是數(shù)學(xué)教與學(xué)活動過程的教學(xué),學(xué)生是在探究與發(fā)現(xiàn)中建構(gòu)知識,發(fā)展能力的,因而確定以“問題解決”為教法。實現(xiàn)學(xué)生在教師指導(dǎo)下的發(fā)現(xiàn)探索。同時所學(xué)內(nèi)容適宜用“計算機高中數(shù)學(xué)問題處理系統(tǒng)”輔助教學(xué)。
六、教學(xué)手段及工具:
多媒體教學(xué)手段,高中數(shù)學(xué)問題處理系統(tǒng)。
七、教學(xué)設(shè)計及教學(xué)過程
1、復(fù)習(xí)設(shè)問,引入新課
高中數(shù)學(xué)新教材第一冊(上)《一元二次不等式解法》(第一課時)說課稿.rar
yJS21.com更多精選幼兒園教案閱讀
一元二次不等式課件(必備9篇)
經(jīng)過多次優(yōu)化我們?yōu)槟谱髁诉@份精選的“一元二次不等式課件”,本篇文章希望能夠為您的工作和生活提供幫助。每個老師需要在上課前弄好自己的教案課件,沒有寫的老師就需要抓緊完成了。設(shè)計教案需要關(guān)注課堂互動和學(xué)生參與度的提高。
一元二次不等式課件(篇1)
教學(xué)內(nèi)容
3.2一元二次不等式及其解法
三維目標
一、知識與技能
1.鞏固一元二次不等式的解法和解法與二次函數(shù)的關(guān)系、一元二次不等式解法的步驟、解法與二次函數(shù)的關(guān)系兩者之間的區(qū)別與聯(lián)系;
2.能熟練地將分式不等式轉(zhuǎn)化為整式不等式(組),正確地求出分式不等式的解集;
3.會用列表法,進一步用數(shù)軸標根法求解分式及高次不等式;
4.會利用一元二次不等式,對給定的與一元二次不等式有關(guān)的問題,嘗試用一元二次不等式解法與二次函數(shù)的有關(guān)知識解題.
二、過程與方法
1.采用探究法,按照思考、交流、實驗、觀察、分析得出結(jié)論的方法進行啟發(fā)式教學(xué);
2.發(fā)揮學(xué)生的主體作用,作好探究性教學(xué);
3.理論聯(lián)系實際,激發(fā)學(xué)生的學(xué)習(xí)積極性.
三、情感態(tài)度與價值觀
1.進一步提高學(xué)生的運算能力和思維能力;
2.培養(yǎng)學(xué)生分析問題和解決問題的能力;
3.強化學(xué)生應(yīng)用轉(zhuǎn)化的數(shù)學(xué)思想和分類討論的數(shù)學(xué)思想.
教學(xué)重點
1.從實際問題中抽象出一元二次不等式模型.
2.圍繞一元二次不等式的解法展開,突出體現(xiàn)數(shù)形結(jié)合的思想.
教學(xué)難點
1.深入理解二次函數(shù)、一元二次方程與一元二次不等式的關(guān)系.
教學(xué)方法
啟發(fā)、探究式教學(xué)
教學(xué)過程
復(fù)習(xí)引入
師:上一節(jié)課我們通過具體的問題情景,體會到現(xiàn)實世界存在大量的不等量關(guān)系,并且研究了用不等式或不等式組來表示實際問題中的不等關(guān)系?;仡櫹碌缺葦?shù)列的性質(zhì)。
生:略
師:某同學(xué)要把自己的計算機接入因特網(wǎng),現(xiàn)有兩種ISP公司可供選擇,公司A每小時收費1.5元(不足1小時按1小時計算),公司B的收費原則是第1小時內(nèi)(含恰好1小時,下同)收費1.7元,第2小時內(nèi)收費1.6元以后每小時減少0.1元(若用戶一次上網(wǎng)時間超過17小時,按17小時計算)那么,一次上網(wǎng)在多少時間以內(nèi)能夠保證選擇公司A的上網(wǎng)費用小于等于選擇公司B所需費用。
學(xué)生自己討論
點題,板書課題
新課學(xué)習(xí)
1.一元二次不等式
只有一個未知數(shù),并且未知數(shù)的最高次數(shù)是2的不等式。
2.三個“二次”之間的關(guān)系及一元二次不等式的解法
師在前面我們已經(jīng)學(xué)習(xí)過一元二次不等的解法,發(fā)現(xiàn)一元二次方程及對應(yīng)的二次函數(shù)有關(guān)系,那么同學(xué)們課本打開到p77填表格。
生略
師學(xué)生討論歸納出解一元二次不等式的步驟
一看:看二次項系數(shù)的正負,并且變形為
二算:,判斷正負,有根則求并畫出對應(yīng)的函數(shù)圖象
三寫:寫出原不等式的解集
練習(xí)反饋
[例題剖析]
例1解下列不等式
(1)(2)
(3)(4)
(5)(6)
課本80頁練習(xí)
例2已知不等式的解集為試解不等式
變式:
已知
課堂
小結(jié)
1.三個“二次的關(guān)系”
2.解二次不等式的步驟
作業(yè)布置
課本第80頁習(xí)題3.2A組第1.2.4題B組1
練習(xí)調(diào)配
設(shè)計42頁全做,43頁例1例2隨堂練習(xí)2.3,4,5測評1、3、4、5、6、7、8、
一元二次不等式課件(篇2)
解一元二次不等式化為標準型。判斷△的符號。若△<0,則不等式是在R上恒成立或恒不成立。
若△>0,則求出兩根,在數(shù)軸上標出,每個根上畫一條豎線,再從右到左相間標正負號,不等式大于0則取標正的范圍,小于0則取標負的范圍。
2.解簡單一元高次不等式
a.化為標準型。
b.將不等式分解成若干個因式的積。
c.求出各個根,在數(shù)軸上標出,每個根上畫一條豎線,再從右到左相間標正負號,不等式大于0則取標正的范圍,小于0則取標負的范圍。
3.解分式不等式的解
a.化為標準型。
b.可將分式化為整式,將整式分解成若干個因式的積。
c.求出各個根,在數(shù)軸上標出,每個根上畫一條豎線,再從右到左相間標正負號,不等式大于0則取標正的范圍,小于0則取標負的范圍。(如果不等式是非嚴格不等式,則要注意分式分母不等于0。)
4.解含參數(shù)的一元二次不等式
a.對二次項系數(shù)a的討論。
若二次項系數(shù)a中含有參數(shù),則須對a的符號進行分類討論。分為a>0,a=0,a<0。
b.對判別式△的討論
若判別式△中含有參數(shù),則須對△的符號進行分類討論。分為△>0,△=0,△<0。
c.對根大小的討論
若不等式對應(yīng)的方程的根x1、x2中含有參數(shù),則須對x1、x2的大小進行分類討論。分為x1>x2,x1=x2,x1<x2。
5.一元二次方程的根的分布問題
a.將方程化為標準型。(a的符號)
b.畫圖觀察,若有區(qū)間端點對應(yīng)的函數(shù)值小于0,則只須討論區(qū)間端點的函數(shù)值。
若沒有區(qū)間端點對應(yīng)的函數(shù)值小于0,則須討論區(qū)間端點的函數(shù)值、△、軸。
6.一元二次不等式的應(yīng)用
⑴在R上恒成立問題(恒不成立問題相反,在某區(qū)間恒成立可轉(zhuǎn)化為實根分布問題)
a.對二次項系數(shù)a的符號進行討論,分為a=0與a≠0。
b.a(chǎn)=0時,把a=0帶入,檢驗不等式是否成立,判斷a=0是否屬于不等式解集。
a≠0時,則轉(zhuǎn)化為二次函數(shù)圖像全在x軸上方或下方。
若f(x)>0,則要求a>0,△<0。
若f(x)<0,則要求a<0,△<0。
⑵特殊題型:已知一不等式的解集(含有字母),求另一不等式的解集(與原不等式系數(shù)大小相同,位置不同)。a.寫出原不等式對應(yīng)的方程,由韋達定理得出解集字母與方程系數(shù)間的關(guān)系。
b.寫出變換后不等式對應(yīng)的方程,由由韋達定理得出解集字母與方程系數(shù)間的關(guān)系。
c.將a中得到的關(guān)系變化后帶入b的關(guān)系中,得到變換后方程的兩根。
d.判斷兩根的大小,變換后不等式二次項的系數(shù),從而寫出所求解集。
一元二次不等式課件(篇3)
《一元二次不等式及其解法》
教 學(xué) 設(shè) 計 說 明
《一元二次不等式及其解法》教學(xué)設(shè)計說明
一.教學(xué)內(nèi)容分析:
1.本節(jié)課內(nèi)容在整個教材中的地位和作用.
必修五第三章不等式第二節(jié)一元二次不等式及其解法共有三個課時,本節(jié)課是第一課時,教學(xué)內(nèi)容的地位體現(xiàn)在它的基礎(chǔ)性,作用體現(xiàn)在它的工具性.一元二次不等式的解法是初中一元一次不等式或一元一次不等式組的延續(xù)和深化,對已學(xué)習(xí)過的集合知識的鞏固和運用具有重要的作用.許多問題的解決都會借助一元二次不等式的解法.因此,一元二次不等式的解法在整個高中數(shù)學(xué)教學(xué)中具有很強的基礎(chǔ)性,體現(xiàn)出很大的工具作用. 2.教學(xué)目標定位.
根據(jù)教學(xué)大綱要求、高考考試大綱說明、新課程標準精神、高一學(xué)生已有的知識儲備狀況和學(xué)生心理認知特征,我確定了四個層面的教學(xué)目標.第一層面是面向全體學(xué)生的知識目標:熟練掌握一元二次不等式的解法,正確理解一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系.第二層面是能力目標,培養(yǎng)學(xué)生運用數(shù)形結(jié)合與分類討論等數(shù)學(xué)思想方法解決問題的能力,提高運算和作圖能力.第三層面是德育目標,通過對解不等式過程中等與不等對立統(tǒng)一關(guān)系的認識,向?qū)W生逐步滲透辨證唯物主義思想.第四層面是情感目標,在教師的啟發(fā)引導(dǎo)下,學(xué)生自主探究,交流討論,培養(yǎng)學(xué)生的合作意識和創(chuàng)新精神. 3.教學(xué)重點、難點確定.
本節(jié)課是在復(fù)習(xí)了一元二次方程和二次函數(shù)之后,利用二次函數(shù)的圖象研究一元二次不等式的解法.只要學(xué)生能夠理解一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系,并利用其關(guān)系解不等式即可.因此,我確定本節(jié)課的教學(xué)重點為一元二次不等式的解法,關(guān)鍵是一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系. 二.教法學(xué)法分析:
數(shù)學(xué)是發(fā)展學(xué)生思維、培養(yǎng)學(xué)生良好意志品質(zhì)和美好情感的重要學(xué)科,在教學(xué)中,我們不僅要使學(xué)生獲得知識、提高解題能力,還要讓學(xué)生在教師的啟發(fā)引導(dǎo)下學(xué)會學(xué)習(xí)、樂于學(xué)習(xí),感受數(shù)學(xué)學(xué)科的人文思想,使學(xué)生在學(xué)習(xí)中培養(yǎng)堅強的意志品質(zhì)、形成良好的道德情感.為了更好地體現(xiàn)課堂教學(xué)中“教師為主導(dǎo),學(xué)生為主體”的教學(xué)關(guān)系和“以人為本,以學(xué)定教”的教學(xué)理念,在本節(jié)課的教學(xué)過程中,將緊緊圍繞教師組織——啟發(fā)引導(dǎo),學(xué)生探究——交流發(fā)現(xiàn),組織開展教學(xué)活動.我設(shè)計了①回憶舊知,服務(wù)新知,②創(chuàng)設(shè)情境,提出問題,③合作交流,探究新知,④數(shù)學(xué)運用,深化認知,⑤練習(xí)檢測,反饋新知,⑥談?wù)勈斋@,強化思想,⑦布置作業(yè),實踐新知,環(huán)環(huán)相扣、層層深入的教學(xué)環(huán)節(jié),在教學(xué)中注意關(guān)注整個過程和全體學(xué)生,充分調(diào)動學(xué)生積極參與教學(xué)過程的每個環(huán)節(jié). 三.教學(xué)過程分析:
(一)聯(lián)系舊知,構(gòu)建新知
設(shè)置一系列的問題喚起學(xué)生對舊知識的回憶. 問題1:一元二次方程的解法有哪些呢?
(意圖:讓學(xué)生回顧一元二次方程的解法,為解一元二次不等式做準備.)
問題2:同學(xué)們還記得二次函數(shù)嗎?二次函數(shù)的形式是怎樣的?你記得二次函數(shù)的性質(zhì)嗎?
(意圖:引導(dǎo)學(xué)生從圖象的角度出發(fā),并啟發(fā)學(xué)生二次函數(shù)的圖象是一條拋物線,其開口方向由二次項系數(shù)決定,為突出重點做準備)
(二)創(chuàng)設(shè)情景,提出問題
1、讓學(xué)生動手畫直角坐標系,然后沿x軸方向上下對折這張紙,觀察它們的值有什么特點?
22、請在剛才的坐標系中畫出y=x-7x+6的圖像 問題1:
(1)x軸上方有無圖像?若有請用紅線描出。這部分圖像對應(yīng)的y值如何?(2)x軸下方有無圖像?若有請用藍線描出。這部分圖像對應(yīng)的y值如何?(3)紅線與藍線有無交點?若有請用綠色標出。
(4)你能找出上述各種情況的x的取值范圍嗎?請在圖中寫出。
問題2:你能說一說這兩個不等式有何共同特點么?(1)含有一個未知數(shù)x;
(2)未知數(shù)的最高次數(shù)為2。通過兩問題得出一元二次不等式的概念:一般地,只含有一個未知數(shù),且未知數(shù)的最高次數(shù)為2的不等式,叫做一元二次不等式。
問題3:判斷下列式子是不是一元二次不等式?
問題4:一元二次函數(shù)、一元二次方程之間有何聯(lián)系呢?
一元二次方程的解即一元二次函數(shù)圖象與x軸交點的橫坐標,也就是說方程的解即對應(yīng)函數(shù)的零點。
問題5:一元二次不等式如何求解呢?
(三)合作交流,探究新知
1. 探究一元二次不等式x2?x?2?0的解.
容易知道:一元二次方程x2?x?2?0的有兩個實數(shù)根:x1??1或x2?2. 二次函數(shù)y?x2?x?2與x軸有兩個交點:??1,0?和?2,0?. 思考1:觀察圖象一元二次方程的根與二次函數(shù)之間有什么關(guān)系? 思考2:觀察圖象,當x為何值時,y?0;
當x為何值時,y?0; 當x為何值時,y?0.
(設(shè)計意圖 : ①體現(xiàn)學(xué)生的主體性;②有利于加強對圖象的認識,從而加強數(shù)形結(jié)合的數(shù)學(xué)思想 ;③有利于加強學(xué)生理解一元二次不等式的解相關(guān)的三個因素;④為歸納解一元二次不等式做好準備.根據(jù)前面探討的問題引導(dǎo)學(xué)生歸納一元二次不等式的解.)
2. 探究一元二次不等式ax2?bx?c?0或ax2?bx?c?0?a?0?的解法. 組織討論:從上面的例子出發(fā),綜合學(xué)生的意見,可以歸納出確定一元二次不等式的解集,關(guān)鍵要考慮:
2拋物線y?ax?bx?c與x軸的相關(guān)位置的情況,也就是一元二次方程2ax2?bx?c=0的根的情況,而一元二次方程根的情況是由判別式??b?4ac三 3 種取值情況(??0,??0,??0)來確定.
(設(shè)計意圖:這里我將運用多媒體圖標的形式來展現(xiàn)出其解法思路,學(xué)生有一個完整的邏輯思維,讓學(xué)生在探究中建立知識間的聯(lián)系,體會數(shù)形結(jié)合,強調(diào)突出本節(jié)的難點.)
(四)數(shù)學(xué)運用,深化認知.
2例1.求不等式2x?3x?2?0的解集. 2變式為:求不等式2x?3x?2?0的解集.
2例2.解不等式?x?2x?3?0.
(設(shè)計意圖:先讓學(xué)生來解答例題,若教師巡視、指導(dǎo),講評學(xué)生完成情況,尋找學(xué)生中的閃光點,給予熱情表揚.)總結(jié):
解一元二次不等式的步驟:
一化:化二次項前的系數(shù)為正(a>0).二判:判斷對應(yīng)方程的根.三求:求對應(yīng)方程的根.四畫:畫出對應(yīng)函數(shù)的圖象.五解集:根據(jù)圖象寫出不等式的解集.(五)練習(xí)檢測,鞏固收獲
(設(shè)計意圖:為了鞏固和加深一元二次不等式的解法,讓學(xué)生學(xué)以致用,接下來及時組織學(xué)生進行課堂練習(xí).然后就學(xué)生在解題中出現(xiàn)的問題共同糾正.)
(六)歸納小結(jié),強化思想
設(shè)計意圖:梳理本節(jié)課的知識點,總結(jié)一元二次不等式解法的步驟:“一化,二判,三求根,四畫圖,五寫解集”的口訣來幫助學(xué)生記憶和歸納,讓學(xué)生掌握嚴謹?shù)淖鲱}方法,知曉本節(jié)課的重難點.
(七)布置作業(yè),拓展延伸
必做題:課本第80頁習(xí)題A組 1,2.選做題:(1)若關(guān)于m的一元二次方程x
2?(m?1)x?m?0有兩個不相 等的實數(shù)根,求m的取值范圍.2(2)已知不等式x?ax?b?0的解集為x2?x?3?,求a,b的
?值.(設(shè)計意圖:以作業(yè)的鞏固性和發(fā)展性為出發(fā)點,我設(shè)計了必做題和選做題,必做題是對本節(jié)課內(nèi)容的反饋,選做題是對本節(jié)課知識的延伸,整體的設(shè)計意圖是反饋教學(xué),鞏固提高.)四.教學(xué)總結(jié)
本節(jié)課的所有內(nèi)容以習(xí)題的形式展現(xiàn)給學(xué)生,學(xué)生始終在解題中探究,在解題中發(fā)現(xiàn),學(xué)生參與教學(xué)的全過程,成為課堂教學(xué)的主體和學(xué)習(xí)的主人,而老師只須時刻關(guān)注學(xué)生的活動過程,不時給予引導(dǎo),及時糾正.
一元二次不等式課件(篇4)
《一元二次不等式及其解法(第1課時)》教學(xué)設(shè)計
Eric 一 內(nèi)容分析
本節(jié)課內(nèi)容的地位體現(xiàn)在它的基礎(chǔ)性,作用體現(xiàn)在它的工具性。一元二次不等式的解法是初中一元一次不等式或一元一次不等式組的延續(xù)和深化,對已學(xué)習(xí)過的集合知識的鞏固和運用具有重要的作用,也與后面的函數(shù)、數(shù)列、三角函數(shù)、線形規(guī)劃、直線與圓錐曲線以及導(dǎo)數(shù)等內(nèi)容密切相關(guān)。許多問題的解決都會借助一元二次不等式的解法。因此,一元二次不等式的解法在整個高中數(shù)學(xué)教學(xué)中具有很強的基礎(chǔ)性,體現(xiàn)出很大的工具作用。
二 學(xué)情分析
學(xué)生已經(jīng)掌握了高中所學(xué)的基本初等函數(shù)的圖象及其性質(zhì), 能利用函數(shù)的圖象及其性質(zhì)解決一些問題。學(xué)生知道不等關(guān)系, 掌握了不等式的性質(zhì), 通過這部分內(nèi)容的學(xué)習(xí), 學(xué)生將學(xué)會利用二次函數(shù)的圖象, 通過數(shù)形結(jié)合的思想, 掌握一元二次不等式的解法。
三 教學(xué)目標
1.知識與技能目標:(1)熟練應(yīng)用二次函數(shù)圖象解一元二次不等式的方法(2)了解一元二次不等式與相應(yīng)函數(shù), 方程的聯(lián)系 2.過程與方法:(1)通過學(xué)生已學(xué)過的一元一次不等式為例引入一元二次不等式的有關(guān)概及解法(2)讓學(xué)生觀察二次函數(shù),在此基礎(chǔ)上, 找到一元二次不等式的解法并掌握此解法(3)在學(xué)生尋找一元二次不等式的過中程中培養(yǎng)學(xué)生數(shù)形結(jié)合的數(shù)學(xué)思想 3.情感與價值目標:(1)通過新舊知識的聯(lián)系獲取新知,使學(xué)生體會溫故而知新的道理
(2)通過對解不等式過程中等與不等對立統(tǒng)一關(guān)系的認識,向?qū)W生逐步滲透辨證唯物主義思想。
(3)在教師的啟發(fā)引導(dǎo)下,學(xué)生自主探究,交流討論,培養(yǎng)學(xué)生的合作意識和創(chuàng)新精神。
四 教學(xué)重點、難點 1.重點
一元二次不等式的解法 2.難點
理解元二次方程與一元二次不等式解集的關(guān)系
五 教學(xué)方法
啟發(fā)式教學(xué)法,討論法,講授法
六 教學(xué)過程
1.創(chuàng)設(shè)情景,提出問題(約10分鐘)
師:在初中,我們解過一元一次不等式,如解不等式x – 1 > 0,現(xiàn)在請同學(xué)們先畫出函數(shù)y = x – 1 的圖象,并通過觀察圖象回答以下問題: 1)x 為何值時,y = 0;2)x 為何值時,y > 0;3)x 為何值時,y 0的解集能從函數(shù)y = x – 1上看出來嗎?
學(xué)生畫圖,思考。先把問題交給學(xué)生自主探究,過一段時間,再小組交流,此間教師巡視并指導(dǎo)。提問學(xué)生代表。
通過對上述問題的探究,學(xué)生得出以下結(jié)論:
因為上述方程x – 1 = 0以及不等式x – 1 > 0的左邊恰好是上述函數(shù)y = x3x – 2 > 0;2)4x23x – 2 = 0的解是x1 =-1/2, x2 = 2.所以2x24x + 1 = 0 的解是x1 = x2 = 1/2, 所以不等式4x22x + 3
練習(xí):課本80頁練習(xí)第1題(1)-(3)【靈活掌握】.師:今天我們這節(jié)課的內(nèi)容有兩個: 1)會一元二次不等式的解法 2)理解三個“二次”的關(guān)系
作業(yè):課本第80頁 習(xí)題 A
4.板書設(shè)計
§ 一元二次不等式及其解法
解不等式x2 – x – 6 > 0, 請先畫出二次函數(shù) y = x2 – x – 6的圖像,并回答以下問題: 1)x 為何值時,y = 0;y > 0;y 0的解集呢?
七 教學(xué)反思
組1、2題 例,解不等式:
1)2x24x + 1 > 0;3)-x2 + 2x – 3
解:1)因為Δ =(-3)2 – 4×2×(-2)= 25 > 0, 方程的2x23x – 2 > 0的解集是{x| x1 2}.2)因為Δ = 0,方程4x24x + 1 > 0的解集是{x|x ≠ 1/2}.
一元二次不等式課件(篇5)
1、一元二次不等式解法的探索
[師] 你知道二次函數(shù)的草圖是怎樣畫出的嗎?(用"特殊點法"而非課本上的"列表描點法")你能回答以下問題嗎?二次函數(shù) y=x2-4x+3的圖象如下:
填表:方程x2-4x+3=0(即y=0)的解是
不等式x2-4x+3>0(即y>0)的解集是
不等式x2-4x+3
注:學(xué)生類比前面的知識,能根據(jù)二次函數(shù)的圖象確定與x軸的交點,確定對應(yīng)的一元二次方程的根,從而確定一元二次不等式的解集。(邊說邊畫y>0,y
[師]現(xiàn)在如果我變動這條拋物線,請大家觀察拋物線與x軸的交點有何變化?
注:引導(dǎo)學(xué)生發(fā)現(xiàn)一元二次方程的根有三種情況,其對應(yīng)的二次函數(shù)圖象與x軸的位置關(guān)系也有三種情況,是由 >0, =0,
2、講解例題
[師]接下來請同學(xué)們再來分析幾個具體例子
(板書)例:解下列各不等式
(1)2x2-3x-2>0;
(2) -3x2+6x>2;
(3)4x2-4x+1>0;
(4)-x2+2x-3>0.
注:跟學(xué)生共同詳細分析(1),強調(diào)解題規(guī)范性,其余(2)(3)(4)由學(xué)生完成,并小組討論。
解:(1)方程2x2-3x-2=0的兩根為x1=- 或 x2=2,(畫草圖,結(jié)合圖象)
所以原不等式的解集是{x| x2 }
注:問題要順利求解,應(yīng)先考慮對應(yīng)方程
的根的情況,然后畫出草圖,結(jié)合不等式寫出解集。
(以下學(xué)生試著解決,并回答)
(2)分析一:結(jié)合開口向下的拋物線求解。
分析二:引導(dǎo)學(xué)生能否轉(zhuǎn)化為熟知類型,與(1)中二次項系數(shù)作比較,只要不等式兩邊同乘以-1,并注意不等式要改變方向。
解:原不等式可變?yōu)?3x2-6x+2
方程3x2-6x+2=0的兩根為 x1=1- , x2=1+
原不等式解集為: {x | 1-
(3)方程 4x2-4x+1=0有兩等根 x1=x2=
所以原不等式的解集是{x |x }
變式訓(xùn)練:改成4x2-4x+1 0,請學(xué)生回答(使學(xué)生知道不等式的解也可能是一個值)。
(4)將原不等式變形為:x2-2x+3
方程x2-2x+3=0無實根
原不等式的解集是
變式訓(xùn)練: -x2+2x-3
[師]上述幾例都有各自的特點,反映在哪兩方面呢?注:引導(dǎo)學(xué)生總結(jié):一是二次項系數(shù),二是判別式 ,一般要先將二次項系數(shù)轉(zhuǎn)化為正數(shù)。
一元二次不等式課件(篇6)
1.復(fù)習(xí)一元一次方程、一元一次不等式與一次函數(shù)的關(guān)系
[師]前面我們已經(jīng)學(xué)習(xí)了絕對值不等式的解法,今天開始研究一元二次不等式的解法。(板書課題)記得在初中我們已學(xué)習(xí)了一元一次不等式的解法,還記得是用什么方法解的嗎?
學(xué)生可能回答是代數(shù)方法,也可能說是利用直線圖象。
[師]初中學(xué)習(xí)了一次函數(shù)的圖象,使得我們對一元一次不等式的解法有了更深入的了解。首先請同學(xué)們畫出 y=2x-7
[師]請同學(xué)們畫出圖象,并回答問題。
一次函數(shù)y=2x-7的圖象如下:
填表:
當x 時,y = 0,即 2x-7 0;
當x 時,y
當x 時,y > 0,即 2x-7 0;
注:(1)引導(dǎo)學(xué)生由圖象得出結(jié)論(數(shù)形結(jié)合)
(2)由學(xué)生填空(一邊演示y0部分圖象)
從上例的特殊情形,你能得出什么結(jié)論?
注:教師引導(dǎo)下學(xué)生發(fā)現(xiàn)其結(jié)論,并由學(xué)生嘗試敘述:一元一次方程ax+b=0的根實質(zhì)上就是直線y=ax+b與x軸交點的橫坐標;一元一次不等式ax+b>0(或ax+b
2.新課導(dǎo)入
[師]我們可以利用一次函數(shù)的圖象快速準確地求出一元一次不等式的解集,那能否也可以借助二次函數(shù)的圖象來解一元二次不等式呢?
一元二次不等式課件(篇7)
1.創(chuàng)設(shè)情景——引入新課。我們常說“興趣是最好的老師”,長期以來,學(xué)生對學(xué)習(xí)數(shù)學(xué)缺乏興趣,甚至失去信心,一個重要的原因,是老師在教學(xué)中不重視學(xué)生對學(xué)習(xí)的情感體驗,教學(xué)應(yīng)該充分考慮學(xué)生的情感和需要,想方設(shè)法讓學(xué)生在學(xué)習(xí)中樹立信心,感受學(xué)習(xí)的樂趣。根據(jù)教材內(nèi)容的安排,我以學(xué)生熟悉的畫一次函數(shù)圖象、求一次方程和一次不等式的解為背景知識切入,設(shè)置一個練習(xí)題組,一方面讓學(xué)生總結(jié)復(fù)習(xí)已有知識,為后面學(xué)習(xí)二次不等式的解法打下基礎(chǔ),做好鋪墊,另一方面,使學(xué)生在自己熟悉的問題中首先獲得解題成功的快樂體驗,然后以20xx年江蘇省的一道高考試題為引子,引入本節(jié)課的新授內(nèi)容。對于本題,引導(dǎo)學(xué)生,利用上面解練習(xí)題組1的方法,畫出二次函數(shù)圖象來解答。二次函數(shù)是初中數(shù)學(xué)的重要內(nèi)容,本題又給出了函數(shù)圖象上許多點,相信學(xué)生畫出圖象應(yīng)該不成問題,只要教師適當點撥,學(xué)生不難得到正確答案。以高考試題為背景引入新課,可以提高學(xué)生興趣,抓住學(xué)生眼球,吸引學(xué)生注意力,還可以讓學(xué)生實實在在感受到,高考題就在我們的課本中,就在我們平常的練習(xí)中。
2.探究交流——發(fā)現(xiàn)規(guī)律。從特殊到一般是我們發(fā)現(xiàn)問題、尋求規(guī)律、揭示問題本質(zhì)最常用的方法之一。我把課本例題1、2編為練習(xí)題組(一),交由學(xué)生用上面解高考題的方法——圖象法去解,學(xué)生由于熟知二次函數(shù)圖象,求解應(yīng)該不會有太大的問題。在這個過程中,教師要啟發(fā)引導(dǎo)學(xué)生注意對比兩題的異同,組織引導(dǎo)學(xué)生展開交流討論,探討第(2)題能不能先把二次項系數(shù)化正以后再構(gòu)造函數(shù)畫圖求解。然后達成共識,如果二次項系數(shù)為負數(shù)時,先做等價轉(zhuǎn)化,把二次項系數(shù)化為正數(shù)再解,課本19頁例3、例4作為題組(二),繼續(xù)讓學(xué)生用上面的圖象法,由學(xué)生自己求解,這時我及時提示學(xué)生注意這兩題與題組(一)中兩題的不同(例1、例2對應(yīng)方程都有兩個不等實根,例3對應(yīng)方程有兩相等實根,例4對應(yīng)方程無實根)。兩個題組的練習(xí)之后,可以尋求解二次不等式的一般規(guī)律。
3.啟發(fā)引導(dǎo)——形成結(jié)論。前面兩個題組的四個小題,基本涵蓋了一般一元二次不等式解的各種情況,進一步啟發(fā)引導(dǎo)學(xué)生將特殊、具體題目的結(jié)論做一般化總結(jié),與學(xué)生一起就△>0,△<0,△=0的三種情況,總結(jié)二次不等式ax2+bx+c>0或ax2+bx+c<0(a>0)的解的情況應(yīng)該水到渠成。至此,學(xué)生可以感受到,解二次不等式只須①將二次項系數(shù)化為正數(shù),②求解二次方程ax2+bx+c=0的.根。③根據(jù)①后的二次不等式的符號寫出解集即可,必要時也可以結(jié)合圖象寫解集。這樣我們就得到了二次不等式的另外一種解法(可稱為“三步曲”法)。
4.訓(xùn)練小結(jié)——鞏固深化。為了鞏固和加深二次不等式的兩種解法,接下來及時組織學(xué)生進行課堂練習(xí),完成課本21頁練習(xí)1—4題。本環(huán)節(jié)請不同層次的學(xué)生在黑板上書寫解題過程,之后師生共同糾正問題,規(guī)范解題過程的書寫。
5.延伸拓寬——提高能力。課堂教學(xué)既要面向全體學(xué)生,又應(yīng)關(guān)注學(xué)生的個體差異。體現(xiàn)分類推進,分層教學(xué)的原則。為此,我又設(shè)計了一個提高練習(xí)題組,共有三道備選題目,以供程度較好學(xué)有余力的學(xué)生能夠更好的展示自己的解題能力,取得更進一步的提高。
一元二次不等式課件(篇8)
教學(xué)目標:
(1)透徹理解、掌握一元二次方程、一元二次不等式與二次函數(shù)的內(nèi)在聯(lián)系,會解一元二次不等式;
(2)培養(yǎng)學(xué)生數(shù)學(xué)的數(shù)形結(jié)合思想和轉(zhuǎn)化能力,學(xué)會主動探求問題和尋找解決問題的方法。
教學(xué)重點:一元二次不等式的解法(圖象法)
教學(xué)難點:
(1)一元二次方程、一元二次不等式與二次函數(shù)的關(guān)系;
(2)數(shù)形結(jié)合思想的滲透
教學(xué)方法與教學(xué)手段:
嘗試探索教學(xué)法、歸納概括。
教學(xué)過程:
一、復(fù)習(xí)引入
1.復(fù)習(xí)一元一次方程、一元一次不等式與一次函數(shù)的關(guān)系
[師]前面我們已經(jīng)學(xué)習(xí)了絕對值不等式的解法,今天開始研究一元二次不等式的解法。(板書課題)記得在初中我們已學(xué)習(xí)了一元一次不等式的解法,還記得是用什么方法解的'嗎?
學(xué)生可能回答是代數(shù)方法,也可能說是利用直線圖象。
[師]初中學(xué)習(xí)了一次函數(shù)的圖象,使得我們對一元一次不等式的解法有了更深入的了解。首先請同學(xué)們畫出 y=2x-7
[師]請同學(xué)們畫出圖象,并回答問題。
一次函數(shù)y=2x-7的圖象如下:
填表:
當x 時,y = 0,即 2x-7 0;
當x 時,y
當x 時,y > 0,即 2x-7 0;
注:(1)引導(dǎo)學(xué)生由圖象得出結(jié)論(數(shù)形結(jié)合)
(2)由學(xué)生填空(一邊演示y0部分圖象)
從上例的特殊情形,你能得出什么結(jié)論?
注:教師引導(dǎo)下學(xué)生發(fā)現(xiàn)其結(jié)論,并由學(xué)生嘗試敘述:一元一次方程ax+b=0的根實質(zhì)上就是直線y=ax+b與x軸交點的橫坐標;一元一次不等式ax+b>0(或ax+b
2.新課導(dǎo)入
[師]我們可以利用一次函數(shù)的圖象快速準確地求出一元一次不等式的解集,那能否也可以借助二次函數(shù)的圖象來解一元二次不等式呢?
二、講解新課
1、一元二次不等式解法的探索
[師] 你知道二次函數(shù)的草圖是怎樣畫出的嗎?(用"特殊點法"而非課本上的"列表描點法")你能回答以下問題嗎?二次函數(shù) y=x2-4x+3的圖象如下:
填表:方程x2-4x+3=0(即y=0)的解是
不等式x2-4x+3>0(即y>0)的解集是
不等式x2-4x+3
注:學(xué)生類比前面的知識,能根據(jù)二次函數(shù)的圖象確定與x軸的交點,確定對應(yīng)的一元二次方程的根,從而確定一元二次不等式的解集。(邊說邊畫y>0,y
[師]現(xiàn)在如果我變動這條拋物線,請大家觀察拋物線與x軸的交點有何變化?
注:引導(dǎo)學(xué)生發(fā)現(xiàn)一元二次方程的根有三種情況,其對應(yīng)的二次函數(shù)圖象與x軸的位置關(guān)系也有三種情況,是由 >0, =0,
2、講解例題
[師]接下來請同學(xué)們再來分析幾個具體例子
(板書)例:解下列各不等式
(1)2x2-3x-2>0;
(2) -3x2+6x>2;
(3)4x2-4x+1>0;
(4)-x2+2x-3>0.
注:跟學(xué)生共同詳細分析(1),強調(diào)解題規(guī)范性,其余(2)(3)(4)由學(xué)生完成,并小組討論。
解:(1)方程2x2-3x-2=0的兩根為x1=- 或 x2=2,(畫草圖,結(jié)合圖象)
所以原不等式的解集是{x| x2 }
四、課后作業(yè):書P21/習(xí)題1.5/1.3.5.6
五、教學(xué)設(shè)計說明:
1、本節(jié)課教學(xué)設(shè)計力圖體現(xiàn)以學(xué)生發(fā)展為本,遵循學(xué)生的認知規(guī)律,體現(xiàn)循序漸進的教學(xué)原則,通過對原有知識的復(fù)習(xí),引導(dǎo)學(xué)生類比探索新的知識,激發(fā)學(xué)生的求知欲望,調(diào)動學(xué)生的積極性。
2、本節(jié)課采用在教師引導(dǎo)下啟發(fā)學(xué)生探索發(fā)現(xiàn),體會解題過程中形結(jié)合思想方法,使之獲得內(nèi)心感受。
3、本節(jié)課的重點是利用圖象解一元二次不等式,讓學(xué)生明確一元二次方程、一元二次不等式與二次函數(shù)之間的聯(lián)系。在思維訓(xùn)練方面,注重從特殊到一般,從具體到抽象思維的培養(yǎng)。歸納總結(jié)可以訓(xùn)練學(xué)生的收斂思維,有助于完善學(xué)生的思維結(jié)構(gòu)。
4、本節(jié)課的例題及課堂練習(xí)是課本上的習(xí)題,其目的在于落實基礎(chǔ),提高運算能力。
一元二次不等式課件(篇9)
一、教材分析
(一)教材的地位和作用
“一元二次不等式解法”既是初中一元一次不等式解法在知識上的延伸和發(fā)展,又是本章集合知識的運用與鞏固,也為下一章函數(shù)的定義域和值域教學(xué)作鋪墊,起著鏈條的作用。同時,這部分內(nèi)容較好地反映了方程、不等式、函數(shù)知識的內(nèi)在聯(lián)系和相互轉(zhuǎn)化,蘊含著歸納、轉(zhuǎn)化、數(shù)形結(jié)合等豐富的數(shù)學(xué)思想方法,能較好地培養(yǎng)學(xué)生的觀察能力、概括能力、探究能力及創(chuàng)新意識。
(二)教學(xué)內(nèi)容
本節(jié)內(nèi)容分2課時學(xué)習(xí)。本課時通過二次函數(shù)的圖象探索一元二次不等式的解集。通過復(fù)習(xí)“三個一次”的關(guān)系,即一次函數(shù)與一元一次方程、一元一次不等式的關(guān)系;以舊帶新尋找“三個二次”的關(guān)系,即二次函數(shù)與一元二次方程、一元二次不等式的關(guān)系;采用“畫、看、說、用”的思維模式,得出一元二次不等式的解集,品味數(shù)學(xué)中的和諧美,體驗成功的樂趣。
二、教學(xué)目標分析
根據(jù)教學(xué)大綱的要求、本節(jié)教材的特點和高一學(xué)生的認知規(guī)律,本節(jié)課的教學(xué)目標確定為:
知識目標——理解“三個二次”的關(guān)系;掌握看圖象找解集的方法,熟悉一元二次不等式的解法。
能力目標——通過看圖象找解集,培養(yǎng)學(xué)生“從形到數(shù)”的轉(zhuǎn)化能力,“從具體到抽象”、“從特殊到一般”的歸納概括能力。
情感目標——創(chuàng)設(shè)問題情景,激發(fā)學(xué)生觀察、分析、探求的學(xué)習(xí)激情、強化學(xué)生參與意識及主體作用。
三、重難點分析
一元二次不等式是高中數(shù)學(xué)中最基本的不等式之一,是解決許多數(shù)學(xué)問題的重要工具。本節(jié)課的重點確定為:一元二次不等式的解法。
要把握這個重點。關(guān)鍵在于理解并掌握利用二次函數(shù)的圖象確定一元二次不等式解集的方法——圖象法,其本質(zhì)就是要能利用數(shù)形結(jié)合的思想方法認識方程的解,不等式的解集與函數(shù)圖象上對應(yīng)點的橫坐標的內(nèi)在聯(lián)系。由于初中沒有專門研究過這類問題,高一學(xué)生比較陌生,要真正掌握有一定的難度。因此,本節(jié)課的難點確定為:“三個二次”的關(guān)系。要突破這個難點,讓學(xué)生歸納“三個一次”的關(guān)系作鋪墊。
四、教法與學(xué)法分析
(一)學(xué)法指導(dǎo)
教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會學(xué)是目的。因此在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會學(xué)習(xí)。本節(jié)課主要是教給學(xué)生“動手畫、動眼看、動腦想、動口說、善提煉、勤鉆研”的研討式學(xué)習(xí)方法,這樣做增加了學(xué)生自主參與,合作交流的機會,教給了學(xué)生獲取知識的途徑、思考問題的方法,使學(xué)生真正成了教學(xué)的主體;只有這樣做,才能使學(xué)生“學(xué)”有新“思”,“思”有新“得”,“練”有新“獲”,學(xué)生也才會逐步感受到數(shù)學(xué)的美,會產(chǎn)生一種成功感,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;也只有這樣做,課堂教學(xué)才富有時代特色,才能適應(yīng)素質(zhì)教育下培養(yǎng)“創(chuàng)新型”人才的需要。
(二)教法分析
本節(jié)課設(shè)計的指導(dǎo)思想是:現(xiàn)代認知心理學(xué)——建構(gòu)主義學(xué)習(xí)理論。
建構(gòu)主義學(xué)習(xí)理論認為:應(yīng)把學(xué)習(xí)看成是學(xué)生主動的建構(gòu)活動,學(xué)生應(yīng)與一定的知識背景即情景相聯(lián)系,在實際情景下進行學(xué)習(xí),可以使學(xué)生利用已有知識與經(jīng)驗同化和索引出當前要學(xué)習(xí)的新知識,這樣獲取的知識,不但便于保持,而且易于遷移到陌生的問題情景中。
本節(jié)課采用“誘思引探教學(xué)法”。把問題作為出發(fā)點,指導(dǎo)學(xué)生“畫、看、說、用”。較好地探求一元二次不等式的解法。
五、課堂設(shè)計
本節(jié)課的教學(xué)設(shè)計充分體現(xiàn)以學(xué)生發(fā)展為本,培養(yǎng)學(xué)生的觀察、概括和探究能力,遵循學(xué)生的認知規(guī)律,體現(xiàn)理論聯(lián)系實際、循序漸進和因材施教的教學(xué)原則,通過問題情境的創(chuàng)設(shè),激發(fā)興趣,使學(xué)生在問題解決的探索過程中,由學(xué)會走向會學(xué),由被動答題走向主動探究。
(一)創(chuàng)設(shè)情景,引出“三個一次”的關(guān)系
本節(jié)課開始,先讓學(xué)生解一元二次方程x2—x—6=0,如果我把“=”改成“>”則變成一元二次不等式x2—x—6>0讓學(xué)生解,學(xué)生肯定感到很突然。但是“思維往往是從驚奇和疑問開始”,這樣直奔主題,目的在于構(gòu)造懸念,激活學(xué)生的思維興趣。
為此,我設(shè)計了以下幾個問題:
1、請同學(xué)們解以下方程和不等式:
①2x—7=0;②2x—7>0;③2x—7
二元一次方程課件教案(合集12篇)
前輩告訴我們,做事之前提前下功夫是成功的一部分。身為一位人民教師,我們都希望孩子們能學(xué)到知識,為了將學(xué)生的效率提上來,老師會準備一份教案,教案有助于讓同學(xué)們很好的吸收課堂上所講的知識點。你知道如何去寫好一份優(yōu)秀的幼兒園教案呢?小編特別從網(wǎng)絡(luò)上整理了二元一次方程課件教案(合集12篇),相信會對你有所幫助!
二元一次方程課件教案 篇1
知識要點
1、二元一次方程:含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是一次的整式方程叫做~
2、二元一次方程的解:適合二元一次方程的一組未知數(shù)的值叫做這個二元一次方程的一個解;
3、二元一次方程組:由幾個一次方程組成并含有兩個未知數(shù)的方程組叫做二元一次方程組
4、二元一次方程組的解:適合二元一次方程組里各個方程的一對未知數(shù)的值,叫做這個方程組里各個方程的公共解,也叫做這個方程組的解(注意:①書寫方程組的解時,必需用“”把各個未知數(shù)的值連在一起,即寫成的形式;②一元方程的解也叫做方程的根,但是方程組的解只能叫解,不能叫根)
5、解方程組:求出方程組的解或確定方程組沒有解的過程叫做解方程組
6、解二元一次方程組的基本方法是代入消元法和加減消元法(簡稱代入法和加減法)
(1)代入法解題步驟:把方程組里的一個方程變形,用含有一個未知數(shù)的代數(shù)式表示另一個未知數(shù);把這個代數(shù)式代替另一個方程中相應(yīng)的未知數(shù),得到一個一元一次方程,可先求出一個未知數(shù)的值;把求得的這個未知數(shù)的值代入第一步所得的式子中,可求得另一個未知數(shù)的值,這樣就得到了方程的解
(2)加減法解題步驟:把方程組里一個(或兩個)方程的兩邊都乘以適當?shù)臄?shù),使兩個方程里的某一個未知數(shù)的系數(shù)的絕對值相等;把所得到的兩個方程的兩邊分別相加(或相減),消去一個未知數(shù),得到含另一個未知數(shù)的一元一次方程(以下步驟與代入法相同)
一、例題精講
分別用代入法和加減法解方程組
解:代入法:由方程②得:③
將方程③代入方程①得:
解得x=2
將x=2代入方程②得:4-3y=1
解得y=1
所以方程組的解為
加減法:
例2.從少先隊夏令營到學(xué)校,先下山再走平路,一少先隊員騎自行車以每小時12公里的速度下山,以每小時9公里的速度通過平路,到學(xué)校共用了55分鐘,回來時,通過平路速度不變,但以每小時6公里的速度上山,回到營地共花去了1小時10分鐘,問夏令營到學(xué)校有多少公里?
分析:路程分為兩段,平路和坡路,來回路程不變,只是上山和下山的轉(zhuǎn)變導(dǎo)致時間的不同,所以設(shè)平路長為x公里,坡路長為y公里,表示時間,利用兩個不同的過程列兩個方程,組成方程組
解:設(shè)平路長為x公里,坡路長為y公里
依題意列方程組得:
解這個方程組得:
經(jīng)檢驗,符合題意
x+y=9
答:夏令營到學(xué)校有9公里二、課堂小結(jié):
回顧本章內(nèi)容,總結(jié)二元一次方程組的解法和應(yīng)用。
三、作業(yè)布置:
P25A組習(xí)題
二元一次方程課件教案 篇2
教學(xué)目標:
1.會用加減消元法解二元一次方程組.
2.能根據(jù)方程組的特點,適當選用代入消元法和加減消元法解二元一次方程組.
3.了解解二元一次方程組的消元方法,經(jīng)歷從“二元”到“一元”的轉(zhuǎn)化過程,體會解二元一次方程組中化“未知”為“已知”的“轉(zhuǎn)化”的思想方法.
教學(xué)重點:
加減消元法的理解與掌握
教學(xué)難點:
加減消元法的靈活運用
教學(xué)方法:
引導(dǎo)探索法,學(xué)生討論交流
教學(xué)過程:
一、情境創(chuàng)設(shè)
買3瓶蘋果汁和2瓶橙汁共需要23元,買5瓶蘋果汁和2瓶橙汁共需33元,每瓶蘋果汁和每瓶橙汁售價各是多少?
設(shè)蘋果汁、橙汁單價為x元,y元。
我們可以列出方程3x+2y=23
5x+2y=33
問:如何解這個方程組?
二、探索活動
活動一:1、上面“情境創(chuàng)設(shè)”中的方程,除了用代入消元法解以外,還有其他方法求解嗎?
2、這些方法與代入消元法有何異同?
3、這個方程組有何特點?
解法一:3x+2y=23①
5x+2y=33②
由①式得③
把③式代入②式
33
解這個方程得:y=4
把y=4代入③式
則
所以原方程組的解是x=5
y=4
解法二:3x+2y=23①
5x+2y=33②
由①—②式:
3x+2y-(5x+2y)=23-33
3x-5x=-10
解這個方程得:x=5
把x=5代入①式,
3×5+2y=23
解這個方程得y=4
所以原方程組的解是x=5
y=4
把方程組的兩個方程(或先作適當變形)相加或相減,消去其中一個未知數(shù),把解二元一次方程組轉(zhuǎn)化為解一元一次方程,這種解方程組的方法叫做加減消元法,簡稱加減法.
三、例題教學(xué):
例1.解方程組x+2y=1①
3x-2y=5②
解:①+②得,4x=6
將代入①,得
解這個方程得:
所以原方程組的解是
鞏固練習(xí)(一):練一練1.(1)
例2.解方程組5x-2y=4①
2x-3y=-5②
解:①×3,得
15x-6y=12③
②×3,得
4x-6y=-10④
③—④,得:
11x=22
解這個方程得x=2
將x=2代入①,得
5×2-2y=4
解這個方程得:y=3
所以原方程組的解是x=2
y=3
鞏固練習(xí)(二):練一練1.(2)(3)(4)2
四、思維拓展:
解方程組:
五、小結(jié):
1、掌握加減消元法解二元一次方程組
2、靈活選用代入消元法和加減消元法解二元一次方程組
六、作業(yè)
習(xí)題10.31.(3)(4)2
二元一次方程課件教案 篇3
各位評委、老師:
大家好!
我說課的題目是《二元一次方程組的解法——代入消元法》,內(nèi)容選自人教版九年義務(wù)教育七年級數(shù)學(xué)下冊第八章第二節(jié)第一課時。
一、說教材
(一)地位和作用
本節(jié)主要內(nèi)容是在上節(jié)已認識二元一次方程(組)和二元一次方程(組)的解等概念的基礎(chǔ)上,來學(xué)習(xí)解方程組的第一種方法——代入消元法。并初步體會解二元一次方程組的基本思想“消元”。二元一次方程組的求解,不但用到了前面學(xué)過的一元一次方程的解法,是對過去所學(xué)知識的一個回顧和提高,同時,也為后面的利用方程組來解決實際問題打下了基礎(chǔ)。初中階段要掌握的二元一次方程組的解法有代入消元法和加減消元兩種,教材都是按先求解后應(yīng)用的順序安排,這樣安排既可以在前一小節(jié)中有針對性的學(xué)習(xí)解法,又可在后一小節(jié)的應(yīng)用中鞏固前面的知識,但教材相對應(yīng)的練習(xí)安排很少,不過這樣也給了我們一較大的發(fā)揮空間。
(二)課程目標
1、知識與技能目標
(1)會用代入法解二元一次方程組
(2)初步體會解二元一次方程組的基本思想“消元”。
(3)通過對方程組中的未知數(shù)特點的觀察和分析,明確解二元一次方程組的主要思路是“消元”,從而促成由未知向已知轉(zhuǎn)化,培養(yǎng)學(xué)生觀察能力和體會化歸思想:
(4)通過用代入消元法解二元一次方程組的訓(xùn)練,及選用合理、簡捷的方法解方程組,培養(yǎng)學(xué)生的運算能力。
2、情感目標:
通過研究探討解決問題的方法,培養(yǎng)學(xué)生會作交流意識與探究精神。
(三)教學(xué)重點、難點
重點:用代入消元法解二元一次方程組。
難點:探索如何用代入消元法將“二元”轉(zhuǎn)化為“一元”的過程。
二、說教法
針對本節(jié)特點,在教學(xué)過程中采用自主、探究、合作交流的教學(xué)方法,由教師提出明確問題,學(xué)生積極參與討論探究、合作交流,進行總結(jié),使學(xué)生從中獲取知識。鑒于本節(jié)所學(xué)知識的特點,抽象教學(xué)、學(xué)生生搬硬套的學(xué)習(xí)方式將難取得理想效果,因此教師在引入課題時要利用好遠程教育設(shè)施及資源創(chuàng)設(shè)情境,讓學(xué)生去經(jīng)歷由具體問題抽象出方程組的過程。并讓學(xué)生通過獨立觀察、合作交流來探討怎樣才能變“二元”為“一元”。然后利用單個二元一次方程的變形及時強化“代入”的本質(zhì)。
三、說學(xué)法
本節(jié)學(xué)生在獨立思考、自主探究中學(xué)習(xí)并對老師的問題展開討論與交流。如何用代入消元法將“二元”轉(zhuǎn)化為“一元”學(xué)生較難掌握,在提出消元思想后,應(yīng)對具體的消元解法的過程進行歸納,讓學(xué)生得到對代入法的基本步驟的概括,通過“把一個方程(必要時先做適當變形)代入另一個方程”實現(xiàn)消元。應(yīng)注意引導(dǎo)學(xué)生認識到為什么要實施這樣的步驟。把具體做法與消元結(jié)合,使學(xué)生明解其目的性。明確這樣做的依據(jù)是等量代換。七年級的學(xué)生已經(jīng)初步具備合作交流的能力??梢酝ㄟ^探究和合作來實現(xiàn)課程目標;此外,教學(xué)中,范例的講解和隨堂練習(xí)始終是學(xué)以對用的有效方法。隨堂練習(xí)時應(yīng)引導(dǎo)學(xué)生通過自我反省、小組評價來克服解題時的錯誤,必要時給與規(guī)范矯正。
四、說教學(xué)程序
本節(jié)課我將“自主、探究、合作、交流”運用到教學(xué)中,教學(xué)過程可以劃分為以下幾個環(huán)節(jié):
1、引入新知:利用多媒體教學(xué)手段,創(chuàng)設(shè)情境,通過籃球比賽問題引入教學(xué),情境活潑、自然。
2、探究新知:在籃球比賽問題中,首先可以用一元一次方程來解決實際問題,接著提出問題:能否設(shè)出兩個未知數(shù),列出兩個方程組成方程組呢?(學(xué)生獨立思考后分組探究討論)。在學(xué)生得出正確的方程組之后提出問題:怎樣解這個方程組呢?(學(xué)生分組討論,教師加以適當?shù)囊龑?dǎo)),各組派代表得出自己的結(jié)論,教師適時引導(dǎo)“消元”思想,對消元解法的過程予以歸納。
⑴變形:將其中一個方程的某個未知數(shù)用含有另一個未知數(shù)的式子表示。
⑵代入:將變形后的方程代入另一個方程中,消去一個未知數(shù),化二元一次方程組為一元一次方程。
⑶求解:求出一元一次方程的解。
⑷回代:將其代入到變形后的方程中,求出另一個未知數(shù)的解。
⑸結(jié)論:寫出方程組的解。
3、運用新知:在得出“代入消元”解二元一次方程組后,應(yīng)用“代入消元法”解決實際問題,在學(xué)生解題過程中著重強調(diào)、矯正、理清思路和步驟。然后師生一起“解后思”:在解題時應(yīng)注意什么?在隨堂練習(xí)時教師關(guān)鍵是反饋矯正、積極評價。
4、教學(xué)小結(jié),知識回顧:讓學(xué)生暢所欲言談本節(jié)課的得失,感到困惑和疑難的地方、解題的關(guān)鍵和步驟等。教師在學(xué)生發(fā)言的基礎(chǔ)上再進行提煉:①解二元一次方程組的主要思路是“消元”;②解二元一次方程組的一般步驟是:一變形、二代入、三求解。
5、課外作業(yè)。為進一步鞏固知識,布置適當?shù)摹⒕哂写硇缘淖鳂I(yè)。
二元一次方程課件教案 篇4
教學(xué)建議
一、重點、難點分析
本節(jié)的教學(xué)重點是使學(xué)生學(xué)會用代入法.教學(xué)難點在于靈活運用代入法,這要通過一定數(shù)量的練習(xí)來解決;另一個難點在于用代入法求出一個未知數(shù)的值后,不知道應(yīng)把它代入哪一個方程求另一個未知數(shù)的值比較簡便.
解二元一次方程組的關(guān)鍵在于消元,即將“二元”轉(zhuǎn)化為“一元”.我們是通過等量代換的方法,消去一個未知數(shù),從而求得原方程組的解.
二、知識結(jié)構(gòu)
三、教法建議
1.關(guān)于檢驗方程組的解的問題.教材指出:“檢驗時,需將所求得的一對未知數(shù)的值分別代入原方程組里的每一個方程中,看看方程的左、右兩邊是不是相等.”教學(xué)時要強調(diào)“原方程組”和“每一個”這兩點.檢驗的作用,一是使學(xué)生進一步明確代入法是求方程組的解的一種基本方法,通過代入消元的確可以求得方程組的解二是進一步鞏固二元一次方程組的解的概念,強調(diào)
這一對數(shù)值才是原方程組的解,并且它們必須使兩個方程左、右兩邊的值都相等;三是因為我們沒有用方程組的同解原理而是用代換(等式的傳遞)來解方程組的,所以有必要檢驗求出來的這一對數(shù)值是不是原方程組的解;四是為了杜絕變形和計算時發(fā)生的錯誤.檢驗可以口算或在草稿紙上演算,教科書中沒有寫出.
2.教學(xué)時,應(yīng)結(jié)合具體的例子指出這里解二元一次方程組的關(guān)鍵在于消元,即把“二元”轉(zhuǎn)化為“一元”.我們是通過等量代換的方法,消去一個未知數(shù),從而求得原方程組的解.早一些指出消元思想和把“二元”轉(zhuǎn)化為“一元”的方法,這樣,學(xué)生就能有較強的目的性.
3.教師講解例題時要注意由簡到繁,由易到難,逐步加深.隨著例題由簡到繁,由易到難,要特別強調(diào)解方程組時應(yīng)努力使變形后的方程比較簡單和代入后化簡比較容易.這樣不僅可以求解迅速,而且可以減少錯誤.
一、素質(zhì)教育目標
(一)知識教學(xué)點
1.掌握用代入法解二元一次方程組的步驟.
2.熟練運用代入法解簡單的二元一次方程組.
(二)能力訓(xùn)練點
1.培養(yǎng)學(xué)生的分析能力,能迅速在所給的二元一次方程組中,選擇一個系數(shù)較簡單的方程進行變形.
2.訓(xùn)練學(xué)生的運算技巧,養(yǎng)成檢驗的習(xí)慣.
(三)德育滲透點
消元,化未知為已知的數(shù)學(xué)思想.
(四)美育滲透點
通過本節(jié)課的學(xué)習(xí),滲透化歸的數(shù)學(xué)美,以及方程組的解所體現(xiàn)出來的奇異的數(shù)學(xué)美.
二、學(xué)法引導(dǎo)
1.教學(xué)方法:引導(dǎo)發(fā)現(xiàn)法、練習(xí)法,嘗試指導(dǎo)法.
2.學(xué)生學(xué)法:在前面已經(jīng)學(xué)過一元一次方程的解法,求二元一次方程組的解關(guān)鍵是化二元方程為一元方程,故在求解過程當中始終應(yīng)抓住消元的思想方法.
三、重點、難點、疑點及解決辦法
(-)重點
使學(xué)生會用代入法解二元一次方程組.
(二)難點
靈活運用代入法的技巧.
(三)疑點
如何“消元”,把“二元”轉(zhuǎn)化為“一元”.
(四)解決辦法
一方面復(fù)習(xí)用一個未知量表示另一個未知量的方法,另一方面學(xué)會選擇用一個系數(shù)較簡單的方程進行變形:
四、課時安排
一課時.
五、教具學(xué)具準備
電腦或投影儀、自制膠片.
六、師生互動活動設(shè)計
1.教師設(shè)問怎樣用一個未知量表示另一個未知量,并比較哪種表示形式更簡單,如 等.
2.通過課本中香蕉、蘋果的應(yīng)用問題,引導(dǎo)學(xué)生列出一元一次方程或二元一次方程組,并通過比較、嘗試,探索出化二元為一元的解方程組的方法.
3.再通過比較、嘗試,探索出選一個系數(shù)較簡單的方程變形,通過代入法求方程組解的辦法更簡便,并尋找出求解的規(guī)律.
七、教學(xué)步驟
(-)明確目標
本節(jié)課我們將學(xué)習(xí)用代入法求二元一次方程組的解.
(二)整體感知
從復(fù)習(xí)用一個未知量表達另一個未知量的方法,從而導(dǎo)入運用代入法化二元為一元方程的求解過程,即利用代入消元法求二元一次方程組的解的辦法.
(三)教學(xué)步驟
1.創(chuàng)設(shè)情境,復(fù)習(xí)導(dǎo)入
(1)已知方程 ,先用含 的代數(shù)式表示 ,再用含 的代數(shù)式表示 .并比較哪一種形式比較簡單.
(2)選擇題:
二元一次方程組 的解是
A. B. C. D.
第(1)題為用代入法解二元一次方程組打下基礎(chǔ);第(2)題既復(fù)習(xí)了上節(jié)課的重點,又成為導(dǎo)入新課的材料.
通過上節(jié)課的學(xué)習(xí),我們會檢驗一對數(shù)值是否為某個二元一次方程組的解.那么,已知一個二元一次方程組,應(yīng)該怎樣求出它的解呢?這節(jié)課我們就來學(xué)習(xí).
這樣導(dǎo)入,可以激發(fā)學(xué)生的求知欲.
2.探索新知,講授新課
香蕉的售價為5元/千克,蘋果的售價為3元/千克,小華共買了香蕉和蘋果9千克,付款33元,香蕉和蘋果各買了多少千克?
學(xué)生活動:分別列出一元一次方程和二元一次方程組,兩個學(xué)生板演.
設(shè)買了香蕉 千克,那么蘋果買了 千克,根據(jù)題意,得
設(shè)買了香蕉 千克,買了蘋果 千克,得
上面的一元一次方程我們會解,能否把二元一次方程組轉(zhuǎn)化為一元一次方程呢,由方程①可以得到 ③,把方程②中的 轉(zhuǎn)換成 ,也就是把方程③代入方程②,就可以得到 .這樣,我們就把二元一次方程組轉(zhuǎn)化成了一元一次方程,由這個方程就可以求出 了.
解:由①得: ③
把③代入②,得:
∴
把 代入③,得:
∴
解二元一次方程組與解一元一次方程相比較,向?qū)W生展示了知識的發(fā)生過程,這對于學(xué)生知識的形成十分重要.
上面解二元一次方程組的方法,就是代入消元法.你能簡單說說用代入法解二元一次方程組的基本思路嗎?
學(xué)生活動:小組討論,選代表發(fā)言,教師進行指導(dǎo).糾正后歸納:設(shè)法消去一個未知數(shù),把二元一次方程組轉(zhuǎn)化為一元一次方程.
例1 解方程組
(1)觀察上面的方程組,應(yīng)該如何消元?(把①代入②)
(2)把①代入②后可消掉 ,得到關(guān)于 的一元一次方程,求出 .
(3)求出 后代入哪個方程中求 比較簡單?(①)
學(xué)生活動:依次回答問題后,教師板書
解:把①代入②,得
∴
把 代入①,得
∴
如何檢驗得到的結(jié)果是否正確?
學(xué)生活動:口答檢驗.
教師:要把所得結(jié)果分別代入原方程組的每一個方程中.
給出例1后提出的三個問題,恰好是學(xué)生的思維過程,明確了解題思路;教師板演例1,規(guī)范了解二元一次方程組的解題格式;通過檢驗,可使學(xué)生養(yǎng)成嚴謹認真的學(xué)習(xí)習(xí)慣.
例2 解方程組
要把某個方程化成如例1中方程①的形式后,代入另一個方程中才能消元.方程②中 的系數(shù)是1,比較簡單.因此,可以先將方程②變形,用含 的代數(shù)式表示 ,再代入方程①求解.
學(xué)生活動:嘗試完成例2.
教師巡視指導(dǎo),發(fā)現(xiàn)并糾正學(xué)生的問題,把書寫過程規(guī)范化.
解:由②,得 ③
把③代入①,得
∴
∴
把 代入③,得
∴
∴
檢驗后,師生共同討論:
(1)由②得到③后,再代入②可以嗎?(不可以)為什么?(得到的是恒等式,不能求解)
(2)把 代入①或②可以求出 嗎?(可以)代入③有什么好處?(運算簡便)
學(xué)生活動:根據(jù)例1、例2的解題過程,嘗試總結(jié)用代入法解二元一次方程組的一般步驟,討論后選代表發(fā)言.之后,看課本第12頁,用幾個字概括每個步驟.
教師板書:
(1)變形( )
(2)代入消元( )
(3)解一元一次方程得( )
(4)把 代入 求解
練習(xí):P13 1.(1)(2);P14 2.(1)(2).
3.變式訓(xùn)練,培養(yǎng)能力
①由 可以得到用 表示 .
②在 中,當 時, ;當 時, ,則 ; .
③選擇:若 是方程組 的解,則( )
A. B. C. D.
(四)總結(jié)、擴展
1.解二元一次方程組的思想:
2.用代入法解二元一次方程組的步驟.
3.用代入法解二元一次方程組的技巧:①變形的技巧②代入的技巧.
通過這節(jié)課的學(xué)習(xí),我們要熟練運用代入法解二元一次方程組,并能檢驗結(jié)果是否正確.
八、布置作業(yè)
(一)必做題:P15 1.(2)(4),2.(1)(2)(3)(4).
(二)選做題:P15 B組1.
二元一次方程課件教案 篇5
教學(xué)目標
1.會列二元一次方程組解簡單的應(yīng)用題并能檢驗結(jié)果的合理性。
2.提高分析問題、解決問題的能力。
3.體會數(shù)學(xué)的應(yīng)用價值。
教學(xué)重點
根據(jù)實際問題列二元一次方程組。
教學(xué)難點
1.找實際問題中的相等關(guān)系。
2.徹底理解題意。
教學(xué)過程
一、引入。
本節(jié)課我們繼續(xù)學(xué)習(xí)用二元一次方程組解決簡單實際問題。
二、新課。
例1. 小琴去縣城,要經(jīng)過外祖母家,頭一天下午從她家走到個祖母家里,第二天上午,從外外祖母家出發(fā)勻速前進,走了2小時、5小時后,離她自己家分別為13千米、25千米。你能算出她的速度嗎?還能算出她家與外祖母家相距多遠嗎?
探究: 1. 你能畫線段表示本題的數(shù)量關(guān)系嗎?
2.填空:(用含S、V的代數(shù)式表示)
設(shè)小琴速度是V千米/時,她家與外祖母家相距S千米,第二天她走2小時趟的路程是______千米。此時她離家距離是______千米;她走5小時走的路程是______千米,此時她離家的距離是________千米20xx年-20xx學(xué)年七年級數(shù)學(xué)下冊全冊教案(人教版)教案。
3.列方程組。
4.解方程組。
5.檢驗寫出答案。
討論:本題是否還有其它解法?
三、練習(xí)。
1.建立方程模型。
(1)兩在相距280千米,一般順流航行需14小時,逆流航行需20小時,求船在靜水中速度,水流的速度
(2)420個零件由甲、乙兩人制造。甲先做2天后,乙加入合作再做2天完成,乙先做2天,甲加入合作,還需3天完成。問:甲、乙每天各做多少個零件?
2.P38練習(xí)第2題。
3.小組合作編應(yīng)用題:兩個寫一方程組,另兩人根據(jù)方程組編應(yīng)用題。
四、小結(jié)。
本節(jié)課你有何收獲?
二元一次方程課件教案 篇6
教學(xué)目標:
1、會用代入法解二元一次方程組
2、會闡述用代入法解二元一次方程組的基本思路——通過“代入”達到“消元”的目的,從而把解二元一次方程組轉(zhuǎn)化為解一元一次方程。
此外,在用代入法解二元一次方程組的知識發(fā)生過程中,讓學(xué)生從中體會“化未知為已知”的重要的數(shù)學(xué)思想方法。
引導(dǎo)性材料:
本節(jié)課,我們以上節(jié)課討論的求甲、乙騎自行車速度的問題為例,探求二元一次方程組的解法。前面我們根據(jù)問題“甲、乙騎自行車從相距60千米的兩地相向而行,經(jīng)過兩小時相遇。已知乙的速度是甲的速度的2倍,求甲、乙兩人的速度?!痹O(shè)甲的速度為X千米/小時,由題意可得一元一次方程2(X+2X)=60;設(shè)甲的速度為X千米/小時,乙的速度為Y千米/小時,由題意可得二元一次方程組 2(X+Y)=60
Y=2X 觀察
2(X+2X)=60與 2(X+Y)=60 ①
Y=2X ② 有沒有內(nèi)在聯(lián)系?有什么內(nèi)在聯(lián)系?
(通過較短時間的觀察,學(xué)生通常都能說出上面的二元一次方程組與一元一次方程的內(nèi)在聯(lián)系——把方程①中的“Y”用“2X”去替換就可得到一元一次方程。)
知識產(chǎn)生和發(fā)展過程的教學(xué)設(shè)計
問題1:從上面的二元一次方程組與一元一次方程的內(nèi)在聯(lián)系的研究中,我們可以得到什么啟發(fā)?把方程①中的“Y”用“2X”去替換,就是把方程②代入方程①,于是我們就把一個新問題(解二元一次方程組)轉(zhuǎn)化為熟悉的問題(解一元一次方程)。
解方程組 2(X+Y)=60 ①
Y=2X ②
解:把②代入①得:
2(X+2X)=60,
6X=60,
X=10
把X=10代入②,得
Y=20
因此: X=10
Y=20
問題2:你認為解方程組 2(X+Y)=60 ①
Y=2X ② 的關(guān)鍵是什么?那么解方程組
X=2Y+1
2X—3Y=4 的關(guān)鍵是什么?求出這個方程組的解。
上面兩個二元一次方程組求解的基本思路是:通過“代入”,達到消去一個未知數(shù)(即消元)的目的,從而把解二元一次方程組轉(zhuǎn)化為解一元一次方程,這種解二元一次方程組的方法叫“代入消元法”,簡稱“代入法”。
問題3:對于方程組 2X+5Y=-21 ①
X+3Y=8 ② 能否像上述兩個二元一次方程組一樣,把方程組中的一個方程直接代入另一個方程從而消去一個未知數(shù)呢?
(說明:從學(xué)生熟悉的列一元一次方程求解兩個未知數(shù)的問題入手來研究二元一次方程組的解法,有利于學(xué)生建立新舊知識的聯(lián)系和培養(yǎng)良好的學(xué)習(xí)習(xí)慣,使學(xué)生逐步學(xué)會把一個還不會解決的問題轉(zhuǎn)化為一個已經(jīng)會解決的問題的思想方法,對后續(xù)的解三無一次方程組、一元二次方程、分式方程等,學(xué)生就有了求解的策略。)
例題解析
例:用代入法將下列解二元一次方程組轉(zhuǎn)化為解一元一次方程:
(1)X=1-Y ①
3X+2Y=5 ②
將①代入②(消去X)得:
3(1-Y)+2Y=5
(2)5X+2Y-25.2=0 ①
3X-5=Y ②
將②代入①(消去Y)得:
5X+2(3X-5)-25.2=0
(3)2X+Y=5 ①
3X+4Y=2 ②
由①得Y=5-2X,將Y=5-2X代入②消去Y得:
3X+4(5-2X)=2
(4)2S-T=3 ①
3S+2T=8 ②
由①得T=2S-3,將T=2S-3代入②消去T得:
3S+2(2S-3)=8
課內(nèi)練習(xí):
解下列方程組。
(1)2X+5Y=-21 (2)3X-Y=2
X+3Y=8 3X=11-2Y
小結(jié):
1、用代入法解二元一次方程組的關(guān)鍵是“消元”,把新問題(解二元一次方程組)轉(zhuǎn)化為舊知識(解一元一次方程)來解決。
2、用代入法解二元一次方程組,常常選用系數(shù)較簡單的方程變形,這用利于正確、簡捷的消元。
3、用代入法解二元一次方程組,實質(zhì)是數(shù)學(xué)中常用的重要的“換元”,比如在求解例(1)中,把①代入②,就是把方程②中的元“X”用“1-Y”去替換,使方程②中只含有一個未知數(shù)Y。
課后作業(yè):
教科書第14頁練習(xí)題2(1)、(2)題,第15頁習(xí)題5.2A組2(1)、(2)、(4)題。
二元一次方程課件教案 篇7
【教學(xué)目標】
【知識目標】
了解二元一次方程、二元一次方程組及其解等有關(guān)概念,并會判斷一組數(shù)是不是某個二元一次方程組的解。
【能力目標】
通過討論和練習(xí),進一步培養(yǎng)學(xué)生的觀察、比較、分析的能力。
【情感目標】
通過對實際問題的分析,使學(xué)生進一步體會方程是刻畫現(xiàn)實世界的有效數(shù)學(xué)模型,培養(yǎng)學(xué)生良好的數(shù)學(xué)應(yīng)用意識。
【重點】
二元一次方程組的含義
【難點】
判斷一組數(shù)是不是某個二元一次方程組的解,培養(yǎng)學(xué)生良好的數(shù)學(xué)應(yīng)用意識。
【教學(xué)過程】
一、引入、實物投影
1、師:在一望無際呼倫貝爾大草原上,一頭老牛和一匹小馬馱著包裹吃力地行走著,老牛喘著氣吃力地說:“累死我了”,小馬說:“你還累,這么大的個,才比我多馱2個”老牛氣不過地說:“哼,我從你背上拿來一個,我的包裹就是你的2倍!”,小馬天真而不信地說:“真的?!”同學(xué)們,你們能否用數(shù)學(xué)知識幫助小馬解決問題呢?
2、請每個學(xué)習(xí)小組討論(討論2分鐘,然后發(fā)言)
這個問題由于涉及到老牛和小馬的馱包裹的兩個未知數(shù),我們設(shè)老牛馱x個包裹,小馬馱y個包裹,老牛的包裹數(shù)比小馬多2個,由此得方程x-y=2,若老牛從小馬背上拿來1個包裹,這時老牛的包裹是小馬的2倍,得方程:x+1=2(y-1)
師:同學(xué)們能用方程的方法來發(fā)現(xiàn)、解決問題這很好,上面所列方程有幾個未知數(shù)?含未知數(shù)的項的次數(shù)是多少?(含有兩個未知數(shù),并且所含未知數(shù)項的次數(shù)是1)
師:含有兩個未知數(shù),并且含未知數(shù)項的次數(shù)都是1的方程叫做二元一次方程
注意:這個定義有兩個地方要注意①、含有兩個未知數(shù),②、含未知數(shù)的次數(shù)是一次
練習(xí)(投影)
下列方程有哪些是二元一次方程
+2y=1xy+x=13x-=5x2-2=3x
xy=12x(y+1)=c2x-y=1x+y=0
二、議一議、
師:上面的方程中x-y=2,x+1=2(y-1)的x含義相同嗎?y呢?
師:由于x、y的含義分別相同,因而必同時滿足x-y=2和x+1=2(y-1),我們把這兩個方程用大括號聯(lián)立起來,寫成
x-y=2
x+1=2(y-1)
像這樣含有兩個未知數(shù)的兩個一次方程所組成的一組方程,叫做二元一次方程組。
如:2x+3y=35x+3y=8
x-3y=0x+y=8
三、做一做、
1、x=6,y=2適合方程x+y=8嗎?x=5,y=3呢?x=4,y=4呢?你還能找到其他x,y值適合x+y=8方程嗎?
2、X=5,y=3適合方程5x+3y=34嗎?x=2,y=8呢?
你能找到一組值x,y同時適合方程x+y=8和5x+3y=34嗎?
x=6,y=2是方程x+y=8的一個解,記作x=6同樣,x=5
y=2y=3
也是方程x+y=8的一個解,同時x=5又是方程5x+3y=34的一個解,
y=3
四、隨堂練習(xí)(P103)
五、小結(jié):
1、含有兩未知數(shù),并且含有未知數(shù)的項的次數(shù)是一次的整式方程叫做二元一次方程。
2、二元一次方程的解是一個互相關(guān)聯(lián)的兩個數(shù)值,它有無數(shù)個解。
3、含有兩個未知數(shù)的兩個二元一次方程組成的一組方程,叫做二元一次方程組,它的解是兩個方程的公共解,是一組確定的值。
二元一次方程課件教案 篇8
一、復(fù)習(xí)引入
1.已知方程x2-ax-3a=0的一個根是6,則求a及另一個根的值.
2.由上題可知一元二次方程的系數(shù)與根有著密切的關(guān)系.其實我們已學(xué)過的求根公式也反映了根與系數(shù)的關(guān)系,這種關(guān)系比較復(fù)雜,是否有更簡潔的關(guān)系?
3.由求根公式可知,一元二次方程ax2+bx+c=0(a≠0)的兩根為x1=-b+b2-4ac2a,x2=-b-b2-4ac2a.觀察兩式右邊,分母相同,分子是-b+b2-4ac與-b-b2-4ac.兩根之間通過什么計算才能得到更簡潔的關(guān)系?
二、探索新知
解下列方程,并填寫表格:
方程 x1 x2 x1+x2 x1?x2
x2-2x=0
x2+3x-4=0
x2-5x+6=0
觀察上面的表格,你能得到什么結(jié)論?
(1)關(guān)于x的方程x2+px+q=0(p,q為常數(shù),p2-4q≥0)的兩根x1,x2與系數(shù)p,q之間有什么關(guān)系?
(2)關(guān)于x的方程ax2+bx+c=0(a≠0)的兩根x1,x2與系數(shù)a,b,c之間又有何關(guān)系呢?你能證明你的猜想嗎?
解下列方程,并填寫表格:
方程 x1 x2 x1+x2 x1?x2
2x2-7x-4=0
3x2+2x-5=0
5x2-17x+6=0
小結(jié):根與系數(shù)關(guān)系:
(1)關(guān)于x的方程x2+px+q=0(p,q為常數(shù),p2-4q≥0)的兩根x1,x2與系數(shù)p,q的關(guān)系是:x1+x2=-p,x1?x2=q(注意:根與系數(shù)關(guān)系的前提條件是根的判別式必須大于或等于零.)
(2)形如ax2+bx+c=0(a≠0)的方程,可以先將二次項系數(shù)化為1,再利用上面的結(jié)論.
即:對于方程 ax2+bx+c=0(a≠0)
∵a≠0,∴x2+bax+ca=0
∴x1+x2=-ba,x1?x2=ca
(可以利用求根公式給出證明)
例1 不解方程,寫出下列方程的兩根和與兩根積:
(1)x2-3x-1=0 (2)2x2+3x-5=0
(3)13x2-2x=0 (4)2x2+6x=3
(5)x2-1=0 (6)x2-2x+1=0
例2 不解方程,檢驗下列方程的解是否正確?
(1)x2-22x+1=0 (x1=2+1,x2=2-1)
(2)2x2-3x-8=0 (x1=7+734,x2=5-734)
例3 已知一元二次方程的兩個根是-1和2,請你寫出一個符合條件的方程.(你有幾種方法?)
例4 已知方程2x2+kx-9=0的一個根是-3,求另一根及k的值.
變式一:已知方程x2-2kx-9=0的兩根互為相反數(shù),求k;
變式二:已知方程2x2-5x+k=0的兩根互為倒數(shù),求k.
三、課堂小結(jié)
1.根與系數(shù)的關(guān)系.
2.根與系數(shù)關(guān)系使用的前提是:(1)是一元二次方程;(2)判別式大于等于零.
四、作業(yè)布置
1.不解方程,寫出下列方程的兩根和與兩根積.
(1)x2-5x-3=0 (2)9x+2=x2 (3)6x2-3x+2=0
(4)3x2+x+1=0
2.已知方程x2-3x+m=0的一個根為1,求另一根及m的值.
3.已知方程x2+bx+6=0的一個根為-2,求另一根及b的值
二元一次方程課件教案 篇9
教學(xué)目標:
1、使學(xué)生會借助二元一次方程組解決簡單的實際問題,讓學(xué)生再次體會二元一次方程組與現(xiàn)實生活的聯(lián)系和作用2、通過應(yīng)用題教學(xué)使學(xué)生進一步使用代數(shù)中的方程去反映現(xiàn)實世界中等量關(guān)系,體會代數(shù)方法的優(yōu)越性。
重點:能根據(jù)題意列二元一次方程組;根據(jù)題意找出等量關(guān)系;
難點:正確發(fā)找出問題中的兩個等量關(guān)系
教學(xué)過程:
一、復(fù)習(xí)
列方程解應(yīng)用題的步驟是什么?
審題、設(shè)未知數(shù)、列方程、解方程、檢驗并答
新課:
看一看課本99頁探究1
問題:
1題中有哪些已知量?哪些未知量?
2題中等量關(guān)系有哪些?
3如何解這個應(yīng)用題?
本題的等量關(guān)系是(1)30只母牛和15只小牛一天需用飼料為675kg
(2)(30+12只母牛和(15+5)只小牛一天需用飼料為940
練一練:
1、某所中學(xué)現(xiàn)在有學(xué)生4200人,計劃一年后初中在樣生增加8%,高中在校生增加11%,這樣全校學(xué)生將增加10%,這所學(xué)?,F(xiàn)在的初中在校生和高中在校生人數(shù)各是多少人?
2、有大小兩輛貨車,兩輛大車與3輛小車一次可以支貨15。50噸,5輛大車與6輛小車一次可以支貨35噸,求3輛大車與5輛小車一次可以運貨多少噸?
3、某工廠第一車間比第二車間人數(shù)的少30人,如果從第二車間調(diào)出10人到第一車間,則第一車間的人數(shù)是第二車間的,問這兩車間原有多少人?
4、某運輸隊送一批貨物,計劃20天完成,實際每天多運送5噸,結(jié)果不但提前2天完成任務(wù)并多運了10噸,求這批貨物有多少噸?原計劃每天運輸多少噸?
二元一次方程課件教案 篇10
教學(xué)目標
1.會列出二元一次方程組解簡單應(yīng)用題,并能檢驗結(jié)果的合理性。
2.知道二元一次方程組是反映現(xiàn)實世界量之間相等關(guān)系的一種有效的數(shù)學(xué)模型20xx年-20xx學(xué)年七年級數(shù)學(xué)下冊全冊教案(人教版)20xx年-20xx學(xué)年七年級數(shù)學(xué)下冊全冊教案(人教版)。
3.引導(dǎo)學(xué)生關(guān)注身邊的數(shù)學(xué),滲透將來未知轉(zhuǎn)達化為已知的辯證思想。
教學(xué)重點
1.列二元一次方程組解簡單問題。
2.徹底理解題意
教學(xué)難點
找等量關(guān)系列二元一次方程組。
教學(xué)過程
一、情境引入。
小剛與小玲一起在水果店買水果,小剛買了3千克蘋果,2千克梨,共花了18.8元。小玲買了2千克蘋果,3千克梨,共花了18.2元。回家路上,他們遇上了好朋友小軍,小軍問蘋果、梨各多少錢1千克?他們不講,只講各自買的幾千克水果和總共的錢,要小軍猜。聰明的同學(xué)們,小軍能猜出來嗎?
二、建立模型。
1.怎樣設(shè)未知數(shù)?
2.找本題等量關(guān)系?從哪句話中找到的?
3.列方程組。
4.解方程組。
5.檢驗寫答案。
思考:怎樣用一元一次方程求解?
比較用一元一次方程求解,用二元一次方程組求解誰更容易?
三、練習(xí)。
1.根據(jù)問題建立二元一次方程組。
(1)甲、乙兩數(shù)和是40差是6,求這兩數(shù)。
(2)80班共有64名學(xué)生,其中男生比女生多8人,求這個班男生人數(shù),女生人數(shù)。
(3)已知關(guān)于求x、y的方程,
是二元一次方程。求a、b的值。
2.P38練習(xí)第1題。
四、小結(jié)。
小組討論:列二元一次方程組解應(yīng)用題有哪些基本步驟?
五、作業(yè)。
P42。習(xí)題2.3A組第1題。
后記:
2.3二元一次方程組的應(yīng)用(2)
二元一次方程課件教案 篇11
各位評委、老師大家好:
我說課的題目是《二元一次方程組的解法----代入消元法》,內(nèi)容選自人教版九年義務(wù)教育七年級數(shù)學(xué)下冊第八章第二節(jié)第一課時。
一、說教材
(一)地位和作用
本節(jié)主要內(nèi)容是在上節(jié)已認識二元一次方程(組)和二元一次方程(組)的解等概念的基礎(chǔ)上,來學(xué)習(xí)解方程組的第一種方法——代入消元法。并初步體會解二元一次方程組的基本思想“消元”。二元一次方程組的求解,不但用到了前面學(xué)過的一元一次方程的解法,是對過去所學(xué)知識的一個回顧和提高,同時,也為后面的利用方程組來解決實際問題打下了基礎(chǔ)。初中階段要掌握的二元一次方程組的解法有代入消元法和加減消元兩種,教材都是按先求解后應(yīng)用的順序安排,這樣安排既可以在前一小節(jié)中有針對性的學(xué)習(xí)解法,又可在后一小節(jié)的應(yīng)用中鞏固前面的知識,但教材相對應(yīng)的練習(xí)安排很少,不過這樣也給了我們一較大的發(fā)揮空間。
(二)課程目標
1、知識目標
(1)、了解解二元一次方程組的“消元”思想,體會學(xué)習(xí)數(shù)學(xué)中的“化未知為已知”,“化復(fù)雜為簡單”的化歸思想。
(2)、了解代入法的概念,掌握代入法的基本步驟。
(3)、會用代入法求二元一次方程組的解。
2、能力目標
培養(yǎng)學(xué)生動手操作、探索、觀察、分析、劃歸獲得數(shù)學(xué)思想的能力;培養(yǎng)學(xué)生轉(zhuǎn)化獨立獲取知識的方法并解決問題的能力。
3、情感目標
(1)、在學(xué)生了解二元一次方程組的“消元”思想,從初步理解化“未知”為“已知和化復(fù)雜問題為簡單問題的劃歸思想中,享受學(xué)習(xí)數(shù)學(xué)的興趣、提高學(xué)習(xí)數(shù)學(xué)的信心。
(三)教學(xué)重點、難點
重點:用代入消元法解二元一次方程組。
難點:探索如何用代入消元法將“二元”轉(zhuǎn)化為“一元”的過程。
二、說教法
針對本節(jié)特點,在教學(xué)過程中采用自主、探究、合作交流的教學(xué)方法,由教師提出明確問題,學(xué)生積極參與討論探究、合作交流,進行總結(jié),使學(xué)生從中獲取知識。鑒于本節(jié)所學(xué)知識的特點,抽象教學(xué)、學(xué)生生搬硬套的學(xué)習(xí)方式將難取得理想效果,因此教師在引入課題時要合理創(chuàng)設(shè)問題情境,讓學(xué)生去經(jīng)歷由具體問題抽象出方程組的過程。并讓學(xué)生通過獨立觀察、合作交流來探討怎樣才能變“二元”為“一元”。然后利用單個二元一次方程的變形及時強化“代入”的本質(zhì)。
三、說學(xué)法
本節(jié)學(xué)生在獨立思考、自主探究中學(xué)習(xí)并對老師的問題展開討論與交流。如何用代入消元法將“二元”轉(zhuǎn)化為“一元”學(xué)生較難掌握,在提出消元思想后,應(yīng)對具體的消元解法的過程進行歸納,讓學(xué)生得到對代入法的基本步驟的概括,通過“把一個方程(必要時先做適當變形)代入另一個方程”實現(xiàn)消元。應(yīng)注意引導(dǎo)學(xué)生認識到為什么要實施這樣的步驟。把具體做法與消元結(jié)合,使學(xué)生明解其目的性。明確這樣做的依據(jù)是等量代換。七年級的學(xué)生已經(jīng)初步具備合作交流的能力??梢酝ㄟ^探究和合作來實現(xiàn)課程目標;此外,教學(xué)中,范例的講解和隨堂練習(xí)始終是學(xué)以對用的有效方法。隨堂練習(xí)時應(yīng)引導(dǎo)學(xué)生通過自我反省、小組評價來克服解題時的錯誤,必要時給與規(guī)范矯正。
四、說教學(xué)程序
本節(jié)課我將“自主、探究、合作、交流”運用到教學(xué)中,教學(xué)過程可以劃分為以下幾個環(huán)節(jié):
1、引入新知:利用多媒體教學(xué)手段,創(chuàng)設(shè)情境,通過籃球比賽問題引入教學(xué),情境活潑、自然。
2、探究新知:在籃球比賽問題中,首先可以用一元一次方程來解決實際問題,接著提出問題:能否設(shè)出兩個未知數(shù),列出兩個方程組成方程組呢?(學(xué)生獨立思考后分組探究討論)。在學(xué)生得出正確的方程組之后提出問題:怎樣解這個方程組呢?(學(xué)生分組討論,教師加以適當?shù)囊龑?dǎo)),各組派代表得出自己的結(jié)論,教師適時引導(dǎo)“消元”思想,對消元解法的過程予以歸納。
3、運用新知:在得出“代入消元”解二元一次方程組后,應(yīng)用“代入消元法”解決實際問題,在學(xué)生解題過程中著重強調(diào)、矯正、理清思路和步驟。然后師生一起“解后思”:在解題時應(yīng)注意什么?在隨堂練習(xí)時教師關(guān)鍵是反饋矯正、積極評價。
4、教學(xué)小結(jié),知識回顧:讓學(xué)生暢所欲言談本節(jié)課的得失,感到困惑和疑難的地方、解題的關(guān)鍵和步驟等。教師在學(xué)生發(fā)言的基礎(chǔ)上再進行提煉:解二元一次方程組的主要思路是“消元”;解二元一次方程組的一般步驟是:“一變、二代、三求、四代、五定”。
5、課外作業(yè)。為進一步鞏固知識,布置適當?shù)?、具有代表性的作業(yè)。
五、說應(yīng)用
《數(shù)學(xué)課程標準》指出:“數(shù)學(xué)來源于生活”“數(shù)學(xué)服務(wù)于生活”“數(shù)學(xué)問題要生活化”,“讓數(shù)學(xué)走進生活”已是一種全新的教育理念,它有利于實現(xiàn)“不同人在數(shù)學(xué)上得到不同的發(fā)展?!睘榇?,在數(shù)學(xué)課堂教學(xué)中,教師要善于創(chuàng)設(shè)教學(xué)情境,為學(xué)生創(chuàng)造一個輕松、愉悅的學(xué)習(xí)氛圍,集中學(xué)生的注意力,把學(xué)生思緒帶進特定的學(xué)習(xí)情境中去,激發(fā)他們濃厚的學(xué)習(xí)興趣和強烈的求知欲望。同時,教師設(shè)計教學(xué)活動時,要充分利用現(xiàn)代遠程教育資源結(jié)合本班的實際和知識水平,精心為學(xué)生創(chuàng)設(shè)貼進生活的學(xué)習(xí)情境,讓學(xué)生有身臨其境的感覺,從而激發(fā)學(xué)生的學(xué)習(xí)興趣和求知欲。
總之,在數(shù)學(xué)教學(xué)中合理運用多媒體教學(xué)平臺,能極大地方便教學(xué),減輕教師的負擔,更好地優(yōu)化課堂結(jié)構(gòu),促進教學(xué)質(zhì)量的提高。學(xué)生的學(xué)習(xí)方式不再單一,學(xué)習(xí)興趣明顯提高,能自主地學(xué)習(xí),真正成為學(xué)習(xí)的主體。
二元一次方程課件教案 篇12
一、說教材
首先談?wù)勎覍滩牡睦斫?,《二元一次方程組》是人教版初中數(shù)學(xué)七年級下冊第八章第一節(jié)的內(nèi)容,本節(jié)課的內(nèi)容是二元一次方程組的概念以及二元一次方程組的解。在此之前學(xué)習(xí)了一元一次方程和解方程的步驟,為本節(jié)課打下了良好的基礎(chǔ)。學(xué)了本節(jié)課為后面的解二元一次方程的方法做下鋪墊。因此本節(jié)課有著承上啟下的作用。
二、說學(xué)情
接下來談?wù)剬W(xué)生的實際情況。新課標指出學(xué)生是教學(xué)的主體,所以要成為符合新課標要求的教師,深入了解所面對的學(xué)生可以說是必修課。本階段的學(xué)生已經(jīng)具備了一定的分析能力,與類比學(xué)習(xí)能力。而且在生活中也為本節(jié)課積累了很多經(jīng)驗。所以,學(xué)生對于二元一次方程組概念理解較為容易,找出方程組的解,相對來說有難度,需要教師多引導(dǎo)。
三、說教學(xué)目標
根據(jù)以上對教材的分析以及對學(xué)情的把握,我制定了如下三維教學(xué)目標:
(一)知識與技能
掌握二元一次方程與二元一次方程組的概念,并了解它們的解,能正確地找出二元一次方程組的解。
(二)過程與方法
通過類比學(xué)習(xí)、自主探究、合作交流的過程,提升類比學(xué)習(xí)的能力、培養(yǎng)探究的意識。
(三)情感態(tài)度價值觀
感受數(shù)學(xué)與生活的密切聯(lián)系,培養(yǎng)學(xué)習(xí)數(shù)學(xué)的興趣。
四、說教學(xué)重難點
我認為一節(jié)好的數(shù)學(xué)課,從教學(xué)內(nèi)容上說一定要突出重點、突破難點。而教學(xué)重點的確立與我本節(jié)課的內(nèi)容肯定是密不可分的。那么根據(jù)授課內(nèi)容可以確定本節(jié)課的教學(xué)重點是:二元一次方程與二元一次方程組的概念以及方程與方程組的解。教學(xué)難點是:二元一次方程組解的探究。
五、說教法和學(xué)法
現(xiàn)代教學(xué)理論認為,在教學(xué)過程中,學(xué)生是學(xué)習(xí)的主體,教師是學(xué)習(xí)的組織者、引導(dǎo)者,教學(xué)的一切活動都必須以強調(diào)學(xué)生的主動性、積極性為出發(fā)點。根據(jù)這一教學(xué)理念,結(jié)合本節(jié)課的內(nèi)容特點和學(xué)生的年齡特征,本節(jié)課我采用講授法、練習(xí)法、小組合作等教學(xué)方法。
六、說教學(xué)過程
下面我將重點談?wù)勎覍虒W(xué)過程的設(shè)計。
(一)新課導(dǎo)入
首先是導(dǎo)入環(huán)節(jié),我采用情境導(dǎo)入:展示籃球聯(lián)賽圖片,給出評分標準。并提出問題:這個隊伍勝負場數(shù)分別是多少?
根據(jù)學(xué)生回答追問:用列方程解決問題,題中有幾個未知數(shù)呢?從而引出本節(jié)課的課題《二元一次方程組》
這樣設(shè)計的好處是:利用籃球聯(lián)賽的圖片導(dǎo)入,并講清楚評分規(guī)則,不僅可以吸引學(xué)生探索的興趣,還可以培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識。
(二)新知探索
接下來是教學(xué)中最重要的新知探索環(huán)節(jié),主要通過三個活動展開學(xué)習(xí)。
活動一:學(xué)生嘗試列方程解決問題,看看在列方程過程中遇到了什么困難?同桌之間互相交流。
學(xué)生分析題意,發(fā)現(xiàn)有未知數(shù),可以使用列方程的方法解決問題。當讓學(xué)生自己動手練習(xí)時,他們會發(fā)現(xiàn),勝負的場數(shù)都是未知的。
此時教師可以引導(dǎo)學(xué)生發(fā)現(xiàn)和思考:要求的是兩個未知數(shù),能不能根據(jù)題意直接設(shè)兩個未知數(shù),使列方程變得容易呢?學(xué)生在這樣的提示下會有一定的想法,但對于列出二元一次方程組來說還是比較困難的。
教師板書表格示意圖,引導(dǎo)學(xué)生通過題意,發(fā)現(xiàn)題干中包含的必須同時滿足的條件,得到兩組關(guān)系式并設(shè)出未知數(shù)完成表格。
活動二:學(xué)生觀察兩個方程特點,與一元一次方程有什么不同?并試著下定義。
在這里學(xué)生通過類比學(xué)習(xí),能夠歸納出二元一次方程的概念:每個方程都含有兩個未知數(shù),并且含有未知數(shù)的項的次數(shù)都是1。了解了二元一次方程后,對于二元一次方程組的概念就可以很好的展開了,對于本題列了兩個二元一次方程解決問題,像這樣的方程組叫做二元一次方程組。
師生共同總結(jié)出二元一次方程與二元一次方程組的定義。
列出了二元一次方程組,要解決籃球聯(lián)賽的問題,就要求出方程組的解,接下來進行第三個活動。
活動三:完成表格,以二元一次方程組中的一個方程為例。小組合作,找出幾組整數(shù)解,并觀察哪一組解也符合另一個方程。
在這里解二元一次方程組,可以先將問題簡單化,先研究一個方程的解,找到幾組解后,再看哪一組解也符合第二個方程。也就是兩個方程的公共解。教師給出表格,小組在進行合作時,教師應(yīng)引導(dǎo)學(xué)生思考結(jié)合題意,兩個未知數(shù)應(yīng)取正整數(shù)。填完表格后,師生共同總結(jié)出二元一次方程解的定義。
教師繼續(xù)追問,哪一組的值也滿足第二個方程。師生共同總結(jié)出什么叫做二元一次方程組的解。
得到方程組的解,回歸情景得出實際問題的答案。
設(shè)計意圖:通過三個活動展開本節(jié)課,不僅符合新課改的理念:學(xué)生是學(xué)習(xí)的主體,教師是教學(xué)活動中的組織者、引導(dǎo)者、合作者,還能通過小組活動、類比學(xué)習(xí)等活動豐富課堂。
(三)課堂練習(xí)
接下來是鞏固提高環(huán)節(jié)。
練習(xí):對下面的問題,列出二元一次方程組,并根據(jù)問題的實際意義,找出問題的解。
加工某種產(chǎn)品需經(jīng)兩道工序,第一道工序每人每天可完成900件,第二道工序每人每天可完成1200件?,F(xiàn)有7位工人參加這兩道工序,應(yīng)怎樣安排人力,才能使每天第一、第二道工序所完成的件數(shù)相等?
設(shè)計這道題可以讓學(xué)生感受數(shù)學(xué)與生活的密切聯(lián)系,學(xué)以致用。教師可以及時掌握學(xué)生本節(jié)課的學(xué)習(xí)情況,給予補充糾正。
(四)小結(jié)作業(yè)
在課程的最后我會提問:今天有什么收獲?
引導(dǎo)學(xué)生回顧:二元一次方程組的定義與二元一次方程組的解。
本節(jié)課的課后作業(yè)我設(shè)計為:
思考除了用列表找二元一次方程組的解,還有什么方法能找出解,能不能將它變成我們熟悉的一元一次方程求解。
設(shè)計意圖:本節(jié)課學(xué)生通過列表觀察得到了方程組的解,作業(yè)設(shè)計為讓學(xué)生思考解二元一次方程組的方法,并提示能不能把它變成熟悉的一元一次方程求解,為下節(jié)課的學(xué)習(xí)做下鋪墊。
基本不等式課件
古人云,工欲善其事,必先利其器。在每學(xué)期開學(xué)之前,幼兒園的老師們都要為自己之后的教學(xué)做準備。為了防止學(xué)生抓不住重點,教案就顯得非常重要,有了教案上課才能夠為同學(xué)講更多的,更全面的知識。所以你在寫幼兒園教案時要注意些什么呢?以下內(nèi)容是小編特地整理的“基本不等式課件”,在此提醒你收藏本頁,以方便閱讀!
基本不等式課件 篇1
【學(xué)習(xí)目標】
1.知識與技能:學(xué)會推導(dǎo)并掌握基本不等式,理解這個基本不等式的幾何意義,并掌握定理中的不等號“≥”取等號的條件是:當且僅當這兩個數(shù)相等;
2.過程與方法:通過實例探究抽象基本不等式;
3.情態(tài)與價值:通過本節(jié)的學(xué)習(xí),體會數(shù)學(xué)來源于生活,提高學(xué)習(xí)數(shù)學(xué)的興趣
【能力培養(yǎng)】
培養(yǎng)學(xué)生嚴謹、規(guī)范的學(xué)習(xí)能力,分析問題、解決問題的能力。
【教學(xué)重點】
應(yīng)用數(shù)形結(jié)合的思想理解不等式,并從不同角度探索不等式 的證明過程;及其在求最值時初步應(yīng)用
【教學(xué)難點】
基本不等式 等號成立條件
【教學(xué)過程】
一、課題導(dǎo)入
基本不等式 的幾何背景:如圖是在北京召開的第24界國際數(shù)學(xué)家大會的會標,教師引導(dǎo)學(xué)生從面積的關(guān)系去找不等關(guān)系。
二、講授新課
1.問題探究——探究圖形中的不等關(guān)系。
將圖中的“風(fēng)車”抽象成如圖,在正方形abcd中右個全等的直角三角形。設(shè)直角三角形的兩條直角邊長為a,b那么正方形的邊長為 。這樣,4個直角三角形的面積的和是2ab,正方形的面積為 。由于4個直角三角形的面積小于正方形的面積,我們就得到了一個不等式: 。
當直角三角形變?yōu)榈妊苯侨切?,即a=b時,正方形efgh縮為一個點,這時有 。
2.總結(jié)結(jié)論:一般的,如果
(結(jié)論的得出盡量發(fā)揮學(xué)生自主能動性,讓學(xué)生總結(jié),教師適時點撥引導(dǎo))
3.思考證明:(讓學(xué)生嘗試給出它的證明)
4.特別的,如果a>0,b>0,我們用 分別代替a、b ,可得,
通常我們把上式寫作:
①從不等式的性質(zhì)推導(dǎo)基本不等式
用分析法證明:(略)
②理解基本不等式 的幾何意義
探究:對課本第98頁的“探究”( 幾何證明)
注:在數(shù)學(xué)中,我們稱 為a、b的算術(shù)平均數(shù),稱 為a、b的幾何平均數(shù)。本節(jié)定理還可敘述為:兩個正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)。
5、例:當時,取什么值,的值最小?最小值是多少?
6、課時小結(jié)
本節(jié)課,我們學(xué)習(xí)了重要不等式a2+b2≥2ab;兩正數(shù)a、b的算術(shù)平均數(shù)( ),幾何平均數(shù)( )及它們的關(guān)系( ≥ )。它們成立的條件不同,前者只要求a、b都是實數(shù),而后者要求a、b都是正數(shù)。它們既是不等式變形的基本工具,又是求函數(shù)最值的重要工具(下一節(jié)我們將進一步學(xué)習(xí)它們的應(yīng)用)。
7、作業(yè):
課本第100頁習(xí)題[a]組的第1、2題
板書 設(shè) 計
課題: 3.4基本不等式
一、兩個不等式
二、例題及練習(xí)
基本不等式課件 篇2
基本不等式是初中數(shù)學(xué)中重要的一個知識點。通過學(xué)習(xí)基本不等式,可以幫助學(xué)生更深入地理解不等式的性質(zhì),掌握不等式的解法和應(yīng)用技巧,以及提高數(shù)學(xué)分析和推理能力。下面就從不等式的定義、基本不等式的證明、基本不等式的應(yīng)用等方面來詳細介紹基本不等式。
一、不等式的定義
不等式是數(shù)學(xué)中的一種基本概念,用來表示兩個數(shù)之間的大小關(guān)系。比如,如果a>b,則可以表示為a-b>0;如果a≥b,則可以表示為a-b≥0。在不等式中,我們常用符號“>”、“≥”、“
二、基本不等式的證明
基本不等式是指若a、b為正實數(shù),那么(a+b)2/4≥ab。這個不等式在解決很多數(shù)學(xué)問題時都有非常重要的作用,因此我們需要掌握基本不等式的證明方法。
證明方法1:
(a+b)2/4=(a2+2ab+b2)/4= [(a+b)2-2ab]/4
由于a、b為正實數(shù),所以(a+b)2和2ab一定是正實數(shù)。
因此,(a+b)2-2ab≥0,即(a+b)2/4≥ab。
證畢。
證明方法2:
由于a、b為正實數(shù),所以(a-b)2≥0。根據(jù)這個不等式,我們可以推導(dǎo)出:
a2+b2≥2ab
(a2+b2)/2≥ab
(a2+2ab+b2)/4≥ab
(a+b)2/4≥ab
證畢。
證明方法3:
設(shè)Δ=a2-2ab+b2=(a-b)2≥0
那么,a2-2ab+b2≥0,即a2+b2≥2ab
(a2+b2)/2≥ab,即(a+b)2/4≥ab
證畢。
通過上述三種證明方法,我們可以看到,基本不等式的證明方法可以有多種,但本質(zhì)上是一樣的。
三、基本不等式的應(yīng)用
1.求解最優(yōu)解
在某些問題中,需要求解若干變量的最大值或最小值,例如某個產(chǎn)品的利潤最大化問題、最短路徑問題等,這時我們可以將問題轉(zhuǎn)化為一個不等式問題,然后運用基本不等式來簡化求解過程。
2.推導(dǎo)其他不等式
基本不等式可以作為其他不等式的推導(dǎo)依據(jù)。例如,在求證某個不等式時,我們可以使用基本不等式將其轉(zhuǎn)化為更簡單的形式,從而更容易得到證明。
3.證明集合的包含關(guān)系
當我們需要證明兩個集合的包含關(guān)系時,可以通過基本不等式來構(gòu)造出一些包含于其中一個集合但不包含于另一個集合的數(shù)列,這樣就容易得出它們之間的包含關(guān)系。
總之,基本不等式在數(shù)學(xué)中有著非常重要的作用,深入了解和掌握基本不等式,不僅可以提高數(shù)學(xué)思維能力,也可以幫助我們更好地理解和應(yīng)用各種數(shù)學(xué)知識。
基本不等式課件 篇3
基本不等式是中學(xué)數(shù)學(xué)中的重要內(nèi)容,它們可以作用于多種數(shù)學(xué)領(lǐng)域,包括代數(shù)、幾何、概率等等。這種不等式是一個基本性質(zhì),它提供了一種有效地組織和比較數(shù)字和數(shù)學(xué)表達式的方式。本文將探討基本不等式,并解釋其重要性和應(yīng)用范圍。
基本不等式是指一個簡單的數(shù)學(xué)規(guī)律,即對于任何正實數(shù)a和b,有如下關(guān)系式:
(a + b)2 ≥ 4ab
當a和b相等時等式被取得,此時有a = b = (a + b) / 2。
這個不等式看上去非常簡單,但它有它的特殊地位和應(yīng)用。它是所有不等式中最基本也是最重要的,它可以應(yīng)用到各種自然科學(xué)和社會科學(xué)領(lǐng)域中。例如,基本不等式可以用于優(yōu)化無線網(wǎng)絡(luò)傳輸速度和縮短計算機作業(yè)響應(yīng)時間,還可以在物理和金融領(lǐng)域中被用來研究變化率和波動性等特征。
作為一個系統(tǒng)的理論工具,基本不等式的價值和應(yīng)用遠不止于此。尤其是它的推廣版Sylvester不等式,將基本不等式引向了更復(fù)雜多樣的領(lǐng)域。Sylvester不等式是基本不等式在矩陣學(xué)科中的一個推廣。它是一個矩陣不等式,描述了不同形式的矩陣之間的比較規(guī)律。從線性代數(shù)、概率、統(tǒng)計以及其他領(lǐng)域中的應(yīng)用可以看出,矩陣不等式在各種學(xué)科中都有越來越廣泛的應(yīng)用。
基本不等式是解決一些數(shù)學(xué)難題的一個強大工具,在應(yīng)用中經(jīng)常運用到。因此,學(xué)生無論是在數(shù)學(xué)課堂中還是考試中,都應(yīng)該掌握這個基本數(shù)學(xué)概念,并了解它的應(yīng)用。通過培養(yǎng)學(xué)生使用基本不等式和它的推廣Sylvester不等式的能力,可以幫助他們更好地掌握高等數(shù)學(xué)中更復(fù)雜的概念和算法。
因此,掌握和理解基本不等式以及它的推廣Sylvester不等式對數(shù)學(xué)學(xué)習(xí)者來說非常重要。通過對基本不等式的學(xué)習(xí)和掌握,可以幫助學(xué)生完成更復(fù)雜的數(shù)學(xué)問題,進一步培養(yǎng)他們在數(shù)學(xué)領(lǐng)域的創(chuàng)造性和解決問題的能力。
基本不等式課件 篇4
基本不等式是初中數(shù)學(xué)中的一個重要內(nèi)容,也被稱為柯西-施瓦茨不等式。它的意義不僅限于初中數(shù)學(xué),在高中數(shù)學(xué)、大學(xué)數(shù)學(xué)等領(lǐng)域都有廣泛的應(yīng)用?;静坏仁绞菙?shù)學(xué)中非?;A(chǔ)的概念,我們可以通過以下的主題范文來深入了解。
主題一:基本不等式的概念及其應(yīng)用
基本不等式是初中數(shù)學(xué)中的基礎(chǔ)概念,它是數(shù)學(xué)不等式中的重要內(nèi)容。它起源于柯西-施瓦茨不等式,可以用于證明不等式以及優(yōu)化問題。基本不等式的本質(zhì)是數(shù)學(xué)中的向量內(nèi)積,具有非常廣泛的應(yīng)用,比如在概率論、統(tǒng)計學(xué)、矩陣論、函數(shù)論、微積分等方面都有應(yīng)用。
主題二:基本不等式的證明方法
基本不等式的證明方法主要有兩種。一種是基于二次函數(shù)的方法,另一種是基于向量內(nèi)積的方法。無論采用哪種方法,都需要通過簡單的代數(shù)變化、平方等方法,將式子變形成為已知的不等式形式。利用這種方法,我們就可以推出基本不等式,從而應(yīng)用到不等式證明等問題中。
主題三:基本不等式在函數(shù)極值問題中的應(yīng)用
基本不等式在函數(shù)極值問題中也有廣泛的應(yīng)用。函數(shù)的極值可以通過求導(dǎo)數(shù)和函數(shù)值來求解,而基本不等式可以在求解函數(shù)極值過程中起到優(yōu)化作用。通過基本不等式,可以很好地規(guī)避一些數(shù)學(xué)中的陷阱,從而獲得更精確的結(jié)果。因此,基本不等式在函數(shù)極值問題中的應(yīng)用是非常重要的。
主題四:基本不等式在概率論和統(tǒng)計學(xué)中的應(yīng)用
基本不等式在概率論和統(tǒng)計學(xué)中也有廣泛的應(yīng)用。概率論中的卡方分布、t分布等都是基于基本不等式的優(yōu)化結(jié)果。在統(tǒng)計學(xué)的研究中,基本不等式可以用于特征值的計算、回歸分析等方面。因此,基本不等式在概率論和統(tǒng)計學(xué)中的應(yīng)用也是非常重要的。
主題五:用基本不等式解決數(shù)學(xué)中的“熱點”問題
基本不等式是數(shù)學(xué)中的熱點問題之一,因為它在解決很多復(fù)雜的數(shù)學(xué)問題中都起到了重要作用。比如,在組合數(shù)學(xué)中,基本不等式用于計算多重組合數(shù)。在三角函數(shù)中,基本不等式用于計算三角函數(shù)的冪的和。在數(shù)值分析中,基本不等式用于優(yōu)化函數(shù)逼近等方面。因此,我們可以用基本不等式解決數(shù)學(xué)中的一些“熱點”問題,從而獲得更深入的數(shù)學(xué)技巧。
總的來說,基本不等式是數(shù)學(xué)中一個非常重要的內(nèi)容,它可以用于解決不等式證明、函數(shù)極值、概率論和統(tǒng)計學(xué)等領(lǐng)域的問題。同時,基本不等式也是數(shù)學(xué)中的“熱點”問題之一,它為我們提供了更深入的數(shù)學(xué)技巧和思維方式。掌握基本不等式不僅可以提高數(shù)學(xué)水平,而且可以在其他領(lǐng)域帶來更多的收獲。
基本不等式課件 篇5
一、基本不等式的簡介
基本不等式是初中數(shù)學(xué)中的一項重要內(nèi)容,是不等式的基礎(chǔ)。它可以幫助我們在學(xué)習(xí)不等式的過程中更加輕松的理解和掌握其他不等式的相關(guān)知識。它的基本形式是:
對于任意實數(shù)a1, a2, …, an,有
(a1^2 + a2^2 + … + an^2)×n ≥ (a1 + a2+ … + an)^2
二、基本不等式的證明
基本不等式的證明有多種方法,下面將以幾何證明法和數(shù)學(xué)歸納法為例進行講解。
幾何證明法:
首先,我們根據(jù)勾股定理和三角形面積公式有:
a1^2=(a1 cos B1)^2+(a1 sin B1)^2
a2^2=(a2 cos B2)^2+(a2 sin B2)^2
……
an^2=(an cos Bn)^2+(an sin Bn)^2
因為正余弦函數(shù)在第一象限內(nèi)單調(diào)遞增,所以有:
sinB1
sinB2
……
sinBn
把以上不等式累加起來并乘以n,則有:
n(a1^2+a2^2+…+an^2)>=〖(a1cosB1+a2cosB2+…+an cosBn)〗^2+n(a1^2sin^2 B1+…..+an^2sin^2 Bn)
顯然,n(a1^2sin^2B1+….+an^2sin^2Bn)=n(a1sinB1+…+ansinBn)^2
因此,原不等式即證。
數(shù)學(xué)歸納法:
當n = 2時,有
a^2 + b^2 >= 2ab
(a - b)^2 >= 0
顯然成立。
假設(shè)n = k - 1時原不等式成立,即
(a1^2 + a2^2 + … + ak-1^2) × (k - 1) >= (a1 + a2 + … + ak-1)^2
當n = k時,原不等式變?yōu)椋?/p>
(a1^2 + a2^2 + … + ak-1^2 + ak^2) × k >= (a1 + a2 + … + ak-1 + ak)^2
因為(a1^2 + a2^2 + … + ak-1^2) × (k - 1) >= (a1 + a2 + … + ak-1)^2
又因為(a1^2 + a2^2 + … + ak^2) × 1 >= ak^2
因此有:
(a1^2 + a2^2 + … + ak-1^2) × (k - 1) + (a1^2 + a2^2 + … + ak^2) × 1 >= (a1 + a2 + … + ak-1)^2 + ak^2
即
(a1^2 + a2^2 + … + ak^2) × k >= (a1 + a2 + … + ak)^2
因此,當n = k時,原不等式也成立。
綜合上述兩種證明方法,我們可知,基本不等式是正確的。
三、應(yīng)用基本不等式需要注意的問題
1. 基本不等式只適用于a1, a2, …, an均為實數(shù)的情形,不適用于其中有虛數(shù)的情形。
2. 如果不等式兩側(cè)都除以n的話,可以得到一個均值不等式:
(a1 + a2 + … + an) / n >= √(a1^2 + a2^2 + … + an^2)
這就是均值不等式的形式。
3. 基本不等式是一個有力的數(shù)學(xué)工具,它可以用于解決許多數(shù)學(xué)問題。 但在應(yīng)用時,我們需要注意題目的條件,判斷是否可以應(yīng)用,以免掉進錯誤的陷阱。
四、結(jié)語
綜上所述,基本不等式在初中數(shù)學(xué)中是一項基礎(chǔ)性的內(nèi)容,它的正確性是數(shù)學(xué)歸納法和幾何證明法所證明的。應(yīng)用時需要注意題目的條件,判斷是否可以應(yīng)用。相信通過學(xué)習(xí)和掌握基本不等式,我們可以更加輕松的掌握其他不等式的相關(guān)知識。
基本不等式課件 篇6
教學(xué)目的
掌握不等式的基本性質(zhì),會用不等式的基本性質(zhì)進行不等式的變形。
教學(xué)過程
師:我們已學(xué)過等式,不等式,現(xiàn)在我們來看兩組式子(教師出示小黑板中的兩組式子),請同學(xué)們觀察,哪些是等式?哪些是不等式?
第一組:1+2=3; a+b=b+a; S =ab; 4+x =7。
第二組:-7 1+4; 2x ≤6, a+2 ≥0; 3≠4。
生:第一組都是等式,第二組都是不等式。
師:那么,什么叫做等式?什么叫做不等式?
生:表示相等關(guān)系的式子叫做等式;表示不等式的式子叫做不等式。
師:在數(shù)學(xué)熾,我們用等號“=”來表示相等關(guān)系,用不等式號“〈”、“〉”或“≠”表示不等關(guān)系,其中“>”和“<”表示大小關(guān)系。表示大小關(guān)系的不等式是我們中學(xué)教學(xué)所要研究的。
前面我們學(xué)過了等式,同學(xué)們還記得等式的性質(zhì)嗎?
生:等式有這樣的性質(zhì):等式兩邊都加上,或都減去,或都乘以,或都除以( 除數(shù)不為零)同一個數(shù),所得到的仍是等式。
師:很好!當我們開始研究不等式的時候,自然會聯(lián)想到,是否有與等式相類似的性質(zhì),也就是說,如果在不等式的兩邊都加上,或都減去,或都乘以,或都除經(jīng)(除數(shù)不為零)同一個數(shù),結(jié)果將會如何呢?讓我們先做一些試驗練習(xí)。
練習(xí)1 (回答)用小于號“”填空。
(1)7 ___ 4;
(2)- 2____6;
(3)- 3_____ -2;
(4)- 4_____-6
練習(xí)2(口答)分別從練習(xí)1中四個不等式出發(fā),進行下面的運算。
(1)兩邊都加上(或都減去)5,結(jié)果怎樣?不等號的方向改變了嗎?
(2)兩邊都乘以(或都除以)5,結(jié)果怎樣?不等號的方向改變了嗎?
(3)兩邊都乘以(或都除以)(-5),結(jié)果怎樣?不等號的方向改變了嗎?
生:我們發(fā)現(xiàn):在練習(xí)2中,第(1)、(2)題的結(jié)果是不等號的方向不變;在第(3)題中,結(jié)果是不等號的方向改變了!
師:同學(xué)們觀察得很認真,大家再進一步探討一下,在什么情況下不等號的方向就會發(fā)生改變呢?
生甲:在原不等式的兩邊都乘以(或除以)一個負數(shù)的情況下,不等號的方向要改變。
師:有沒有不同的意見?大家都同意他的看法嗎?可能還有同學(xué)不放心,讓我們再做一些試驗。
練習(xí)3(口答)分別在下面四個不等式的兩邊都以乘以(可除以)-2,看看不等號的方向是否改變:
7>4;-2<6;-3<-2;-4>-6。
師:現(xiàn)在我們可以歸納出不等式的基本性質(zhì),一般地說,不等式的基本性質(zhì)有三條:
性質(zhì)1:不等式的兩邊都加上(或都減去)同一個數(shù),不等號的方向 。
(讓同學(xué)回答。)
性質(zhì)2:不等式的兩邊都乘以(或都除以)同一個正數(shù),不等號的方向 。(讓同學(xué)回答。)
性質(zhì)3:不等式的兩邊都乘以(或都除以)同一個負數(shù),不等號的方向 。(讓同學(xué)回答。)
現(xiàn)在請大家翻開課本,一起朗讀用黑體字寫的三條基本性質(zhì)。
不等式的這三條基本性質(zhì),都可以用數(shù)學(xué)語言表達出來,先請一位同學(xué)說一說第一條基本性質(zhì)。
生:如果a<b。那么a+c<b+c(或a-c<b-c;如果a>b,那么a+c>b+c(或a-c>b-c)。
師:對a和b有什么要求嗎?對c有什么要求?
生:沒有什么要求。
師:哪位同學(xué)來回答第二、三條性質(zhì)?
生甲:如果a0, 那么acb,且c>0,那么ac>bc(或
生乙:如果abc(或 );如果a>b,且cb,且c>0,那么ac>bd;(2)如果a>b,那么ac2>bc2;(3)如果ac2>bc2,那么a>b;(4)如果a>b,那么a-b>0;(5)如果ax>b,且a≠0,那么xa;生甲:(1)不對,當c=d≤0時,ac>bd不成立。生乙:(2)也不對,因為c2是一個非負數(shù),當c=0時,ac2>bc2不成立。生丙:(3)對,因為ac2>bc2成立,則c2一定大于零,根據(jù)不等式基本性質(zhì)2,得a>b出。(4)對,根據(jù)不等式基本性質(zhì),由a>b,兩邊減去b得a-b>0。(5)不對,當a<0時,根據(jù)不等式基本性質(zhì)3,得。(6)不對,因為當b<0時,根據(jù)不等式基本性質(zhì)1,得a+b<a;而當b=0時,則有a+b=a。師:同學(xué)們回答得很好。今天我們學(xué)習(xí)了不等式的基本性質(zhì),我們不僅要理解這三條性質(zhì),還要能靈活運用。課外做以下作業(yè):略。教案說明(1) 不等式的基本性質(zhì)的教學(xué),是分成兩個階段進行的。在初中階段,對不等式的基本性質(zhì),并不作證明,只引導(dǎo)學(xué)生用試驗的方法,歸納出三條基本性質(zhì)。通過試驗,由特殊到一般,由具體到抽象,這是一種認識事物規(guī)律的重要方法??茖W(xué)上的許多發(fā)現(xiàn),大多離不開試驗和觀察。大數(shù)學(xué)家歐拉說過:“數(shù)學(xué)這門科學(xué),需要觀察,也需要試驗。”通過教學(xué)培養(yǎng)學(xué)生掌握由試驗發(fā)現(xiàn)規(guī)律的方法,具有重要的意義。當然通過幾個特殊的試驗,就得出一般的結(jié)論,是不嚴密的。但對初中學(xué)生來說,初次接觸不等式,是不能要求那么嚴密的。(2) 不等式的基本性質(zhì)的教學(xué),還應(yīng)采用對比的方法。學(xué)生已學(xué)過等式和等式的性質(zhì),為了便于和加深對不等式基本性質(zhì)的理解,在教學(xué)過程中,應(yīng)將不等式的性質(zhì)與等式的性質(zhì)加以比較:強調(diào)等式的兩邊都加上或減去,都乘以或除以(除數(shù)不能為零)同一個數(shù),所得到的仍是等式,這個數(shù)可以是正數(shù)、負數(shù)或零;而在不等式的兩邊都加上或減去,都乘以或除以(除數(shù)不能為零)同一個數(shù),當這個數(shù)是正數(shù)、負數(shù)或零時,對不等式的方向,有什么不同的影響。通過這樣的對比,不但可以復(fù)習(xí)已學(xué)過的等式有關(guān)知識,便于引入新課,而且也有利于掌握不等式的基本性質(zhì)。對比的方法,也是學(xué)習(xí)數(shù)學(xué)的一種重要方法。(3) 在應(yīng)用不等式的基本性質(zhì)對不等式進行變形時,學(xué)生對不等式兩邊是具體數(shù),判定大小關(guān)系比較容易。因為這實際上是有理數(shù)大小的比較。對于不等式兩邊是含字母的代數(shù)式時,根據(jù)題給的條件,運用不等式基本性質(zhì)判別大小關(guān)系或不等號方向,就比較困難。因為它比較抽象,特別是在運用不等式的基本性質(zhì)2和性質(zhì)3時,學(xué)生必須考慮不等式兩邊同乘(或同除)的這個用字母表示的數(shù)的符號是什么,或者還要對這個用字母表示的數(shù),按正數(shù)、負數(shù)或零三種情況加以討論。在教學(xué)過程中,對于這類題目,采用討論法是比較好的。因為在討論時,學(xué)生可以充分發(fā)表各種見解。對于正確的見解,教師可以讓學(xué)生說出解題的依據(jù);對于錯誤的見解,教師可以進行啟發(fā)引導(dǎo),發(fā)動學(xué)生自己找出錯誤的原因,自己修正見解。這樣,有利于發(fā)現(xiàn)問題,有的放矢地解決問題,有利于深化對不等式基本性質(zhì)的認識。
基本不等式課件 篇7
基本不等式教學(xué)設(shè)計
數(shù)學(xué)與應(yīng)用數(shù)學(xué) 鐘林
課題:人教A版必修5第3章4節(jié),基本不等式
【教學(xué)目標】
1.通過兩個探究實例,引導(dǎo)學(xué)生從幾何圖形中獲得兩個基本不等式,了解基本不等式的幾何背景,體會數(shù)形結(jié)合的思想。
2.進一步提煉、完善基本不等式,并從代數(shù)角度給出不等式的證明,組織學(xué)生分析證明方法,加深對基本不等式的認識,提高邏輯推理論證能力。 3.結(jié)合課本的探究圖形,引導(dǎo)學(xué)生進一步探究基本不等式的幾何解釋,強化數(shù)形結(jié)合的思想。
4.借助例1嘗試用基本不等式解決簡單的最值問題,通過例2及其變式引導(dǎo)學(xué)生
a?b領(lǐng)會運用基本不等式ab?的三個限制條件(一正二定三相等)在解決最
2值中的作用,提升解決問題的能力,體會方法與策略。
【重點難點】
重點:應(yīng)用數(shù)形結(jié)合的思想理解基本不等式,并從不同角度探索不等式a?bab?的證明過程。
2難點:在幾何背景下抽象出基本不等式,并理解基本不等式。
【教學(xué)設(shè)計】
(一)問題導(dǎo)入
欣賞2002年國際數(shù)學(xué)家大會會徽,會徽是根據(jù)中國古代數(shù)學(xué)家趙爽的弦圖設(shè)計的,顏色的明暗使它看上去象一個風(fēng)車,代表中國人民熱情好客。你能發(fā)現(xiàn)它是什么圖形構(gòu)成的嗎?請根據(jù)會徽探索一些常見相等或不等關(guān)系。
探究一:在這張“弦圖”中能找出一些相等關(guān)系和不等關(guān)系嗎? 在正方形ABCD中有4個全等的直角三角形.設(shè)直角三角形兩條直角邊長為,a,b。
22a?b那么正方形的邊長為。
于是,4個直角三角形的面積之和S1?2ab。 正方形的面積S2?a2?b2。 由圖可知S2?S1,即a2?b2?2ab。
當直角三角形變?yōu)榈妊苯侨切危磿r,正方形EFGH縮為一個點,這時 a2?b2?2ab
所以a2?b2?2ab。
探究二:如下圖所示的梯形中,EF是梯形ABCD的中位線,梯形ABGH相似于梯 形GHDC。
梯形ABCD的上底是a,下底是b。讓同學(xué)們自主研究GH和EF的大小關(guān)系。
a?b因為EF是中位線,所以EF?,
2由相似,可以得出GH?ab, 同樣因為相似,有
AGABa, ??GDGHb又因為a?b,所以AG?GD,即AG?AE,
a?b。 2顯然,當AB逐漸趨近CD的時候,GH也逐漸向EF靠近, 當AB=CD的時候,即ABCD是矩形的時候,GH與EF重合。
a?b即,當且僅當a?b時,ab?。
2a?b所以,ab?,當且僅當a?b時,等號成立。
2所以GH?EF,即ab?
(二)概念深入
根據(jù)上述兩個幾何背景,初步形成不等式結(jié)論:
若a,b?R?,則a2?b2?2ab。(當且僅當a=b時,等號成立)
a?b。(當且僅當a=b時,等號成立) 2請同學(xué)們運用代數(shù)法證明: 作法一(作差法): 若a,b?R?,則ab?a2?b2?2ab?(a?b)2?0a?b?2ab22
當且僅當a=b時,等號成立。且發(fā)現(xiàn)這里且a和b可以是全體實數(shù)、單項式、多項式。
作法二(分析法):
要證明a?b?ab, 2只需證明a?b?2ab, 即證a?b-2ab?0, 即為?a-b?2?0,該式顯然成立,所以,當a?b時取等號。
于是有這樣的結(jié)論:
稱ab為a,b的幾何平均數(shù);稱基本不等式ab?a?b為a,b的算術(shù)平均數(shù), 2a?b又可敘述為: 2兩個正數(shù)的幾何平均數(shù)不大于它們的算術(shù)平均數(shù)
作法三(幾何法):
如圖,AB是圓O的直徑,點C是AB上一點,AC=a,BC=b.過點C作 垂直于AB的弦DE,連接AD,BD。 從而有CD?ab,OD?a?b。 2a?b。 2a?b當且僅當C點與圓心O點重合時,即a=b時,ab?
2故再次證明:
a?ba?0,b?0,ab?,當且僅當a=b時,等號成立。
2a?b也說明了ab?的幾何意義:半徑不小于半弦。
2由于直角三角形COD中,直角邊CD
(三)例題講解
例1.(1)用籬笆圍一個面積為100平方米的矩形菜園,問這個矩形的長、寬各為多少時,所用籬笆最短,最短的籬笆是多少?
(2)一段長為36米的籬笆圍成一個矩形菜園,問這個矩形的長、寬為多少時,菜園的面積最大,最大面積是多少?
(通過例1的講解,總結(jié)歸納利用基本不等式求最值問題的特征,實現(xiàn)積與和的轉(zhuǎn)化)
對于x,y?R?,
(1)若xy?p(定值),則當且僅當x?y時,x?y有最小值2p;
s2(2)若x?y?s(定值),則當且僅當x?y時,xy有最大值。
4(鼓勵學(xué)生自己探索推導(dǎo),不但可使他們加深基本不等式的理解,還鍛煉了他們的思維,培養(yǎng)了勇于探索的精神。)
1例2.求y?x?(x?0)的值域。
x1變式1.若x?2,求x?的最小值.
x?21在運用基本不等式解題的基礎(chǔ)上,利用幾何畫板展示y?x?(x?0)的函數(shù)
x圖象,使學(xué)生再次感受數(shù)形結(jié)合的數(shù)學(xué)思想。
a?b并通過例2及其變式引導(dǎo)學(xué)生領(lǐng)會運用基本不等式ab?的三個限制
2條件(一正二定三相等)在解決最值問題中的作用,提升解決問題的能力,體會方法與策略。
(四)歸納小結(jié)&課后作業(yè) 基本不等式:
若a,b?R?,則a2?b2?2ab。(當且僅當a=b時,等號成立)
a?b。(當且僅當a=b時,等號成立) 2(1)基本不等式的幾何解釋(數(shù)形結(jié)合思想); (2)運用基本不等式解決簡單最值問題的基本方法。
作業(yè):A組第4題,B組第1題,第2題
若a,b?R?,則ab?
基本不等式課件 篇8
基本不等式課件
基本不等式是初中數(shù)學(xué)中的重要知識點之一,在學(xué)習(xí)這個知識點之前,我們先來了解下基本不等式的定義和公式:
定義:若a1,a2,...,an是n個非負實數(shù),則有
(a1+a2+...+an)/n≥(a1×a2×...×an)的n次方根。
公式:(a1+a2+...+an)/n≥(a1×a2×...×an)的n次方根。
這個公式的意義是,當n個數(shù)的平均值不小于這n個數(shù)的相乘積的n次方根時,我們就稱這個不等式為基本不等式。
基本不等式的意義很重要,它是一種實用的數(shù)學(xué)工具,能夠結(jié)合實際問題進行運用。在統(tǒng)計學(xué)中,我們經(jīng)常需要對數(shù)據(jù)進行分析,計算某一組數(shù)的平均值?;静坏仁礁嬖V我們,對于一組非負實數(shù),它們的平均值一定不小于它們的幾何平均數(shù)。
下面我們來看一個簡單的實例:
假設(shè)有兩組數(shù),分別為2,3,4和1,2,8,現(xiàn)在我們需要比較這兩組數(shù)哪一組平均值較大。
我們可用基本不等式進行求解:
對于2,3,4,有(2+3+4)/3=3,(2×3×4)的1/3次方≈2.83,所以有3≥2.83。
對于1,2,8,有(1+2+8)/3=3.67,(1×2×8)的1/3次方≈2.19,所以有3.67≥2.19。
通過比較,我們可以發(fā)現(xiàn),第一組數(shù)的平均值是小于第二組數(shù)的平均值的。
基本不等式雖然簡單,但是在實際應(yīng)用中有著廣泛的應(yīng)用。例如在金融學(xué)、經(jīng)濟學(xué)、醫(yī)學(xué)等領(lǐng)域中,我們需要對數(shù)據(jù)進行分析,計算平均值。基本不等式能夠幫助我們進行更加精確的計算,從而提高研究的準確性和可靠性。
在數(shù)學(xué)競賽中,基本不等式也是一道基礎(chǔ)題,掌握好它的原理和應(yīng)用方法,就能夠輕松應(yīng)對數(shù)學(xué)競賽中的各種不等式題,提升自己的數(shù)學(xué)能力。
綜上所述,基本不等式是一項非常實用的數(shù)學(xué)工具,它能夠幫助我們進行數(shù)據(jù)分析和計算,提高研究的準確性和可靠性。在數(shù)學(xué)的應(yīng)用和研究中,掌握好基本不等式的原理和應(yīng)用方法非常重要。
基本不等式課件 篇9
課題:3.4.3 基本不等式 的應(yīng)用(二) 科目:數(shù)學(xué) 教學(xué)對象:高二(290)學(xué)生 課時:1課時 提供者:劉和安 單位: 姚安一中 一、教學(xué)內(nèi)容分析 本節(jié)課的研究是起到了對學(xué)生以前所學(xué)知識與方法的復(fù)習(xí)、應(yīng)用,進而構(gòu)建他們更完善的知識網(wǎng)絡(luò)。數(shù)學(xué)建模能力的培養(yǎng)與鍛煉是數(shù)學(xué)教學(xué)的一項長期而艱苦的任務(wù),這一點,在本節(jié)課是真正得到了體現(xiàn)和落實。?
根據(jù)本節(jié)課的教學(xué)內(nèi)容,應(yīng)用觀察、閱讀、歸納、邏輯分析、思考、合作交流、探究,對基本不等式展開實際應(yīng)用,進行啟發(fā)、探究式教學(xué)并使用投影儀輔助。? 二、教學(xué)目標 (一)知識目標:構(gòu)建基本不等式解決函數(shù)的值域、最值問題;
(二)能力目標:讓學(xué)生探究用基本不等式解決實際問題
(三)情感、態(tài)度和價值觀目標:
通過具體問題的解決,讓學(xué)生去感受、體驗現(xiàn)實世界和日常生活中存在著大量的不等量關(guān)系并需要從理性的角度去思考,鼓勵學(xué)生用數(shù)學(xué)觀點進行類比、歸納、抽象,使學(xué)生感受數(shù) 學(xué)、走進數(shù)學(xué)、培養(yǎng)學(xué)生嚴謹?shù)臄?shù)學(xué)學(xué)習(xí)習(xí)慣和良好的思維習(xí)慣;? 三、學(xué)習(xí)者特征分析 在本節(jié)課的教學(xué)過程中,仍應(yīng)強調(diào)不等式的現(xiàn)實背景和實際應(yīng)用,真正地把不等式作為刻畫現(xiàn)實世界中不等關(guān)系的工具。通過實際問題的分析解決,讓學(xué)生去體會基本不等式所具有的廣泛的實用價值,同時,也讓學(xué)生去感受數(shù)學(xué)的應(yīng)用價值,從而激發(fā)學(xué)生去熱愛數(shù)學(xué)、研究數(shù)學(xué)。而不是覺得數(shù)學(xué)只是一門枯燥無味的推理學(xué)科。在解決實際問題的過程中,既要求學(xué)生能用數(shù)學(xué)的眼光、觀點去看待現(xiàn)實生活中的許多問題,又會涉及與函數(shù)、方程、三角等許多數(shù)學(xué)本身的知識與方法的處理 四、教學(xué)策略選擇與設(shè)計 1.采用探究法,按照觀察、閱讀、歸納、思考、交流、邏輯分析、抽象應(yīng)用的方法進行啟發(fā)式教學(xué);?
2.教師提供問題、素材,并及時點撥,發(fā)揮老師的主導(dǎo)作用和學(xué)生的主體作用;?
3.設(shè)計較典型的具有挑戰(zhàn)性的問題,激發(fā)學(xué)生去積極思考,從而培養(yǎng)他們的數(shù)學(xué)學(xué)習(xí)興趣。?? 五、教學(xué)重點及難點 教學(xué)重點:1.構(gòu)建基本不等式解決函數(shù)的值域、最值問題。?
2.讓學(xué)生探究用基本不等式解決實際問題;?
教學(xué)難點:1.讓學(xué)生探究用基本不等式解決實際問題;?
2.基本不等式應(yīng)用時等號成立條件的考查;?
六、教學(xué)過程 教師活動 學(xué)生活動 設(shè)計意圖 (一)導(dǎo)入新課
(二)推進新課
已知 ,若ab為常數(shù)k,那么a+b的值如何變化?
若a+b為常數(shù)s,那么ab的值如何變化?
老師用投影儀給出本節(jié)課的第一組問題
(1)求函數(shù)y=2x2+ (x>0)的最小值。?
(2)求函數(shù)y=x2+ (x>0)的最小值。?
(3)求函數(shù)y=3x2-2x3(0
(4)求函數(shù)y=x(1-x2)(0
(5)設(shè)a>0,b>0,且a2+ =1,求 的最大值。?
(三)合作探究 我們來考慮運用正數(shù)的算術(shù)平均數(shù)與幾何平均數(shù)之間的關(guān)系來解答這些問題。根據(jù)函數(shù)最值的含義,我們不難發(fā)現(xiàn)若平均值不等式的某一端為常數(shù),則當?shù)忍柲軌蛉〉綍r,這個常數(shù)即為另一端的一個最值。 ?
(四)例題精析?
【例】某工廠要建造一個長方體形無蓋貯水池,其容積為4 800 m3,深為 3 m.如果池底每平方米的造價為150元,池壁每平方米的造價為120元,怎樣設(shè)計水池能使總造價最低?最低總造價是多少?
當且僅當a=b時,a+b就有最小值為2k.?
當且僅當a=b時,ab就有最大值 (或ab有 最大值 ).?
學(xué)生完成
留五分鐘的時間讓學(xué)生思考,合作交流
(根據(jù)學(xué)生完成的典型情況,找五位學(xué)生到黑板板演,然后老師根據(jù)學(xué)生到黑板板演的完成情況再一次作點評)?
學(xué)生思考、回答,
不等式與不等式組教案錦集
我們聽了一場關(guān)于“不等式與不等式組教案”的演講讓我們思考了很多。老師會對課本中的主要教學(xué)內(nèi)容整理到教案課件中,所以老師寫教案可不能隨便對待。教案是評估學(xué)生學(xué)習(xí)效果的有效依據(jù)。經(jīng)過閱讀本頁你的認識會更加全面!
不等式與不等式組教案 篇1
第一章
三角形的證明
1.等腰三角形
(一)一、學(xué)生知識狀況分析
在八年級上冊第七章《平行線的證明》,學(xué)生已經(jīng)感受了證明的必要性,并通過平行線有關(guān)命題的證明過程,習(xí)得了一些基本的證明方法和基本規(guī)范,積累了一定的證明經(jīng)驗;在七年級下,學(xué)生也已經(jīng)探索得到了有關(guān)三角形全等和等腰三角形的有關(guān)命題,這些都為證明本節(jié)有關(guān)命題做了很好的鋪墊。
二、教學(xué)任務(wù)分析
本節(jié)將進一步回顧和證明全等三角形的有關(guān)定理,并進一步利用這些定理、公理證明等腰三角形的有關(guān)定理,由于具備了上面所說的活動經(jīng)驗和認知基礎(chǔ),為此,本節(jié)可以讓學(xué)生在回顧的基礎(chǔ)上,自主地尋求命題的證明,為此,確定本節(jié)課的教學(xué)目標如下:
1.知識目標:
理解作為證明基礎(chǔ)的幾條公理的內(nèi)容,應(yīng)用這些公理證明等腰三角形的性質(zhì)定理; 在證明過程中,進一步感受證明過程,掌握推理證明的基本要求,明確條件和結(jié)論,能夠借助數(shù)學(xué)符號語言利用綜合法證明等腰三角形的性質(zhì)定理和判定定理;
熟悉證明的基本步驟和書寫格式。2.能力目標:
經(jīng)歷“探索-發(fā)現(xiàn)-猜想-證明”的過程,讓學(xué)生進一步體會證明是探索活動的自然延續(xù)和必要發(fā)展,發(fā)展學(xué)生的初步的演繹邏輯推理的能力;
鼓勵學(xué)生在交流探索中發(fā)現(xiàn)證明方法的多樣性,提高邏輯思維水平; 3.情感與價值目標
啟發(fā)引導(dǎo)學(xué)生體會探索結(jié)論和證明結(jié)論,及合情推理與演繹的相互依賴和相互補充的辯證關(guān)系;
培養(yǎng)學(xué)生合作交流的能力,以及獨立思考的良好學(xué)習(xí)習(xí)慣.4.教學(xué)重、難點
重點:探索證明等腰三角形性質(zhì)定理的思路與方法,掌握證明的基本要求和方法;
難點:明確推理證明的基本要求如明確條件和結(jié)論,能否用數(shù)學(xué)語言正確表達等。
三、教學(xué)過程分析
學(xué)生課前準備:一張等腰三角形紙片(供上課折疊實驗用); 教師課前準備:制作好的幾何畫板課件.第一環(huán)節(jié):回顧舊知
導(dǎo)出公理
活動內(nèi)容:提請學(xué)生回憶并整理已經(jīng)學(xué)過的8條基本事實中的5條: 1.兩直線被第三條直線所截,如果同位角相等,那么這兩條直線平行; 2.兩條平行線被第三條直線所截,同位角相等; 3.兩邊夾角對應(yīng)相等的兩個三角形全等(SAS); 4.兩角及其夾邊對應(yīng)相等的兩個三角形全等(ASA); 5.三邊對應(yīng)相等的兩個三角形全等(SSS);
在此基礎(chǔ)上回憶全等三角形的另一判別條件:1.(推論)兩角及其中一角的對邊對應(yīng)相等的兩個三角形全等(AAS),并要求學(xué)生利用前面所提到的公理進行證明;2.回憶全等三角形的性質(zhì)。
活動目的:經(jīng)過一個暑假,學(xué)生難免有所遺忘,因此,在第一課時,回顧有關(guān)內(nèi)容,既是對前面學(xué)習(xí)內(nèi)容的一個簡單梳理,也為后續(xù)有關(guān)證明做了知識準備;證明這個推論,可以讓學(xué)生熟悉證明的基本要求和步驟,為后面的其他證明做好準備。
活動效果與注意事項:由于有了前面的鋪墊,學(xué)生一般都能得到該推論的證明思路,但由于有了一個暑假的遺忘,可能部分學(xué)生的表述未必嚴謹、規(guī)范,教學(xué)中注意提請學(xué)生分析條件和結(jié)論,畫出簡圖,寫出已知和求證,并規(guī)范地寫出證明過程。具體證明如下:
已知:如圖,∠A=∠D,∠B=∠E,BC=EF.求證:△ABC≌△DEF.證明:∵∠A=∠D,∠B=∠E(已知),又∠A+∠B+∠C=180°,∠D+∠E+∠F=180°(三角形內(nèi)角和等于180°),∴∠C=180°-(∠A+∠B),∠F=180°-(∠D+∠E),∴∠C=∠F(等量代換)。又BC=EF(已知),∴△ABC≌△DEF(ASA)。
BCEFAD第二環(huán)節(jié):折紙活動 探索新知
活動內(nèi)容:在提問:“等腰三角形有哪些性質(zhì)?以前是如何探索這些性質(zhì)的,你能再次通過折紙活動驗證這些性質(zhì)嗎?并根據(jù)折紙過程,得到這些性質(zhì)的證明嗎?”的基礎(chǔ)上,讓學(xué)生經(jīng)歷這些定理的活動驗證和證明過程。具體操作中,可以讓學(xué)生先獨自折紙觀察、探索并寫出等腰三角形的性質(zhì),然后再以六人為小組進行交流,互相彌補不足。
AAA
BDC→
BCD→
B(C)D活動目的:通過折紙活動過程,獲得有關(guān)命題的證明思路,并通過進一步的整理,再次感受證明是探索的自然延伸和發(fā)展,熟悉證明的基本步驟和書寫格式。
活動效果與注意事項:由于有了教師引導(dǎo)下學(xué)生的活動,以及具體的折紙操作,學(xué)生一般都能得到有關(guān)等腰三角形的性質(zhì)定理,當然,可能部分學(xué)生得到的定理并不全面,在學(xué)生小組的交流中,通過同伴的互相補充,一般都可以得到所有性質(zhì)定理。當然,在教學(xué)過程中,教師應(yīng)注意小組的巡視,提醒學(xué)生思考多種證明思路,思考不同的輔助線之間的關(guān)系從而得到“三線合一”。
第三環(huán)節(jié):明晰結(jié)論和證明過程
活動內(nèi)容:在學(xué)生小組合作的基礎(chǔ)上,教師通過分析、提問,和學(xué)生一起完成以上兩個個性質(zhì)定理的證明,注意最好讓兩至三個學(xué)生板演證明,其余學(xué)生挑選其一證明.其后,教師通過課件匯總各小組的結(jié)果以及具體證明方法,給學(xué)生明晰證明過程。
(1)等腰三角形的兩個底角相等;
(2)等腰三角形頂角的平分線、底邊中線、底邊上高三條線重合
活動目的:和學(xué)生一起完成性質(zhì)定理的證明,可以讓學(xué)生自主經(jīng)歷命題的證明過程;明晰證明過程,意圖給學(xué)生明晰一定的規(guī)范,起到一種引領(lǐng)作用;活動2,則是前面命題的直接推論,力圖讓學(xué)生形成拓廣命題的意識,同時也是一個很好的鞏固練習(xí)。
第四環(huán)節(jié):隨堂練習(xí)
鞏固新知
活動內(nèi)容:學(xué)生自主完成P4第2題:如圖(圖略),在△ABD中, AC⊥BD,垂足為C,AC=BC=CD,(1)求證:△ABD是等腰三角形;(2)求∠BAD的度數(shù)。
活動目的:鞏固全等三角形判定公理的應(yīng)用,復(fù)習(xí)等腰三角形“等邊對等角”的用法。
第五環(huán)節(jié):課堂小結(jié)
活動內(nèi)容:讓學(xué)生暢談收獲,包括具體結(jié)論以及其中的思想方法等?;顒幽康模盒纬杉皶r總結(jié)語反思的意識與習(xí)慣,提高學(xué)生能力。
活動效果與注意事項:教師注意對學(xué)生的感想進行適當?shù)囊龑?dǎo),并在學(xué)生交流的基礎(chǔ)上,明晰部分收獲供學(xué)生共享,如:
1、具體有關(guān)性質(zhì)定理;
2、通過折紙活動對獲得的定理給予了嚴格的證明,為今后解決有關(guān)等腰三角形的問題提供了豐富的理論依據(jù).
3、體會了證明一個命題的嚴格的要求,體會了證明的必要性.
第六環(huán)節(jié):布置作業(yè)
P4習(xí)題
1-6.四、教學(xué)反思
本節(jié)關(guān)注學(xué)生已有活動經(jīng)驗的回顧過程,關(guān)注了 “探索-發(fā)現(xiàn)-猜想-證明”的活動過程,關(guān)注了學(xué)生自主探究過程,學(xué)生學(xué)習(xí)的主體性發(fā)揮較好,應(yīng)該說取得了較好的教學(xué)效果。當然,在具體活動中,如何在學(xué)生活動與規(guī)范表達之間形成一個恰當?shù)钠胶?,具體各部分時間比例的分配可能還需要根據(jù)班級學(xué)生具體狀況進行適度的調(diào)整。
不等式與不等式組教案 篇2
1.了解不等式及一元一次不等式概念。
2.理解不等式的解、解集,能正確表示不等式的解集。
通過類比等式的對應(yīng)知識,探索不等式的概念和解,體會不等式與等式的異同,初步掌握類比的思想方法。
1.經(jīng)歷把實際問題抽象為不等式的過程,能夠列出不等關(guān)系式。
2.初步體會不等式(組)是刻畫現(xiàn)實世界中不等關(guān)系的一種有效數(shù)學(xué)模型,培養(yǎng)學(xué)生的建模意識。
通過對不等式概念及其解集等有關(guān)概念的探索,培養(yǎng)學(xué)生的知識遷移能力和建模意識,加強同學(xué)之間的使用與交流。
活動一:
感知不等關(guān)系,了解不等式的概念。
通過實例,讓學(xué)生認識到不等關(guān)系在生活中的存在,通過問題的解答,讓學(xué)生了解不等式的概念,體會不等式是解決實際問題的有效工具。
活動二:
通過類比方程,繼續(xù)探索出不等式的解、解集及其表示方法。
通過解決上個環(huán)節(jié)的問題,得出不等式的解,再引導(dǎo)學(xué)生觀察解的特點,探索出解集的兩種表示方法(符號表示、數(shù)軸表示),并且培養(yǎng)學(xué)生用估算方法求解集的技能。
活動三:
繼續(xù)探索,歸納出一元一次不等式的意義。
針對所學(xué)的不等式,讓學(xué)生歸納出特點,得到一元一次不等式的概念,并對概念進行辨析。
運用本節(jié)所學(xué)的知識,解決實際問題,使學(xué)生經(jīng)歷將實際問題轉(zhuǎn)化為數(shù)學(xué)問題,再加以解決的過程,實現(xiàn)對所學(xué)知識的鞏固和深化。
讓學(xué)生通過自我反思和互相質(zhì)疑提問,歸納總結(jié)本節(jié)課的主要內(nèi)容,交流在概念、解及解集學(xué)習(xí)中的心得和體會,不斷積累數(shù)學(xué)活動經(jīng)驗,教師應(yīng)主動參與學(xué)生小結(jié)中,作好引導(dǎo)工作,布置好作業(yè),并作及時反饋。
小強準備隨父母乘車去武當山春游。
⑴在車上看到兒童買票所需的測身高標識線。
①x滿足______時,他可免票。
②x滿足______時,他該買全票。
⑵已知襄樊與武當山的距離為150千米,他們上午10點鐘從襄樊出發(fā),汽車勻速行駛。
①若該車計劃中午12點準時到達武當山,車速應(yīng)滿足什么條件?
②若該車實際上在中午12點之前已到達武當山,車速應(yīng)滿足什么條件?
用不等式表示:
⑴a是正數(shù);⑵a是負數(shù);⑶a與5的和小于7;⑷a與2的差大于-1;
⑸a的4倍大于8;
⑹a的一半小于3。
學(xué)生回答①這兩個由實際生活情境設(shè)置的問題,應(yīng)非常容易.問題②相對①難度加大了,難在題意中的條件不象上面那樣直接明了,并且可從距離和時間兩個角度來分析、解決問題,而七年級學(xué)生恰恰缺乏閱讀分析題意、多維度思考解決問題的能力,所以采用小組討論交流的形式解決問題②
學(xué)生討論角度估計大都集中在距離這一角度,教師可深入小組討論中,認真聽聽同學(xué)們的思路,應(yīng)鼓勵學(xué)生多發(fā)表意見,并適當點撥,直到得出兩種不等式。
此次活動中,教師應(yīng)重點關(guān)注:討論要有足夠的時間和空間,學(xué)生在小組討論交流時,是否敢于發(fā)表自己的想法。
再給出不等式概念:
像前面式子一樣用“>”或“
教師可要求學(xué)生舉出一些表示大小的式子,學(xué)生舉出的不等式中,可能會有一些不含未知數(shù)的,如5>3等。教師此時應(yīng)總結(jié):不等式中可含有未知數(shù),也可不含未知數(shù)。
教師根據(jù)學(xué)生舉例給出表示不等關(guān)系的第三種符號“≠”,并強調(diào):像前面式子一樣用“≠”表示不等關(guān)系的式子也是不等式。
鞏固練習(xí)是讓學(xué)生用不等式來刻畫題中6個簡單的不等關(guān)系。學(xué)生得出答案并不難,所以該環(huán)節(jié)讓學(xué)生獨立完成、互相評價,教師可深入到學(xué)生的解題過程中,觀察指導(dǎo)學(xué)生的解題思路,傾聽學(xué)生的評價。
問題1在課本中起導(dǎo)入新課作用,考慮學(xué)生實際情況(分析應(yīng)用題能力尚欠缺)和題目難度,所以設(shè)置問題串,降低難度。這樣編排教材我認為更能體現(xiàn)知識呈現(xiàn)的序列性,從易到難,讓學(xué)生“列不等式”能力實現(xiàn)螺旋上升。
問題3作用僅僅起鞏固上面所學(xué)的知識,所以采用書中的一組習(xí)題,讓學(xué)生獨立完成,進一步培養(yǎng)學(xué)生列不等式能力。
采用學(xué)生熟悉的生活情境作為導(dǎo)入內(nèi)容,然后層層推進,步步設(shè)問,環(huán)環(huán)相扣,直至推出不等式的概念及概念理解中應(yīng)注意的地方。這樣實現(xiàn)了:讓學(xué)生從已有的數(shù)學(xué)經(jīng)驗出發(fā),從生活中建構(gòu)數(shù)學(xué)模型,為后面利用“不等式”這一模型解決生活中實際問題作好鋪墊,體現(xiàn)了數(shù)學(xué)生活化、生活
不等式與不等式組教案 篇3
【學(xué)習(xí)目標】
1.知識與技能:學(xué)會推導(dǎo)并掌握基本不等式,理解這個基本不等式的幾何意義,并掌握定理中的不等號“≥”取等號的條件是:當且僅當這兩個數(shù)相等;
2.過程與方法:通過實例探究抽象基本不等式;
3.情態(tài)與價值:通過本節(jié)的學(xué)習(xí),體會數(shù)學(xué)來源于生活,提高學(xué)習(xí)數(shù)學(xué)的興趣
【能力培養(yǎng)】
培養(yǎng)學(xué)生嚴謹、規(guī)范的學(xué)習(xí)能力,分析問題、解決問題的能力。
【教學(xué)重點】
應(yīng)用數(shù)形結(jié)合的思想理解不等式,并從不同角度探索不等式 的證明過程;及其在求最值時初步應(yīng)用
【教學(xué)難點】
基本不等式 等號成立條件
【教學(xué)過程】
一、課題導(dǎo)入
基本不等式 的幾何背景:如圖是在北京召開的第24界國際數(shù)學(xué)家大會的會標,教師引導(dǎo)學(xué)生從面積的關(guān)系去找不等關(guān)系。
二、講授新課
1.問題探究——探究圖形中的不等關(guān)系。
將圖中的“風(fēng)車”抽象成如圖,在正方形abcd中右個全等的直角三角形。設(shè)直角三角形的兩條直角邊長為a,b那么正方形的邊長為 。這樣,4個直角三角形的面積的和是2ab,正方形的面積為 。由于4個直角三角形的面積小于正方形的面積,我們就得到了一個不等式: 。
當直角三角形變?yōu)榈妊苯侨切?,即a=b時,正方形efgh縮為一個點,這時有 。
2.總結(jié)結(jié)論:一般的,如果
(結(jié)論的得出盡量發(fā)揮學(xué)生自主能動性,讓學(xué)生總結(jié),教師適時點撥引導(dǎo))
3.思考證明:(讓學(xué)生嘗試給出它的證明)
4.特別的,如果a>0,b>0,我們用 分別代替a、b ,可得,
通常我們把上式寫作:
①從不等式的性質(zhì)推導(dǎo)基本不等式
用分析法證明:(略)
②理解基本不等式 的幾何意義
探究:對課本第98頁的“探究”( 幾何證明)
注:在數(shù)學(xué)中,我們稱 為a、b的算術(shù)平均數(shù),稱 為a、b的幾何平均數(shù)。本節(jié)定理還可敘述為:兩個正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)。
5、例:當時,取什么值,的值最???最小值是多少?
6、課時小結(jié)
本節(jié)課,我們學(xué)習(xí)了重要不等式a2+b2≥2ab;兩正數(shù)a、b的算術(shù)平均數(shù)( ),幾何平均數(shù)( )及它們的關(guān)系( ≥ )。它們成立的條件不同,前者只要求a、b都是實數(shù),而后者要求a、b都是正數(shù)。它們既是不等式變形的基本工具,又是求函數(shù)最值的重要工具(下一節(jié)我們將進一步學(xué)習(xí)它們的應(yīng)用)。
7、作業(yè):
課本第100頁習(xí)題[a]組的第1、2題
板書 設(shè) 計
課題: 3.4基本不等式
一、兩個不等式
二、例題及練習(xí)
不等式與不等式組教案 篇4
尊敬的各位老師:
大家好,今天,我說課的內(nèi)容是一元一次不等式。
對于本節(jié)課,我將從教什么、怎么教、為什么這么教來闡述本次說課。
新課標指出:數(shù)學(xué)課程要面向全體學(xué)生,適應(yīng)學(xué)生個性發(fā)展的需要,使得人人都能獲得良好的數(shù)學(xué)教育,不同的人在數(shù)學(xué)上都能得到不同的發(fā)展。今天我將貫徹這一理念從教材分析、學(xué)情分析、教學(xué)過程等幾個方面展開我的說課。
一、說教材
教材是連接教師和學(xué)生的紐帶,在整個教學(xué)過程中起著至關(guān)重要的作用,所以,先談?wù)勎覍滩牡睦斫狻?/p>
本節(jié)課主要講述的是一元一次不等式的概念及其解法。
在本節(jié)課之前學(xué)生已經(jīng)掌握了一元一次方程的相關(guān)知識和不等式的性質(zhì),所以,本節(jié)課類比一元一次方程的解法,利用不等式的性質(zhì)解一元一次不等式。另外,本節(jié)課為后續(xù)學(xué)習(xí)解一元一次不等式組奠定基礎(chǔ)。
不等式在日常生產(chǎn)生活中的應(yīng)用很廣泛,它與數(shù)、式、方程、函數(shù)甚至幾何圖形有著密切的聯(lián)系,它幾乎滲透到初中數(shù)學(xué)的每一部分。所以,本節(jié)課在數(shù)學(xué)領(lǐng)域中起著非常重要的地位。
二、說學(xué)情
合理把握學(xué)情是上好一堂課的基礎(chǔ),本次課所面對的學(xué)生群體具有以下特點。
本學(xué)段的學(xué)生逐漸掌握抽象概念和復(fù)雜的概念系統(tǒng),能作科學(xué)定義,抽象邏輯思維逐步占優(yōu)勢。
本階段的學(xué)生類比推理能力都有了一定的發(fā)展,并且在生活中已經(jīng)遇到過很多關(guān)于一元一次方程的具體的事例,所以在生活上面有了很多的經(jīng)驗基礎(chǔ)。為本節(jié)課的順利開展做好了充分準備。
三、說教學(xué)目標
根據(jù)以上對教材的.分析以及對學(xué)情的把握,我制定了如下三維目標:
(一)知識與技能
認識一元一次不等式,會解簡單的一元一次不等式,類比一元一次方程的步驟,總結(jié)歸納解一元一次不等式的基本步驟。
(二)過程與方法
通過對比解一元一次方程的步驟,學(xué)生自己總結(jié)歸納一元一次不等式步驟的過程,提高歸納能力,并學(xué)會類比的學(xué)習(xí)方法。
(三)情感態(tài)度價值觀
通過數(shù)學(xué)建模,提高對數(shù)學(xué)的學(xué)習(xí)興趣。
四、說教學(xué)重難點
本著新課程標準,吃透教材,了解學(xué)生特點的基礎(chǔ)上我確定了以下重難點:
(一)教學(xué)重點
掌握一元一次不等式的概念,會解一元一次不等式并能夠在數(shù)軸上表示出來。
(二)教學(xué)難點
不等式與不等式組教案 篇5
教學(xué)目標
1、能夠根據(jù)實際問題中的數(shù)量關(guān)系,列一元一次不等式(組)解決實際問題.
2、通過例題教學(xué),學(xué)生能夠?qū)W會從數(shù)學(xué)的角度認識問題,理解問題,提出問題,?? 學(xué)會從實際問題中抽象出數(shù)學(xué)模型.
3、能夠認識數(shù)學(xué)與人類生活的密切聯(lián)系,培養(yǎng)學(xué)生應(yīng)用所學(xué)數(shù)學(xué)知識解決實際問題的意識.
教學(xué)重點?? 能夠根據(jù)實際問題中的數(shù)量關(guān)系,列出一元一次不等式(組)解決 實際問題
教學(xué)難點?? 審題,根據(jù)實際問題列出不等式.
例題?? 甲、乙兩商場以同樣的價格出售同樣的商品,并且又各自推出不同的優(yōu)惠:在甲商場累計購物超過100元后,超出100元的部分按90%收費;在乙商場累計購物超過50元后,超出50元的部分按95%收費。顧客到哪家商場購物花費少??
解:設(shè)累計購物x元,根據(jù)題意得
(1)當0 < x≤50時,到甲、乙兩商場購物花費一樣;
(2)當50< x≤100時,到乙商場購物花費少;
(3)當x > 100時,到甲商場的花費為100+0.9(x-100) , 到乙商場的花費為50+0.95(x-50)則
50+0.95(x-50) > 100+0.9(x-100),解之得x >150
50+0.95(x-50) < 100+0.9(x-100),解之得x < 150
50+0.95(x-50) = 100+0.9(x-100),?? 解之得x = 150
答:當0 < x≤50時,到甲、乙兩商場購物花費一樣;
當50< x≤100時,到乙商場購物花費少;當x>150時,到甲商場購物花費少;當100 < x <150時,到乙商場購物花費少;當x=150時,到甲、乙兩商場購物花費一樣。
變式練習(xí)? 學(xué)校為解決部分學(xué)生的午餐問題,聯(lián)系了兩家快餐公司,兩家公司的報價、質(zhì)量和服務(wù)承諾都相同,且都表示對學(xué)生優(yōu)惠:甲公司表示每份按報價的90%收費,乙公司表示購買100份以上的部分按報價的80%收費。問:選擇哪家公司較好?
解:設(shè)購買午餐x份,每份報價為“1”,根據(jù)題意得
0.9x > 100+0.8(x-100),解之得x >
0.9x < 100+0.8(x-100),解之得x <
0.9x = 100+0.8(x-100),解之得x =
答:當x>時,選乙公司較好;當0 < x <時,選甲公司較好;當x=時,兩公司實際收費相同。
作業(yè)
1、某商店5月1號舉行促銷優(yōu)惠活動,當天到該商店購買商品有兩種,一:用168元購買會員卡成為會員后,憑會員卡購買商店內(nèi)任何商品,一律按商品價格的8折優(yōu)惠;二:若不購買會員卡,則購買商店內(nèi)任何商品,一律按商品價格的9.5折優(yōu)惠。已知小敏5月1日前不是該商店的會員。請幫小敏算一算,采用哪種更合算?
2、某單位計劃10月份組織員工到杭州旅游,人數(shù)估計在10~25之間。甲乙兩旅行社的服務(wù)質(zhì)量相同,且組織到杭州旅游的價格都是每人元。該單位聯(lián)系時,甲旅行社表示可以給予每位旅客七五折優(yōu)惠;乙旅行社表示可先免去一帶隊的旅游費用,其余游客八折優(yōu)惠。問該單位怎樣選擇,可使其支付的旅游總費用較少?
不等式與不等式組教案 篇6
一、教學(xué)目標:
(一)知識與技能
1.掌握不等式的三條基本性質(zhì)。
2.運用不等式的基本性質(zhì)對不等式進行變形。
(二)過程與方法
1.通過等式的性質(zhì),探索不等式的性質(zhì),初步體會“類比”的數(shù)學(xué)思想。
2.通過觀察、猜想、驗證、歸納等數(shù)學(xué)活動,經(jīng)歷從特殊到一般、由具體到抽象的認知過程,感受數(shù)學(xué)思考過程的條理性,發(fā)展思維能力和語言表達能力。
(三)情感態(tài)度與價值觀
通過探究不等式基本性質(zhì)的活動,培養(yǎng)學(xué)生合作交流的意識和大膽猜想,樂于探究的良好思維品質(zhì)。
二、教學(xué)重難點
教學(xué)重點: 探索不等式的三條基本性質(zhì)并能正確運用它們將不等式變形。
教學(xué)難點: 不等式基本性質(zhì)3的探索與運用。
三、教學(xué)方法:自主探究——合作交流
四、教學(xué)過程:
情景引入:1.舉例說明什么是不等式?
2.判斷下列各式是否成立?并說明理由。
( 1 ) 若x-6=10, 則x=16( )
( 2 ) 若3x=15, 則 x=5 ( )
( 3 ) 若x-6>10 則 x>16( )
( 4 ) 若3x>15 則 x>5 ( )
【設(shè)計意圖】(1)、(2)小題喚起對舊知識等式的基本性質(zhì)的回憶,(3)、(4)小題引導(dǎo)學(xué)生大膽說出自己的想法。
溫故知新
問題1.由等式性質(zhì)1你能猜想一下不等式具有什么樣的性質(zhì)嗎?
等式性質(zhì)1:等式兩邊都加上或減去同一個數(shù)(或同一個整式),所得結(jié)果仍是不等式。
估計學(xué)生會猜:不等式兩邊都加上或減去同一個數(shù)(或同一個整式),所得結(jié)果仍是不等式。教師引導(dǎo):“=”沒有方向性,所以可以說所得結(jié)果仍是等式,而不等號:“>,<,≥,≤”具有方向性,我們應(yīng)該重點研究它在方向上的變化。
問題2.你能通過實驗、猜想,得出進一步的結(jié)論嗎?
同學(xué)通過實例驗證得出結(jié)論,師生共同總結(jié)不等式性質(zhì)1。
問題3.你能由等式性質(zhì)2進一步猜想不等式還具有什么性質(zhì)嗎?
等式性質(zhì)2:等式兩邊都乘或除以同一個數(shù)(除數(shù)不能是0),等式依然成立。
估計學(xué)生會猜:不等式兩邊都乘或除以同一個數(shù)(除數(shù)不能是0),不等號的方向不變。
你能和小伙伴一起來驗證你們的猜想嗎?
學(xué)生在小組內(nèi)合作交流,發(fā)現(xiàn)了在不等式兩邊都乘或除以同一個數(shù)時,不等號的方向會出現(xiàn)兩種情況。教師進一步引導(dǎo)學(xué)生通過分析、比較探索規(guī)律,從而形成共識,歸納概括出不等式性質(zhì)2和3。
問題4.在不等式兩邊都乘0會出現(xiàn)什么情況?
問題5.如果a、b、c表示任意數(shù),且a<b,你能用a、b、c把不等式的基本性質(zhì)表示出來碼?
【想一想】不等式的基本性質(zhì)與等式的基本性質(zhì)有什么相同之處,有什么不同之處?
學(xué)生思考,獨立總結(jié)異同點。
【設(shè)計意圖】引導(dǎo)學(xué)生把二者進行比較,有助于加深對不等式基本性質(zhì)的理解,促成知識的“正遷移”。
綜合訓(xùn)練:你能運用不等式的基本性質(zhì)解決問題嗎?
1、課本62頁例3
教師引導(dǎo)學(xué)生觀察每個問題是由a>b經(jīng)過怎樣的變形得到的,應(yīng)該應(yīng)用不等式的哪條基本性質(zhì)。由學(xué)生思考后口答。
2、你認為在運用不等式的基本性質(zhì)時哪一條性質(zhì)最容易出錯,應(yīng)該怎樣記住?
3.火眼金睛
①a>1, 則2a___a
②a>3a,則 a ___ 0
【設(shè)計意圖】通過變式訓(xùn)練,加深學(xué)生對新知的理解,培養(yǎng)學(xué)生分析、探究問題的能力。
課堂小結(jié):
這節(jié)課你有哪些收獲?你認為自己的表現(xiàn)如何?教師引導(dǎo)學(xué)生回顧、思考、交流。
【設(shè)計意圖】回顧、總結(jié)、提高。學(xué)生自覺形成本節(jié)的課的知識網(wǎng)絡(luò)。
思考題
咱們班的盛芳同學(xué)準備在五、一期間和他的爸爸、媽媽外出旅游。青年旅行社的標準為:大人全價,小孩半價;方正旅行社的標準為:大人、小孩一律八折。若兩家旅行社的基本價一樣,你能幫盛芳同學(xué)考慮一下選擇哪家旅行社更合算嗎?
【設(shè)計意圖】利用所學(xué)的數(shù)學(xué)知識,解決生活中的問題,加強數(shù)學(xué)與生活的聯(lián)系,體驗數(shù)學(xué)是描述現(xiàn)實世界的重要手段。
不等式與不等式組教案 篇7
一元一次不等式(第二課時)
教學(xué)設(shè)計
一、學(xué)習(xí)目標
會用一元一次不等式解決實際問題。
體會抽象思想,從實際問題到數(shù)學(xué)問題,找出數(shù)量關(guān)系,建立一元一次不等式的數(shù)學(xué)模型。
積累利用一元一次不等式解決實際問題的經(jīng)驗,鞏固一元一次不等式的有關(guān)知識。
重點:由實際問題中的不等關(guān)系列出不等式。難點:列一元一次不等式描述實際問題中的不等關(guān)系。
二、學(xué)習(xí)過程 ①情境導(dǎo)入
老師想要舉辦以“速算”為主題的計算比賽,但是老師在籌劃的過程中遇到了幾個問題,請同學(xué)們利用不等式幫助老師解決遇到的幾個問題。
老師遇到的第一個問題:行走上的時間問題 老師遇到的第二個問題:商場購買商品問題 老師遇到的第三個問題:比賽分數(shù)計算問題
②想一想(由學(xué)生在練習(xí)紙上進行默寫,組間串換檢查)我們學(xué)過的那些知識可以用到解決這些實際問題上呢?
1、不等式:用“”表示大小關(guān)系的式子,叫做不等式。
用
“≠”
表示不等關(guān)系的式子,叫做不等式。
用“≥”“≤”表示大小關(guān)系的式子,叫做不等式。
2、不等式的性質(zhì):>b
a±c>b±c
>b(c>0)ac>bc(a/c>b/c)
>b(c
不等式與不等式組教案 篇8
在前兩節(jié)課的研究當中,學(xué)生已掌握了一些簡單的不等式及其應(yīng)用,并能用不等式及不等式組抽象出實際問題中的不等量關(guān)系,掌握了不等式的一些簡單性質(zhì)與證明,研究了一元二次不等式及其解法,學(xué)習(xí)了二元一次不等式(組)與簡單的線性規(guī)劃問題。本節(jié)課的研究是前三大節(jié)學(xué)習(xí)的延續(xù)和拓展。另外,為基本不等式的應(yīng)用墊定了堅實的基礎(chǔ),所以說,本節(jié)課是起到了承上啟下的作用。本節(jié)課是通過讓學(xué)生觀察第24屆國際數(shù)學(xué)家大會的會標圖案中隱含的相等關(guān)系與不等關(guān)系而引入的通過分析得出基本不等式,然后從三種角度對基本不等式展開證明及對基本不等式展開一些簡單的應(yīng)用,進而更深一層次地從理性角度建立不等觀念。教師應(yīng)作好點撥,利用幾何背景,數(shù)形結(jié)合做好歸納總結(jié)、邏輯分析,并鼓勵學(xué)生從理性角度去分析探索過程,進而更深層次理解基本不等式,鼓勵學(xué)生對數(shù)學(xué)知識和方法獲得過程的探索,同時也能激發(fā)學(xué)生的學(xué)習(xí)興趣,根據(jù)本節(jié)課的教學(xué)內(nèi)容,應(yīng)用觀察、類比、歸納、邏輯分析、思考、合作交流、探究,得出基本不等式,進行啟發(fā)、探究式教學(xué)并使用投影儀輔助。
教學(xué)重點
1、創(chuàng)設(shè)代數(shù)與幾何背景,用數(shù)形結(jié)合的思想理解基本不等式;
2、從不同角度探索基本不等式的證明過程;
3、從基本不等式的證明過程進一步體會不等式證明的常用思路。
教學(xué)難點
1、對基本不等式從不同角度的探索證明;
2、通過基本不等式的證明過程體會分析法的證明思路。
教具準備 多媒體及課件
三維目標
一、知識與技能
1、創(chuàng)設(shè)用代數(shù)與幾何兩方面背景,用數(shù)形結(jié)合的思想理解基本不等式;
2、嘗試讓學(xué)生從不同角度探索基本不等式的證明過程;
3、從基本不等式的證明過程進一步體會不等式證明的常用思路,即由條件到結(jié)論,或由結(jié)論到條件。
二、過程與方法
1、采用探究法,按照聯(lián)想、思考、合作交流、邏輯分析、抽象應(yīng)用的方法進行啟發(fā)式教學(xué);
2、教師提供問題、素材,并及時點撥,發(fā)揮老師的主導(dǎo)作用和學(xué)生的主體作用;
3、將探索過程設(shè)計為較典型的具有挑戰(zhàn)性的問題,激發(fā)學(xué)生去積極思考,從而培養(yǎng)他們的數(shù)學(xué)學(xué)習(xí)興趣。
三、情感態(tài)度與價值觀
1、通過具體問題的解決,讓學(xué)生去感受、體驗現(xiàn)實世界和日常生活中存在著大量的不等量關(guān)系并需要從理性的角度去思考,鼓勵學(xué)生用數(shù)學(xué)觀點進行歸納、抽象,使學(xué)生感受數(shù)學(xué)、走進數(shù)學(xué),培養(yǎng)學(xué)生嚴謹?shù)臄?shù)學(xué)學(xué)習(xí)習(xí)慣和良好的思維習(xí)慣;
2、學(xué)習(xí)過程中,通過對問題的探究思考,廣泛參與,培養(yǎng)學(xué)生嚴謹?shù)乃季S習(xí)慣,主動、積極的學(xué)習(xí)品質(zhì),從而提高學(xué)習(xí)質(zhì)量;
3、通過對富有挑戰(zhàn)性問題的解決,激發(fā)學(xué)生頑強的探究精神和嚴肅認真的科學(xué)態(tài)度,同時去感受數(shù)學(xué)的應(yīng)用性,體會數(shù)學(xué)的奧秘、數(shù)學(xué)的簡潔美、數(shù)學(xué)推理的嚴謹美,從而激發(fā)學(xué)生的學(xué)習(xí)興趣。
教學(xué)過程
導(dǎo)入新課
探究:上圖是在北京召開的第24屆國際數(shù)學(xué)家大會的會標,會標是根據(jù)中國古代數(shù)學(xué)家趙爽的弦圖設(shè)計的,顏色的明暗使它看上去像一個風(fēng)車,代表中國人民熱情好客,你能在這個圖中找出一些相等關(guān)系或不等關(guān)系嗎?
(教師用投影儀給出第24屆國際數(shù)學(xué)家大會的會標,并介紹此會標是根據(jù)中國古代數(shù)學(xué)家趙爽的弦圖設(shè)計的,顏色的明暗使它看上去像一個風(fēng)車,代表中國人民熱情好客。通過直觀情景導(dǎo)入有利于吸引學(xué)生的注意力,激發(fā)學(xué)生的學(xué)習(xí)熱情,并增強學(xué)生的愛國主義熱情)
推進新課
師 同學(xué)們能在這個圖中找出一些相等關(guān)系或不等關(guān)系嗎?如何找?
(沉靜片刻)
生 應(yīng)該先從此圖案中抽象出幾何圖形。
師 此圖案中隱含什么樣的幾何圖形呢?哪位同學(xué)能在黑板上畫出這個幾何圖形?
(請兩位同學(xué)在黑板上畫。教師根據(jù)兩位同學(xué)的板演作點評)
(其中四個直角三角形沒有畫全等,不形象、直觀。此時教師用投影片給出隱含的規(guī)范的幾何圖形)
師 同學(xué)們觀察得很細致,抽象出的幾何圖形比較準確。這說明,我們只要在現(xiàn)有的基礎(chǔ)上進一步刻苦努力,發(fā)奮圖強,也能作出和數(shù)學(xué)家趙爽一樣的成績。
(此時,每一位同學(xué)看上去都精神飽滿,信心百倍,全神貫注地投入到本節(jié)課的學(xué)習(xí)中來)
[過程引導(dǎo)]
師 設(shè)直角三角形的兩直角邊的長分別為a、b,那么,四個直角三角形的面積之和與正方形的面積有什么關(guān)系呢?
生 顯然正方形的面積大于四個直角三角形的面積之和。
師 一定嗎?
(大家齊聲:不一定,有可能相等)
師 同學(xué)們能否用數(shù)學(xué)符號去進行嚴格的推理證明,從而說明我們剛才直覺思維的合理性?
生 每個直角三角形的面積為,四個直角三角形的面積之和為2ab。正方形的邊長為,所以正方形的面積為a2+b2,則a2+b2≥2ab。
師 這位同學(xué)回答得很好,表達很全面、準確,但請大家思考一下,他對a2+b2≥2ab證明了嗎?
生 沒有,他仍是由我們剛才的直觀所得,只是用字母表達一下而已。
師 回答得很好。
(有的同學(xué)感到迷惑不解)
師 這樣的敘述不能代替證明。這是同學(xué)們在解題時經(jīng)常會犯的錯誤。實質(zhì)上,對文字性語言敘述證明題來說,他只是寫出了已知、求證,并未給出證明。
(有的同學(xué)竊竊私語,確實是這樣,并沒有給出證明)
師 請同學(xué)們繼續(xù)思考,該如何證明此不等式,即a2+b2≥2ab。
生 采用作差的方法,由a2+b2-2ab=(a-b)2,∵(a-b)2是一個完全平方數(shù),它是非負數(shù),即(a-b)2≥0,所以可得a2+b2≥2ab。
師 同學(xué)們思考一下,這位同學(xué)的證明是否正確?
生 正確。
[教師精講]
師 這位同學(xué)的證明思路很好。今后,我們把這種證明不等式的思想方法形象地稱之為“比較法”,它和根據(jù)實數(shù)的基本性質(zhì)比較兩個代數(shù)式的大小是否一樣。
生 實質(zhì)一樣,只是設(shè)問的形式不同而已。一個是比較大小,一個是讓我們?nèi)プC明。
師 這位同學(xué)回答得很好,思維很深刻。此處的比較法是用差和0作比較。在我們的數(shù)學(xué)研究當中,還有另一種“比較法”。
(教師此處的設(shè)問是針對學(xué)生已有的知識結(jié)構(gòu)而言)
生 作商,用商和“1”比較大小。
師 對。那么我們在遇到這類問題時,何時采用作差,何時采用作商呢?這個問題讓同學(xué)們課后去思考,在解決問題中自然會遇到。
(此處設(shè)置疑問,意在激發(fā)學(xué)生課后去自主探究問題,把探究的思維空間切實留給學(xué)生)
[合作探究]
師 請同學(xué)們再仔細觀察一下,等號何時取到。
生 當四個直角三角形的直角頂點重合時,即面積相等時取等號。
(學(xué)生的思維仍建立在感性思維基礎(chǔ)之上,教師應(yīng)及時點撥)
師 從不等式a2+b2≥2ab的證明過程能否去說明。
生 當且僅當(a-b)2=0,即a=b時,取等號。
師 這位同學(xué)回答得很好。請同學(xué)們看一下,剛才兩位同學(xué)分別從幾何圖形與不等式兩個角度分析等號成立的條件是否一致。
(大家齊聲)一致。
(此處意在強化學(xué)生的直覺思維與理性思維要合并使用。就此問題來講,意在強化學(xué)生數(shù)形結(jié)合思想方法的應(yīng)用)
板書:
一般地,對于任意實數(shù)a、b,我們有a2+b2≥2ab,當且僅當a=b時,等號成立。
[過程引導(dǎo)]
師 這是一個很重要的不等式。對數(shù)學(xué)中重要的結(jié)論,我們應(yīng)仔細觀察、思考,才能挖掘出它的內(nèi)涵與外延。只有這樣,我們用它來解決問題時才能得心應(yīng)手,也不會出錯。
(同學(xué)們的思維再一次高度集中,似乎能從不等式a2+b2≥2ab中得出什么。此時,教師應(yīng)及時點撥、指引)
師 當a>0,b>0時,請同學(xué)們思考一下,是否可以用a、b代替此不等式中的a、b。
生 完全可以。
師 為什么?
生 因為不等式中的a、b∈R。
師 很好,我們來看一下代替后的結(jié)果。
板書:
即 (a>0,b>0)。
師 這個不等式就是我們這節(jié)課要推導(dǎo)的基本不等式。它很重要,在數(shù)學(xué)的研究中有很多應(yīng)用,我們常把叫做正數(shù)a、b的算術(shù)平均數(shù),把ab叫做正數(shù)a、b的幾何平均數(shù),即兩個正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)。
(此處意在引起學(xué)生的重視,從不同的角度去理解)
師 請同學(xué)們嘗試一下,能否利用不等式及實數(shù)的基本性質(zhì)來推導(dǎo)出這個不等式呢?
(此時,同學(xué)們信心十足,都說能。教師利用投影片展示推導(dǎo)過程的填空形式)
要證:,①
只要證a+b≥2,②
要證②,只要證:a+b-2≥0,③
要證③,只要證:④
顯然④是成立的,當且僅當a=b時,④中的等號成立,這樣就又一次得到了基本不等式。
(此處以填空的形式,突出體現(xiàn)了分析法證明的關(guān)鍵步驟,意在把思維的時空切實留給學(xué)生,讓學(xué)生在探究的基礎(chǔ)上去體會分析法的證明思路,加大了證明基本不等式的探究力度)
[合作探究]
老師用投影儀給出下列問題。
如圖,AB是圓的直徑,點C是AB上一點,AC=a,BC=b。過點C作垂直于AB的弦DD′,連結(jié)AD、BD。你能利用這個圖形得出基本不等式的幾何解釋嗎?
(本節(jié)課開展到這里,學(xué)生從基本不等式的證明過程中已體會到證明不等式的常用方法,對基本不等式也已經(jīng)很熟悉,這就具備了探究這個問題的知識與情感基礎(chǔ))
[合作探究]
師 同學(xué)們能找出圖中與a、b有關(guān)的線段嗎?
生 可證△ACD ∽△BCD,所以可得。
生 由射影定理也可得。
師 這兩位同學(xué)回答得都很好,那ab與分別又有什么幾何意義呢?
生表示半弦長,表示半徑長。
師 半徑和半弦又有什么關(guān)系呢?
生 由半徑大于半弦可得。
師 這位同學(xué)回答得是否很嚴密?
生 當且僅當點C與圓心重合,即當a=b時可取等號,所以也可得出基本不等式 (a>0,b>0)。
課堂小結(jié)
師 本節(jié)課我們研究了哪些問題?有什么收獲?
生 我們通過觀察分析第24屆國際數(shù)學(xué)家大會的會標得出了不等式a2+b2≥2ab。
生 由a2+b2≥2ab,當a>0,b>0時,以、分別代替a、b,得到了基本不等式 (a>0,b>0)。進而用不等式的性質(zhì),由結(jié)論到條件,證明了基本不等式。
生 在圓這個幾何圖形中我們也能得到基本不等式。
(此處,創(chuàng)造讓學(xué)生進行課堂小結(jié)的機會,目的是培養(yǎng)學(xué)生語言表達能力,也有利于課外學(xué)生歸納、總結(jié)等學(xué)習(xí)方法、能力的提高)
師 大家剛才總結(jié)得都很好,本節(jié)課我們從實際情景中抽象出基本不等式。并采用數(shù)形結(jié)合的思想,賦予基本不等式幾何直觀,讓大家進一步領(lǐng)悟到基本不等式成立的條件是a>0,b>0,及當且僅當a=b時等號成立。在對不等式的證明過程中,體會到一些證明不等式常用的思路、方法。以后,同學(xué)們要注意數(shù)形結(jié)合的思想在解題中的靈活運用。
布置作業(yè)
活動與探究:已知a、b都是正數(shù),試探索, ,,的大小關(guān)系,并證明你的結(jié)論。
分析:(方法一)由特殊到一般,用特殊值代入,先得到表達式的大小關(guān)系,再由不等式及實數(shù)的性質(zhì)證明。
(方法二)創(chuàng)設(shè)幾何直觀情景。設(shè)AC=a,BC=b,用a、b表示線段CE、OE、CD、DF的長度,由CE>OE>CD>DF可得。
板書設(shè)計
基本不等式的證明
一、實際情景引入得到重要不等式
a2+b2≥2ab
二、定理
若a>0,b>0
課后作業(yè):
證明過程探索:
不等式與不等式組教案 篇9
各位評委老師,上午好,我選擇的課題是必修5第三章第四節(jié)《基本不等式》第一課時。關(guān)于本課的設(shè)計,我將從以下五個方面向各位評委老師匯報。
一、教材分析
◆本節(jié)教材的地位和作用
◆教學(xué)目標
◆教學(xué)重點、難點
1、本節(jié)教材的地位和作用
"基本不等式" 是必修5的重點內(nèi)容,在課本封面上就體現(xiàn)出來了(展示課本和參考書封面)。它是在學(xué)完"不等式的性質(zhì)"、"不等式的解法"及"線性規(guī)劃"的基礎(chǔ)上對不等式的進一步研究。在不等式的證明和求最值過程中有著廣泛的應(yīng)用。求最值又是高考的熱點。同時本節(jié)知識又滲透了數(shù)形結(jié)合、化歸等重要數(shù)學(xué)思想,有利于培養(yǎng)學(xué)生良好的思維品質(zhì)。
2、 教學(xué)目標
(1)知識目標:探索基本不等式的證明過程;會用基本不等式解決最值問題。
(2)能力目標:培養(yǎng)學(xué)生觀察、試驗、歸納、判斷、猜想等思維能力。
(3)情感目標:培養(yǎng)學(xué)生嚴謹求實的科學(xué)態(tài)度,體會數(shù)與形的和諧統(tǒng)一,領(lǐng)略數(shù)學(xué)的應(yīng)用價值,激發(fā)學(xué)生的學(xué)習(xí)興趣和勇于探索的精神。
3、教學(xué)重點、難點
根據(jù)課程標準制定如下的教學(xué)重點、難點
重點: 應(yīng)用數(shù)形結(jié)合的思想理解不等式,并從不同角度探索基本不等式。
難點:基本不等式的內(nèi)涵及幾何意義的挖掘,用基本不等式求最值。
二、教法說明
本節(jié)課借助幾何畫板,使用多媒體輔助進行直觀演示。采用啟發(fā)式教學(xué)法創(chuàng)設(shè)問題情景,激發(fā)學(xué)生開始嘗試活動。運用生活中的實際例子,讓學(xué)生享受解決實際問題的樂趣。 課堂上主要采取對比分析;讓學(xué)生邊議、邊評;組織學(xué)生學(xué)、思、練。通過師生和諧對話,使情感共鳴,讓學(xué)生的潛能、創(chuàng)造性最大限度發(fā)揮,使認知效益最大。讓學(xué)生愛學(xué)、樂學(xué)、會學(xué)、學(xué)會。
三、學(xué)法指導(dǎo)
為更好的貫徹課改精神,合理的對學(xué)生進行素質(zhì)教育,在教學(xué)中,始終以學(xué)生主體,教師為主導(dǎo)。因此我在教學(xué)中讓學(xué)生從不同角度去觀察、分析,指導(dǎo)學(xué)生解決問題,感受知識的形成過程,培養(yǎng)學(xué)生數(shù)形結(jié)合的意識和能力,讓學(xué)生學(xué)會學(xué)習(xí)。
四、教學(xué)設(shè)計
◆運用2002年國際數(shù)學(xué)家大會會標引入
◆運用分析法證明基本不等式
◆不等式的幾何解釋
◆基本不等式的應(yīng)用
1、運用2002年國際數(shù)學(xué)家大會會標引入
如圖,這是在北京召開的第24屆國際數(shù)學(xué)家大會會標。會標根據(jù)中國古代數(shù)學(xué)家趙爽的弦圖設(shè)計的,顏色的明暗使它看上去象一個風(fēng)車,代表中國人民熱情好客。(展示風(fēng)車)
正方形ABCD中,AE⊥BE,BF⊥CF,CG⊥DG,DH⊥AH,設(shè)AE=a,BE=b,則正方形的面積為S=__,Rt△ABE,Rt△BCF,Rt△CDG,Rt△ADH是全等三角形,它們的面積之和是S’=_
從圖形中易得,s≥s’,即
問題1:它們有相等的情況嗎?何時相等?
問題2:當 a,b為任意實數(shù)時,上式還成立嗎?(學(xué)生積極思考,通過幾何畫板幫助學(xué)生理解)
一般地,對于任意實數(shù)a、b,我們有
當且僅當(重點強調(diào))a=b時,等號成立(合情推理)
問題3:你能給出它的證明嗎?(讓學(xué)生獨立證明)
設(shè)計意圖
(1)運用2002年國際數(shù)學(xué)家大會會標引入,能讓學(xué)生進一步體會中國數(shù)學(xué)的歷史悠久,感受數(shù)學(xué)與生活的聯(lián)系。
(2)運用此圖標能較容易的觀察出面積之間的關(guān)系,引入基本不等式很直觀。
(3)三個思考題為學(xué)生創(chuàng)造情景,逐層深入,強化理解。
2、運用分析法證明基本不等式
如果 a>0,b>0 ,
用 和 分別代替a,b.可以得到
也可寫成
(強調(diào)基本不等式成立的前提條件"正")(演繹推理)
問題4:你能用不等式的性質(zhì)直接推導(dǎo)嗎?
要證 ①
只要證 ②
要證② ,只要證 ③
要證③ ,只要證 ④
顯然, ④是成立的。當且僅當a=b時, 不等式中的等號成立。
(強調(diào)基本不等式取等的條件"等")
設(shè)計意圖
(1)證明過程課本上是以填空形式出現(xiàn)的,學(xué)生能夠獨立完成,這也能進一步培養(yǎng)學(xué)生的自學(xué)能力,符合課改精神;
(2)證明過程印證了不等式的正確性,并能加深學(xué)生對基本不等式的理解;
(3)此種證明方法是"分析法",在選修教材的《推理與證明》一章中會重點講解,此處有必要讓學(xué)生初步了解。
3、不等式的幾何解釋
如圖,AB是圓的直徑,C是AB上任一點,AC=a,CB=b,過點C作垂直于AB的弦DE,連AD,BD,則CD= ,半徑為
問題5: 你能用這個圖得出基本不等式的幾何解釋嗎? (學(xué)生積極思考,通過幾何畫板幫助學(xué)生理解)
設(shè)計意圖
幾何直觀能啟迪思路,幫助理解,因此,借助幾何直觀學(xué)習(xí)和理解數(shù)學(xué),是數(shù)學(xué)學(xué)習(xí)中的重要方面。只有做到了直觀上的理解,才是真正的理解。
4、基本不等式的應(yīng)用
例1.證明
(學(xué)生自己證明)
設(shè)計意圖
(1)這道例題很簡單,多數(shù)學(xué)生都會仿照課本上的分析思路重新證明,能夠練習(xí)"分析法"證明不等式的過程;
(2)學(xué)生能夠加深對基本不等式的理解,a和b不僅僅是一個字母,而是一個符號,它們可以是a、b,也可以是x、y,也可以是一個多項式;
(3)此例不是課本例題,比課本例題簡單,這樣,循序漸進, 有利于學(xué)生理解不等式的內(nèi)涵。
例2:(1)把36寫成兩個正數(shù)的積,當兩個正數(shù)取什么值時,它們的和最小?
(2)把18寫成兩個正數(shù)的和,當兩個正數(shù)取什么值時,它們的積最大?
(讓學(xué)生分組合作、探究完成)
設(shè)計意圖
(1)此題目利用基本不等式求最值,包含正用,逆用,體現(xiàn)了基本不等式的應(yīng)用價值;
(2)強調(diào)利用不等式求最值的關(guān)鍵點:"正""定""等";
(3)有利于培養(yǎng)學(xué)生團結(jié)合作的精神。
練習(xí) :(1)若a,b同號,則
(2)P113 練習(xí)1.2
設(shè)計意圖
鞏固基本不等式,讓學(xué)生熟悉公式,并學(xué)會應(yīng)用。
小結(jié):(讓學(xué)生暢所欲言)
設(shè)計意圖
有利于發(fā)揮學(xué)生的主觀能動性,突出學(xué)生的主體地位。
作業(yè): 必做題:P 113 A組3、4
選做題:
設(shè)計意圖
(1)必做題是讓學(xué)生鞏固所學(xué)知識,熟練公式應(yīng)用,強化學(xué)生基礎(chǔ)知識、基本技能的形成;
(2)選做題達到分層教學(xué)的目的,根據(jù)學(xué)生的實際情況,對他們進行素質(zhì)教育。
時間安排:引入約5分鐘
證明基本不等式約10分鐘
幾何意義約10分鐘
知識應(yīng)用約15分鐘
小結(jié)約5分鐘
五、板書設(shè)計
分析法證明
幾何解釋
例題講解
小結(jié)
作業(yè)
例2
以上是我對這節(jié)課的教學(xué)設(shè)計,懇請各位評委老師指導(dǎo),謝謝!
不等式與不等式組教案 篇10
一、創(chuàng)設(shè)情境
問題畫出函數(shù)y=的圖象,根據(jù)圖象,指出:
(1)x取什么值時,函數(shù)值y等于零?
(2)x取什么值時,函數(shù)值y始終大于零?
二、探究歸納
問一元一次方程=0的解與函數(shù)y=的圖象有什么關(guān)系?
答一元一次方程=0的解就是函數(shù)y=的圖象上當y=0時的x的值.
問一元一次方程=0的解,不等式>0的解集與函數(shù)y=的圖象有什么關(guān)系?
答不等式>0的解集就是直線y=在x軸上方部分的x的取值范圍.
三、實踐應(yīng)用
例1畫出函數(shù)y=-x-2的圖象,根據(jù)圖象,指出:
(1)x取什么值時,函數(shù)值y等于零?
(2)x取什么值時,函數(shù)值y始終大于零?
解過(-2,0),(0,-2)作直線,如圖.
(1)當x=-2時,y=0;
(2)當x<-2時,y>0.
例2利用圖象解不等式(1)2x-5>-x+1,(2)2x-5<-x+1.
解設(shè)y1=2x-5,y2=-x+1,
在直角坐標系中畫出這兩條直線,如下圖所示.
兩條直線的交點坐標是(2,-1),由圖可知:
(1)2x-5>-x+1的解集是y1>y2時x的取值范圍,為x>-2;
(2)2x-5<-x+1的解集是y1<y2時x的取值范圍,為x<-2.
四、交流反思
運用函數(shù)的圖象來解釋一元一次方程、一元一次不等式的解集,并能通過函數(shù)圖象來回答一元一次方程、一元一次不等式的解集.
五、檢測反饋
1.已知函數(shù)y=4x-3.當x取何值時,函數(shù)的圖象在第四象限?
2.畫出函數(shù)y=3x-6的圖象,根據(jù)圖象,指出:
(1)x取什么值時,函數(shù)值y等于零?
(2)x取什么值時,函數(shù)值y大于零?
(3)x取什么值時,函數(shù)值y小于零?
3.畫出函數(shù)y=-0.5x-1的圖象,根據(jù)圖象?