數(shù)學(xué)必修4教案
發(fā)布時間:2024-03-12 數(shù)學(xué)必修教案 必修教案數(shù)學(xué)必修4教案范文。
教案課件是老師上課的重要部分,準備教案課件的時刻到來了。?對于新老師來說,教案課件的準備是提高課堂生動性。以下是我們?yōu)榇蠹覝蕚涞囊恍皵?shù)學(xué)必修4教案”方面的資料,為了方便查看請將此頁加入到書簽列表!
數(shù)學(xué)必修4教案【篇1】
高中數(shù)學(xué)必修3教學(xué)反思
邵
營
必修3是高中數(shù)學(xué)比較特殊的一部分內(nèi)容,既增添了新內(nèi)容——算法,老內(nèi)容統(tǒng)計和概率的內(nèi)容和安排也發(fā)生了一些變化。下面就自己的教學(xué)過程談一談對必修3的體會與反思。
1、第一章的教學(xué)主要還是要把握好教學(xué)要求,圍繞程序框圖這一核心,以具體案例為載體,使學(xué)生在解決具體問題的過程中,學(xué)會基本邏輯結(jié)構(gòu)和算法語句的用法,從中體會算法的思想,提高邏輯思維能力,不必要搞太難的算法設(shè)計,因為在其它章節(jié)中,算法思想也是要滲透的,學(xué)生有較多的機會接觸算法問題.至于高中數(shù)學(xué)引入算法的理由,我體會還是在于算法思想所體現(xiàn)的很強的邏輯性對提高學(xué)生邏輯思維能力的作用,而不在于學(xué)會多少程序語言或程序設(shè)計.所以還是應(yīng)該關(guān)注算法的“數(shù)學(xué)味”.
2、在第二章的教學(xué)中,感到學(xué)生雖然知道各種統(tǒng)計量(平均數(shù)、標準差、回歸方程等)的計算方法,但理解其中蘊涵的統(tǒng)計思想?yún)s很難,不能自覺的形成統(tǒng)計觀念和概率思維.因此,在統(tǒng)計教學(xué)中,要更多地關(guān)注在“計算”后,讓學(xué)生對結(jié)果的含義作出解釋.實際上,課本在這方面是有示范的.例如,在講完“眾數(shù)、中位數(shù)、平均數(shù)”后,課本有一個關(guān)于某企業(yè)職工工資待遇的“探究”欄目,還配了某市公路項目投資數(shù)據(jù)的利用方面的練習(xí)等,在教學(xué)中可讓學(xué)生對這些問題開展討論,并讓他們舉一些類似的問題.通過討論,學(xué)生認識企業(yè)老總利用數(shù)據(jù)設(shè)置的陷阱在哪里,應(yīng)當如何理解和使用數(shù)據(jù)特征等.
3、概率的教學(xué),離開了具體案例寸步難行,要讓學(xué)生在具體案例中體驗概率有關(guān)問題的情景,在案例中發(fā)現(xiàn)問題、解決問題,親身體驗案例情景,以激發(fā)興趣。在實際教學(xué)中一方面要盡量創(chuàng)設(shè)情境,采用案例教學(xué)的基本方式展開教學(xué),通過大量的具體案例來幫助學(xué)生理解;另一方面要設(shè)計一些活動,讓學(xué)生經(jīng)歷統(tǒng)計的全過程,在學(xué)生合作學(xué)過程中,學(xué)生既要獨立思考,自主探索,又要在解決實際問題中與別人合作、交流。例如:在教學(xué)《確定事件與不確定事件》中,讓學(xué)生通過一系列的案例理解概念。太陽從東邊升起,拋起的籃球會下降等等一定會發(fā)生的事件就是可能事件,太陽從西邊升起,公雞下蛋等一定不會發(fā)生的事件就是不可能事件。讓學(xué)生在具體案例中體驗概念。
2013年10月
數(shù)學(xué)必修4教案【篇2】
教學(xué)目標1.了解映射的概念,象與原象的概念,和一一映射的概念.(1)明確映射是特殊的對應(yīng)即由集合 ,集合 和對應(yīng)法則f三者構(gòu)成的一個整體,知道映射的特殊之處在于必須是多對一和一對一的對應(yīng);(2)能準確使用數(shù)學(xué)符號表示映射, 把握映射與一一映射的區(qū)別;(3)會求給定映射的指定元素的象與原象,了解求象與原象的方法.2.在概念形成過程中,培養(yǎng)學(xué)生的觀察,比較和歸納的能力.3.通過映射概念的學(xué)習(xí),逐步提高學(xué)生對知識的探究能力.教學(xué)建議教材分析(1)知識結(jié)構(gòu)映射是一種特殊的對應(yīng),一一映射又是一種特殊的映射,而且函數(shù)也是特殊的映射,它們之間的關(guān)系可以通過下圖表示出來,如圖:由此我們可從集合的包含關(guān)系中幫助我們把握相關(guān)概念間的區(qū)別與聯(lián)系.(2)重點,難點分析本節(jié)的教學(xué)重點和難點是映射和一一映射概念的形成與認識.①映射的概念是比較抽象的概念,它是在初中所學(xué)對應(yīng)的基礎(chǔ)上發(fā)展而來.教學(xué)中應(yīng)特別強調(diào)對應(yīng)集合 中的唯一這點要求的理解;映射是學(xué)生在初中所學(xué)的對應(yīng)的基礎(chǔ)上學(xué)習(xí)的,對應(yīng)本身就是由三部分構(gòu)成的整體,包括集 合A和集合B及對應(yīng)法則f,由于法則的不同,對應(yīng)可分為一對一,多對一,一對多和多對多. 其中只有一對一和多對一的能構(gòu)成映射,由此可以看到映射必是“對B中之唯一”,而只要是對應(yīng)就必須保證讓A中之任一與B中元素相對應(yīng),所以滿足一對一和多對一的對應(yīng)就能體現(xiàn)出“任一對唯一”.②而一一映射又在映射的基礎(chǔ)上增加新的要求,決定了它在學(xué)習(xí)中是比較困難的.教法建議牐牐1)在映射概念引入時,可先從學(xué)生熟悉的對應(yīng)入手, 選擇一些具體的生活例子,然后再舉一些數(shù)學(xué)例子,分為一對多、多對一、多對一、一對一四種情況,讓學(xué)生認真觀察,比較,再引導(dǎo)學(xué)生發(fā)現(xiàn)其中一對一和多對一的對應(yīng)是映射,逐步歸納概括出映射的'基本特征,讓學(xué)生的認識從感性認識到理性認識.(2)在剛開始學(xué)習(xí)映射時,為了能讓學(xué)生看清映射的構(gòu)成,可以選擇用圖形表示映射,在集合的選擇上可選擇能用列舉法表示的有限集,法則盡量用語言描述,這樣的表示方法讓學(xué)生可以比較直觀的認識映射,而后再選擇用抽象的數(shù)學(xué)符號表示映射,比如:
數(shù)學(xué)必修4教案【篇3】
1.2解三角形應(yīng)用舉例 第三課時
一、教學(xué)目標
1、能夠運用正弦定理、余弦定理等知識和方法解決一些有關(guān)計算角度的實際問題
2、通過綜合訓(xùn)練強化學(xué)生的相應(yīng)能力,讓學(xué)生有效、積極、主動地參與到探究問題的過程中來,逐步讓學(xué)生自主發(fā)現(xiàn)規(guī)律,舉一反三。
3、培養(yǎng)學(xué)生提出問題、正確分析問題、獨立解決問題的能力,并激發(fā)學(xué)生的探索精神。
二、教學(xué)重點、難點
重點:能根據(jù)正弦定理、余弦定理的特點找到已知條件和所求角的關(guān)系 難點:靈活運用正弦定理和余弦定理解關(guān)于角度的問題
三、教學(xué)過程 Ⅰ.課題導(dǎo)入 [創(chuàng)設(shè)情境] 提問:前面我們學(xué)習(xí)了如何測量距離和高度,這些實際上都可轉(zhuǎn)化已知三角形的一些邊和角求其余邊的問題。然而在實際的航海生活中,人們又會遇到新的問題,在浩瀚無垠的海面上如何確保輪船不迷失方向,保持一定的航速和航向呢?今天我們接著探討這方面的測量問題。Ⅱ.講授新課 [范例講解] 例
1、如圖,一艘海輪從A出發(fā),沿北偏東75?的方向航行67.5 n mile后到達海島B,然后從B出發(fā),沿北偏東32?的方向航行54.0 n mile后達到海島C.如果下次航行直接從A出發(fā)到達C,此船應(yīng)該沿怎樣的方向航行,需要航行多少距離?(角度精確到0.1?,距離精確到0.01n mile)
學(xué)生看圖思考并講述解題思路
分析:首先根據(jù)三角形的內(nèi)角和定理求出AC邊所對的角?ABC,即可用余弦定理算出AC邊,再根據(jù)正弦定理算出AC邊和AB邊的夾角?CAB。
解:在?ABC中,?ABC=180?-75?+ 32?=137?,根據(jù)余弦定理,AC=AB2?BC2?2AB?BC?cos?ABC =67.52?54.02?2?67.5?54.0?cos137? ≈113.15 54.0sin137根據(jù)正弦定理,BC = AC sin?CAB = BCsin?ABC = ≈0.3255,113.15ACsin?CABsin?ABC?
所以 ?CAB =19.0?, 75?-?CAB =56.0?
答:此船應(yīng)該沿北偏東56.1?的方向航行,需要航行113.15n mile 例
2、在某點B處測得建筑物AE的頂端A的仰角為?,沿BE方向前進30m,至點C處測得頂端A的仰角為2?,再繼續(xù)前進103m至D點,測得頂端A的仰角為4?,求?的大小和建筑物AE的高。
解法一:(用正弦定理求解)由已知可得在?ACD中,AC=BC=30,AD=DC=103,?ADC =180?-4?,?103=sin2?30。因為 sin4?=2sin2?cos2? ?sin(180?4?)cos2?=? 3,得 2?=30? ? ?=15?,?在Rt?ADE中,AE=ADsin60?=15 2答:所求角?為15?,建筑物高度為15m 解法二:(設(shè)方程來求解)設(shè)DE= x,AE=h 在 Rt?ACE中,(103+ x)2 + h2=302 在 Rt?ADE中,x2+h2=(103)
2兩式相減,得x=53,h=15 ?在 Rt?ACE中,tan2?=
h103?x=3?2?=30?,?=15?
答:所求角?為15?,建筑物高度為15m 解法三:(用倍角公式求解)設(shè)建筑物高為AE=8,由題意,得
?BAC=?,?CAD=2?,AC = BC =30m , AD = CD =103m 在Rt?ACE中,sin2?=
x4------① 在Rt?ADE中,sin4?=,----② 301033,2?=30?,?=15?,AE=ADsin60?=15 2 ②?① 得 cos2?=答:所求角?為15?,建筑物高度為15m 例
3、某巡邏艇在A處發(fā)現(xiàn)北偏東45?相距9海里的C處有一艘走私船,正沿南偏東75?的方向以10海里/小時的速度向我海岸行駛,巡邏艇立即以14海里/小時的速度沿著直線方向追去,問巡邏艇應(yīng)該沿什么方向去追?需要多少時間才追趕上該走私船?
師:你能根據(jù)題意畫出方位圖?教師啟發(fā)學(xué)生做圖建立數(shù)學(xué)模型
分析:這道題的關(guān)鍵是計算出三角形的各邊,即需要引入時間這個參變量。
解:如圖,設(shè)該巡邏艇沿AB方向經(jīng)過x小時后在B處追上走私船,則CB=10x, AB=14x,AC=9, ?ACB=75?+45?=120?
?(14x)2= 92+(10x)2-2?9?10xcos120? 39?化簡得32x2-30x-27=0,即x=,或x=-(舍去)
216所以BC = 10x =15,AB =14x =21, BCsin120?15353又因為sin?BAC === ?AB21421,??BAC =38?13?,或?BAC =141?47?(鈍角不合題意,舍去)?38?13?+45?=83?13?
答:巡邏艇應(yīng)該沿北偏東83?13?方向去追,經(jīng)過1.4小時才追趕上該走私船。評注:在求解三角形中,我們可以根據(jù)正弦函數(shù)的定義得到兩個解,但作為有關(guān)現(xiàn)實生活的應(yīng)用題,必須檢驗上述所求的解是否符合實際意義,從而得出實際問題的解 Ⅲ.課堂練習(xí)
課本第16頁練習(xí) Ⅳ.課時小結(jié)
解三角形的應(yīng)用題時,通常會遇到兩種情況:
(1)已知量與未知量全部集中在一個三角形中,依次利用正弦定理或余弦定理解之。
(2)已知量與未知量涉及兩個或幾個三角形,這時需要選擇條件足夠的三角形優(yōu)先研究,再逐步在其余的三角形中求出問題的解。
Ⅴ.課后作業(yè)
《習(xí)案》作業(yè)六
數(shù)學(xué)必修4教案【篇4】
用坐標法解決幾何問題的步驟:
第二步:通過代數(shù)運算,解決代數(shù)問題;
第三步:將代數(shù)運算結(jié)果“翻譯”成幾何結(jié)論、
重點與難點:直線與圓的方程的應(yīng)用、
問 題設(shè)計意圖師生活動
生:回顧,說出自己的看法、
2、解決直線與圓的位置關(guān)系,你將采用什么方法?
生:回顧、思考、討論、交流,得到解決問題的方法、
問 題設(shè)計意圖師生活動
3、閱讀并思考教科書上的例4,你將選擇什么方 法解決例4的'問題
生:自 學(xué)例4,并完成練習(xí)題1、2、
生:建立適當?shù)闹苯亲鴺讼担?探求解決問題的方法、
8、小結(jié):
(1)利用“坐標法”解決問對知識進行歸納概括,體會利 師:指導(dǎo) 學(xué)生完成練習(xí)題、
生:閱讀教科書的例3,并完成第
問 題設(shè)計意圖師生活動
題的需要準備什么工作?
(2)如何建立直角坐標系,才能易于解決平面幾何問題?
(3)你認為學(xué)好“坐標法”解決問題的關(guān)鍵是什么?
數(shù)學(xué)必修4教案【篇5】
2、初步運用力的平行四邊形法則求解共點力的合力;。
3、會用作圖法求解兩個共點力的合力;并能判斷其合力隨夾角的變化情況,掌握合力的變化范圍。
能力目標。
1、能夠通過實驗演示歸納出互成角度的兩個共點力的合成遵循平行四邊形定則;。
2、培養(yǎng)學(xué)生動手操作能力;。
情感目標。
培養(yǎng)學(xué)生的物理思維能力和科學(xué)研究的態(tài)度。
教學(xué)建議。
教學(xué)重點難點分析。
1、本課的重點是通過實驗歸納出力的平行四邊形法則,這同時也是本章的重點.
2、對物體進行簡單的受力分析、通過作圖法確定合力是本章的難點;。
教法建議。
一、共點力概念講解的教法建議。
關(guān)于共點力的概念講解時需要強調(diào)不僅作用在物體的同一點的力是共點力,力的作用線相交于一點的也叫共點力.注意平行力于共點力的區(qū)分(關(guān)于平行力的合成請參考擴展資料中的“平行力的合成與分解”),教師講解示例中要避開這例問題.
二、關(guān)于矢量合成講解的教法建議。
本課的重點是通過實驗歸納出力的平行四邊形法則,這同時也是本章的重點.由于學(xué)生剛開始接觸矢量的運算方法,在講解中需要從學(xué)生能夠感知和理解的日?,F(xiàn)象和規(guī)律出發(fā),理解合力的概念,從實驗現(xiàn)象總結(jié)出力的合成規(guī)律,由于矢量的運算法則是矢量概念的核心內(nèi)容,又是學(xué)習(xí)物理學(xué)的基礎(chǔ),對于初上高中的學(xué)生來說,是一個大的飛躍,因此教學(xué)時,教師需要注意規(guī)范性,但是不必操之過急,通過一定數(shù)量的題目強化學(xué)生對平行四邊形定則的認識.
由于力的合成與分解的基礎(chǔ)首先是對物體進行受力分析,在前面力的知識學(xué)習(xí)中,學(xué)生已經(jīng)對單個力的分析過程有了比較清晰的認識,在知識的整合過程中,教師可以通過練習(xí)做好規(guī)范演示.
三、關(guān)于作圖法求解幾個共點力合力的教法建議。
1、在講解用作圖法求解共點力合力時,可以在復(fù)習(xí)力的圖示法基礎(chǔ)上,讓學(xué)生加深矢量概念的理解,同時掌握矢量的計算法則.
2、注意圖示畫法的規(guī)范性,在本節(jié)可以配合學(xué)生自主實驗進行教學(xué).
第四節(jié)力的合成與分解。
yJS21.com更多精選幼兒園教案閱讀
2024數(shù)學(xué)必修3教案
每天,我們的老師都會努力地按時按質(zhì)地撰寫教案課件,因為教案課件是他們工作的一部分。教案是為了將教育教學(xué)管理科學(xué)化和規(guī)范化,因此在寫教案課件時需要注意哪些方面呢?請您閱讀關(guān)于“數(shù)學(xué)必修3教案”的內(nèi)容,并且如果您認為這個網(wǎng)頁對您有幫助,請將它加入收藏夾!
數(shù)學(xué)必修3教案【篇1】
1.點的位置表示:
(1)先取一個點O作為基準點,稱為原點.取定這個基準點之后,任何一個點P的位置就由O到P的向量 唯一表示. 稱為點P的位置向量,它表示的是點P相對于點O的位置.
(2)在平面上取定兩個相互垂直的單位向量e1,e2作為基,則 可唯一地分解為 =xe1+ye2的形式,其中x,y是一對實數(shù).(x,y)就是向量 的坐標,坐標唯一 地表示了向量 ,從而也唯一地表示了點P.
2.向量的坐標:
向量的坐標等于它的終點坐標減去起點坐標.
3.基本公式:
(1)前提條件:A(x1,y1),B(x2,y2)為平面直角坐標系中的兩點,M(x,y)為線段AB的中點.
(2)公式:
①兩點之間的距離公式|AB|=(x2-x1)2+(y2-y1)2.
②中點坐標公式
4.定比分點坐標
設(shè)A,B是兩個不同的點,如果點P在直線AB上且 =λ ,則稱λ為點P分有向線段 所成的比.
注意:當P在線段AB之間時, , 方向相同,比值λ>0.我們也允許點P在線段AB之外,此時 , 方向相反,比值λ
定比分點坐標公式:已知兩點A(x1,y1),B(x2,y2),點P(x,y)分 所成的比為λ.則x=x1+λx21+λ,y=y1+λy21+λ.
重心的坐標:三角形重心的坐標等于三個頂點相應(yīng)坐標的算術(shù)平 均值,即x1+x2+x33,y1+y2+y33.
一、中點坐標公式的運用
【例1】已知 ABCD的兩個頂點坐標分別為A(4,2),B(5,7),對角線的交點為E(-3,4),求另外兩個頂點C,D的坐標.
平行四邊形的對角線互相平分,交點為兩個相對頂點的中點,利用中點公式求.
解:設(shè)C(x1,y1),D(x2,y2).
∵E為AC的中點,
∴-3=x1+42,4=y1+22.
解得x1=-10,y1=6.
又∵E為BD的中點,
∴-3=5+x22,4=7+y22.
解得x2=-11,y2=1.
∴C的坐標為(-10,6),D點的坐標為(-11,1).
若M(x,y)是A(a,b)與B(c,d)的中點,則x=a+c2,y=b+d2.也可理解為A關(guān)于M的對稱點為B,若求B,則可用變形公式c=2x-a,d=2y-b.
1-1已知矩形ABCD的兩個頂點坐標是A(-1,3),B(-2,4),若它的對角線交點M在x軸上,求另外兩個頂點C,D的坐標.
解:如圖,設(shè)點M,C,D的坐標分別為(x0,0),(x1,y1),(x2,y2),依題意得
0=y1+32 y1=-3;
0=y2+42 y2=-4;
x0=x1-12 x1=2x0+1;
x0=x2-22 x2=2x0+2.
又∵|AB|2+|BC|2=|AC|2,
∴(-1+2)2+(3-4)2+(-2-2x0-1)2+(4+3)2=(-1-2x0-1)2+(3+3)2.
整理得x0=-5,∴x1=-9,x2=-8
∴點C,D的坐標分別為(-9,-3),(-8,-4).
二、距離公式的運用
【例2】已知△ABC三個頂點的坐標分別為A(4,1),B(-3,2),C(0,5),則△ABC的周長為().
A.42 B.82 C.122 D.162
利用兩點間的距離公式直接求解,然后求和.
解析:∵ A(4,1),B(-3,2),C(0,5),
∴|AB|=(-3-4)2+(2-1)2=50=52,
|BC|=[0-(-3)]2+(5-2)2=18=32,
| AC|=(0-4)2+(5-1)2=32=42.
∴△ABC的周長為|AB|+|BC|+|AC|
=52+32+42
=122.
答案:C
(1)熟練掌握兩點 間的距離公式,并能靈活運 用.
(2)注意公式的結(jié)構(gòu)特征.若y2=y1,|AB|=(x2-x1)2=|x2-x1|就是數(shù)軸上的兩點間距離公式.
數(shù)學(xué)必修3教案【篇2】
教學(xué)目標:
1、知識目標:使學(xué)生理解指數(shù)函數(shù)的定義,初步掌握指數(shù)函數(shù)的圖像和性質(zhì)。
2、能力目標:通過定義的引入,圖像特征的觀察、發(fā)現(xiàn)過程使學(xué)生懂得理論與實踐的辯證關(guān)系,適時滲透分類討論的數(shù)學(xué)思想,培養(yǎng)學(xué)生的探索發(fā)現(xiàn)能力和分析問題、解決問題的能力。
3、情感目標:通過學(xué)生的參與過程,培養(yǎng)他們手腦并用、多思勤練的良好學(xué)習(xí)習(xí)慣和勇于探索、鍥而不舍的治學(xué)精神。
教學(xué)重點、難點:
1、重點:指數(shù)函數(shù)的圖像和性質(zhì)
2、難點:底數(shù)a的變化對函數(shù)性質(zhì)的影響,突破難點的關(guān)鍵是利用多媒體動感顯示,通過顏色的區(qū)別,加深其感性認識。
教學(xué)方法:引導(dǎo)——發(fā)現(xiàn)教學(xué)法、比較法、討論法
教學(xué)過程:
一、事例引入
T:上節(jié)課我們學(xué)習(xí)了指數(shù)的運算性質(zhì),今天我們來學(xué)習(xí)與指數(shù)有關(guān)的函數(shù)。什么是函數(shù)?
S:——————
T:主要是體現(xiàn)兩個變量的關(guān)系。我們來考慮一個與醫(yī)學(xué)有關(guān)的例子:大家對“非典”應(yīng)該并不陌生,它與其它的傳染病一樣,有一定的潛伏期,這段時間里病原體在機體內(nèi)不斷地繁殖,病原體的繁殖方式有很多種,分裂就是其中的一種。我們來看一種球菌的分裂過程:
C:動畫演示(某種球菌分裂時,由1分裂成2個,2個分裂成4個,——。一個這樣的球菌分裂x次后,得到的球菌的個數(shù)y與x的函數(shù)關(guān)系式是:y=2x)
S,T:(討論)這是球菌個數(shù)y關(guān)于分裂次數(shù)x的函數(shù),該函數(shù)是什么樣的形式(指數(shù)形式),
從函數(shù)特征分析:底數(shù)2是一個不等于1的正數(shù),是常量,而指數(shù)x卻是變量,我們稱這種函數(shù)為指數(shù)函數(shù)——點題。
二、指數(shù)函數(shù)的定義
C:定義:函數(shù)y=ax(a>0且a≠1)叫做指數(shù)函數(shù),x∈R.。
問題1:為何要規(guī)定a>0且a≠1?
S:(討論)
C:(1)當a
就沒有意義;
(2)當a=0時,ax有時會沒有意義,如x=—2時,
(3)當a=1時,函數(shù)值y恒等于1,沒有研究的必要。
鞏固練習(xí)1:
下列函數(shù)哪一項是指數(shù)函數(shù)()
A、y=x2B、y=2x2C、y=2xD、y=—2x
數(shù)學(xué)必修3教案【篇3】
【教學(xué)目標】
一、知識與技能
1、掌握等差數(shù)列前n項和公式;
2、體會等差數(shù)列前n項和公式的推導(dǎo)過程;
3、會簡單運用等差數(shù)列前n項和公式。
二、過程與方法
1. 通過對等差數(shù)列前n項和公式的推導(dǎo),體會倒序相加求和的思想方法;
2、 通過公式的'運用體會方程的思想。
三、情感態(tài)度與價值觀
結(jié)合具體模型,將教材知識和實際生活聯(lián)系起來,使學(xué)生感受數(shù)學(xué)的實用性,有效激發(fā)學(xué)習(xí)興趣,并通過對等差數(shù)列求和歷史的了解,滲透數(shù)學(xué)史和數(shù)學(xué)文化。
【教學(xué)重點】
等差數(shù)列前n項和公式的推導(dǎo)和應(yīng)用。
【教學(xué)難點】
在等差數(shù)列前n項和公式的推導(dǎo)過程中體會倒序相加的思想方法。
【重點、難點解決策略】
本課在設(shè)計上采用了由特殊到一般、從具體到抽象的教學(xué)策略。利用數(shù)形結(jié)合、類比歸納的思想,層層深入,通過學(xué)生自主探究、分析、整理出推導(dǎo)公式的思路,同時,借助多媒體的直觀演示,幫助學(xué)生理解,師生互動、講練結(jié)合,從而突出重點、突破教學(xué)難點。
【教學(xué)用具】
多媒體軟件,電腦
【教學(xué)過程】
一、明確數(shù)列前n項和的定義,確定本節(jié)課中心任務(wù):
本節(jié)課我們來學(xué)習(xí)《等差數(shù)列的前n項和》,那么什么叫數(shù)列的前n項和呢,對于數(shù)列{an}:a1,a2,a3,…,an,…我們稱a1+a2+a3+…+an為數(shù)列{an}的前n項和,用sn表示,記sn=a1+a2+a3+…+an,
如S1 =a1, S7 =a1+a2+a3+……+a7,下面我們來共同探究如何求等差數(shù)列的前n項和。
二、問題牽引,探究發(fā)現(xiàn)
問題1:(播放媒體資料情景引入)印度泰姬陵世界七大奇跡之一。傳說陵寢中有一個三角形圖案,以相同大小的圓寶石鑲飾而成,共有100層(見圖),奢靡之程度,可見一斑。你知道這個圖案一共花了多少圓寶石嗎?
即: S100=1+2+3+······+100=?
著名數(shù)學(xué)家高斯小時候就會算,聞名于世;那么小高斯是如何快速地得出答案的呢?請同學(xué)們思考高斯方法的特點,適合類型和方法本質(zhì)。
特點: 首項與末項的和: 1+100=101,
第2項與倒數(shù)第2項的和: 2+99 =101,
第3項與倒數(shù)第3項的和: 3+98 =101,
· · · · · ·
第50項與倒數(shù)第50項的和: 50+51=101,
于是所求的和是: 101×50=5050。
1+2+3+ ······ +100= 101×50 = 5050
同學(xué)們討論后總結(jié)發(fā)言:等差數(shù)列項數(shù)為偶數(shù)相加時首尾配對,變不同數(shù)的加法運算為相同數(shù)的乘法運算大大提高效率。高斯的方法很妙,如果等差數(shù)列的項數(shù)為奇數(shù)時怎么辦呢?
探索與發(fā)現(xiàn)1:假如讓你計算從第一層到第21層的珠寶數(shù),高斯的首尾配對法行嗎?
即計算S21=1+2+3+ ······ +21的值,在這個過程中讓學(xué)生發(fā)現(xiàn)當項數(shù)為奇數(shù)時,首尾配對出現(xiàn)了問題,通過動畫演示引導(dǎo)幫助學(xué)生思考解決問題的辦法,為引出倒序相加法做鋪墊。
把“全等三角形”倒置,與原圖構(gòu)成平行四邊形。平行四邊形中的每行寶石的個數(shù)均為21個,共21行。有什么啟發(fā)?
1+ 2 + 3 + …… +20 +21
21 + 20 + 19 + …… + 2 +1
S21=1+2+3+…+21=(21+1)×21÷2=231
這個方法也很好,那么項數(shù)為偶數(shù)這個方法還行嗎?
探索與發(fā)現(xiàn)2:第5層到12層一共有多少顆圓寶石?
學(xué)生探究的同時通過動畫演示幫助學(xué)生思考剛才的方法是否同樣可行?請同學(xué)們自主探究一下(老師演示動畫幫助學(xué)生)
S8=5+6+7+8+9+10+11+12=
【設(shè)計意圖】進一步引導(dǎo)學(xué)生探究項數(shù)為偶數(shù)的等差數(shù)列求和時倒序相加是否可行。從而得出倒序相加法適合任意項數(shù)的等差數(shù)列求和,最終確立倒序相加的思想和方法!
好,這樣我們就找到了一個好方法——倒序相加法!現(xiàn)在來試一試如何求下面這個等差數(shù)列的前n項和?
問題2:等差數(shù)列1,2,3,…,n, … 的前n項和怎么求呢?
解:(根據(jù)前面的學(xué)習(xí),請學(xué)生自主思考獨立完成)
【設(shè)計意圖】強化倒序相加法的理解和運用,為更一般的等差數(shù)列求和打下基礎(chǔ)。
至此同學(xué)們已經(jīng)掌握了倒序相加法,相信大家可以推導(dǎo)更一般的等差數(shù)列前n項和公式了。
問題3:對于一般的等差數(shù)列{an}首項為a1,公差為d,如何推導(dǎo)它的前n項和sn公式呢?
即求 =a1+a2+a3+……+an=
∴(1)+(2)可得:2
∴
公式變形:將代入可得:
【設(shè)計意圖】學(xué)生在前面的探究基礎(chǔ)上水到渠成順理成章很快就可以推導(dǎo)出一般等差數(shù)列的前n項和公式,從而完成本節(jié)課的中心任務(wù)。在這個過程中放手讓學(xué)生自主推導(dǎo),同時也復(fù)習(xí)等差數(shù)列的通項公式和基本性質(zhì)。
三、公式的認識與理解:
1、根據(jù)前面的推導(dǎo)可知等差數(shù)列求和的兩個公式為:
(公式一)
(公式二)
探究: 1、(1)相同點: 都需知道a1與n;
(2)不同點: 第一個還需知道an ,第二個還需知道d;
(3)明確若a1,d,n,an中已知三個量就可求Sn。
2、兩個公式共涉及a1, d, n, an,Sn五個量,“知三”可“求二”。
2、探索與發(fā)現(xiàn)3:等差數(shù)列前n項和公式與梯形面積公式有什么聯(lián)系?
用梯形面積公式記憶等差數(shù)列前 n 項和公式,這里對圖形進行了割、補兩種處理,對應(yīng)著等差數(shù)列 n 項和的兩個公式。,請學(xué)生聯(lián)想思考總結(jié)來有助于記憶。
【設(shè)計意圖】幫助學(xué)生類比聯(lián)想,拓展思維,增加興趣,強化記憶
四、公式應(yīng)用、講練結(jié)合
1、練一練:
有了兩個公式,請同學(xué)們來練一練,看誰做的快做的對!
根據(jù)下列各題中的條件,求相應(yīng)的等差數(shù)列{an}的Sn :
(1)a1=5,an=95,n=10
解:500
(2)a1=100,d=-2,n=50
解:
【設(shè)計意圖】熟悉并強化公式的理解和應(yīng)用,進一步鞏固“知三求二”。
下面我們來看兩個例題:
2、例題1:
2000年11月14日教育部下發(fā)了>。某市據(jù)此提出了實施“校校通”工程的總目標:從2001年起用10年時間,在全市中小學(xué)建成不同標準的校園網(wǎng)。 據(jù)測算,2001年該市用于“校校通”工程的經(jīng)費為500萬元。為了保證工程的順利實施,計劃每年投入的資金都比上一年增加50萬元。那么從2001年起的未來10年內(nèi),該市在“校校通”工程中的總投入是多少?
解:設(shè)從2001年起第n年投入的資金為an,根據(jù)題意,數(shù)列{an}是一個等差數(shù)列,其中 a1=500, d=50
那么,到2010年(n=10),投入的資金總額為
答: 從2001年起的未來10年內(nèi),該市在“校校通”工程中的總投入是7250萬元。
【設(shè)計意圖】讓學(xué)生體會數(shù)列知識在生活中的應(yīng)用及簡單的數(shù)學(xué)建模思想方法。
3、例題2:
已知一個等差數(shù)列{an}的前10項的和是310,前20項的和是1220,由這些條件可以確定這個等差數(shù)列的前n項和的公式嗎?
解:
法1:由題意知
,
代入公式得:
解得,
法2:由題意知
,
代入公式得:
,
即,
②①得,,故
由得故
【設(shè)計意圖】掌握并能靈活應(yīng)用公式并體會方程的思想方法。
4、反饋達標:
練習(xí)一:在等差數(shù)列{an}中,a1=20, an=54,sn =999,求n.
解:由解n=27
練習(xí)2: 已知{an}為等差數(shù)列,,求公差。
解:由公式得
即d=2
【設(shè)計意圖】進一強化求和公式的靈活應(yīng)用及化歸的思想(化歸到首項和公差這兩個基本元)。
五、歸納總結(jié) 分享收獲:(活躍課堂氣氛,鼓勵學(xué)生大膽發(fā)言,培養(yǎng)總結(jié)和表達能力)
1、倒序相加法求和的思想及應(yīng)用;
2、等差數(shù)列前n項和公式的推導(dǎo)過程;
3、掌握等差數(shù)列的兩個求和公式,;
4、前n項和公式的靈活應(yīng)用及方程的思想。
…………
六、作業(yè)布置:
(一)書面作業(yè):
1、已知等差數(shù)列{an},其中d=2,n=15, an =-10,求a1及sn。
2、在a,b之間插入10個數(shù),使它們同這兩個數(shù)成等差數(shù)列,求這10個數(shù)的和。
(二)課后思考:
思考:等差數(shù)列的前n項和公式的推導(dǎo)方法除了倒序相加法還有沒有其它方法呢?
【設(shè)計意圖】通過布置書面作業(yè)鞏固所學(xué)知識及方法,同時通過布置課后思考題來延伸知識拓展思維。
附:板書設(shè)計
等差數(shù)列的前n項和
1、數(shù)列前n項和的定義:
2、等差數(shù)列前n項和公式的推導(dǎo):
3、公式的認識與理解:
公式一:
公式二:
四:例題及解答:
議練活動:
數(shù)學(xué)必修3教案【篇4】
一、教材分析
函數(shù)作為初等數(shù)學(xué)的核心內(nèi)容,貫穿于整個初等數(shù)學(xué)體系之中。函數(shù)這一章在高中數(shù)學(xué)中,起著承上啟下的作用,它是對初中函數(shù)概念的承接與深化。在初中,只停留在具體的幾個簡單類型的函數(shù)上,把函數(shù)看成變量之間的依賴關(guān)系,而高中階段不僅把函數(shù)看成變量之間的依賴關(guān)系,更是從“變量說”到“對應(yīng)說”,這是對函數(shù)本質(zhì)特征的進一步認識,也是學(xué)生認識上的一次飛躍。這一章內(nèi)容滲透了函數(shù)的思想,集合的思想以及數(shù)學(xué)建模的思想等內(nèi)容,這些內(nèi)容的學(xué)習(xí),無疑對學(xué)生今后的學(xué)習(xí)起著深刻的影響。
本節(jié)《函數(shù)的概念》是函數(shù)這一章的起始課。概念是數(shù)學(xué)的基礎(chǔ),只有對概念做到深刻理解,才能正確靈活地加以應(yīng)用。本課從集合間的對應(yīng)來描繪函數(shù)概念,起到了上承集合,下引函數(shù)的作用。也為進一步學(xué)習(xí)函數(shù)這一章的其它內(nèi)容提供了方法和依據(jù)。
二、重難點分析
根據(jù)對上述對教材的分析及新課程標準的要求,確定函數(shù)的概念既是本節(jié)課的重點,也應(yīng)該是本章的難點。
三、學(xué)情分析
1、有利因素:一方面學(xué)生在初中已經(jīng)學(xué)習(xí)了變量觀點下的函數(shù)定義,并具體研究了幾類最簡單的函數(shù),對函數(shù)已經(jīng)有了一定的感性認識;另一方面在本書第一章學(xué)生已經(jīng)學(xué)習(xí)了集合的概念,這為學(xué)習(xí)函數(shù)的現(xiàn)代定義打下了基礎(chǔ)。
2、不利因素:函數(shù)在初中雖已講過,不過較為膚淺,本課主要是從兩個集合間對應(yīng)來描繪函數(shù)概念,是一個抽象過程,要求學(xué)生的抽象、分析、概括的能力比較高,學(xué)生學(xué)起來有一定的難度。
四、目標分析
1、理解函數(shù)的概念,會用函數(shù)的定義判斷函數(shù),會求一些最基本的函數(shù)的定義域、值域。
2、通過對實際問題分析、抽象與概括,培養(yǎng)學(xué)生抽象、概括、歸納知識以及邏輯思維、建模等方面的能力。
3、通過對函數(shù)概念形成的探究過程,培養(yǎng)學(xué)生發(fā)現(xiàn)問題,探索問題,不斷超越的創(chuàng)新品質(zhì)。
五、教法學(xué)法
本節(jié)課的教學(xué)以學(xué)生為主體、教師是數(shù)學(xué)課堂活動的組織者、引導(dǎo)者和參與者,我一方面精心設(shè)計問題情景,引導(dǎo)學(xué)生主動探索。另一方面,依據(jù)本節(jié)為概念學(xué)習(xí)的特點,以問題的提出、問題的解決為主線,始終在學(xué)生知識的“最近發(fā)展區(qū)”設(shè)置問題,倡導(dǎo)學(xué)生主動參與,通過不斷探究、發(fā)現(xiàn),在師生互動、生生互動中,讓學(xué)習(xí)過程成為學(xué)生心靈愉悅的主動認知過程。
學(xué)法方面,學(xué)生通過對新舊兩種函數(shù)定義的對比,在集合論的觀點下初步建構(gòu)出函數(shù)的概念。在理解函數(shù)概念的基礎(chǔ)上,建構(gòu)出函數(shù)的定義域、值域的概念,并初步掌握它們的求法。
高一必修二數(shù)學(xué)教案41、教材(教學(xué)內(nèi)容)
本課時主要研究任意角三角函數(shù)的定義。三角函數(shù)是一類重要的基本初等函數(shù),是描述周期性現(xiàn)象的重要數(shù)學(xué)模型,本課時的內(nèi)容具有承前啟后的重要作用:承前是因為可以用函數(shù)的定義來抽象和規(guī)范三角函數(shù)的定義,同時也可以類比研究函數(shù)的模式和方法來研究三角函數(shù);啟后是指定義了三角函數(shù)之后,就可以進一步研究三角函數(shù)的性質(zhì)及圖象特征,并體會三角函數(shù)在解決具有周期性變化規(guī)律問題中的作用,從而更深入地領(lǐng)會數(shù)學(xué)在其它領(lǐng)域中的重要應(yīng)用、
2、設(shè)計理念
本堂課采用“問題解決”教學(xué)模式,在課堂上既充分發(fā)揮學(xué)生的主體作用,又體現(xiàn)了教師的引導(dǎo)作用。整堂課先通過問題引導(dǎo)學(xué)生梳理已有的知識結(jié)構(gòu),展開合理的聯(lián)想,提出整堂課要解決的中心問題:圓周運動等具周期性規(guī)律運動可以建立函數(shù)模型來刻畫嗎?從而引導(dǎo)學(xué)生帶著問題閱讀和鉆研教材,引發(fā)認知沖突,再通過問題引導(dǎo)學(xué)生改造或重構(gòu)已有的認知結(jié)構(gòu),并運用類比方法,形成“任意角三角函數(shù)的定義”這一新的概念,最后通過例題與練習(xí),將任意角三角函數(shù)的定義,內(nèi)化為學(xué)生新的認識結(jié)構(gòu),從而達成教學(xué)目標、
3、教學(xué)目標
知識與技能目標:形成并掌握任意角三角函數(shù)的定義,并學(xué)會運用這一定義,解決相關(guān)問題、
過程與方法目標:體會數(shù)學(xué)建模思想、類比思想和化歸思想在數(shù)學(xué)新概念形成中的重要作用、
情感態(tài)度與價值觀目標:引導(dǎo)學(xué)生學(xué)會閱讀數(shù)學(xué)教材,學(xué)會發(fā)現(xiàn)和欣賞數(shù)學(xué)的理性之美、
4、重點難點
重點:任意角三角函數(shù)的定義、
難點:任意角三角函數(shù)這一概念的理解(函數(shù)模型的建立)、類比與化歸思想的滲透、
5、學(xué)情分析
學(xué)生已有的認知結(jié)構(gòu):函數(shù)的概念、平面直角坐標系的概念、任意角和弧度制的相關(guān)概念、以直角三角形為載體的銳角三角函數(shù)的概念、在教學(xué)過程中,需要先將學(xué)生的以直角三角形為載體的銳角三角函數(shù)的概念改造為以象限角為載體的銳角三角函數(shù),并形成以角的終邊與單位園的交點的坐標來表示的銳角三角函數(shù)的概念,再拓展到任意角的三角函數(shù)的定義,從而使學(xué)生形成新的認知結(jié)構(gòu)、
6、教法分析
“問題解決”教學(xué)法,是以問題為主線,引導(dǎo)和驅(qū)動學(xué)生的思維和學(xué)習(xí)活動,并通過問題,引導(dǎo)學(xué)生的質(zhì)疑和討論,充分展示學(xué)生的思維過程,最后在解決問題的過程中形成新的認知結(jié)構(gòu)、這種教學(xué)模式能較好地體現(xiàn)課堂上老師的主導(dǎo)作用,也能充分發(fā)揮課堂上學(xué)生的主體作用、
7、學(xué)法分析
本課時先通過“閱讀”學(xué)習(xí)法,引導(dǎo)學(xué)生改造已有的認知結(jié)構(gòu),再通過類比學(xué)習(xí)法引導(dǎo)學(xué)生形成“任意角的三角函數(shù)的定義”,最后引導(dǎo)學(xué)生運用類比學(xué)習(xí)法,來研究三角函數(shù)一些基本性質(zhì)和符號問題,從而使學(xué)生形成新的認識結(jié)構(gòu),達成教學(xué)目標。
數(shù)學(xué)必修3教案【篇5】
一、教材分析
1.教學(xué)內(nèi)容
本節(jié)課內(nèi)容教材共分兩課時進行,這是第一課時,該課時主要學(xué)習(xí)函數(shù)的單調(diào)性的的概念,依據(jù)函數(shù)圖象判斷函數(shù)的單調(diào)性和應(yīng)用定義證明函數(shù)的單調(diào)性。
2.教材的地位和作用
函數(shù)單調(diào)性是高中數(shù)學(xué)中相當重要的一個基礎(chǔ)知識點,是研究和討論初等函數(shù)有關(guān)性質(zhì)的基礎(chǔ)。掌握本節(jié)內(nèi)容不僅為今后的函數(shù)學(xué)習(xí)打下理論基礎(chǔ),還有利于培養(yǎng)學(xué)生的抽象思維能力,及分析問題和解決問題的能力。
3.教材的重點﹑難點﹑關(guān)鍵
教學(xué)重點:函數(shù)單調(diào)性的概念和判斷某些函數(shù)單調(diào)性的方法。明確單調(diào)性是一個局部概念.
教學(xué)難點:領(lǐng)會函數(shù)單調(diào)性的實質(zhì)與應(yīng)用,明確單調(diào)性是一個局部的概念。
教學(xué)關(guān)鍵:從學(xué)生的學(xué)習(xí)心理和認知結(jié)構(gòu)出發(fā),講清楚概念的形成過程.
4.學(xué)情分析
高一學(xué)生正處于以感性思維為主的年齡階段,而且思維逐步地從感性思維過渡到理性思維,并由此向邏輯思維發(fā)展,但學(xué)生思維不成熟、不嚴密、意志力薄弱,故而整個教學(xué)環(huán)節(jié)總是創(chuàng)設(shè)恰當?shù)膯栴}情境,引導(dǎo)學(xué)生積極思考,培養(yǎng)他們的邏輯思維能力。從學(xué)生的認知結(jié)構(gòu)來看,他們只能根據(jù)函數(shù)的圖象觀察出“隨著自變量的增大函數(shù)值增大”等變化趨勢,所以在教學(xué)中要充分利用好函數(shù)圖象的直觀性,發(fā)揮好多媒體教學(xué)的優(yōu)勢;由于學(xué)生在概念的掌握上缺少系統(tǒng)性、嚴謹性,在教學(xué)中注意加強.
二、目標分析
(一)知識目標:
1.知識目標:理解函數(shù)單調(diào)性的概念,掌握判斷一些簡單函數(shù)的單調(diào)性的方法;了解函數(shù)單調(diào)區(qū)間的概念,并能根據(jù)函數(shù)圖象說出函數(shù)的單調(diào)區(qū)間。
2.能力目標:通過證明函數(shù)的單調(diào)性的學(xué)習(xí),使學(xué)生體驗和理解從特殊到一般的數(shù)學(xué)歸納推理思維方式,培養(yǎng)學(xué)生的觀察能力,分析歸納能力,領(lǐng)會數(shù)學(xué)的歸納轉(zhuǎn)化的思想方法,增加學(xué)生的知識聯(lián)系,增強學(xué)生對知識的主動構(gòu)建的能力。
3.情感目標:讓學(xué)生積極參與觀察、分析、探索等課堂教學(xué)的雙邊活動,在掌握知識的過程中體會成功的喜悅,以此激發(fā)求知__。領(lǐng)會用運動變化的觀點去觀察分析事物的方法。通過滲透數(shù)形結(jié)合的數(shù)學(xué)思想,對學(xué)生進行辨證唯物主義的思想教育。
(二)過程與方法
培養(yǎng)學(xué)生嚴密的邏輯思維能力以及用運動變化、數(shù)形結(jié)合、分類討論的方法去分析和處理問題,以提高學(xué)生的思維品質(zhì),通過函數(shù)的單調(diào)性的學(xué)習(xí),掌握自變量和因變量的關(guān)系。通過多媒體手段激發(fā)學(xué)生學(xué)習(xí)興趣,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題和解題的邏輯推理能力。
三、教法與學(xué)法
1.教學(xué)方法
在教學(xué)中,要注重展開探索過程,充分利用好函數(shù)圖象的直觀性、發(fā)揮多媒體教學(xué)的優(yōu)勢。本節(jié)課采用問答式教學(xué)法、探究式教學(xué)法進行教學(xué),教師在課堂中只起著主導(dǎo)作用,讓學(xué)生在教師的提問中自覺的發(fā)現(xiàn)新知,探究新知,并且加入激勵性的語言以提高學(xué)生的積極性,提高學(xué)生參與知識形成的全過程。
2.學(xué)習(xí)方法
自我探索、自我思考總結(jié)、歸納,自我感悟,合作交流,成為本節(jié)課學(xué)生學(xué)習(xí)的主要方式。
四、過程分析
本節(jié)課的教學(xué)過程包括:問題情景,函數(shù)單調(diào)性的定義引入,增函數(shù)、減函數(shù)的定義,例題分析與鞏固練習(xí),回顧總結(jié)和課外作業(yè)六個板塊。這里分別就其過程和設(shè)計意圖作一一分析。
(一)問題情景:
為了激發(fā)學(xué)生的學(xué)習(xí)興趣,本節(jié)課借助多媒體設(shè)計了多個生活背景問題,并就圖表和圖象所提供的信息,提出一系列問題和學(xué)生交流,激發(fā)學(xué)生的學(xué)習(xí)興趣和求知__,為學(xué)習(xí)函數(shù)的單調(diào)性做好鋪墊。(祥見課件)
新課程理念認為:情境應(yīng)貫穿課堂教學(xué)的始終。本節(jié)課所創(chuàng)設(shè)的生活情境,讓學(xué)生親近數(shù)學(xué),感受到數(shù)學(xué)就在他們的周圍,強化學(xué)生的感性認識,從而達到學(xué)生對數(shù)學(xué)的理解。讓學(xué)生在課堂的一開始就感受到數(shù)學(xué)就在我們身邊,讓學(xué)生學(xué)會用數(shù)學(xué)的眼光去關(guān)注生活。
(二)函數(shù)單調(diào)性的定義引入
1.幾何畫板動畫演示,請學(xué)生認真觀察,并回答問題:通過學(xué)生已學(xué)過的函數(shù)y=2x+4,,的圖象的動態(tài)形式形象出x、y間的變化關(guān)系,使學(xué)生對函數(shù)單調(diào)性有感性認識。,進行比較,分析其變化趨勢。并探討、回答以下問題:
問題1、觀察下列函數(shù)圖象,從左向右看圖象的變化趨勢?
問題2:你能明確說出“圖象呈上升趨勢”的意思嗎?
通過學(xué)生的交流、探討、總結(jié),得到單調(diào)性的“通俗定義”:
從在某一區(qū)間內(nèi)當x的值增大時,函數(shù)值y也增大,到圖象在該區(qū)間內(nèi)呈上升趨勢再到如何用x與f(x)來描述上升的圖象?
通過問題逐步向抽象的定義靠攏,將圖形語言轉(zhuǎn)化為數(shù)學(xué)符號語言。幾何畫板的靈活使用,數(shù)形有機結(jié)合,引導(dǎo)學(xué)生從圖形語言到數(shù)學(xué)符號語言的翻譯變得輕松。
設(shè)計意圖:通過學(xué)生熟悉的知識引入新課題,有利于激發(fā)學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)熱情,同時也可以培養(yǎng)學(xué)生觀察、猜想、歸納的思維能力和創(chuàng)新意識,增強學(xué)生自主學(xué)習(xí)、獨立思考,由學(xué)會向會學(xué)的轉(zhuǎn)化,形成良好的思維品質(zhì)。通過學(xué)生已學(xué)過的一次y=2x+4,,的圖象的動態(tài)形式形象地反映出x、y間的變化關(guān)系,使學(xué)生對函數(shù)單調(diào)性有感性認識。從學(xué)生的原有認知結(jié)構(gòu)入手,探討單調(diào)性的概念,符合“最近發(fā)展區(qū)的理論”要求。從圖形、直觀認識入手,研究單調(diào)性的概念,其本身就是研究、學(xué)習(xí)數(shù)學(xué)的一種方法,符合新課程的理念。
(三)增函數(shù)、減函數(shù)的定義
在前面的基礎(chǔ)上,讓學(xué)生討論歸納:如何使用數(shù)學(xué)語言來準確描述函數(shù)的單調(diào)性?在學(xué)生回答的基礎(chǔ)上,給出增函數(shù)的概念,同時要求學(xué)生討論概念中的關(guān)鍵詞和注意點。
定義中的“當x1x2時,都有f(x1)
注意:(1)函數(shù)的單調(diào)性也叫函數(shù)的增減性;
(2)注意區(qū)間上所取兩點x1,x2的任意性;
(3)函數(shù)的單調(diào)性是對某個區(qū)間而言的,它是一個局部概念。
讓學(xué)生自已嘗試寫出減函數(shù)概念,由兩名學(xué)生板演。提出單調(diào)區(qū)間的概念。
設(shè)計意圖:通過給出函數(shù)單調(diào)性的嚴格定義,目的是為了讓學(xué)生更準確地把握概念,理解函數(shù)的單調(diào)性其實也叫做函數(shù)的增減性,它是對某個區(qū)間而言的,它是一個局部概念,同時明確判定函數(shù)在某個區(qū)間上的單調(diào)性的一般步驟。這樣處理,同時也是讓學(xué)生感悟、體驗學(xué)習(xí)數(shù)學(xué)感念的方法,提高其個性品質(zhì)。
(四)例題分析
在理解概念的基礎(chǔ)上,讓學(xué)生總結(jié)判別函數(shù)單調(diào)性的方法:圖象法和定義法。
2.例2.證明函數(shù)在區(qū)間(-∞,+∞)上是減函數(shù)。
在本題的解決過程中,要求學(xué)生對照定義進行分析,明確本題要解決什么?定義要求是什么?怎樣去思考?通過自己的解決,總結(jié)證明單調(diào)性問題的一般方法。
變式一:函數(shù)f(x)=-3x+b在R上是減函數(shù)嗎?為什么?
變式二:函數(shù)f(x)=kx+b(k
變式三:函數(shù)f(x)=kx+b(k
錯誤:實質(zhì)上并沒有證明,而是使用了所要證明的結(jié)論
例題設(shè)計意圖:在理解概念的基礎(chǔ)上,讓學(xué)生總結(jié)判別函數(shù)單調(diào)性的方法:圖象法和定義法。例1是教材中例題,它的解決強化學(xué)生應(yīng)用數(shù)形結(jié)合的思想方法解題的意識,進一步加深對概念的理解,同時也是依托具體問題,對單調(diào)區(qū)間這一概念的再認識;要了解函數(shù)在某一區(qū)間上是否具有單調(diào)性,從圖上進行觀察是一種常用而又粗略的方法。嚴格地說,它需要根據(jù)單調(diào)函數(shù)的定義進行證明。例2是教材練習(xí)題改編,通過師生共同總結(jié),得出使用定義證明的一般步驟:任取—作差(變形)—定號—下結(jié)論,通過例2的解決是學(xué)生初步掌握運用概念進行簡單論證的基本方法,強化證題的規(guī)范性訓(xùn)練,從而提高學(xué)生的推理論證能力。例3是教材例2抽象出的數(shù)學(xué)問題。目的是進一步強化解題的規(guī)范性,提高邏輯推理能力,同時讓學(xué)生學(xué)會一些常見的變形方法。
(五)鞏固與探究
1.教材p36練習(xí)2,3
2.探究:二次函數(shù)的單調(diào)性有什么規(guī)律?
(幾何畫板演示,學(xué)生探究)本問題作為機動題。時間不允許時,就為課后思考題。
設(shè)計意圖:通過觀察圖象,對函數(shù)是否具有某種性質(zhì)作出一種猜想,然后通過推理的辦法,證明這種猜想的正確性,是發(fā)現(xiàn)和解決問題的一種常用數(shù)學(xué)方法。
通過課堂練習(xí)加深學(xué)生對概念的理解,進一步熟悉證明或判斷函數(shù)單調(diào)性的方法和步驟,達到鞏固,消化新知的目的。同時強化解題步驟,形成并提高解題能力。對練習(xí)的思考,讓學(xué)生學(xué)會反思、學(xué)會總結(jié)。
(六)回顧總結(jié)
通過師生互動,回顧本節(jié)課的概念、方法。本節(jié)課我們學(xué)習(xí)了函數(shù)單調(diào)性的知識,同學(xué)們要切記:單調(diào)性是對某個區(qū)間而言的,同時在理解定義的基礎(chǔ)上,要掌握證明函數(shù)單調(diào)性的方法步驟,正確進行判斷和證明。
設(shè)計意圖:通過小結(jié)突出本節(jié)課的重點,并讓學(xué)生對所學(xué)知識的結(jié)構(gòu)有一個清晰的認識,學(xué)會一些解決問題的思想與方法,體會數(shù)學(xué)的和諧美。
(七)課外作業(yè)
1.教材p43習(xí)題1.3A組1(單調(diào)區(qū)間),2(證明單調(diào)性);
2.判斷并證明函數(shù)在上的單調(diào)性。
3.數(shù)學(xué)日記:談?wù)勀惚竟?jié)課中的收獲或者困惑,整理你認為本節(jié)課中的最重要的知識和方法。
設(shè)計意圖:通過作業(yè)1、2進一步鞏固本節(jié)課所學(xué)的增、減函數(shù)的概念,強化基本技能訓(xùn)練和解題規(guī)范化的訓(xùn)練,并且以此作為學(xué)生對本結(jié)內(nèi)容各項目標落實的評價。新課標要求:不同的學(xué)生學(xué)習(xí)不同的數(shù)學(xué),在數(shù)學(xué)上獲得不同的發(fā)展。作業(yè)3這種新型的作業(yè)形式是其很好的體現(xiàn)。
(七)板書設(shè)計(見ppt)
五、評價分析
有效的概念教學(xué)是建立在學(xué)生已有知識結(jié)構(gòu)基礎(chǔ)上,,因此在教學(xué)設(shè)計過程中注意了:第一.教要按照學(xué)的法子來教;第二在學(xué)生已有知識結(jié)構(gòu)和新概念間尋找“最近發(fā)展區(qū)”;第三.強化了重探究、重交流、重過程的課改理念。讓學(xué)生經(jīng)歷“創(chuàng)設(shè)情境——探究概念——注重反思——拓展應(yīng)用——歸納總結(jié)”的活動過程,體驗了參與數(shù)學(xué)知識的發(fā)生、發(fā)展過程,培養(yǎng)“用數(shù)學(xué)”的意識和能力,成為積極主動的建構(gòu)者。
本節(jié)課圍繞教學(xué)重點,針對教學(xué)目標,以多媒體技術(shù)為依托,展現(xiàn)知識的發(fā)生和形成過程,使學(xué)生始終處于問題探索研究狀態(tài)之中,__引趣,并注重數(shù)學(xué)科學(xué)研究方法的學(xué)習(xí),是順應(yīng)新課改要求的,是研究性教學(xué)的一次有益嘗試。
高中數(shù)學(xué)有效的學(xué)習(xí)方法
一、勤看書,學(xué)研究。
有些“自我感覺良好”的學(xué)生,常輕視課本中基礎(chǔ)知識、基本技能和基本方法的學(xué)習(xí)與訓(xùn)練,經(jīng)常是知道怎么做就算了,而不去認真演算書寫,但對難題很感興趣,以顯示自己的“水平”,重“量”輕“質(zhì)”,陷入題海,到正規(guī)作業(yè)或考試中不是演算出錯就是中途“卡殼”,變成事倍功半。因此,同學(xué)們從高一開始,增強自己從課本入手進行研究的意識:預(yù)習(xí),復(fù)習(xí)??梢园衙織l定理、每道例題都當作習(xí)題,認真地重證、重解,并適當加些批注(如數(shù)學(xué)符號在不同范疇的含義,不同領(lǐng)域之間的關(guān)系),舉個例子:x+y=0可以是二元一次方程,寫成y=-x又可看成一次函數(shù)。特別是可以通過對典型例題的講解分析,最后抽象出解決這類問題的數(shù)學(xué)思想和方法,并做好書面的解題后的反思,總結(jié)出解題的一般規(guī)律和特殊規(guī)律,以便推廣和靈活運用。另外,希望你們要盡可能獨立解題,因為求解過程,也是培養(yǎng)分析問題和解決問題能力的一個過程,同時更是一個研究過程。
二、注重課堂,記好筆記。
首先,在課堂教學(xué)中培養(yǎng)好的聽課習(xí)慣是很重要的。聽當然是主要的,聽能使注意力集中,注意積極思考、分析問題,要把老師講的關(guān)鍵性部分聽懂、聽會。提高數(shù)學(xué)能力,鍛煉自己的思維,主要也是通過課堂來提高,要充分利用好課堂這塊陣地,學(xué)習(xí)數(shù)學(xué)的過程是活的,在隨著教學(xué)過程的發(fā)展而變化,尤其是當老師注重能力教學(xué)的時候,教材是反映不出來的。數(shù)學(xué)能力是隨著知識的發(fā)生而同時形成的,無論是形成一個概念,掌握一條法則,會做一個習(xí)題,都應(yīng)該從不同的能力角度來培養(yǎng)和提高。課堂上通過老師的教學(xué),理解所學(xué)內(nèi)容在教材中的地位,弄清與前后知識的聯(lián)系等,只有把握住教材,才能掌握學(xué)習(xí)的主動。
其次,聽的時候不能光聽,為了往后復(fù)習(xí),應(yīng)適當?shù)赜心康男缘挠浐霉P記,領(lǐng)會課上老師的主要精神與意圖??茖W(xué)的記筆記可以提45鐘課堂效果。
再次,如果數(shù)學(xué)課沒有一定的速度,那是一種無效學(xué)習(xí)。慢騰騰的學(xué)習(xí)是訓(xùn)練不出思維速度,訓(xùn)練不出思維的敏捷性,是培養(yǎng)不出數(shù)學(xué)能力的,這就要求在數(shù)學(xué)學(xué)習(xí)中一定要有節(jié)奏(有目的進行訓(xùn)練),這樣久而久之,思維的敏捷性和數(shù)學(xué)能力會逐步提高。
最后,在數(shù)學(xué)課堂中,老師一般少不了提問與板演,有時還伴隨著問題討論,因此可以聽到許多的信息,這些問題是很有價值的。對于那些典型問題,帶有普遍性的問題都必須及時解決,不能把問題的結(jié)癥遺留下來,甚至沉淀下來,有價值的問題要及時抓住,遺留問題要有針對性地補,注重實效。
三、做好作業(yè),講究規(guī)范。
在課堂、課外練習(xí)中培養(yǎng)良好的作業(yè)習(xí)慣也很有必要。在作業(yè)中不但做得整齊、清潔,培養(yǎng)一種美感,還要有條理,這是培養(yǎng)邏輯能力的一條有效途徑,必須獨立完成。同時可以培養(yǎng)一種獨立思考和解題正確的責任感。在作業(yè)時要提倡效率,應(yīng)該十分鐘完成的作業(yè),不拖到半小時完成,疲疲憊憊的作業(yè)習(xí)慣使思維松散、精力不集中,這對培養(yǎng)數(shù)學(xué)能力是有害而無益的。抓數(shù)學(xué)學(xué)習(xí)習(xí)慣必須從高一年級主動抓起,無論從年齡增長的心理特征上講,還是從學(xué)習(xí)的不同階段的要求上講都應(yīng)該進行學(xué)習(xí)習(xí)慣的培養(yǎng)。
四、寫好總結(jié),把握規(guī)律。
一個人不斷接受新知識,不斷遭遇挫折產(chǎn)生疑問,不斷地總結(jié),才有不斷地提高。"不會總結(jié)的同學(xué),他的能力就不會提高,挫折經(jīng)驗是成功的基石。"自然界適者生存的生物進化過程便是的例證。學(xué)習(xí)要經(jīng)??偨Y(jié)規(guī)律,目的就是為了更一步的發(fā)展。通過與老師、同學(xué)平時的接觸交流,逐步總結(jié)出一般性的學(xué)習(xí)步驟,它包括:制定計劃、課前自學(xué)、專心上課、及時復(fù)習(xí)、獨立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學(xué)習(xí)幾個方面,簡單概括為四個環(huán)節(jié)(預(yù)習(xí)、上課、整理、作業(yè))和一個步驟(復(fù)習(xí)總結(jié))。每一個環(huán)節(jié)都有較深刻的內(nèi)容,帶有較強的目的性、針對性,要落實到位。堅持“兩先兩后一小結(jié)”(先預(yù)習(xí)后聽課,先復(fù)習(xí)后做作業(yè),寫好每個單元的總結(jié))的學(xué)習(xí)習(xí)慣。善于歸納總結(jié)知識間的聯(lián)系。
學(xué)習(xí)數(shù)學(xué)并非我做題就可以取得好的成績,而是要將精力花在歸納總結(jié)上。特別對課本或課堂上出現(xiàn)的例題,只要善于總結(jié),就可以了解這一小節(jié)數(shù)學(xué)內(nèi)容有哪幾種題型,每種題目的一般解法和思路是什么,從而提高運用所學(xué)知識分析解題的能力。同時,每學(xué)完一個單元,要建立本單元的知識框架,將本章的主要思路、推理方法及運用技巧等轉(zhuǎn)變成自己的實際技能。
五、注重反思,提升能力
學(xué)習(xí)要注重反思,練好悟性。老師上課一般都要講清知識的來龍去脈,剖析概念的內(nèi)涵外延,分析重點難點,突出思想方法,而一部分同學(xué)上課沒能專心聽課,對要點沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課后又不能及時鞏固、總結(jié)、尋找知識間的聯(lián)系,只是忙于趕做作業(yè),亂套題型,對概念、法則、公式、定理一知半解,機械模仿,死記硬背,也有的晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套,結(jié)果是事倍功半,收效甚微。數(shù)學(xué)學(xué)科必須培養(yǎng)運算能力、邏輯思維能力、空間想象力以及運用所學(xué)知識分析問題、解決問題的重任,它的特點是具有高度的抽象性、邏輯性與廣泛的適用性,對能力的要求較高。數(shù)學(xué)能力只有在數(shù)學(xué)思想方法不斷地運用反思中才能培養(yǎng)和提高。數(shù)學(xué)內(nèi)容的巨變和學(xué)習(xí)方法的落后,在學(xué)習(xí)高中數(shù)學(xué)的過程中,肯定會遇到不少困難和問題,同學(xué)們要有克服困難的勇氣和信心,勝不驕,敗不餒,千萬不能讓問題堆積如山,形成惡性循環(huán),而是要在老師的引導(dǎo)下,尋求解決問題的辦法,培養(yǎng)分析問題,解決問題的能力,這就是的悟性。
學(xué)會發(fā)現(xiàn)問題,并重視質(zhì)疑在學(xué)習(xí)中??吹匠煽兒玫耐瑢W(xué),總是有很多問題問老師。提出疑問不僅是發(fā)現(xiàn)真知的起點,而且是發(fā)明創(chuàng)造的開端。提高學(xué)習(xí)成績的過程就是發(fā)現(xiàn),提出并解決疑問的過程。大膽向老師質(zhì)疑,不是笨的反映,而是在追求真知、積極進取的表現(xiàn)。在聽課中,不但要“知其然”,還要“知其所以然”,這樣疑問也就在不斷產(chǎn)生,再加以分析思考使問題得以解決,學(xué)習(xí)也就得到了長進。
高中數(shù)學(xué)考試的技巧
總體原則
1、先做簡單題,后做難題。
2、遇到較難的大題,把所有跟該題有關(guān)的知識點都寫出來,要知道數(shù)學(xué)講究步驟分。
3、若是證明題,萬一不會,可以先寫出已知條件,再寫出要證明的最后一步,再一步一步往上推,中間步驟隨便寫點。(使用于粗心的教師,但我們不提倡,重點是要平時學(xué)好)。
一、整體把握、抓大放小
拿到試卷后可以先快速瀏覽一下所有題目,根據(jù)積累的考試經(jīng)驗,大致估計一下每部分應(yīng)該分配的時間。對于能夠很快做出來的.題目,一定要拿到應(yīng)得的分數(shù)。
二、確定每部分的答題時間
1、考試時占用了很多時間卻一點也沒有做出來的題目。對于這類題目,你以后考試時就應(yīng)該盡量減少時間,或者放棄,等以后學(xué)習(xí)進階了再嘗試著做。
2、考試時花了過多的時間才做出來的題目。對于這類題目,你以后平時做題時要盡量加快速度,或者通過“反復(fù)訓(xùn)練”等提高反應(yīng)速度,這樣,你下次考試時能用較少的時間做出來。
三、碰到難題時
1、你可以先用“直覺”最快的找到解題思路;
2、如果“直覺”不管用,你可以聯(lián)想以前做過的類似的題目,從而找到解題思路;
3、如果這樣也不行,你可以猜測一下這道題目可能涉及到的知識點和解題技巧。
4、對于花了一定時間仍然不能做出來的題目,要勇于放棄。
四、卷面整潔、字跡清楚、注意小節(jié)
做到卷面整潔、字跡清楚,把標點、符號、解題步驟等小的地方盡量做好,不要丟掉應(yīng)得的每一分。
數(shù)學(xué)必修3教案錦集
俗話說,凡事預(yù)則立,不預(yù)則廢。幼兒園的老師都希望自己講的課學(xué)生們愛聽,能學(xué)習(xí)的更好,所以,很多老師會準備好教案方便教學(xué),教案可以幫助學(xué)生更好地進入課堂環(huán)境中來。那么一篇好的幼兒園教案要怎么才能寫好呢?小編特地花時間為你收集并編輯了數(shù)學(xué)必修3教案錦集,歡迎分享給你的朋友!
數(shù)學(xué)必修3教案【篇1】
這種表示方法比較簡明,抽象,且能看到三者之間的關(guān)系.除此之外,映射的一般表示方法為 ,從這個符號中也能看到映射是由三部分構(gòu)成的整體,這對后面認識函數(shù)是三件事構(gòu)成的整體是非常有幫助的.
(3)對于學(xué)生層次較高的學(xué)??梢栽诮o出定義后讓學(xué)生根據(jù)自己的理解舉出映射的例子,教師也給出一些映射的例子,讓學(xué)生從中發(fā)現(xiàn)映射的特點,并用自己的語言描述出來,最后教師加以概括,再從中引出一一映射概念;對于學(xué)生層次較低的學(xué)校,則可以由教師給出一些例子讓學(xué)生觀察,教師引導(dǎo)學(xué)生發(fā)現(xiàn)映射的特點,一起概括.最后再讓學(xué)生舉例,并逐步增加要求向一一映射靠攏, 引出一一映射概念.
(4)關(guān)于求象和原象的問題,應(yīng)在計算的過程中總結(jié)方法,特別是求原象的方法是解方程或方程組,還可以通過方程組解的不同情況(有唯一解,無解或有無數(shù)解)加深對映射的認識.
(5)在教學(xué)方法上可以采用啟發(fā),討論的形式,讓學(xué)生在實例中去觀察,比較,啟發(fā)學(xué)生尋找共性,共同討論映射的特點,共同舉例,計算,最后進行小結(jié),教師要起到點撥和深化的作用.
教學(xué)設(shè)計方案2。1 映射教學(xué)目標(1)了解映射的概念,象與原象及一一映射的概念.(2)在概念形成過程中,培養(yǎng)學(xué)生的觀察,分析對比,歸納的能力.(3)通過映射概念的學(xué)習(xí),逐步提高學(xué)生的探究能力.教學(xué)重點難點::映射概念的形成與認識.教學(xué)用具:實物投影儀教學(xué)方法:數(shù)學(xué)教案-映射,標簽:高一數(shù)學(xué)必修3教案,高一數(shù)學(xué)必修1教案,啟發(fā)討論式教學(xué)過程():一、引入在初中,我們已經(jīng)初步探討了函數(shù)的定義并研究了幾類簡單的常見函數(shù).在高中,將利用前面集合有關(guān)知識,利用映射的觀點給出函數(shù)的定義.那么映射是什么呢?這就是我們今天要詳細的概念.二、新課在前一章集合的初步知識中,我們學(xué)習(xí)了元素與集合及集合與集合之間的關(guān)系,而映射是重點研究兩個集合的元素與元素之間的對應(yīng)關(guān)系.這要先從我們熟悉的對應(yīng)說起(用投影儀打出一些對應(yīng)關(guān)系,共6個)我們今天要研究的是一類特殊的對應(yīng),特殊在什么地方呢?提問1:在這些對應(yīng)中有哪些是讓A中元素就對應(yīng)B中唯一一個元素?讓學(xué)生仔細觀察后由學(xué)生回答,對有爭議的,或漏選,多選的可詳細說明理由進行討論.最后得出(1),(2),(5),(6)是符合條件的(用投影儀將這幾個集中在一起)提問2:能用自己的語言描述一下這幾個對應(yīng)的共性嗎?經(jīng)過師生共同推敲,將映射的定義引出.(主體內(nèi)容由學(xué)生完成,教師做必要的補充)(板書)一.映射1.定義:一般地,設(shè) 兩個集合,如果按照某種對應(yīng)法則 ,對于集合 中的任何一個元素,在集合 中都有唯一的元素和它對應(yīng),那么這樣的對應(yīng)(包括集合 及 到 的對應(yīng)法則)叫做集合 到集合 的映射,記作 .定義給出之后,教師應(yīng)及時強調(diào)映射是特殊的對應(yīng),故是三部分構(gòu)成的一個整體,從映射的符號表示中也可看出這一點,它的特殊之處在于元素與元素之間的對應(yīng)必須作到“任一對唯一”,同時指出具有對應(yīng)關(guān)系的元素即 中元素 對應(yīng) 中元素 ,則 叫 的象, 叫 的原象.(板書)2.象與原象可以用前面的例子具體說明誰是誰的象,誰是誰的原象.提問3:下面請同學(xué)根據(jù)自己對映射的理解舉幾個映射的例子,看對映射是否真正認識了.(開始時只要是映射即可,之后可逐步提高要求,如集合是無限集,或生活中的例子等)由學(xué)生自己評判.之后教師再給出幾個(主要是補充學(xué)生舉例類型的不足)(1) , , , .(2) .(3) 除以3的余數(shù).(4) {高一1班同學(xué)}, {入學(xué)是數(shù)學(xué)考試成績}, 對自己的考試成績.在學(xué)生作出判斷之后,引導(dǎo)學(xué)生發(fā)現(xiàn)映射的性質(zhì)(教師適當提出研究方向由學(xué)生說,再由老師概括)(板書)3.對概念的認識(1) 與 是不同的,即 與 上有序的.(2)象的集合是集合B的子集.(3)集合A,B可以是數(shù)集,也可以是點集或其它集合.在剛才研究的基礎(chǔ)上,教師再提出(2)和(4)有什么共性,能否把它描述出來,如果學(xué)生不能找出共性,教師可再給出幾個例子,(用投影儀打出)如:(1)(2) {數(shù)軸上的點}, 實數(shù)與數(shù)軸上相應(yīng)的點對應(yīng).(3) {中國,日本,韓國}, {北京,東京,漢城}, 相應(yīng)國家的首都.引導(dǎo)學(xué)生在元素之間的對應(yīng)關(guān)系和元素個數(shù)上找共性,由學(xué)生提出兩點共性集合A中不同的元素對集合B中不同的元素;②B中所有元素都有原象.那么滿足以上條件的映射又是一種特殊的映射,稱之為一一映射.(板書)4.一一映射(1)定義:設(shè)A,B是兩個集合, 是集合A到集合B的映射,如果在這個映射下 對于集合A中的不同元素,在集合B中又不同的象,而且B中每一個元素都有原象,那么這個映射叫做A到B上的一一映射.給出定義后,可再返回到剛才的例子,讓學(xué)生比較它與映射的區(qū)別,從而進一步明確“一一”的含義.然后再安排一個例題.例1 下列各表表示集合A(元素a)到集合B(元素b)的一個映射,判斷這些映射是不是A到B上的一一映射.其中只有第三個表可以表示一一映射,由此例點明一一映射的特點數(shù)學(xué)教案-映射,標簽:高一數(shù)學(xué)必修3教案,高一數(shù)學(xué)必修1教案,(板書)(2)特點:兩個集合間元素是一對一的關(guān)系,不同的對的也一定是不同的(元素個數(shù)相同);集合B與象集C是相等的集合.對于映射我們現(xiàn)在了解了它的定義及特殊的映射一一映射,除此之外對于映射還要求能求出指定元素的象與原象.(板書)5.求象與原象.例2 (1)從R到 的映射 ,則R中的—1在 中的象是_____; 中的4在R中的原象是_____.(2)在給定的映射 下,則點 在 下的象是_____, 點 在 下的原象是______.(3) 是集合A到集合B的映射, ,則A 中 元素 的象是_____,B中象0的原象是______, B中象—6的原象是______.由學(xué)生先回答第(1)小題,之后讓學(xué)生自己總結(jié)一下,應(yīng)用什么方法求象和原象,學(xué)生找到方法后,再在方法的指導(dǎo)下求解另外兩題,若出現(xiàn)問題,教師予以點評,最后小結(jié)求象用代入法,求原象用解方程或解方程組.注意:所解的方程解的情況可能有多種如有唯一解,也可能無解,可能有無數(shù)解,這與映射的定義也是相吻合的.但如果是一一映射,則方程一定有唯一解.三、小結(jié)1.映射是特殊的對應(yīng)2.一一映射是特殊的映射.3.掌握求象與原象的方法.四、作業(yè):略五、板書設(shè)計探究活動(1) {整數(shù)}, {偶數(shù)}, ,試問 與 中的元素個數(shù)哪個多?為什么?如果我們建立一個由 到 的映射對應(yīng)法則 乘以2,那么這個映射是一一映射嗎?答案:兩個集合中的元素一樣多,它們之間可以形成一一映射.(2)設(shè) , ,問最多可以建立多少種集合 到集合 的不同映射?若將集合 改為 呢?結(jié)論是什么?如果將集合 改為 ,結(jié)論怎樣?若集合 改為 , 改為 ,結(jié)論怎樣?從以上問題中,你能歸納出什么結(jié)論嗎?依此結(jié)論,若集合A中含有 個元素,集合B中含有 個元素,那么最多可以建立多少種集合 到集合 的不同映射?答案:若集合A含有m個元素,集合B含有n個元素,則不同的映射 有 個.
數(shù)學(xué)必修3教案【篇2】
預(yù)習(xí)課本P103~105,思考并完成以下問題
(1)怎樣定義向量的數(shù)量積?向量的數(shù)量積與向量數(shù)乘相同嗎?
(2)向量b在a方向上的投影怎么計算?數(shù)量積的幾何意義是什么?
(3)向量數(shù)量積的性質(zhì)有哪些?
(4)向量數(shù)量積的運算律有哪些?
[新知初探]
1.向量的數(shù)量積的定義
(1)兩個非零向量的數(shù)量積:
已知條件向量a,b是非零向量,它們的夾角為θ
定義a與b的數(shù)量積(或內(nèi)積)是數(shù)量|a||b|cosθ
記法a·b=|a||b|cosθ
(2)零向量與任一向量的數(shù)量積:
規(guī)定:零向量與任一向量的數(shù)量積均為0.
[點睛](1)兩向量的數(shù)量積,其結(jié)果是數(shù)量,而不是向量,它的值等于兩向量的模與兩向量夾角余弦值的乘積,其符號由夾角的余弦值來決定.
(2)兩個向量的數(shù)量積記作a·b,千萬不能寫成a×b的形式.
2.向量的數(shù)量積的幾何意義
(1)投影的概念:
①向量b在a的方向上的投影為|b|cosθ.
②向量a在b的方向上的投影為|a|cosθ.
(2)數(shù)量積的幾何意義:
數(shù)量積a·b等于a的長度|a|與b在a的方向上的投影|b|cosθ的乘積.
[點睛](1)b在a方向上的投影為|b|cosθ(θ是a與b的夾角),也可以寫成a·b|a|.
(2)投影是一個數(shù)量,不是向量,其值可為正,可為負,也可為零.
3.向量數(shù)量積的性質(zhì)
設(shè)a與b都是非零向量,θ為a與b的夾角.
(1)a⊥b?a·b=0.
(2)當a與b同向時,a·b=|a||b|,
當a與b反向時,a·b=-|a||b|.
(3)a·a=|a|2或|a|=a·a=a2.
(4)cosθ=a·b|a||b|.
(5)|a·b|≤|a||b|.
[點睛]對于性質(zhì)(1),可以用來解決有關(guān)垂直的問題,即若要證明某兩個向量垂直,只需判定它們的數(shù)量積為0;若兩個非零向量的數(shù)量積為0,則它們互相垂直.
4.向量數(shù)量積的運算律
(1)a·b=b·a(交換律).
(2)(λa)·b=λ(a·b)=a·(λb)(結(jié)合律).
(3)(a+b)·c=a·c+b·c(分配律).
[點睛](1)向量的數(shù)量積不滿足消去律:若a,b,c均為非零向量,且a·c=b·c,但得不到a=b.
(2)(a·b)·c≠a·(b·c),因為a·b,b·c是數(shù)量積,是實數(shù),不是向量,所以(a·b)·c與向量c共線,a·(b·c)與向量a共線,因此,(a·b)·c=a·(b·c)在一般情況下不成立.
[小試身手]
1.判斷下列命題是否正確.(正確的打“√”,錯誤的打“×”)
(1)兩個向量的數(shù)量積仍然是向量.
(2)若a·b=b·c,則一定有a=c.()
(3)若a,b反向,則a·b=-|a||b|.()
(4)若a·b=0,則a⊥b.()
答案:(1)×(2)×(3)√(4)×
2.若|a|=2,|b|=12,a與b的夾角為60°,則a·b=()
A.2B.12
C.1D.14
答案:B
3.已知|a|=10,|b|=12,且(3a)·15b=-36,則a與b的夾角為()
A.60°B.120°
C.135°D.150°
答案:B
4.已知a,b的夾角為θ,|a|=2,|b|=3.
(1)若θ=135°,則a·b=________;
(2)若a∥b,則a·b=________;
(3)若a⊥b,則a·b=________.
答案:(1)-32(2)6或-6(3)0
向量數(shù)量積的運算
[典例](1)已知向量a與b的夾角為120°,且|a|=4,|b|=2,求:①a·b;②(a+b)·
(a-2b).
(2)如圖,正三角形ABC的邊長為2,=c,=a,=b,求a·b+b·c+c·a.
[解](1)①由已知得a·b=|a||b|cosθ=4×2×cos120°=-4.
②(a+b)·(a-2b)=a2-a·b-2b2=16-(-4)-2×4=12.
(2)∵|a|=|b|=|c|=2,且a與b,b與c,c與a的夾角均為120°,
∴a·b+b·c+c·a=2×2×cos120°×3=-3.
向量數(shù)量積的求法
(1)求兩個向量的數(shù)量積,首先確定兩個向量的模及向量的夾角,其中準確求出兩向量的夾角是求數(shù)量積的關(guān)鍵.
(2)根據(jù)數(shù)量積的運算律,向量的加、減與數(shù)量積的混合運算類似于多項式的乘法
運算.
[活學(xué)活用]
已知|a|=3,|b|=4,a與b的夾角為120°,求:
(1)a·b;(2)a2-b2;
(3)(2a-b)·(a+3b).
解:(1)a·b=|a||b|cos120°=3×4×-12=-6.
(2)a2-b2=|a|2-|b|2=32-42=-7.
(3)(2a-b)·(a+3b)=2a2+5a·b-3b2
=2|a|2+5|a||b|·cos120°-3|b|2
=2×32+5×3×4×-12-3×42=-60.
與向量的模有關(guān)的問題
[典例](1)(浙江高考)已知e1,e2是平面單位向量,且e1·e2=12.若平面向量b滿足b·e1=b·e2=1,則|b|=________.
(2)已知向量a,b的夾角為45°,且|a|=1,|2a-b|=10,則|b|=________.
[解析](1)令e1與e2的夾角為θ,
∴e1·e2=|e1|·|e2|cosθ=cosθ=12.
又0°≤θ≤180°,∴θ=60°.
∵b·(e1-e2)=0,
∴b與e1,e2的夾角均為30°,
∴b·e1=|b||e1|cos30°=1,
從而|b|=1cos30°=233.
(2)∵a,b的夾角為45°,|a|=1,
∴a·b=|a||b|cos45°=22|b|,
|2a-b|2=4-4×22|b|+|b|2=10,∴|b|=32.
[答案](1)233(2)32
求向量的模的常見思路及方法
(1)求模問題一般轉(zhuǎn)化為求模的平方,與向量數(shù)量積聯(lián)系,并靈活應(yīng)用a2=|a|2,勿忘記開方.
(2)a·a=a2=|a|2或|a|=a2,可以實現(xiàn)實數(shù)運算與向量運算的相互轉(zhuǎn)化.
[活學(xué)活用]
已知向量a,b滿足|a|=|b|=5,且a與b的夾角為60°,求|a+b|,|a-b|,|2a+b|.
解:∵|a+b|2=(a+b)2=(a+b)(a+b)
=|a|2+|b|2+2a·b=25+25+2|a||b|cos60°
=50+2×5×5×12=75,
∴|a+b|=53.
∵|a-b|2=(a-b)2=(a-b)(a-b)
=|a|2+|b|2-2a·b
=|a|2+|b|2-2|a||b|cos60°=25,
∴|a-b|=5.
∵|2a+b|2=(2a+b)(2a+b)
=4|a|2+|b|2+4a·b
=4|a|2+|b|2+4|a||b|cos60°=175,
∴|2a+b|=57.
兩個向量的夾角和垂直
題點一:求兩向量的夾角
1.(重慶高考)已知非零向量a,b滿足|b|=4|a|,且a⊥(2a+b),則a與b的夾角為()
A.π3B.π2
C.2π3D.5π6
解析:選C∵a⊥(2a+b),∴a·(2a+b)=0,
∴2|a|2+a·b=0,
即2|a|2+|a||b|cos〈a,b〉=0.
∵|b|=4|a|,∴2|a|2+4|a|2cos〈a,b〉=0,
∴cos〈a,b〉=-12,∴〈a,b〉=2π3.
題點二:證明兩向量垂直
2.已知向量a,b不共線,且|2a+b|=|a+2b|,求證:(a+b)⊥(a-b).
證明:∵|2a+b|=|a+2b|,
∴(2a+b)2=(a+2b)2.
即4a2+4a·b+b2=a2+4a·b+4b2,
∴a2=b2.
∴(a+b)·(a-b)=a2-b2=0.
又a與b不共線,a+b≠0,a-b≠0,
∴(a+b)⊥(a-b).
題點三:利用夾角和垂直求參數(shù)
3.已知a⊥b,|a|=2,|b|=3且向量3a+2b與ka-b互相垂直,則k的值為()
A.-32B.32
C.±32D.1
解析:選B∵3a+2b與ka-b互相垂直,
∴(3a+2b)·(ka-b)=0,
∴3ka2+(2k-3)a·b-2b2=0.
∵a⊥b,∴a·b=0,
又|a|=2,|b|=3,
∴12k-18=0,k=32.
求向量a與b夾角的思路
(1)求向量夾角的關(guān)鍵是計算a·b及|a||b|,在此基礎(chǔ)上結(jié)合數(shù)量積的定義或性質(zhì)計算cosθ=a·b|a||b|,最后借助θ∈[0,π],求出θ的值.
(2)在個別含有|a|,|b|與a·b的等量關(guān)系式中,常利用消元思想計算cosθ的值.
層級一學(xué)業(yè)水平達標
1.已知向量a,b滿足|a|=1,|b|=4,且a·b=2,則a與b的夾角θ為()
A.π6B.π4
C.π3D.π2
解析:選C由題意,知a·b=|a||b|cosθ=4cosθ=2,又0≤θ≤π,所以θ=π3.
2.已知|b|=3,a在b方向上的投影為32,則a·b等于()
A.3B.92
C.2D.12
解析:選B設(shè)a與b的夾角為θ.∵|a|cosθ=32,
∴a·b=|a||b|cosθ=3×32=92.
3.已知|a|=|b|=1,a與b的夾角是90°,c=2a+3b,d=ka-4b,c與d垂直,則k的值為()
A.-6B.6
C.3D.-3
解析:選B∵c·d=0,
∴(2a+3b)·(ka-4b)=0,
∴2ka2-8a·b+3ka·b-12b2=0,
∴2k=12,∴k=6.
4.已知a,b滿足|a|=4,|b|=3,夾角為60°,則|a+b|=()
A.37B.13
C.37D.13
解析:選C|a+b|=?a+b?2=a2+2a·b+b2
=42+2×4×3cos60°+32=37.
5.在四邊形ABCD中,=,且·=0,則四邊形ABCD是()
A.矩形B.菱形
C.直角梯形D.等腰梯形
解析:選B∵=,即一組對邊平行且相等,·=0,即對角線互相垂直,∴四邊形ABCD為菱形.
6.給出以下命題:
①若a≠0,則對任一非零向量b都有a·b≠0;
②若a·b=0,則a與b中至少有一個為0;
③a與b是兩個單位向量,則a2=b2.
其中,正確命題的序號是________.
解析:上述三個命題中只有③正確,因為|a|=|b|=1,所以a2=|a|2=1,b2=|b|2=1,故a2=b2.當非零向量a,b垂直時,有a·b=0,顯然①②錯誤.
答案:③
7.設(shè)e1,e2是兩個單位向量,它們的夾角為60°,則(2e1-e2)·(-3e1+2e2)=________.
解析:(2e1-e2)·(-3e1+2e2)=-6e21+7e1·e2-2e22=-6+7×cos60°-2=-92.
答案:-92
8.若|a|=1,|b|=2,c=a+b,且c⊥a,則向量a與b的夾角為________.
解析:∵c⊥a,∴c·a=0,
∴(a+b)·a=0,即a2+a·b=0.
∵|a|=1,|b|=2,∴1+2cos〈a,b〉=0,
∴cos〈a,b〉=-12.
又∵0°≤〈a,b〉≤180°,∴〈a,b〉=120°.
答案:120°
9.已知e1與e2是兩個夾角為60°的單位向量,a=2e1+e2,b=2e2-3e1,求a與b的
夾角.
解:因為|e1|=|e2|=1,
所以e1·e2=1×1×cos60°=12,
|a|2=(2e1+e2)2=4+1+4e1·e2=7,故|a|=7,
|b|2=(2e2-3e1)2=4+9-12e1·e2=7,故|b|=7,
且a·b=-6e21+2e22+e1·e2=-6+2+12=-72,
所以cos〈a,b〉=a·b|a|·|b|=-727×7=-12,
所以a與b的夾角為120°.
10.已知|a|=2|b|=2,且向量a在向量b方向上的投影為-1.
(1)求a與b的夾角θ;
(2)求(a-2b)·b;
(3)當λ為何值時,向量λa+b與向量a-3b互相垂直?
解:(1)∵|a|=2|b|=2,
∴|a|=2,|b|=1.
又a在b方向上的投影為|a|cosθ=-1,
∴a·b=|a||b|cosθ=-1.
∴cosθ=-12,∴θ=2π3.
(2)(a-2b)·b=a·b-2b2=-1-2=-3.
(3)∵λa+b與a-3b互相垂直,
∴(λa+b)·(a-3b)=λa2-3λa·b+b·a-3b2
=4λ+3λ-1-3=7λ-4=0,∴λ=47.
層級二應(yīng)試能力達標
1.已知|a|=2,|b|=1,且a與b的夾角為π3,則向量m=a-4b的模為()
A.2B.23
C.6D.12
解析:選B|m|2=|a-4b|2=a2-8a·b+16b2=4-8×2×1×12+16=12,所以|m|=23.
2.在Rt△ABC中,C=90°,AC=4,則·等于()
A.-16B.-8
C.8D.16
解析:選D法一:因為cosA=ACAB,故·=||·||cosA=||2=16,故選D.
法二:在上的投影為||cosA=||,故·=|cosA=||2=16,故選D.
3.已知向量a,b滿足|a|=1,|b|=2,且a在b方向上的投影與b在a方向上的投影相等,則|a-b|=()
A.1B.3
C.5D.3
解析:選C由于投影相等,故有|a|cos〈a,b〉=|b|cos〈a,b〉,因為|a|=1,|b|
=2,所以cos〈a,b〉=0,即a⊥b,則|a-b|=|a|2+|b|2-2a·b=5.
4.如圖,在邊長為2的菱形ABCD中,∠BAD=60°,E為BC的中點,則·=()
A.-3B.0
C.-1D.1
解析:選C·=AB―→+12AD―→·(-)
=12·-||2+12||2
=12×2×2×cos60°-22+12×22=-1.
5.設(shè)向量a,b,c滿足a+b+c=0,(a-b)⊥c,a⊥b,若|a|=1,則|a|2+|b|2+|c|2的值是________.
解析:法一:由a+b+c=0得c=-a-b.
又(a-b)·c=0,∴(a-b)·(-a-b)=0,即a2=b2.
則c2=(a+b)2=a2+b2+2a·b=a2+b2=2,
∴|a|2+|b|2+|c|2=4.
法二:如圖,作==a,
=b,則=c.
∵a⊥b,∴AB⊥BC,
又∵a-b=-=,
(a-b)⊥c,∴CD⊥CA,
所以△ABC是等腰直角三角形,
∵|a|=1,∴|b|=1,|c|=2,∴|a|2+|b|2+|c|2=4.
答案:4
6.已知向量a,b的夾角為45°,且|a|=4,12a+b·(2a-3b)=12,則|b|=________;b在a方向上的投影等于________.
解析:12a+b·(2a-3b)=a2+12a·b-3b2=12,即3|b|2-2|b|-4=0,解得|b|=2(舍負),b在a方向上的投影是|b|cos45°=2×22=1.
答案:21
7.已知非零向量a,b,滿足|a|=1,(a-b)·(a+b)=12,且a·b=12.
(1)求向量a,b的夾角;(2)求|a-b|.
解:(1)∵(a-b)·(a+b)=12,
∴a2-b2=12,
即|a|2-|b|2=12.
又|a|=1,
∴|b|=22.
∵a·b=12,
∴|a|·|b|cosθ=12,
∴cosθ=22,
∴向量a,b的夾角為45°.
(2)∵|a-b|2=(a-b)2
=|a|2-2|a||b|cosθ+|b|2=12,
∴|a-b|=22.
8.設(shè)兩個向量e1,e2,滿足|e1|=2,|e2|=1,e1與e2的夾角為π3,若向量2te1+7e2與e1+te2的夾角為鈍角,求實數(shù)t的取值范圍.
解:由向量2te1+7e2與e1+te2的夾角為鈍角,
得?2te1+7e2?·?e1+te2?|2te1+7e2|·|e1+te2|
(2te1+7e2)·(e1+te2)
2t2+15t+7
當夾角為π時,也有(2te1+7e2)·(e1+te2)
但此時夾角不是鈍角,
設(shè)2te1+7e2=λ(e1+te2),λ
2t=λ,7=λt,λ
∴所求實數(shù)t的取值范圍是
-7,-142∪-142,-12.
數(shù)學(xué)必修3教案【篇3】
教學(xué)目的:(1)了解集合之間的包含、相等關(guān)系的含義;
(2)理解子集、真子集的概念;
(3)能利用Venn圖表達集合間的關(guān)系;
(4)了解與空集的含義。
教學(xué)重點:子集與空集的概念;用Venn圖表達集合間的關(guān)系。 教學(xué)難點:弄清元素與子集 、屬于與包含之間的區(qū)別;
教學(xué)過程:
四、 引入課題
1、 復(fù)習(xí)元素與集合的關(guān)系——屬于與不屬于的關(guān)系,填以下空白:(1)0 N;(2
;(3)-1.5 R
2、 類比實數(shù)的大小關(guān)系,如5
布課題)
五、 新課教學(xué)
A={1,2,3},B={1,2,3,4}
集合A是集合B的部分元素構(gòu)成的集合,我們說集合B包含集合A;
如果集合A的任何一個元素都是集合B的元素,我們說這兩個集合有包含關(guān)系,稱集合A是集合B的子集(subset)。
記作:A?B(或B?A)
讀作:A包含于(is contained in)B,或B包含(contains)A (一) 集合與集合之間的“包含”關(guān)系;
當集合A不包含于集合B時,記作
B
用Venn圖表示兩個集合間的“包含”關(guān)系 A?B(或B?A)
(二) 集合與集合之間的 “相等”關(guān)系;
A?B且B?A,則A?B中的元素是一樣的,因此A?B
?A?B即 A?B?? B?A?
結(jié)論:
任何一個集合是它本身的子集
(三) 真子集的概念
若集合A?B,存在元素x?B且x?A,則稱集合A是集合B的真子集(proper subset)。
記作:A B(或B A)
讀作:A真包含于B(或B真包含A)
(四) 空集的概念
(實例引入空集概念)
不含有任何元素的集合稱為空集(empty set),記作:? 規(guī)定: 空集是任何集合的子集,是任何非空集合的真子集。
(五) 結(jié)論:1A?A ○2A?B,且B?C,則A?C ○
(六) 例題
(1)寫出集合{a,b}的所有的子集,并指出其中哪些是它的真子集。
(2)化簡集合A={x|x-3>2},B={x|x?5},并表示A、B的關(guān)系;
(七) 歸納小結(jié),強化思想
兩個集合之間的基本關(guān)系只有“包含”與“相等”兩種,可類比兩個實數(shù)間的大小關(guān)系,同時還要注意區(qū)別“屬于”與“包含”兩種關(guān)系及其表示方法;
1 已知集合A?{x|a?x?5},B?{x|x≥2},且滿足A?B,求實數(shù)a的○
取值范圍。
2 設(shè)集合A?{○四邊形},B?{平行四邊形},C?{矩形},
D?{正方形},試用Venn圖表示它們之間的關(guān)系。
數(shù)學(xué)必修3教案【篇4】
學(xué)習(xí)目標
1. 結(jié)合已學(xué)過的數(shù)學(xué)實例,了解歸納推理的含義;2. 能利用歸納進行簡單的推理,體會并認識歸納推理在數(shù)學(xué)發(fā)現(xiàn)中的作用。
2. 結(jié)合已學(xué)過的數(shù)學(xué)實例,了解類比推理的含義;
3. 能利用類比進行簡單的推理,體會并認識合情推理在數(shù)學(xué)發(fā)現(xiàn)中的作用。
學(xué)習(xí)過程
一、課前準備
問題3:因為三角形的內(nèi)角和是 ,四邊形的內(nèi)角和是 ,五邊形的內(nèi)角和是
……所以n邊形的內(nèi)角和是
新知1:從以上事例可一發(fā)現(xiàn):
叫做合情推理。歸納推理和類比推理是數(shù)學(xué)中常用的合情推理。
新知2:類比推理就是根據(jù)兩類不同事物之間具有
推測其中一類事物具有與另一類事物 的性質(zhì)的推理。
簡言之,類比推理是由 的推理。
新知3歸納推理就是根據(jù)一些事物的 ,推出該類事物的
的推理。 歸納是 的過程
例子:哥德巴赫猜想:
觀察 6=3+3, 8=5+3, 10=5+5, 12=5+7, 14=7+7,
16=13+3, 18=11+7, 20=13+7, ……,
50=13+37, ……, 100=3+97,
猜想:
歸納推理的一般步驟
1 通過觀察個別情況發(fā)現(xiàn)某些相同的性質(zhì)。
2 從已知的相同性質(zhì)中推出一個明確表達的一般性命題(猜想)。
※ 典型例題
例1用推理的形式表示等差數(shù)列1,3,5,7……2n-1,……的前n項和Sn的歸納過程。
變式1 觀察下列等式:1+3=4= ,
1+3+5=9= ,
1+3+5+7=16= ,
1+3+5+7+9=25= ,
……
你能猜想到一個怎樣的結(jié)論?
變式2觀察下列等式:1=1
1+8=9,
1+8+27=36,
1+8+27+64=100,
……
你能猜想到一個怎樣的結(jié)論?
例2設(shè) 計算 的值,同時作出歸納推理,并用n=40驗證猜想是否正確。
變式:(1)已知數(shù)列 的第一項 ,且 ,試歸納出這個數(shù)列的通項公式
例3:找出圓與球的相似之處,并用圓的性質(zhì)類比球的有關(guān)性質(zhì)。
圓的概念和性質(zhì) 球的類似概念和性質(zhì)
圓的周長
圓的面積
圓心與弦(非直徑)中點的連線垂直于弦
與圓心距離相等的弦長相等,
※ 動手試試
1. 觀察圓周上n個點之間所連的弦,發(fā)現(xiàn)兩個點可以連一條弦,3個點可以連3條弦,4個點可以連6條弦,5個點可以連10條弦,由此可以歸納出什么規(guī)律?
2 如果一條直線和兩條平行線中的一條相交,則必和另一條相交。
3 如果兩條直線同時垂直于第三條直線,則這兩條直線互相平行。
三、總結(jié)提升
※ 學(xué)習(xí)小結(jié)
1.歸納推理的定義。
2. 歸納推理的一般步驟:①通過觀察個別情況發(fā)現(xiàn)某些相同的性質(zhì);②從已知的相同性質(zhì)中推出一個明確表述的一般性命題(猜想).
3. 合情推理僅是“合乎情理”的推理,它得到的結(jié)論不一定真,但合情推理常常幫我們猜測和發(fā)現(xiàn)新的規(guī)律,為我們提供證明的思路和方法
數(shù)學(xué)必修3教案【篇5】
教學(xué)內(nèi)容解析
本節(jié)課是蘇教版教材必修2中第一章第二節(jié)的內(nèi)容,屬于新授概念原理課。其中直線與平面垂直的概念及判定定理的形成是教學(xué)重點。
直線與平面垂直在本節(jié)中的位置。線面垂直是在學(xué)生掌握了線在面內(nèi),線面平行之后緊接著研究的線面相交位置關(guān)系中的特例。在線面平行中,我們研究了定義、判定定理以及性質(zhì)定理,為本節(jié)課提供了研究內(nèi)容和研究方法上的范式。線面垂直是線線垂直的拓展,又是面面垂直的基礎(chǔ),且后續(xù)內(nèi)容。例如,空間的角和距離等又都使用它來定義,在本章中起著承上啟下的作用。
通過本節(jié)課的學(xué)習(xí)研究,可進一步完善學(xué)生的知識結(jié)構(gòu),更好地培養(yǎng)學(xué)生觀察發(fā)現(xiàn)、空間想象及推理能力,體會由特殊到一般、類比、歸納、猜想、化歸等數(shù)學(xué)思想方法。因此,學(xué)習(xí)這部分知識有著非常重要的意義。
教學(xué)目標設(shè)置
(圖形語言、符號語言來表示定義和判定定理。
(2)掌握線線垂直與線面垂直之間的相互轉(zhuǎn)化關(guān)系,從而體會降維化歸的思想。
(3)在定義及定理的探究活動中,發(fā)展學(xué)生合情推理能力與演繹推理的能力。
(圖形思考問題的過程,進一步發(fā)展空間觀念。
學(xué)生學(xué)情分析
1.學(xué)生已有的認知基礎(chǔ)
學(xué)生能夠感知生活中有大量的線面垂直關(guān)系,已經(jīng)掌握了線線垂直與線面平行的相關(guān)知識,從而具備了研究空間位置關(guān)系的經(jīng)驗,也體會了立體幾何中化歸的數(shù)學(xué)思想方法。
2.達成目標所需要的認知基礎(chǔ)
要達成本節(jié)課的目標,這些已有的知識和經(jīng)驗基礎(chǔ)不可或缺,除此之外,還需要整體上把握本節(jié)課的研究內(nèi)容、方法和途徑,能運用類比、化歸等數(shù)學(xué)思想,同時還需要具備較好地觀察發(fā)現(xiàn)、空間想象、合情推理、抽象概括等能力,以及獨立思考、合作交流、反思質(zhì)疑等良好的數(shù)學(xué)學(xué)習(xí)習(xí)慣。
學(xué)生情況:學(xué)生大部分基礎(chǔ)薄弱,自主學(xué)習(xí)能力差.進入高一,雖然能領(lǐng)悟一些基本的數(shù)學(xué)思想與方法,但還沒有形成完整及嚴謹?shù)臄?shù)學(xué)思維習(xí)慣,對問題的探究能力也有待培養(yǎng)。
3.教學(xué)難點及突破策略
教學(xué)難點:
(1)運用類比及化歸等數(shù)學(xué)思想方法來研究直線與平面垂直的定義,突破對“任意”的生成和理解。
(歸納、理解直線與平面垂直判定定理,突破“無限”與“有限”的轉(zhuǎn)化。
突破策略:
(1)啟發(fā)學(xué)生明確研究的內(nèi)容與方法,從總體上認識研究的目標與手段。
(操作確認、思辨論證的過程形成線面垂直的定義和判定定理。
數(shù)學(xué)必修3教案【篇6】
教學(xué)目標
1.數(shù)列求和的綜合應(yīng)用
教學(xué)重難點
2.數(shù)列求和的綜合應(yīng)用
教學(xué)過程
典例分析
3.數(shù)列{an}的前n項和Sn=n2-7n-8,
(1)求{an}的通項公式
(2)求{|an|}的前n項和Tn
4.等差數(shù)列{an}的公差為,S100=145,則a1+a3 + a5 + …+a99=
5.已知方程(x2-2x+m)(x2-2x+n)=0的四個根組成一個首項為的等差數(shù)列,則|m-n|=
6.數(shù)列{an}是等差數(shù)列,且a1=2,a1+a2+a3=12
(1)求{an}的通項公式
(2)令bn=anxn ,求數(shù)列{bn}前n項和公式
7.四數(shù)中前三個數(shù)成等比數(shù)列,后三個數(shù)成等差數(shù)列,首末兩項之和為21,中間兩項之和為18,求此四個數(shù)
8.在等差數(shù)列{an}中,a1=20,前n項和為Sn,且S10= S15,求當n為何值時,Sn有最大值,并求出它的最大值
.已知數(shù)列{an},an∈N,Sn= (an+2)2
(1)求證{an}是等差數(shù)列
(2)若bn= an-30 ,求數(shù)列{bn}前n項的最小值
0.已知f(x)=x2 -2(n+1)x+ n2+5n-7 (n∈N)
(1)設(shè)f(x)的圖象的頂點的橫坐標構(gòu)成數(shù)列{an},求證數(shù)列{an}是等差數(shù)列
(2設(shè)f(x)的圖象的頂點到x軸的距離構(gòu)成數(shù)列{dn},求數(shù)列{dn}的前n項和sn.
11 .購買一件售價為5000元的商品,采用分期付款的辦法,每期付款數(shù)相同,購買后1個月第1次付款,再過1個月第2次付款,如此下去,共付款5次后還清,如果按月利率0.8%,每月利息按復(fù)利計算(上月利息要計入下月本金),那么每期應(yīng)付款多少?(精確到1元)
12 .某商品在最近100天內(nèi)的價格f(t)與時間t的
函數(shù)關(guān)系式是f(t)=
銷售量g(t)與時間t的函數(shù)關(guān)系是
g(t)= -t/3 +109/3 (0≤t≤100)
求這種商品的日銷售額的最大值
注:對于分段函數(shù)型的應(yīng)用題,應(yīng)注意對變量x的取值區(qū)間的討論;求函數(shù)的最大值,應(yīng)分別求出函數(shù)在各段中的最大值,通過比較,確定最大值。
高中數(shù)學(xué)學(xué)習(xí)方法技巧總結(jié)
基礎(chǔ)很重要,保持耐心多鞏固
要學(xué)好數(shù)學(xué),最關(guān)鍵的是要有一個好的基礎(chǔ)。只有打牢數(shù)學(xué)基礎(chǔ),才能夠把高中數(shù)學(xué)好,同樣只有打好基礎(chǔ),才能夠數(shù)學(xué)取得高分。打好基礎(chǔ)是最關(guān)鍵的!比如:建一棟大樓,如果地基不穩(wěn),不管大樓有多么豪華,都只是華而不實。
想學(xué)好數(shù)學(xué),對數(shù)學(xué)感興趣
其實學(xué)好數(shù)學(xué)最好的辦法就是發(fā)自內(nèi)心由衷的想要學(xué)習(xí),渴望學(xué)習(xí),才能體會到從學(xué)習(xí)中所收獲的樂趣。自己的成就感提升,對于學(xué)習(xí)數(shù)學(xué)的積極性也就提高了,覺得數(shù)學(xué)并沒有那么難,就愿意去多接觸了。
多做題反復(fù)做,有題感
其實學(xué)好數(shù)學(xué)辦法就是要大量做題,反復(fù)去做,題做多了就知道哪些方面需要自己去加強學(xué)習(xí),還有就是同樣做數(shù)學(xué)題做多了就會有題感。有些題,它的類型都是一樣的,題做多了之后,即使你不會做,你也會找到一些解題的思路和技巧。
高中數(shù)學(xué)學(xué)習(xí)方法總結(jié)
一)、課內(nèi)重視聽講,課后及時復(fù)習(xí)。
新知識的接受,數(shù)學(xué)能力的培養(yǎng)主要在課堂上進行,所以要特點重視課內(nèi)的學(xué)習(xí)效率,尋求正確的學(xué)習(xí)方法。上課時要緊跟老師的思路,積極展開思維預(yù)測下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎(chǔ)知識和基本技能的學(xué)習(xí),課后要及時復(fù)習(xí)不留疑點。首先要在做各種習(xí)題之前將老師所講的知識點回憶一遍,正確掌握各類公式的推理過程,應(yīng)盡量回憶而不采用不清楚立即翻書之舉。認真獨立完成作業(yè),勤于思考,從某種意義上講,應(yīng)不造成不懂即問的學(xué)習(xí)作風,對于有些題目由于自己的思路不清,一時難以解出,應(yīng)讓自己冷靜下來認真分析題目,盡量自己解決。在每個階段的學(xué)習(xí)中要進行整理和歸納總結(jié),把知識的點、線、面結(jié)合起來交織成知識網(wǎng)絡(luò),納入自己的知識體系。
二)、適當多做題,養(yǎng)成良好的解題習(xí)慣。
要想學(xué)好數(shù)學(xué),多做題是難免的,熟悉掌握各種題型的解題思路。剛開始要從基礎(chǔ)題入手,以課本上的習(xí)題為準,反復(fù)練習(xí)打好基礎(chǔ),再找一些課外的習(xí)題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規(guī)律。對于一些易錯題,可備有錯題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯誤所在,以便及時更正。在平時要養(yǎng)成良好的解題習(xí)慣。讓自己的.精力高度集中,使大腦興奮,思維敏捷,能夠進入最佳狀態(tài),在考試中能運用自如。實踐證明:越到關(guān)鍵時候,你所表現(xiàn)的解題習(xí)慣與平時練習(xí)無異。如果平時解題時隨便、粗心、大意等,往往在大考中充分暴露,故在平時養(yǎng)成良好的解題習(xí)慣是非常重要的。
三)、調(diào)整心態(tài),正確對待考試。
首先,應(yīng)把主要精力放在基礎(chǔ)知識、基本技能、基本方法這三個方面上,因為每次考試占絕大部分的也是基礎(chǔ)性的題目,而對于那些難題及綜合性較強的題目作為調(diào)劑,認真思考,盡量讓自己理出頭緒,做完題后要總結(jié)歸納。調(diào)整好自己的心態(tài),使自己在任何時候鎮(zhèn)靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠鼓勵自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能打垮我的自豪感。
在考試前要做好準備,練練常規(guī)題,把自己的思路展開,切忌考前去在保證正確率的前提下提高解題速度。對于一些容易的基礎(chǔ)題要有十二分把握拿全分;對于一些難題,也要盡量拿分,考試中要學(xué)會嘗試得分,使自己的水平正常甚至超常發(fā)揮。
由此可見,要把數(shù)學(xué)學(xué)好就得找到適合自己的學(xué)習(xí)方法,了解數(shù)學(xué)學(xué)科的特點,使自己進入數(shù)學(xué)的廣闊天地中去。
數(shù)學(xué)必修3教案【篇7】
高中必修2課文《離騷》教學(xué)實錄
一、導(dǎo)入文本
(播放電影片段)
師 影片中的主人公是誰?
生 (齊聲)屈原
( 字幕屈原)
師 大家對屈原了解多少?給大家介紹一下
生 屈原,戰(zhàn)國末期楚國人,杰出的政治家和愛國詩人。名平,字原。他出身于楚國貴族,與懷王同祖。屈原學(xué)識淵博,對天文、地理、禮樂制度以及周以前各代的治亂興衰等都很熟悉,善外交辭令。在政治上他推崇“美政”,認為只有圣君賢相才能把國家治理好 ,有強烈的憂國憂民、忠君致治的思想。他曾任左徒,輔佐懷王,
參與議論國事及應(yīng)對賓客,起草憲令及變法,對外參加合縱派與秦斗爭,兩度出使齊國。因受小人陷害,他兩次被流放,最后投汨羅江而死,以明忠貞愛國之懷。
師 非常好,他介紹的非常全面,屈原的代表作是什么呢?
生 (齊聲)《離騷》
師 那么“離騷”是什么意思呢?
生 (充滿 疑惑)
師 離通“罹”,遭遇;騷:憂愁?!半x騷”即作者遭遇憂愁而寫成的詩句。
全詩372句,是屈原的思想結(jié)晶,是他政治失敗后用血和淚寫成的一篇扣人心弦的抒發(fā)憂國之思的作品。
《離騷》是我國古代最長的抒情詩。本文選自《楚辭》。(投影)
“楚辭”是戰(zhàn)國時期興起于楚國的一種詩歌樣式,是以屈原以及宋玉的作品為主體的詩歌總集。其中最有代表性的就是本文《離騷》, 因此后人又把“楚辭”的體裁稱為“騷體”。
《離騷》與《詩經(jīng)》在文學(xué)史上并稱“風騷”,是中國古典詩歌的兩大源頭,對后世有著深遠的影響。
屈原為什么作《離騷》呢?
生 苦悶 憂愁
生 不得志
生 被流放了
師 都可以,
司馬遷《史記屈原賈生列傳》是這樣說的:
屈平疾王聽之不聰也,讒諂之蔽明也,邪曲之害公也,方正之不容也,故憂愁幽思而作《離騷》。
屈平之作《離騷》蓋自怨生也。
二、合作探究
下面讓我們走進《離騷》,走近屈原的內(nèi)心世界。請同學(xué)們默讀速讀全文,總體了解文章內(nèi)容。
(2分鐘后)
師 對文章,大家有了初步的了解,文章比較晦澀難懂。下面請按照我們的學(xué)習(xí)小組結(jié)合課下的注釋疏通文意,不明白的可在組內(nèi)討論解決,最后再有難點可有小組長提出。
(全班七個小組進行了熱烈的討論)
師 (通過討論,同學(xué)們提出了以下幾個問題)
1.“民生”在本文是個疑點,應(yīng)該說既是屈原的人生之義,又是人民生活之義。既哀嘆自己人生的艱難,又深深同情更廣大的人民。
2.鷙鳥之不群中的.“之”的用法是取消句子的獨立性,是助詞。
3.集芙蓉以為裳中的應(yīng)讀chang二聲。古代此字指下衣。
師 《離騷》好讀易懂嗎?
生 不好讀 太難懂了
師 這樣的文章需要反復(fù)地讀要找出規(guī)律才能品出其中的韻味。下面大家
聽聽濮存昕讀的,聽聽有什么特點?
(多媒體放錄音)
你對《離騷》的語言有什么感受?
生 美(齊聲答)
師 韻律感很強 屈原是通過什么手法做到的呢?
生 用對偶修辭,整首詩整齊而節(jié)奏鮮明。
生 用了很多疊音詞。
生 大量用“兮”字。使詩歌的調(diào)子回蕩頓挫,婉轉(zhuǎn)動人。
師 “兮”是有濃厚的楚國地方色彩的語氣詞,它在詩句中的位置不同,作用也不盡一樣。用在句中,表語音的延長;用在句間,表語意未竟,待下句補充;用在句尾,表感嘆意味。,
“兮”均用在句間,表示語意未完,等待下句補充。
生 押韻,不過不太明顯。
師 《離騷》是隔句用韻的,如:“固時俗之工巧兮,佰規(guī)矩而改錯;背繩
墨以追曲兮,競周容以為度”錯和度是韻腳。
此外,還有節(jié)拍的使用上,每句基本上都是三個節(jié)拍,如:民生--各有--所
樂兮,余獨--好修--以為常 寧--溘死--以流亡兮,余--不忍--為此態(tài)也。(投影文字)
師 好,同學(xué)們自由大聲讀文章,體會一下離騷的韻律美與音樂美。
(5分鐘后)
師 下面大家齊讀全文。
(而后男女分開再讀兩遍,最后再讓個別普通話較好的同學(xué)讀)
師 好,大家都應(yīng)該這樣讀。今天我們通過誦讀初步感受了離騷韻律美音樂
美,疏通了文意。下節(jié)課我們將走進離騷走近屈原的內(nèi)心世界,感受離騷的內(nèi)在意蘊。
作業(yè):1背誦全詩
2結(jié)合注釋和我們的討論,翻譯全文。
(下課)
第二課時
三、共同探究
師 我們先檢查背誦,進行比賽。
(先檢查個別學(xué)生背誦,而后全班七個小組各推出一名同學(xué)進行比賽,看誰背得最準確最流暢。同學(xué)們都很積極踴躍。基礎(chǔ)較好的同學(xué)能流利的背下來。
(8分鐘后)
師 大部分同學(xué)背的很好,沒有背過的要繼續(xù)努力,下面我們一同探究屈原的內(nèi)心世界,看課文首句“長太息以掩涕兮,哀民生之多艱”,這句話表達了屈原什么養(yǎng)的思想感情呢?
生 哀傷 難過 痛苦
師 很好,為什么呢?
生 被流放了
生 不受楚王信任了。
師 用原文的話回答
生 既替余以蕙纕兮,又申之以攬茝。
師 為什么被貶黜(投影兩字)?因佩戴和采集香草嗎?
生 不是(齊聲答)
生 靈修之浩蕩。 (投影靈修浩蕩)
生 眾女嫉余之蛾眉,謠諑謂余以善淫。(投影眾女嫉余)
生 時俗之工巧,偭規(guī)矩而改錯。(投影世俗工巧)
師 君王荒淫。小人進讒言,世俗投機取巧,還有“余不忍為此態(tài)也,鷙鳥之不群”正如屈原所說“舉世混濁而我獨清,眾人皆醉而我獨醒”,他不愿茍且不愿和小人同流合污。面對此種處境,屈原表達出了什么樣的情感呢?
生 亦余心之所善兮,雖九死其猶未悔。
生 伏清白以死直兮,固前圣之所厚。
生 體解吾猶未變兮,豈余心之可懲。
師 很好 屈原在這幾句話中都談到了死,不管是九死,還是體解。我們都
知道屈原是投江而死,屈原是不是因為這些而自殺呢?
生 不是,屈原是因為楚國國都被秦攻破而萬念俱灰才以身殉國的。
師 此時的屈原雖然很痛苦憂傷但是還是恨之深愛之切。面對這樣的政治環(huán)境,屈原怎么做的呢?
(齊讀三四段)
生 將要回去,“悔相道之不察兮,延佇乎吾將反”。
生 “回朕車以復(fù)路兮,及行迷之未遠。”趁著迷路不遠回歸家園。
生 “步余馬於蘭皋兮,馳椒丘且焉止息?!?/p>
生 “進不入以離尤兮,退將復(fù)修吾初服?!毙摒B(yǎng)自我
師 這些思想和晉代的陶淵明回歸田園的精神一樣嗎?大家討論一下
(同學(xué)們展開了激烈的討論)
生 一樣的 都是厭倦了官場生活而歸隱的
生 不一樣,陶淵明是徹底的厭倦了污濁的官場而回歸田園的,他是毅然決然的,而屈原則對楚王還抱有幻想,依戀著楚國,熱愛著楚國,希望有一天楚王能夠悔悟。
師 都有道理,可謂仁者見仁智者見智。為了表明自己的高潔屈原還怎么做的呢?
生 制芰荷以為衣兮,集芙蓉以為裳。
生 余冠之岌岌兮,長余佩之陸離
生 佩繽紛其繁飾兮,芳菲菲其彌章
師 這些打扮可謂特立獨行,與眾不同。屈原正是通過這種方式表明自的
高潔與永不向小人屈服的決心。是知識分子堅守自我的第一生吶喊。
師 縱觀全文,一個越來越清晰的藝術(shù)形象向我們走來,一個越來越鮮明
的藝術(shù)形象呈現(xiàn)在我們的腦海里,本文塑造了一個什么樣的抒情主人公呢?
生 他英俊瀟灑,他有著突出的外部形象的特征。很多屈原的畫像即使不
寫上“屈原”二字,我們也可以一眼認出是屈原,
生 他 具有鮮明的思想性格。
他 是一位進步的政治改革家,主張法治,主張舉賢授能。
他 主張美政,重視人民的利益和人民的作用
他 追求真理,堅強不屈。
師 這個形象,是中華民族精神的集中體現(xiàn),兩千多年來給了無數(shù)仁人志
士以品格與行為的示范,也給了他們以力量。
師 文章塑造了一個如此生動鮮明感人的藝術(shù)形象,運用了什么藝術(shù)手法
呢?
生 運用了比喻手法。
生 運用象征,芙蓉香草象征高潔的品性。
生 運用了對偶的修辭手法,
生 夸張,想象等等。
師 (投影總結(jié))
1.大量運用了比喻手法。如以采摘香草喻加強自身修養(yǎng),佩戴香草喻保持修潔等。
2.運用了不少香花、香草的名稱來象征性地表現(xiàn)政治的、思想意識方面的
比較抽象的概念,不僅使作品含蓄,長于韻味,而且從直覺上增加了作品的色彩
美。
3.運用了對偶的修辭手法,而且形式多姿多彩,在錯落中見整齊,在整齊
中又富于變化。如“高余冠之岌岌兮,長余佩之陸離”“忽反顧以游目兮,將往觀乎四荒”等,將“兮”字去掉,對偶之工與唐宋律詩對仗無異。上兩例屬于在一個完整詩句里,上下句構(gòu)成對偶?!肮虝r俗之工巧兮,偭規(guī)矩而改錯。背繩墨以追曲兮,競周容以為度?!边@一例是兩個完整詩句的上、下句構(gòu)成對偶?!扒亩种举?,忍尤而攘詬?!边@一例是上、下句內(nèi)部各自構(gòu)成對偶,上、下句之間也構(gòu)成對偶。
“楚辭體”語言華麗豐富多彩靈活多變,通過學(xué)習(xí)《離騷》,我們領(lǐng)略了此文體的巨大魅力,豐富了我們的五彩人生,感受到了屈原的九死未悔的問偉大的愛國主義精神。他的這種精神值得我們學(xué)習(xí)。最后我們再次感受一下《離騷》的魅力。
(全班齊讀全文)
(布置作業(yè))學(xué)習(xí)了《離騷》,認識了屈原,你一定有很多感慨,對屈原遭遇與投江有很多看法,有許多話想對屈原說。請以“屈原,我想對你說”為話題寫一篇五百字的小作文表達你的觀點。
(下課)
數(shù)學(xué)必修3教案【篇8】
三、在細胞質(zhì)中,除了細胞器外,還有呈膠質(zhì)狀態(tài)的細胞質(zhì)基質(zhì)。
細胞質(zhì):包括細胞器和細胞質(zhì)基質(zhì)。
四、電子顯微鏡下看到的是亞顯微結(jié)構(gòu),普通顯微鏡下看到顯微結(jié)構(gòu)。
光鏡能看到:細胞質(zhì),線粒體,葉綠體,液泡,細胞壁。
實驗:用高倍顯微鏡觀察葉綠體和線粒體。
健那綠染液是將活細胞中線粒體染色的專一性染料,可以使活細胞中的線粒體呈現(xiàn)藍綠色。
材料:新鮮的蘚類的葉(葉片薄,直接觀察)。
菠菜葉稍帶葉肉的下表皮(上表皮起保護作用,幾乎無葉綠體;下表皮海綿組織,有氣孔保衛(wèi)細胞,有葉綠體)。
五、分泌蛋白的合成和運輸。
有些蛋白質(zhì)是在細胞內(nèi)合成后,分泌到細胞外起作用,這類蛋白叫分泌蛋白。如消化酶(催化作用)、抗體(免疫)和一部分激素(信息傳遞)。
核糖體內(nèi)質(zhì)網(wǎng)高爾基體細胞膜。
(合成肽鏈)(加工成蛋白質(zhì))(進一步加工)(囊泡與細胞膜融合,蛋白質(zhì)釋放)。
分泌蛋白從合成至分泌到細胞外利用到的細胞器?
答:核糖體、內(nèi)質(zhì)網(wǎng)、高爾基體、線粒體。
分泌蛋白從合成至分泌到細胞外利用到的結(jié)構(gòu)?
核糖體、內(nèi)質(zhì)網(wǎng)、高爾基體、線粒體、細胞核、囊泡、細胞膜。
六、生物膜系統(tǒng)。
1、概念:細胞膜、核膜,各種細胞器的膜共同組成的生物膜系統(tǒng)。
2、作用:使細胞具有穩(wěn)定內(nèi)部環(huán)境物質(zhì)運輸、能量轉(zhuǎn)換、信息傳遞;為各種酶提供大量附著位點,是許多生化反應(yīng)的場所;把各種細胞器分隔開,保證生命活動高效、有序進行。
3、內(nèi)質(zhì)網(wǎng)膜內(nèi)連核膜外連細胞膜還和線粒體膜直接相連。
經(jīng)過囊泡與高爾基體膜間接相連。
數(shù)學(xué)必修3教案【篇9】
高一數(shù)學(xué)必修二提綱
1:一般式:Ax+By+C=0(A、B不同時為0)適用于所有直線
K=-A/B,b=-C/B
A1/A2=B1/B2≠C1/C2←→兩直線平行
A1/A2=B1/B2=C1/C2←→兩直線重合
橫截距a=-C/A
縱截距b=-C/B
2:點斜式:y-y0=k(x-x0)適用于不垂直于x軸的直線
表示斜率為k,且過(x0,y0)的直線
3:截距式:x/a+y/b=1適用于不過原點或不垂直于x軸、y軸的直線
表示與x軸、y軸相交,且x軸截距為a,y軸截距為b的直線
4:斜截式:y=kx+b適用于不垂直于x軸的直線
表示斜率為k且y軸截距為b的直線
5:兩點式:適用于不垂直于x軸、y軸的直線
表示過(x1,y1)和(x2,y2)的直線
(y-y1)/(y2-y1)=(x-x1)/(x2-x1)(x1≠x2,y1≠y2)
6:交點式:f1(x,y)x+f2(x,y)=0適用于任何直線
表示過直線f1(x,y)=0與直線f2(x,y)=0的交點的直線
7:點平式:f(x,y)-f(x0,y0)=0適用于任何直線
表示過點(x0,y0)且與直線f(x,y)=0平行的直線
8:法線式:x·cosα+ysinα-p=0適用于不平行于坐標軸的直線
過原點向直線做一條的垂線段,該垂線段所在直線的傾斜角為α,p是該線段的長度
9:點向式:(x-x0)/u=(y-y0)/v(u≠0,v≠0)適用于任何直線
表示過點(x0,y0)且方向向量為(u,v)的直線
10:法向式:a(x-x0)+b(y-y0)=0適用于任何直線
表示過點(x0,y0)且與向量(a,b)垂直的直線
11:點到直線距離
點P(x0,y0)到直線Ι:Ax+By+C=0的距離
d=|Ax0+By0+C|/√A2+B2
兩平行線之間距離
若兩平行直線的方程分別為:
Ax+By+C1=OAx+By+C2=0則
這兩條平行直線間的距離d為:
d=丨C1-C2丨/√(A2+B2)
12:各種不同形式的直線方程的局限性:
(1)點斜式和斜截式都不能表示斜率不存在的直線;
(2)兩點式不能表示與坐標軸平行的直線;
(3)截距式不能表示與坐標軸平行或過原點的直線;
(4)直線方程的一般式中系數(shù)A、B不能同時為零。
13:位置關(guān)系
若直線L1:A1x+B1y+C1=0與直線L2:A2x+B2y+C2=0
1.當A1B2-A2B1≠0時,相交
2.A1/A2=B1/B2≠C1/C2,平行
3.A1/A2=B1/B2=C1/C2,重合
4.A1A2+B1B2=0,垂直
高中數(shù)學(xué)快速解題法
方法1、在解題的過程中,是一個思維的過程。一些基本的、常見的問題,前人已經(jīng)總結(jié)出了一些基本的解題思路和常用的解題程序,只要順著這些解題的思路,就可以很容易的找到習(xí)題的答案。
方法2、做一道題目時,最重要的就是審題。審題的第一步就是讀題。讀題時要慢,一邊讀、一邊思考,要特別注意每一句話的內(nèi)在含義,并從中找出隱含條件。很多人并沒有養(yǎng)成這種習(xí)慣,結(jié)果常常會在做題的時候漏掉一些信息,所以在解題的時候要特別注意審題。
方法3、在做了一定數(shù)量的習(xí)題后,就會對所涉及到的知識、解題方法有比較清晰的了解。這個時候就需要將這些知識進行歸納總結(jié),以便以后的解題思路更加清晰,達到舉一反三的效果,這樣做數(shù)學(xué)題的速度就會大大提升了。
方法4、做題只是學(xué)習(xí)過程中的一部分,所以不能為了解題而解題。解題時,腦海中的概念越清晰、對公式、定理越熟悉,解題的速度就越快。所以在解題時,應(yīng)該先回歸課本,熟悉基本內(nèi)容,理解其正確的含義,接著再做后面的練習(xí)。
方法5、有些題目,尤其是幾何體,一定要學(xué)會畫圖。畫圖是一個把抽象思維變成形象思維的過程,會大大降低解題的難度。很多題目,只要分析圖畫出來之后,其中的關(guān)系就會變得一目了然。所以學(xué)會畫圖,對于提高解題速度非常重要。
方法6、人對事物的認知總是會有一個從易到難的過程,簡單的問題做多了,概念清晰了,對解題的步驟熟悉了,解題時就會形成跳躍思維,解題的速度也會大大的提高。所以在學(xué)習(xí)時,要根據(jù)自己的能力,去解那些看似簡單,卻比較重要的習(xí)題,來不斷提高解題速度和解題能力。隨著速度和能力的提高,在逐漸的去增加難度,就會事半功倍了。
方法7、習(xí)慣很重要,很多同學(xué)做題速度慢就是平時做作業(yè)的時候習(xí)慣了拖延時間,從而導(dǎo)致了不好的解題習(xí)慣。所以想要提高做題速度,就要先改變拖沓的習(xí)慣。比較有效的方法是限時答題,在平常做作業(yè)的時候,給自己規(guī)定一個時間,先不管正確率,首先要保證在規(guī)定時間內(nèi)完成數(shù)學(xué)作業(yè),然后在去改正錯誤。時間長了之后,自然會改正拖延時間的壞毛病。
學(xué)好數(shù)學(xué)的建議
學(xué)數(shù)學(xué)沒有捷徑,只能踏踏實實做題,把每一種類型題都做會了,那么數(shù)學(xué)才有可能學(xué)好。在高中,沒有必要去買數(shù)學(xué)輔導(dǎo)資料,只要把教材看透了,就能學(xué)好數(shù)學(xué)。課本怎么看?老師講課之前看,看完例題做課后習(xí)題,把教材提前學(xué)會了。上課干什么?老師講課還需認真聽,然后再理解一遍,把定理、公式、定義等都背下來。當然,數(shù)學(xué)書不止看一遍,當做題不會時,還需要翻閱,當考試前也可以復(fù)習(xí)課本,平時還可以去看。
數(shù)學(xué)光看書還遠遠不夠,做題才是根本。課后練習(xí)冊、數(shù)學(xué)卷子每道題都要認真去做,遇到不會的題目想方設(shè)法去解,實在做不出來了劃重點,等課上重點去聽,課下自己再重新做一遍,隔幾天再拿出來做一遍。
上數(shù)學(xué)課也是要做筆記的,做筆記能夠讓你復(fù)習(xí)時思路更清晰,看書時重點更明確,而且一些重要的東西書上往往沒有,只有在筆記上才會有所體現(xiàn),所以筆記要好好整理。但是,做筆記不能影響聽課效果,如果跟不上可以課后借同學(xué)的抄。
數(shù)學(xué)必修3教案匯集
教師事先規(guī)劃好每一節(jié)課的教學(xué)課件是必不可少的,每位教師都需要將教案課件設(shè)計得更加完善。設(shè)計出優(yōu)秀的課件有助于激發(fā)學(xué)生的思考和創(chuàng)新能力。幼兒教師教育網(wǎng)為大家推薦了一篇關(guān)于“數(shù)學(xué)必修3教案”的優(yōu)秀文章,希望我的意見可以給你一些啟示,請務(wù)必收藏下來以便日后查看!
數(shù)學(xué)必修3教案【篇1】
1、積累詞語,掌握“攢、拗、確鑿、輕捷、相宜、方正”等詞的讀音,字形及詞義,并學(xué)會運用。
3、走進魯迅的童年,探索他成長的足跡,體味童真童趣。
1、學(xué)習(xí)本文寫景善于抓住景物特征,層次井然、融情入景的寫法,培養(yǎng)學(xué)生的觀察能力和表達能力
2、品味作者簡練生動、準確傳神的語言特色,增強語感。
3、體味魯迅在百草園和三味書屋的生活樂趣,嘗試表達自己的生活經(jīng)歷和體驗。
學(xué)習(xí)魯迅先生從小熱愛大自然、熱愛自由生活、追求新鮮知識的精神。
引導(dǎo)學(xué)生學(xué)習(xí)課文對事物的準確描摹,對動作的準確表達及寫作思路的條理性。
1、理解美女蛇故事的作用,初步了解插敘。
2、揣摩三味書屋這一部分的思想內(nèi)容,理解其中一些重要的詞語。
3、引導(dǎo)學(xué)生從整體與部分的結(jié)合上把握文章的主題思想。
教學(xué)要點:
朗讀課文,整體感知文章;精讀課文,理清文章的總體思路;重點研討第一部分。體味作者在百草園中的無窮樂趣,嘗試表達自己的生活經(jīng)歷和體驗。
每個人的童年,是一片寬闊的原野,在這上面,你可以任意栽植世界上所有的花草,可以放飛所有的希望,可以播灑一生的幸福,可以蕩漾一生的笑意,童年是券的,只要有一顆敏銳易感的心,童年的一切記憶都會深深留在心中。今天我們學(xué)習(xí)《從百草園到三味書屋》,了解魯迅先生有關(guān)童年的記憶。
本文是一篇寫于1926年9月18日的回憶性散文,當時魯迅被反動派列入通緝的北京文教界五十人名單,魯迅難以公開和反動勢力進行斗爭,被迫于1926年離開北京。魯迅到廈門大學(xué)正值暑假,學(xué)生還沒開學(xué),就寫下這篇散文,后來收入到《朝花夕拾》散文集中。
“朝花”喻童年美好的生活,“拾”回憶往事,原名《舊事重提》,后改為《朝花夕拾》。它是一曲少年時代生活的戀歌。
確鑿(záo)???菜畦(qí)???斑蝥(wú)???攢(zǎn)???斂(liǎn)??腦髓(suǐ)??秕(bǐ)谷??蟬蛻(tuì)???書塾(shú)???宿儒(rú)??倜(tì)儻(tǎng)??竇(dòu)
第一部分(從開頭到“來不及走到中間去”)寫百草園的生活。
第二部分(從“出門向東”到完)寫三味書屋情形。
(1)第1自然段說百草園“似乎確鑿只有一些野草,但那時卻是我的樂園”,這句話是否有矛盾呢?
討論后歸納:沒有矛盾,前一句是用大人的眼來看的,“確鑿只有”
斷是其中不會有什么動人之處,“似乎”又對這斷定有躊躇,這是表示是否記得清楚還不敢說。后一句是從小孩子的眼中來看的,作者回憶童年在百草園玩耍,地切都那么新奇有趣,確定獐的樂園。所以不矛盾。
(2)作者是怎樣描寫百草園的景物的?
討論后歸納:
A、從句式上看,用“不心說……也不心說……單是……”宕開一筆,為的是突出下面“單是”的內(nèi)容。既然“單是”就已趣味無窮,可見園里的佳趣定然比比皆是,這是以一概全的寫法。
D、從觀察的角度來看:
視覺:碧綠的菜畦,光滑的石井欄,高大的皂莢樹、紫紅的桑葚,肥胖的黃蜂,輕捷的叫天子。
聽覺:鳴蟬在樹葉里長吟,油蛉在這里低唱,蟋蟀在這里彈琴。
觸覺:有用手指按住它的脊梁,便 會啪的一聲,從后竅噴出一陣煙霧的斑蝥,有可以牽連不斷地拔起來的何乎烏的臃腫的.根。
E、從修辭手法的角度看:有比喻:覆盆子像小珊瑚攢成的小球。有擬人:油蛉在這里低唱,蟋蟀在這里彈琴。寫出孩子心中奇妙的想像和特殊的感受。
F、從遣詞描寫來看,用詞鹽分準確、生動,形容黃蜂用“肥胖、伏”,形容叫天子用“輕捷、直竄”,形容石井欄用“光滑”都十分貼切。
(3)文章為什么要寫美女蛇的故事?
討論并歸納:
美女蛇的故事很吸引孩子,給百草園增添了神秘色彩,豐富了百草園作為兒童樂園的情趣。
(4)文章是怎樣描寫捕鳥的,準確地運用了哪些動詞?為什么要寫手下捕鳥?
討論的歸納:先寫捕鳥的時間,條件、方法、然后寫捕鳥的收獲,經(jīng)驗教訓(xùn)。運用的動詞有:掃開、露出、支起、撒、系、牽、看、拉、罩。寫捕鳥也是寫百草園給愛玩的兒童帶來的無窮樂趣。
寫百草園,作者抓住了一個“樂”字來寫,有樂景、樂聞、樂事。洋溢著生機和活力,情趣盎然。表現(xiàn)了兒童熱愛大自然,喜歡自由快樂生活的心理。
1、完成研討與練習(xí)一、1、2、,二?1,三。
(2)第7段詳寫的捕鳥的時間、????、??????、收獲、經(jīng)驗等,這樣寫的作用是??????????????????。
(4)請用原文詞語組成一句話,概括下雪后在百草園只好來捕鳥的原因。
(5)第八段回憶閏土父親關(guān)于捕鳥的答話,對答話含義理解正確的一項是(????)
C、閏土父親的話啟迪我遇事要沉著冷靜,這也是一種樸素的啟蒙教育,所以作者難以忘懷。
1、質(zhì)疑:“我”到底知不知道被送到私塾去的原因呢?你是從哪些詞語看出來的?
討論歸納:不知道,有“也許是……也許是……也許是……都無從知道”可以看出,三個“也許是”表示盡管猜測的原因很多,但一個也無法肯定。
2、質(zhì)疑:“Ade,我的蟋蟀們!Ade,我的覆盆子們和木蓮們!”這句話運用什么修辭手法?表達了作者什么心理?
歸納:運用了擬人,表達了“我”對百草園的依戀和私塾的反感。
3、這一段在全文結(jié)構(gòu)中起什么作用?
4、作者對先生是怎樣評價的?
討論后歸納:先生很“和藹”,是本城中極方正、質(zhì)樸、博學(xué)的人。
5、怎樣理解先生不回答“怪哉”這蟲的問題?
討論并歸納;私塾先生通常要求學(xué)生讀他們所指定的書,書外的問題是不予解答的,況且提問者又是一個剛?cè)雽W(xué)不久的學(xué)生,如此“不務(wù)正業(yè)”,這大概是先生不作回答且動怒之意的原因。這種教育思想是不可聚攏,它挫傷子學(xué)生求知的積極性。
6、“他有一條戒尺,但是不常用,也有罰跪的規(guī)則,但也不常用。”說明先生是一個什么樣的人?
歸納:打戒尺、罰跪是私塾教育管理學(xué)生的方式。有戒尺,有罰跪規(guī)則而不常用,說明他對這種落后的教育方式持保留態(tài)度,也反映他對學(xué)生的開明思想。
7、三味書屋后面也有一個園,與百草園相比,哪個好玩?
討論后明確:百草園好玩。百草園很大,這個園很小,在百草園有許多動植物,有許多好看、好聽、好吃、好玩的東西,能自由自在地玩耍。而這個園只能爬上花壇去折臘梅花,尋蟬蛻,最好的工作只不過是捉了蒼蠅喂螞蟻,又必須靜悄悄地沒有聲音,玩的伴又不能太多,時間也不能太久。
8、三味書屋里讀的是什么書?作者寫些教學(xué)內(nèi)容有什么用意?
討論并歸納:讀書、習(xí)字、對課。讀的書脫離學(xué)生實際,艱深難懂,逼著學(xué)生死記硬背,作者這樣寫表達他對束縛兒童身心發(fā)展的封建教育的不滿。
9、怎樣理解少年魯迅背著先生畫畫這個問題?
討論歸納;因為私塾只要求學(xué)生讀書,不許做別的活動。畫畫是少年魯迅的藝術(shù)愛好。背著先生畫畫,表現(xiàn)了少年魯迅發(fā)展個性的強烈愿望以及對束縛兒童身心發(fā)展的封建私塾教育的不滿。
1、中心思想:本文通過幼年在百草園和三味書屋生活的對比,表現(xiàn)了兒童熱愛大自然,喜歡自由快樂生活的心理,同時,對束縛兒童身心發(fā)展的封建教育表示不滿。
本文語言簡練生活、準確傳神,如在描寫百草園的景物時使用的大量修飾詞、準確、形象。在寫捕鳥一節(jié)時,使用了很多準確生動的動詞等。
童年是美好的,請用形象化的兒童語言說說自己快樂的童年。要求學(xué)生暢所欲言,可在小組內(nèi)交流,然后選較好的發(fā)言人面向全班交流。
2、課外閱讀《朝花夕拾》,思考童年生活對魯迅成長的影響。
數(shù)學(xué)必修3教案【篇2】
學(xué)習(xí)目標
1.回顧在平面直角坐標系中刻畫點的位置的方法.
2.能夠建立適當?shù)闹苯亲鴺讼?解決數(shù)學(xué)問題.
學(xué)習(xí)過程
一、學(xué)前準備
1、通過直角坐標系,平面上的與(),曲線與建立了聯(lián)系,實現(xiàn)了。
2、閱讀P3思考得出在直角坐標系中解決實際問題的過程是:
二、新課導(dǎo)學(xué)
◆探究新知(預(yù)習(xí)教材P1~P4,找出疑惑之處)
問題1:如何刻畫一個幾何圖形的位置?
問題2:如何創(chuàng)建坐標系?
問題3:(1).如何把平面內(nèi)的點與有序?qū)崝?shù)對(x,y)建立聯(lián)系?(2).平面直角坐標系中點和有序?qū)崝?shù)對(x,y)是怎樣的關(guān)系?
問題4:如何研究曲線與方程間的關(guān)系?結(jié)合課本例子說明曲線與方程的關(guān)系?
問題5:如何刻畫一個幾何圖形的位置?
需要設(shè)定一個參照系
(1)、數(shù)軸它使直線上任一點P都可以由惟一的實數(shù)x確定
(2)、平面直角坐標系:在平面上,當取定兩條互相垂直的直線的交點為原點,并確定了度量單位和這兩條直線的方向,就建立了平面直角坐標系。它使平面上任一點P都可以由惟一的實數(shù)對(x,y)確定
(3)、空間直角坐標系:在空間中,選擇兩兩垂直且交于一點的三條直線,當取定這三條直線的交點為原點,并確定了度量單位和這三條直線方向,就建立了空間直角坐標系。它使空間上任一點P都可以由惟一的實數(shù)對(x,y,z)確定
(4)、抽象概括:在平面直角坐標系中,如果某曲線C上的點與一個二元方程f(x,y)=0的實數(shù)解建立了如下的關(guān)系:A.曲線C上的點坐標都是方程f(x,y)=0的解;B.以方程f(x,y)=0的解為坐標的點都在曲線C上。那么,方程f(x,y)=0叫作曲線C的方程,曲線C叫作方程f(x,y)=0的曲線。
問題6:如何建系?
根據(jù)幾何特點選擇適當?shù)闹苯亲鴺讼怠?/p>
(1)如果圖形有對稱中心,可以選對稱中心為坐標原點;
(2)如果圖形有對稱軸,可以選擇對稱軸為坐標軸;
(3)使圖形上的特殊點盡可能多的在坐標軸上。
數(shù)學(xué)必修3教案【篇3】
一.教材分析
本節(jié)課是學(xué)生在已掌握了函數(shù)的一般性質(zhì)之后系統(tǒng)學(xué)習(xí)的第一個函數(shù),為今后進一步熟悉函數(shù)的性質(zhì)和應(yīng)用,進一步研究等比數(shù)列的性質(zhì)打下堅實的基礎(chǔ).因此本節(jié)課的內(nèi)容是至關(guān)重要的.它對知識起到了承上啟下的作用。
二.學(xué)情分析
根據(jù)這幾年的教學(xué)我發(fā)現(xiàn)學(xué)生在后面學(xué)習(xí)中一遇到指對數(shù)問題就發(fā)蒙,原因是什么呢?問題就出在學(xué)生剛剛學(xué)完函數(shù)的性質(zhì),應(yīng)用又是初中比較熟悉的一次二次函數(shù)。一下子出現(xiàn)了一個非常陌生的函數(shù)而且需要記很多性質(zhì)。學(xué)生感覺很吃力,也就沒有了興趣,當然就學(xué)不好了。
三.教學(xué)目標
1.知識與技能: (1)掌握指數(shù)函數(shù)的概念,并能根據(jù)定義判斷一個函數(shù)是否為指數(shù)函數(shù).(2)能根據(jù)指數(shù)函數(shù)的解析式作出函數(shù)圖象,并根據(jù)圖象給出指數(shù)函數(shù)的性質(zhì).(3)能根據(jù)單調(diào)性解決基本的比較大小的問題.
2.過程與方法:引導(dǎo)學(xué)生結(jié)合指數(shù)的有關(guān)概念來理解指數(shù)函數(shù)概念,并向?qū)W生指出指數(shù)函數(shù)的形式特點,在研究指數(shù)函數(shù)的圖象時,遵循由特殊到一般的研究規(guī)律,要求學(xué)生自己作出特殊的較為簡單的指數(shù)函數(shù)的圖象,然后推廣到一般情況,類比地得到指數(shù)函數(shù)的圖象,并通過觀察圖象,總結(jié)出指數(shù)函數(shù)當?shù)追謩e是 , 的性質(zhì)。
3.情感、態(tài)度、價值觀:使學(xué)生領(lǐng)會數(shù)學(xué)的抽象性和嚴謹性,培養(yǎng)他們實事求是的科學(xué)態(tài)度,積極參與和勇于探索的精神.
四.教學(xué)重點與難點
教學(xué)重點:指數(shù)函數(shù)的概念、圖象和性質(zhì)。
教學(xué)難點:如何由圖象、解析式歸納指數(shù)函數(shù)的性質(zhì)。
五:教法:探究式教學(xué)法 通過學(xué)生自主探索、合作學(xué)習(xí),讓學(xué)生成為學(xué)習(xí)的主人,加深對所得結(jié)論的理解
六.教學(xué)過程:
(一)創(chuàng)設(shè)情景、提出問題
師:某種細胞分裂時,由1個分裂成2個,2個分裂成4個,……一個這樣的細胞分裂x次后,得到細胞分裂的個數(shù)y與x之間,構(gòu)成一個函數(shù)關(guān)系,能寫出x與y之間的函數(shù)關(guān)系式嗎?
生:y與x之間的關(guān)系式,可以表示為 ( )
師:有1根長 1米的繩子,第一次剪去繩長一半,第二次再剪去剩余繩子的一半,……剪了x次后繩子剩余的長度為y米,試寫出y與x之間的函數(shù)關(guān)系式。
生: ( )
(二)師生互動、探究新知
1.指數(shù)函數(shù)的定義
⑴讓學(xué)生思考討論以下問題(問題逐個給出):
① ( )和 ( )這兩個解析式有什么共同特征?
②它們能否構(gòu)成函數(shù)?
③是我們學(xué)過的哪個函數(shù)?如果不是,你能否根據(jù)該函數(shù)的特征給它起個恰當?shù)拿?
引導(dǎo)學(xué)生觀察,兩個函數(shù)中,底數(shù)是常數(shù),指數(shù)是自變量。
如果可以用字母 代替其中的底數(shù),那么上述兩式就可以表示成 的形式。自變量在指數(shù)位置,所以我們把它稱作指數(shù)函數(shù)。
⑵讓學(xué)生討論并給出指數(shù)函數(shù)的定義。
對于底數(shù)的分類,可將問題分解為:
①若 會有什么問題?(如 , 則在實數(shù)范圍內(nèi)相應(yīng)的函數(shù)值不存在)
②若 會有什么問題?(對于 , 都無意義)
③若 又會怎么樣?( 無論 取何值,它總是1,對它沒有研究的必要.)
為了避免上述各種情況的發(fā)生,所以規(guī)定 且 .
接下來教師可以問學(xué)生是否明確了指數(shù)函數(shù)的定義,能否寫出一兩個指數(shù)函數(shù)?教師也在黑板上寫出一些解析式讓學(xué)生判斷,如 , , 。
這樣設(shè)計的目的是學(xué)生可能存在對指數(shù)函數(shù)形式上的一種誤解,即只看指數(shù)位置是否為自變量。通過以上的三個小例子,學(xué)生就完成對指數(shù)函數(shù)徹底的認識,解決的問題。
2.指數(shù)函數(shù)性質(zhì)
⑴提出兩個問題
①目前研究函數(shù)一般可以包括哪些方面;
②研究函數(shù)(比如今天的指數(shù)函數(shù))可以怎么研究?用什么方法、從什么角度研究?
可以從圖象和解析式列表這三個不同的角度進行研究;可以從具體的函數(shù)入手(即底數(shù)取一些數(shù)值);當然也可以用列表法研究函數(shù),
⑵分組活動,合作學(xué)習(xí)
讓學(xué)生分為三大組,一組從解析式的角度入手(不畫圖)研究指數(shù)函數(shù),一組借助電腦通過幾何畫板的操作從圖象的角度入手研究指數(shù)函數(shù);一組借助列表利用計算器和坐標網(wǎng)格研究指數(shù)函數(shù);
⑶交流、總結(jié)
教師在巡視過程中應(yīng)關(guān)注各組的研究情況,此時可選一些有代表性的小組上臺展示研究成果,并對比從兩個角度入手研究的結(jié)果。
教師可根據(jù)上課的實際情況對學(xué)生發(fā)現(xiàn)、得出的結(jié)論進行適當?shù)狞c評或要求學(xué)生分析。這里除了研究定義域、值域、單調(diào)性、奇偶性外,再引導(dǎo)學(xué)生注意是否還有其它性質(zhì)?
(4)交換角色
請同學(xué)們交換任務(wù),檢查一下你能否發(fā)現(xiàn)別人沒有發(fā)現(xiàn)的性質(zhì)。
師生共同總結(jié)指數(shù)函數(shù)的圖象和性質(zhì),教師可以邊總結(jié)邊板書。
通過這一環(huán)節(jié),可以使學(xué)生對指數(shù)函數(shù)的性質(zhì)得到自然、完善的整合,這個過程中,學(xué)生時主動的投入到學(xué)習(xí)中去,體現(xiàn)了教改“以學(xué)生為主,教師為輔”的思想。加深的學(xué)生對所得結(jié)論的理解,也培養(yǎng)了學(xué)生數(shù)形結(jié)合的思想。
(三)鞏固訓(xùn)練、提升能力
例1:已知指數(shù)函數(shù) 的圖象經(jīng)過點 ,求 的值。
解:因為 的圖象經(jīng)過點 ,所以
即 ,解得 ,于是 。
所以 。
例2.利用指數(shù)函數(shù)的性質(zhì),比較下列各題中兩個值的大?。?/p>
(1) 1.7a與1.7a+1 (2)0.8-0.1與0.8-0.2
(3) 已知(4/7)a>(4/7)b,比較a,b的大小.
練習(xí):⑴在同一平面直角坐標系中畫出 和 的大致圖象,并說出這兩個函數(shù)的性質(zhì);
⑵求下列函數(shù)的定義域:① ,② 。
七:小結(jié)
通過本節(jié)課的學(xué)習(xí),你對指數(shù)函數(shù)有什么認識?你有什么收獲?
八:作業(yè):課本93頁習(xí)題3-1A組第4題。
九:板書設(shè)計:
數(shù)學(xué)必修3教案【篇4】
尊敬的各位評委、老師們:
大家好!
今天我說課的內(nèi)容是《函數(shù)的概念》,選自人教版高中數(shù)學(xué)必修一第一章第二節(jié)。下面介紹我對本節(jié)課的設(shè)計和構(gòu)思,請您多提寶貴意見。
我的說課有以下六個部分:
一、背景分析
1、學(xué)習(xí)任務(wù)分析
本節(jié)課是必修1第1章第2節(jié)的內(nèi)容,是函數(shù)這一章的起始課,它上承集合,下引性質(zhì),與方程、不等式、數(shù)列、三角函數(shù)、解析幾何、導(dǎo)數(shù)等內(nèi)容聯(lián)系密切,是學(xué)好后繼知識的基礎(chǔ)和工具,所以本節(jié)課在數(shù)學(xué)教學(xué)中的地位和作用是至關(guān)重要的。
2、學(xué)情分析
學(xué)生在初中已經(jīng)學(xué)習(xí)了函數(shù)的概念,初步具備了學(xué)習(xí)函數(shù)概念的基本能力,但函數(shù)的概念從初中的變量學(xué)說到高中階段的對應(yīng)說很抽象,不易理解。
另外,通過對集合的學(xué)習(xí),學(xué)生基本適應(yīng)了有效教學(xué)的課堂模式,初步具備了小組合作、自主探究的學(xué)習(xí)能力。
基于以上的分析,我認為本節(jié)課的教學(xué)重點為:函數(shù)的概念以及構(gòu)成函數(shù)的三要素;
教學(xué)難點為:函數(shù)概念的形成及理解。
二、教學(xué)目標設(shè)計
根據(jù)《課程標準》對本節(jié)課的學(xué)習(xí)要求,結(jié)合本班學(xué)生的情況,故而確立本節(jié)課的教學(xué)目標。
1、知識與技能(方面)
通過豐富的實例,讓學(xué)生
①了解函數(shù)是非空數(shù)集到非空數(shù)集的一個對應(yīng);
②了解構(gòu)成函數(shù)的三要素;
③理解函數(shù)概念的本質(zhì);
④理解f(x)與f(a)(a為常數(shù))的區(qū)別與聯(lián)系;
⑤會求一些簡單函數(shù)的定義域。
2、過程與方法(方面)
在教學(xué)過程中,結(jié)合生活中的實例,通過師生互動、生生互動培養(yǎng)學(xué)生分析推理、歸納總結(jié)和表達問題的能力,在函數(shù)概念的構(gòu)建過程中體會類比、歸納、猜想等數(shù)學(xué)思想方法。
3、情感、態(tài)度與價值觀(方面)
讓學(xué)生充分體驗函數(shù)概念的形成過程,參與函數(shù)定義域的求解過程以及函數(shù)的求值過程,使學(xué)生感受到數(shù)學(xué)的抽象美與簡潔美。
三、課堂結(jié)構(gòu)設(shè)計
為充分調(diào)動學(xué)生的學(xué)習(xí)積極性,變被動學(xué)習(xí)為主動愉快的探究,我使用有效教學(xué)的課堂模式,課前學(xué)生通過結(jié)構(gòu)化預(yù)習(xí),完成問題生成單,課中采用師生互動、小組討論、學(xué)生展寫、展講例題,教師點評的方式完成問題解決單,課后完成問題拓展單,課堂結(jié)構(gòu)包含:
復(fù)習(xí)舊知,引出課題(約2分鐘)創(chuàng)設(shè)情境,形成概念(約5分鐘)剖析概念(約12分鐘)例題分析,鞏固知識——小組討論,展寫例題(約8分鐘)小組展講,教師點評(約10分鐘)總結(jié)反思,知識升華(約2分鐘)(最后)布置作業(yè),拓展練習(xí)。
四、教學(xué)媒體設(shè)計
教學(xué)中利用投影與黑板相結(jié)合的形式,利用投影直觀、生動地展示實例,并能增加課堂容量;利用黑板列舉本節(jié)重要內(nèi)容,使學(xué)生對所學(xué)內(nèi)容有一整體認識,并讓學(xué)生利用黑板展寫、展講例題,有問題及時發(fā)現(xiàn)及時解決。
五、教學(xué)過程設(shè)計
本節(jié)課圍繞問題的解決與重難點的突破,設(shè)計了下面的教學(xué)過程。
整個教學(xué)過程按四個環(huán)節(jié)展開:
首先,在第一環(huán)節(jié)——復(fù)習(xí)舊知,引出課題,先由兩個問題導(dǎo)入新課
①初中時函數(shù)是如何定義的?
②y=1是函數(shù)嗎?
[設(shè)計意圖]:學(xué)生通過對這兩個問題的思考與討論,發(fā)現(xiàn)利用初中的定義很難回答第②個問題,從而激起他們的好奇心:高中階段的函數(shù)概念會是什么?激發(fā)他們學(xué)習(xí)本節(jié)課的強烈愿望和情感,使他們處于積極主動的探究狀態(tài),大大提高了課堂效率。
從學(xué)生的心理狀態(tài)與認知規(guī)律出發(fā),教學(xué)過程自然過渡到第二個環(huán)節(jié)——函數(shù)概念的形成。
由于高中階段的函數(shù)概念本身比較抽象,看不見也摸不著,不易直接給出,因此在本環(huán)節(jié)中,我主要通過學(xué)生能看見能感知的生活中的3個實例出發(fā),由具體到抽象,由特殊到一般,一步步歸納形成函數(shù)的概念,此過程我稱之為“創(chuàng)設(shè)情境,形成概念”。
對于這3個實例,我分別預(yù)設(shè)一個問題讓學(xué)生思考與體會。
問題1:從炮彈發(fā)射到落地的0-26s時間內(nèi),集合A是否存在某一時間t,在B中沒有高度h與之對應(yīng)?是否有兩個或多個高度與之相對應(yīng)?
問題2:從1979—2001年,集合A是否存在某一時間t,在B中沒有面積S與之對應(yīng)?是否有兩個或多個面積與它相對應(yīng)嗎?
問題3:從1991—2001年間,集合A中是否存在某一時間t,在B中沒恩格爾系數(shù)與之對應(yīng)?是否會有兩個或多個恩格爾系數(shù)與對應(yīng)?
[設(shè)計意圖]:通過循序漸進地提問,變教為誘,以誘達思,引導(dǎo)學(xué)生根據(jù)問題總結(jié)3個實例的各自特點,并綜合各自特點,歸納它們的公共特征,著重向?qū)W生滲透集合與對應(yīng)的觀點,這樣,再讓學(xué)生經(jīng)歷由具體到抽象的概括過程,用集合、對應(yīng)的語言來描述函數(shù)時就顯得水到渠成,難點得以突破。
函數(shù)的概念既已形成,本節(jié)課自然進入了第3個環(huán)節(jié)——剖析概念,理解概念。
函數(shù)概念的理解是本節(jié)課的重點也是難點,概念本身比較抽象,學(xué)生在理解上可能把握不準確,所以我分兩個步驟來進行剖析,由具體到抽象,螺旋上升。
首先,在學(xué)生熟讀熟背函數(shù)概念的基礎(chǔ)上,我設(shè)計一個學(xué)生活動,讓學(xué)生充分參與,在參與中體會學(xué)習(xí)的快樂。
我利用多媒體制作一個表格,請學(xué)號為01—05的同學(xué)填寫自己上次的數(shù)學(xué)考試成績,并提出3個問題:
問題1:若學(xué)號構(gòu)成集合A,成績構(gòu)成集合B,對應(yīng)關(guān)系f:上次數(shù)學(xué)考試成績,那么由A到B能否構(gòu)成函數(shù)?
問題2:若將問題1中“學(xué)號”改為“01—05的學(xué)生”,其余不變,那么由A到B能否構(gòu)成函數(shù)?
問題3:若學(xué)號04的學(xué)生上次考試因病缺考,無成績,那么對問題1學(xué)號與成績能否構(gòu)成函數(shù)?
[設(shè)計意圖]:通過層層提問,層層回答,讓學(xué)生對概念中關(guān)鍵詞的把握更為準確,對函數(shù)概念的理解更為具體,為總結(jié)歸納函數(shù)概念的本質(zhì)特征打下基礎(chǔ)。
其次,我通過幻燈片的形式展示幾組數(shù)集的對應(yīng)關(guān)系,讓學(xué)生分析討論哪些對應(yīng)關(guān)系能構(gòu)成函數(shù),在學(xué)生深刻認識到函數(shù)是非空數(shù)集到非空數(shù)集的一對一或多對一的對應(yīng)關(guān)系,并能準確把握概念中的關(guān)鍵詞后,再著重強強在這兩種對應(yīng)關(guān)系中,何為定義域,何為值域,值域和集合B有什么關(guān)系,強調(diào)函數(shù)的三要素,得出兩函數(shù)相等的條件。
至此,本節(jié)課的第三個環(huán)節(jié)已經(jīng)完成,對于區(qū)間的概念,學(xué)生通過預(yù)習(xí)能夠理解課堂上不再多講,僅在多媒體上進行展示,但會在后面例題的使用中指出注意事項。
在本節(jié)課的第四個環(huán)節(jié)——例題分析中,我重點以例題的形式考查函數(shù)的有關(guān)概念問題,簡單函數(shù)的定義域問題以及函數(shù)的求值問題,至于分段函數(shù)、復(fù)合函數(shù)的求值及定義域問題,將在下節(jié)課予以解決,本環(huán)節(jié)主要通過學(xué)生討論、展寫、展講、學(xué)生互評、教師點評的方式完成知識的鞏固,讓學(xué)生成為課堂的主人。
最后,通過
——總結(jié)點評,完善知識體系
——課堂練習(xí),鞏固知識掌握
——布置作業(yè),沉淀教學(xué)成果
六、教學(xué)評價設(shè)計
教學(xué)是動態(tài)生成的過程,課堂上必然會有難以預(yù)料的事情發(fā)生,具體的教學(xué)過程還應(yīng)根據(jù)實際情況加以調(diào)整。
最后,引用赫爾巴特的一句名言結(jié)束我的說課,那就是“發(fā)揮我們教師的創(chuàng)造性,使教育過程成為一種藝術(shù)的事業(yè),使我們不聰明的孩子變的聰明,使我們聰明的孩子變的更聰明”。
謝謝大家!
數(shù)學(xué)必修3教案【篇5】
教學(xué)目標:
(1) 了解集合、元素的概念,體會集合中元素的三個特征;
(2) 理解元素與集合的"屬于"和"不屬于"關(guān)系;
(3) 掌握常用數(shù)集及其記法;
教學(xué)重點:掌握集合的基本概念;
教學(xué)難點:元素與集合的關(guān)系;
教學(xué)過程:
一、引入課題
軍訓(xùn)前學(xué)校通知:8月15日8點,高一年級在體育館集合進行軍訓(xùn)動員;試問這個通知的對象是全體的高一學(xué)生還是個別學(xué)生?
在這里,集合是我們常用的一個詞語,我們感興趣的是問題中某些特定(是高一而不是高二、高三)對象的總體,而不是個別的對象,為此,我們將學(xué)習(xí)一個新的概念--集合(宣布課題),即是一些研究對象的總體。
閱讀課本P2-P3內(nèi)容
二、新課教學(xué)
(一)集合的有關(guān)概念
1. 集合理論創(chuàng)始人康托爾稱集合為一些確定的、不同的東西的全體,人們
能意識到這些東西,并且能判斷一個給定的東西是否屬于這個總體。
2. 一般地,我們把研究對象統(tǒng)稱為元素(element),一些元素組成的總體叫集合(set),也簡稱集。
3. 思考1:判斷以下元素的全體是否組成集合,并說明理由:
(1) 大于3小于11的偶數(shù);
(2) 我國的小河流;
(3) 非負奇數(shù);
(4) 方程的解;
(5) 某校2021級新生;(6) 血壓很高的人;
(7) 的數(shù)學(xué)家;
(8) 平面直角坐標系內(nèi)所有第三象限的點
(9) 全班成績好的學(xué)生。
對學(xué)生的解答予以討論、點評,進而講解下面的問題。
4. 關(guān)于集合的元素的特征
(1)確定性:設(shè)A是一個給定的集合,_是某一個具體對象,則或者是A的元素,或者不是A的元素,兩種情況必有一種且只有一種成立。
(2)互異性:一個給定集合中的元素,指屬于這個集合的互不相同的個體(對象),因此,同一集合中不應(yīng)重復(fù)出現(xiàn)同一元素。
(3)無序性:給定一個集合與集合里面元素的順序無關(guān)。
(4)集合相等:構(gòu)成兩個集合的元素完全一樣。
5. 元素與集合的關(guān)系;
(1)如果a是集合A的元素,就說a屬于(belong to)A,記作:a∈A
(2)如果a不是集合A的元素,就說a不屬于(not belong to)A,記作:aA
例如,我們A表示"1~20以內(nèi)的所有質(zhì)數(shù)"組成的集合,則有3∈A
4A,等等。
6.集合與元素的字母表示: 集合通常用大寫的拉丁字母A,B,C...表示,集合的元素用小寫的拉丁字母a,b,c,...表示。
7.常用的數(shù)集及記法:
非負整數(shù)集(或自然數(shù)集),記作N;
正整數(shù)集,記作N_或N+;
整數(shù)集,記作Z;
有理數(shù)集,記作Q;
實數(shù)集,記作R;
(二)例題講解:
例1.用"∈"或""符號填空:
(1)8 N; (2)0 N;
(3)-3 Z; (4) Q;
(5)設(shè)A為所有亞洲國家組成的集合,則中國 A,美國 A,印度 A,英國 A。
例2.已知集合P的元素為, 若3∈P且-1P,求實數(shù)m的值。
(三)課堂練習(xí):
課本P5練習(xí)1;
歸納小結(jié):
本節(jié)課從實例入手,非常自然貼切地引出集合與集合的概念,并且結(jié)合實例對集合的概念作了說明,然后介紹了常用集合及其記法。
作業(yè)布置:
1.習(xí)題1.1,第1- 2題;
2.預(yù)習(xí)集合的表示方法。
2024高中教案數(shù)學(xué)必修一
光陰如水,我們的教學(xué)工作又將翻開新的一頁,現(xiàn)在的你想必不是在做教學(xué)計劃,就是在準備做教學(xué)計劃吧。但是教學(xué)計劃要寫什么內(nèi)容才能讓人眼前一亮呢?以下是小編為大家整理的2024年高一數(shù)學(xué)教學(xué)計劃(精選8篇),歡迎大家借鑒與參考,希望對大家有所幫助。
2024高中教案數(shù)學(xué)必修一 篇1
一、教材分析
1、教材的地位與作用
模擬方法是北師大版必修3第三章概率第3節(jié),也是必修3最后一節(jié),本節(jié)內(nèi)容是在學(xué)習(xí)了古典概型的基礎(chǔ)上,用模擬方法估計一些用古典概型解決不了的實際問題的概率,使學(xué)生初步體會幾何概型的意義;而模擬試驗是培養(yǎng)學(xué)生動手能力、小組合作能力、和試驗分析能力的好素材。
2、教學(xué)重點與難點
教學(xué)重點:借助模擬方法來估計某些事件發(fā)生的概率;
幾何概型的概念及應(yīng)用
體會隨機模擬中的統(tǒng)計思想:用樣本估計總體。
教學(xué)難點:設(shè)計和操作一些模擬試驗,對從試驗中得出的數(shù)據(jù)進行統(tǒng)計、分析;
應(yīng)用隨機數(shù)解決各種實際問題。
二、教學(xué)目標:
1、知識目標:使學(xué)生了解模擬方法估計概率的實際應(yīng)用,初步體會幾何概型的意義;并能夠運用模擬方法估計概率。
2、能力目標:培養(yǎng)學(xué)生實踐能力、協(xié)調(diào)能力、創(chuàng)新意識和處理數(shù)據(jù)能力以及應(yīng)用數(shù)學(xué)意識。
3、情感目標:鼓勵學(xué)生動手試驗,探索、發(fā)現(xiàn)規(guī)律并解決實際問題,激發(fā)學(xué)生學(xué)習(xí)的興趣。
三、過程分析
1、創(chuàng)設(shè)良好的學(xué)習(xí)情境,激發(fā)學(xué)生學(xué)習(xí)的欲望
從學(xué)生的生活經(jīng)驗和已有知識背景出發(fā),提出用學(xué)過知識不能解決的問題:房間的紗窗破了一個小洞,隨機向紗窗投一粒小石子,估計小石子從小洞穿過的概率。能用古典概型解決嗎?為什么?從而引起認知矛盾,激發(fā)學(xué)生學(xué)習(xí)、探究的興趣。
2、以實驗和問題引導(dǎo)學(xué)習(xí)活動,使學(xué)生經(jīng)歷“數(shù)學(xué)化”、“再創(chuàng)造”的過程
通過兩個實驗:
(1)取一個矩形,在面積為四分之一的部分畫上陰影,隨機地向矩形中撒一把豆子(我們數(shù)100粒),統(tǒng)計落在陰影內(nèi)的豆子數(shù)與落在矩形內(nèi)的總豆子數(shù),觀察它們有怎樣的比例關(guān)系?
(2)反過來,取一個已知長和寬的矩形,隨機地向矩形中撒一把豆子,統(tǒng)計落在陰影內(nèi)的豆子數(shù)與落在矩形內(nèi)的總豆子數(shù),你能根據(jù)豆子數(shù)得到什么結(jié)論?
讓學(xué)生分組合作,利用課前準備的材料進行試驗、討論、分析,使學(xué)生主動進入探究狀態(tài),充分調(diào)動學(xué)生學(xué)習(xí)積極性,使他們感受到探討數(shù)學(xué)問題的樂趣,培養(yǎng)學(xué)生與他人合作交流的能力以及團隊精神。根據(jù)各小組試驗結(jié)果,提出問題,引導(dǎo)學(xué)生進行猜想,得出結(jié)論:
使學(xué)生了解結(jié)論產(chǎn)生的背景,輕易地理解了這個結(jié)論,并培養(yǎng)學(xué)生數(shù)據(jù)分析能力、抽象概括能力。讓他們感覺到數(shù)學(xué)定理、結(jié)論其實離他們很近,增強學(xué)生學(xué)習(xí)的動力和信心。
3、類比遷移,注重數(shù)學(xué)與實際聯(lián)系,發(fā)展學(xué)生應(yīng)用意識和能力
(1)求不規(guī)則圖形面積
如圖,曲線y=-x2+1與x軸,y軸圍成區(qū)域A,
如何求陰影部分面積?
通過把不規(guī)則圖形放在規(guī)則的、
易求面積的圖形中,利用模擬方法
求不規(guī)則圖形面積,在解決問題時
學(xué)生提出了借助不同圖形,教師要
引導(dǎo)學(xué)生用最佳圖形。讓學(xué)生把不熟
悉的問題轉(zhuǎn)化為熟悉的問題情
境,引導(dǎo)學(xué)生利用已有知識解決新
的問題,培養(yǎng)學(xué)識知識應(yīng)用、類比遷移的能力。
本例通過介紹用計算機產(chǎn)生隨機數(shù)來模擬,使學(xué)生了解現(xiàn)代信息技術(shù)的應(yīng)用,了解另一種模擬方法。
(2)估計圓周率π的值
讓學(xué)生設(shè)計模擬試驗,估計圓周率π的值,培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)的意識,使學(xué)習(xí)過程成為學(xué)生的再創(chuàng)造過程。達到本課的目標,使學(xué)生了解模擬方法估計概率的實際應(yīng)用,能夠運用模擬方法估計概率。通過設(shè)計和操作模擬試驗,對得出數(shù)據(jù)進行統(tǒng)計、分析,解決本課難點。讓學(xué)生體驗數(shù)學(xué)的發(fā)現(xiàn)和創(chuàng)造過程,發(fā)展他們的創(chuàng)新意識。同時通過對介紹古代數(shù)學(xué)家祖沖之,對學(xué)生進行愛國主義教育,培養(yǎng)學(xué)生愛國情操。
(3)幾何概型概率計算方法
①通過問題:如果正方形面積不變,但形狀改變,所得比例發(fā)生變化嗎?
引出幾何概型的概念、特點和計算公式
把試驗的結(jié)論上升到理論,使學(xué)生的認識有一個從試驗到理論的升華,使學(xué)生掌握基本概念,并運用理論解決問題,使學(xué)生的認識有一個質(zhì)的飛躍
②例:如圖,在墻上掛著一塊邊長為16cm的正方形木板,上面畫了小、中、大三個同心圓,半徑分別為2cm、4cm、6cm,某人站在3m處向此板投鏢,設(shè)投鏢擊中線上或沒有
投中木板時都不算,可重投。
問:
(1)投中大圓內(nèi)的概率是多少?
(2)投中小圓和中圓形成的圓環(huán)的概率是多少?
配套習(xí)題是知識的直接運用,有助于學(xué)生鞏固新學(xué)的知識,使學(xué)生掌握基本知識和技能。
③通過介紹本章開篇中“蒲豐投針”問題,利用計算機動態(tài)顯示投針試驗,使學(xué)生對此試驗有初步了解,開闊學(xué)生視野,體現(xiàn)數(shù)學(xué)的文化價值,留給學(xué)生課后探究的空間。
4、通過實際問題:小明家的晚報在下午5:30~6:30之間的任何一個時間隨機地被送到,小明一家人在下午6:00~7:00之間的任何一個時間隨機地開始晚餐。
(1)你認為晚報在晚餐開始之前被送到和在晚餐開始之后被送到哪一種可能性更大?
(2)晚報在晚餐開始之前被送到的概率是多少?
引導(dǎo)學(xué)生利用轉(zhuǎn)盤設(shè)計試驗,并分組進行試驗,鼓勵學(xué)生自主探索與合作交流,培養(yǎng)學(xué)生創(chuàng)新意識,并使學(xué)生了解模擬形式的多樣化,并通過模擬進一步熟悉試驗的操作,提高動手能力和小組協(xié)調(diào)能力。通過問題拓展,介紹用理論解決的方法,激起學(xué)生再探究的欲望,留給學(xué)生課后思考的空間。
4、課堂小結(jié)
由學(xué)生總結(jié)本節(jié)課所學(xué)習(xí)的主要內(nèi)容,讓學(xué)生對所學(xué)內(nèi)容有全面、系統(tǒng)的認識。
四、教法、學(xué)法分析
本節(jié)課是在采用信息技術(shù)和數(shù)學(xué)知識整合的基礎(chǔ)上從生活實際中提煉數(shù)學(xué)素材,使學(xué)生在熟悉的背景下、在認知沖突中展開學(xué)習(xí),通過試驗活動的開展,使學(xué)生在試驗、探究活動中獲取原始數(shù)據(jù),進而通過數(shù)與形的類比,在老師的引導(dǎo)、啟發(fā)下感悟出模擬的數(shù)學(xué)結(jié)論,通過結(jié)論的運用提升為數(shù)學(xué)模型并加以應(yīng)用,它實現(xiàn)了學(xué)生在學(xué)習(xí)過程中對知識的探究、發(fā)現(xiàn)的創(chuàng)作經(jīng)歷,調(diào)動了學(xué)生學(xué)習(xí)的積極性和主動性,同學(xué)們在親身經(jīng)歷知識結(jié)論的探究中獲得了對數(shù)學(xué)價值的新認識。
五、評價分析
本課是使學(xué)生通過試驗掌握用模擬方法估計概率,主要是用分組合作試驗、探究方法研究數(shù)學(xué)知識,因此評價時更注重探究和解決問題的全過程,鼓勵學(xué)生的探索精神,引導(dǎo)學(xué)生對問題的正確分析與思考,關(guān)注學(xué)生提出問題、參與解決問題的全過程,關(guān)注學(xué)生的創(chuàng)新精神和實踐能力。
2024高中教案數(shù)學(xué)必修一 篇2
一、教材分析
函數(shù)的單調(diào)性是函數(shù)的重要性質(zhì)。從知識的網(wǎng)絡(luò)結(jié)構(gòu)上看,函數(shù)的單調(diào)性既是函數(shù)概念的延續(xù)和拓展,又是后續(xù)研究指數(shù)函數(shù)、對數(shù)函數(shù)、三角函數(shù)的單調(diào)性等內(nèi)容的基礎(chǔ),在研究各種具體函數(shù)的性質(zhì)和應(yīng)用、解決各種問題中都有著廣泛的應(yīng)用。函數(shù)單調(diào)性概念的建立過程中蘊涵諸多數(shù)學(xué)思想方法,對于進一步探索、研究函數(shù)的其他性質(zhì)有很強的啟發(fā)與示范作用。
根據(jù)函數(shù)單調(diào)性在整個教材內(nèi)容中的地位與作用,本節(jié)課教學(xué)應(yīng)實現(xiàn)如下教學(xué)目標:
知識與技能使學(xué)生理解函數(shù)單調(diào)性的概念,初步掌握判別函數(shù)單調(diào)性的方法;
過程與方法引導(dǎo)學(xué)生通過觀察、歸納、抽象、概括,自主建構(gòu)單調(diào)增函數(shù)、單調(diào)減函數(shù)等概念;能運用函數(shù)單調(diào)性概念解決簡單的問題;使學(xué)生領(lǐng)會數(shù)形結(jié)合的數(shù)學(xué)思想方法,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題、解決問題的能力。
情感態(tài)度與價值觀在函數(shù)單調(diào)性的學(xué)習(xí)過程中,使學(xué)生體驗數(shù)學(xué)的科學(xué)價值和應(yīng)用價值,培養(yǎng)學(xué)生善于觀察、勇于探索的良好習(xí)慣和嚴謹?shù)目茖W(xué)態(tài)度。
根據(jù)上述教學(xué)目標,本節(jié)課的教學(xué)重點是函數(shù)單調(diào)性的概念形成和初步運用。雖然高一學(xué)生已經(jīng)有一定的抽象思維能力,但函數(shù)單調(diào)性概念對他們來說還是比較抽象的。因此,本節(jié)課的學(xué)習(xí)難點是函數(shù)單調(diào)性的概念形成。
二、教法學(xué)法
為了實現(xiàn)本節(jié)課的教學(xué)目標,在教法上我采取了
1、通過學(xué)生熟悉的實際生活問題引入課題,為概念學(xué)習(xí)創(chuàng)設(shè)情境,拉近數(shù)學(xué)與現(xiàn)實的距離,激發(fā)學(xué)生求知欲,調(diào)動學(xué)生主體參與的積極性。
2、在形成概念的過程中,緊扣概念中的關(guān)鍵語句,通過學(xué)生的主體參與,正確地形成概念。
3、在鼓勵學(xué)生主體參與的同時,不可忽視教師的主導(dǎo)作用,要教會學(xué)生清晰的思維、嚴謹?shù)耐评恚㈨樌赝瓿蓵姹磉_。
在學(xué)法上我重視了:
1、讓學(xué)生利用圖形直觀啟迪思維,并通過正、反例的構(gòu)造,來完成從感性認識到理性思維的質(zhì)的飛躍。
2、讓學(xué)生從問題中質(zhì)疑、嘗試、歸納、總結(jié)、運用,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、研究問題和分析解決問題的能力。
三、教學(xué)過程
函數(shù)單調(diào)性的概念產(chǎn)生和形成是本節(jié)課的難點,為了突破這一難點,在教學(xué)設(shè)計上采用了下列四個環(huán)節(jié)。
(一)創(chuàng)設(shè)情境,提出問題
(問題情境)(播放中央電視臺天氣預(yù)報的音樂)。如圖為某地區(qū)2006年元旦這一天24小時內(nèi)的氣溫變化圖,觀察這張氣溫變化圖:
[教師活動]引導(dǎo)學(xué)生觀察圖象,提出問題:
問題1:說出氣溫在哪些時段內(nèi)是逐步升高的或下降的?
問題2:怎樣用數(shù)學(xué)語言刻畫上述時段內(nèi)“隨著時間的增大氣溫逐漸升高”這一特征?
[設(shè)計意圖]問題是數(shù)學(xué)的心臟,問題是學(xué)生思維的開始,問題是學(xué)生興趣的開始。這里,通過兩個問題,引發(fā)學(xué)生的進一步學(xué)習(xí)的好奇心。
(二)探究發(fā)現(xiàn)建構(gòu)概念
[學(xué)生活動]對于問題1,學(xué)生容易給出答案。問題2對學(xué)生來說較為抽象,不易回答。
[教師活動]為了引導(dǎo)學(xué)生解決問題2,先讓學(xué)生觀察圖象,通過具體情形,例如,“t1=8時,f(t1)=1,t2=10時,f(t2)=4”這一情形進行描述。引導(dǎo)學(xué)生回答:對于自變量8
在學(xué)生對于單調(diào)增函數(shù)的特征有一定直觀認識時,進一步提出:
問題3:對于任意的t1、t2∈[4,16]時,當t1
[學(xué)生活動]通過觀察圖象、進行實驗(計算機)正反對比,發(fā)現(xiàn)數(shù)量關(guān)系,由具體到抽象,由模糊到清晰逐步歸納、概括、抽象出單調(diào)增函數(shù)概念的本質(zhì)屬性,并嘗試用符號語言進行初步的表述。
[教師活動]為了獲得單調(diào)增函數(shù)概念,對于不同學(xué)生的表述進行分析、歸類,引導(dǎo)學(xué)生得出關(guān)鍵詞“區(qū)間內(nèi)”、“任意”、“當時,都有”。告訴他們“把滿足這些條件的函數(shù)稱之為單調(diào)增函數(shù)”,之后由他們集體給出單調(diào)增函數(shù)概念的數(shù)學(xué)表述。提出:
問題4:類比單調(diào)增函數(shù)概念,你能給出單調(diào)減函數(shù)的概念嗎?
最后完成單調(diào)性和單調(diào)區(qū)間概念的整體表述。
[設(shè)計意圖]數(shù)學(xué)概念的形成來自解決實際問題和數(shù)學(xué)自身發(fā)展的需要。但概念的高度抽象,造成了難懂、難教和難學(xué),這就需要讓學(xué)生置身于符合自身實際的學(xué)習(xí)活動中去,從自己的經(jīng)驗和已有的知識基礎(chǔ)出發(fā),經(jīng)歷“數(shù)學(xué)化”、“再創(chuàng)造”的活動過程。剛升入高一的學(xué)生已經(jīng)具備了一定的幾何形象思維能力,但抽象思維能力不強。從日常的描述性語言概念升華到用數(shù)學(xué)符號語言精確刻畫概念是本節(jié)課的難點。
(三)自我嘗試運用概念
1.為了理解函數(shù)單調(diào)性的概念,及時地進行運用是十分必要的。
[教師活動]問題5:
(1)你能找出氣溫圖中的單調(diào)區(qū)間嗎?
(2)你能說出你學(xué)過的函數(shù)的單調(diào)區(qū)間嗎?請舉例說明。
[學(xué)生活動]對于(1),學(xué)生容易看出:氣溫圖中分別有兩個單調(diào)減區(qū)間和一個單調(diào)增區(qū)間。對于(2),學(xué)生容易舉出具體函數(shù)如:f(x)=—2x+2,f(x)=x2+2x—3,f(x)=1/x,并畫出函數(shù)的草圖,根據(jù)函數(shù)的圖象說出函數(shù)的單調(diào)區(qū)間。
[教師活動]利用實物投影儀,投影出學(xué)生畫出的草圖和標出的單調(diào)區(qū)間,并指出學(xué)生回答問題時可能出現(xiàn)的錯誤,如:在敘述函數(shù)的.單調(diào)區(qū)間時寫成并集。
[設(shè)計意圖]在學(xué)生已有認知結(jié)構(gòu)的基礎(chǔ)上提出新問題,使學(xué)生明了,過去所研究的函數(shù)的相關(guān)特征,就是現(xiàn)在所學(xué)的函數(shù)的單調(diào)性,從而加深對函數(shù)單調(diào)性概念的理解。
2.對于給定圖象的函數(shù),借助于圖象,我們可以直觀地判定函數(shù)的單調(diào)性,也能找到單調(diào)區(qū)間。而對于一般的函數(shù),我們怎樣去判定函數(shù)的單調(diào)性呢?
[教師活動]問題6:證明在區(qū)間(0,+∞)上是單調(diào)減函數(shù)。
[學(xué)生活動]學(xué)生相互討論,嘗試自主進行函數(shù)單調(diào)性的證明,可能會出現(xiàn)不知如何比較f(x1)與f(x2)的大小、不會正確表述、變形不到位或根本不會變形等困難。
[教師活動]教師深入學(xué)生中,與學(xué)生交流,了解學(xué)生思考問題的進展過程,投影學(xué)生的證明過程,糾正出現(xiàn)的錯誤,規(guī)范書寫的格式。
[學(xué)生活動]學(xué)生自我歸納證明函數(shù)單調(diào)性的一般方法和操作流程:取值作差變形定號判斷。
[設(shè)計意圖]有效的數(shù)學(xué)學(xué)習(xí)過程,不能單純的模仿與記憶,數(shù)學(xué)思想的領(lǐng)悟和學(xué)習(xí)過程更是如此。利用學(xué)生自己提出的問題,讓學(xué)生在解題過程中親身經(jīng)歷和實踐體驗,師生互動學(xué)習(xí),生生合作交流,共同探究。
(四)回顧反思深化概念
[教師活動]給出一組題:
1、定義在R上的單調(diào)函數(shù)f(x)滿足f(2)>f(1),那么函數(shù)f(x)是R上的單調(diào)增函數(shù)還是單調(diào)減函數(shù)?
2、若定義在R上的單調(diào)減函數(shù)f(x)滿足f(1+a)
[學(xué)生活動]學(xué)生互相討論,探求問題的解答和問題的解決過程,并通過問題,歸納總結(jié)本節(jié)課的內(nèi)容和方法。
[設(shè)計意圖]通過學(xué)生的主體參與,使學(xué)生深切體會到本節(jié)課的主要內(nèi)容和思想方法,從而實現(xiàn)對函數(shù)單調(diào)性認識的再次深化。
[教師活動]作業(yè)布置:
(1)閱讀課本P34-35例2
(2)書面作業(yè):
必做:教材P431、7、11
選做:二次函數(shù)y=x2+bx+c在[0,+∞)是增函數(shù),滿足條件的實數(shù)的值唯一嗎?
探究:函數(shù)y=x在定義域內(nèi)是增函數(shù),函數(shù)有兩個單調(diào)減區(qū)間,由這兩個基本函數(shù)構(gòu)成的函數(shù)的單調(diào)性如何?請證明你得到的結(jié)論。
[設(shè)計意圖]通過兩方面的作業(yè),使學(xué)生養(yǎng)成先看書,后做作業(yè)的習(xí)慣?;诤瘮?shù)單調(diào)性內(nèi)容的特點及學(xué)生實際,對課后書面作業(yè)實施分層設(shè)置,安排基本練習(xí)題、鞏固理解題和深化探究題三層。學(xué)生完成作業(yè)的形式為必做、選做和探究三種,使學(xué)生在完成必修教材基本學(xué)習(xí)任務(wù)的同時,拓展自主發(fā)展的空間,讓每一個學(xué)生都得到符合自身實踐的感悟,使不同層次的學(xué)生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學(xué)生飽滿的學(xué)習(xí)興趣,促進學(xué)生自主發(fā)展、合作探究的學(xué)習(xí)氛圍的形成。
四、教學(xué)評價
學(xué)生學(xué)習(xí)的結(jié)果評價當然重要,但是更重要的是學(xué)生學(xué)習(xí)的過程評價。教師應(yīng)當高度重視學(xué)生學(xué)習(xí)過程中的參與度、自信心、團隊精神、合作意識、獨立思考習(xí)慣的養(yǎng)成、數(shù)學(xué)發(fā)現(xiàn)的能力,以及學(xué)習(xí)的興趣和成就感。學(xué)生熟悉的問題情境可以激發(fā)學(xué)生的學(xué)習(xí)興趣,問題串的設(shè)計可以讓更多的學(xué)生主動參與,師生對話可以實現(xiàn)師生合作,適度的研討可以促進生生交流,以及團隊精神,知識的生成和問題的解決可以讓學(xué)生感受到成功的喜悅,縝密的思考可以培養(yǎng)學(xué)生獨立思考的習(xí)慣。讓學(xué)生在教師評價、學(xué)生評價以及自我評價的過程中體驗知識的積累、探索能力的長進和思維品質(zhì)的提高,為學(xué)生的可持續(xù)發(fā)展打下基礎(chǔ)。
2024高中教案數(shù)學(xué)必修一 篇3
各位老師同學(xué)們,大家好!今天我說課的課題是“集合的概念”,本節(jié)內(nèi)容選自高中數(shù)學(xué)必修1(人教版),下面我將主要從六個方面介紹我的教學(xué)方案。
一、教材分析:
教材的地位和作用:
集合是學(xué)習(xí)高中數(shù)學(xué)的重要工具之一,起著承前啟后的作用。本小節(jié)首先從初中代數(shù)與幾何涉及的集合實例人手,引出集合與集合的元素的概念,并且結(jié)合實例對集合的概念作了說明。然后,介紹了集合的常用表示方法,包括列舉法、描述法等,還給出了畫圖表示集合的例子。從教材我歸納出本節(jié)內(nèi)容的教學(xué)重點和難點。
(一)教學(xué)重點:集合的基本概念和表示方法,集合元素的特征
(二)教學(xué)難點:運用集合的三種常用表示方法、列舉法與描述法,正確表示一些簡單的集合
二、教學(xué)目標:
(一)知識目標:
(1)使學(xué)生初步理解集合的概念,知道常用數(shù)集的概念及其記法;
(2)使學(xué)生初步了解“屬于”關(guān)系的意義;
(3)使學(xué)生初步了解有限集、無限集、空集的意義
(二)能力目標:
(1)重視基礎(chǔ)知識的教學(xué)、基本技能的訓(xùn)練和能力的培養(yǎng);
(2)啟發(fā)學(xué)生能夠發(fā)現(xiàn)問題和提出問題,善于獨立思考,學(xué)會分析問題和創(chuàng)造地解決問題;
(3)通過教師指導(dǎo),發(fā)現(xiàn)知識結(jié)論,培養(yǎng)學(xué)生抽象概括能力和邏輯思維能力;
(三)德育目標:激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和積極性,陶冶學(xué)生的情操,培養(yǎng)學(xué)生堅忍不拔的意志,實事求是的科學(xué)學(xué)習(xí)態(tài)度和勇于創(chuàng)新的精神。
三、學(xué)情分析:
針對現(xiàn)在的學(xué)生知識遷移能力差、計算能力差的特點,第一節(jié)課的內(nèi)容不要求學(xué)生太多的計算,通過大量的舉例讓學(xué)生充分掌握集合的基礎(chǔ)知識。
四、教法分析:
為了突出重點、突破難點,本節(jié)課主要采用觀察、分析、類比、歸納的方法讓學(xué)生參與學(xué)習(xí),將學(xué)生置于主體位置,發(fā)揮學(xué)生的主觀能動性,將知識的形成過程轉(zhuǎn)化為學(xué)生親自探索類比的過程,使學(xué)生獲得發(fā)現(xiàn)的成就感。在這個過程中力求把握好以下幾點:
(1)通過實例,讓學(xué)生去發(fā)現(xiàn)規(guī)律。讓學(xué)生在問題情景中,經(jīng)歷知識的形成和發(fā)展,力求使學(xué)生學(xué)會用類比的思想去看待問題。
(2)營造民主的教學(xué)氛圍,使學(xué)生參與教學(xué)全過程。
(3)力求反饋的全面性、及時性,通過精心設(shè)計的提問,讓學(xué)生的思維動起來,針對學(xué)生回答的問題,老師進行適當?shù)狞c評。
(4)給學(xué)生思考的時間和空間,不急于把結(jié)果拋給學(xué)生,讓學(xué)生自己去觀察,分析,類比得出結(jié)果,提高學(xué)生的推理能力。
五、教學(xué)過程
(一)復(fù)習(xí)導(dǎo)入
(1)簡介數(shù)集的發(fā)展,復(fù)習(xí)最大公約數(shù)和最小公倍數(shù),質(zhì)數(shù)與和數(shù);
(2)教材中的章頭引言;
(3)教材中例子(P4)。
(二)講解新課
(1)集合的有關(guān)概念
(2) 常用集合及表示方法
(3)元素對于集合的隸屬關(guān)系
(4)集合中元素的特性
(三)課堂練習(xí)
1下列各組對象能確定一個集合嗎?
(1)所有很大的實數(shù)的集合 (不確定)
(2)好心的人的集合 (不確定)
(3){1,2,2,3,4,5} (有重復(fù))
(4)所有直角三角形的集合 (是 的)
(5)高一(12)班全體同學(xué)的集合(是 的)
(6)參加2008年奧運會的中國代表團成員的集合(是 的)
2、教材P5練習(xí)1、2
六:總結(jié)
1.本節(jié)主要學(xué)習(xí)了集合的基本概念、表示符號;一些常用數(shù)集及其記法;集合的元素與集合之間的關(guān)系;以及集合元素具有的特征。
2.我們在進一步復(fù)習(xí)鞏固集合有關(guān)概念的基礎(chǔ)上,又學(xué)習(xí)了集合的表示方法和有限集、無限集、空集的概念,同學(xué)們要熟練掌握。
2024高中教案數(shù)學(xué)必修一 篇4
教學(xué)目標
1.使學(xué)生掌握的概念,圖象和性質(zhì).
(1)能根據(jù)定義判斷形如什么樣的函數(shù)是,了解對底數(shù)的限制條件的合理性,明確的定義域.
(2)能在基本性質(zhì)的指導(dǎo)下,用列表描點法畫出的圖象,能從數(shù)形兩方面認識的性質(zhì).
(3)能利用的性質(zhì)比較某些冪形數(shù)的大小,會利用的圖象畫出形如的圖象.
2.通過對的概念圖象性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析歸納的能力,進一步體會數(shù)形結(jié)合的思想方法.
3.通過對的研究,讓學(xué)生認識到數(shù)學(xué)的應(yīng)用價值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.使學(xué)生善于從現(xiàn)實生活中數(shù)學(xué)的發(fā)現(xiàn)問題,解決問題.教學(xué)建議
教材分析
(1)是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應(yīng)用,也是今后學(xué)習(xí)對數(shù)函數(shù)的基礎(chǔ),同時在生活及生產(chǎn)實際中有著廣泛的應(yīng)用,所以應(yīng)重點研究.
(2)本節(jié)的教學(xué)重點是在理解定義的基礎(chǔ)上掌握的圖象和性質(zhì).難點是對底數(shù)在和時,函數(shù)值變化情況的區(qū)分.
(3)是學(xué)生完全陌生的一類函數(shù),對于這樣的函數(shù)應(yīng)怎樣進行較為系統(tǒng)的理論研究是學(xué)生面臨的重要問題,所以從的研究過程中得到相應(yīng)的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學(xué)中要特別讓學(xué)生去體會研究的方法,以便能將其遷移到其他函數(shù)的研究.
教法建議
(1)關(guān)于的定義按照課本上說法它是一種形式定義即解析式的特征必須是的樣子,不能有一點差異,諸如,等都不是.
(2)對底數(shù)的限制條件的理解與認識也是認識的重要內(nèi)容.如果有可能盡量讓學(xué)生自己去研究對底數(shù),指數(shù)都有什么限制要求,教師再給予補充或用具體例子加以說明,因為對這個條件的認識不僅關(guān)系到對的認識及性質(zhì)的分類討論,還關(guān)系到后面學(xué)習(xí)對數(shù)函數(shù)中底數(shù)的認識,所以一定要真正了解它的由來.
關(guān)于圖象的繪制,雖然是用列表描點法,但在具體教學(xué)中應(yīng)避免描點前的盲目列表計算,也應(yīng)避免盲目的連點成線,要把表列在關(guān)鍵之處,要把點連在恰當之處,所以應(yīng)在列表描點前先把函數(shù)的性質(zhì)作一些簡單的討論,取得對要畫圖象的存在范圍,大致特征,變化趨勢的大概認識后,以此為指導(dǎo)再列表計算,描點得圖象.
2024高中教案數(shù)學(xué)必修一 篇5
為了做好這學(xué)期的數(shù)學(xué)教學(xué)工作,結(jié)合學(xué)校二輪課改要求和“十六字方針”特作計劃如下:
一、工作目標:
高一下學(xué)期的工作是第二冊課本教學(xué)任務(wù);
二、教法分析:
1、選取與內(nèi)容密切相關(guān)的,典型的,豐富的和學(xué)生熟悉的素材,思想和方法,以及數(shù)學(xué)應(yīng)用的學(xué)習(xí)情境,使學(xué)生產(chǎn)生對數(shù)學(xué)的親切感,引發(fā)學(xué)生“看個究竟”的沖動,以達到培養(yǎng)其興趣的目的。
2、積極探索改革教學(xué),把新課程標準的新思想、新理念和數(shù)學(xué)課堂教學(xué)的新思路、新設(shè)想結(jié)合起來,轉(zhuǎn)變思想,積極探索,改革教學(xué)。愛因斯曾經(jīng)說過:“興趣是最好的老師?!奔ぐl(fā)學(xué)生的學(xué)習(xí)興趣,是數(shù)學(xué)教學(xué)過程中提高質(zhì)量的重要手段之一。
3、通過“觀察”,“思考”,“探究”等欄目,引發(fā)學(xué)生的思考和探索活動,切實改進學(xué)生的學(xué)習(xí)方式。
4、在教學(xué)中強調(diào)類比,推廣,特殊化,化歸等數(shù)學(xué)思想方法,盡可能養(yǎng)成其邏輯思維的習(xí)慣。
三、教學(xué)措施:
1、轉(zhuǎn)變教師的教學(xué)方式轉(zhuǎn)變學(xué)生的學(xué)習(xí)方式
教師要以新理念指導(dǎo)自己的教學(xué)工作,牢固樹立學(xué)生是學(xué)習(xí)的主人,以平等、寬容的態(tài)度對待學(xué)生,在溝通和"對話"中實現(xiàn)師生的共同發(fā)展,努力建立互動的師生關(guān)系。本學(xué)期要繼續(xù)以改變學(xué)生的學(xué)習(xí)方式為主,提倡探究性學(xué)習(xí)、參與性學(xué)習(xí)和實踐性學(xué)習(xí)。
2、發(fā)揮備課組的集體作用
集體備課,教案要求統(tǒng)一。每次備課都有一個主題,然后集體討論,補充完善。同時,根據(jù)各班的具體情況,適當進行調(diào)整,以適應(yīng)學(xué)生的實際情況為標準,讓學(xué)生學(xué)會并且掌握,不搞教條主義和形式主義。教案應(yīng)體現(xiàn)知識體系、思維方法、訓(xùn)練應(yīng)用,以及滲透運用等,要對重點、難點有分析和解決方法。
3、詳細計劃,保證練習(xí)質(zhì)量
教學(xué)中用配備資料《創(chuàng)新設(shè)計》,要求學(xué)生按教學(xué)進度完成相應(yīng)的習(xí)題,教師要提前向?qū)W生指出不做的題,以免影響學(xué)生的時間,每周的一份周測練習(xí)試卷,存在的普遍性問題要及時安排時間講評。
4、加強輔導(dǎo)工作
對已經(jīng)出現(xiàn)數(shù)學(xué)學(xué)習(xí)困難的學(xué)生,教師的個別輔導(dǎo)十分重要。教師教學(xué)中,要盡快掌握班上學(xué)生的數(shù)學(xué)學(xué)習(xí)情況,有針對性地進行輔導(dǎo)工作,既要注意照顧好班上優(yōu)生層,更不能忽視班上的學(xué)困學(xué)生。
2024高中教案數(shù)學(xué)必修一 篇6
為圓滿完成新高一的教學(xué)任務(wù),使學(xué)生全面系統(tǒng)的掌握必修一到四的學(xué)習(xí)內(nèi) 容,提高學(xué)生的數(shù)學(xué)素養(yǎng),我們高一數(shù)學(xué)組秉承“高一決定高考,細節(jié)決定成敗”的.思想,從初、高中銜接起認真分析學(xué)情,積極研討,制定本學(xué)期教學(xué)計劃如下:
一、學(xué)生基本狀況:
(1)本年級共12個行政班,學(xué)生860人。在中考數(shù)學(xué)成績滿分120分的基礎(chǔ)上,我級100分以上的人很少,相對來說90分以上屬于高分,絕大多數(shù)90分以下;學(xué)生數(shù)學(xué)底子薄弱,學(xué)習(xí)環(huán)節(jié)不完整,學(xué)習(xí)習(xí)慣不科學(xué);另外,班級差異大,層次多。我們要加強集體備課力度,夯實基礎(chǔ),培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣。
(2)由于初高中分別實施課改教學(xué),高中教學(xué)內(nèi)容與初中所學(xué)銜接度遠遠不夠,存在較大斷層,我們需制定并學(xué)習(xí)銜接材料,并且在新授的同時適時補充一些內(nèi)容,勢必擠占新課的授課時間,時間緊任務(wù)重。我們要珍惜每一堂課,優(yōu)化每一環(huán)節(jié),提高學(xué)習(xí)效率,探索高效課堂。
(3)高一作為起始年級,作為從義務(wù)階段邁入應(yīng)試征程的適應(yīng)階段,學(xué)生有的是一份執(zhí)著,期望值也較大。理想的期盼與學(xué)法的突變,難度的加強與惰性的生成等等矛盾沖突伴隨著高一新生的成長,我們必須轉(zhuǎn)變教學(xué)理念,并落實在課堂教學(xué)的各個環(huán)節(jié),才能不負眾望。
(4)剛剛進入高一的學(xué)生還停留在初中時的學(xué)習(xí)習(xí)慣和學(xué)習(xí)方法以及對數(shù)學(xué)學(xué)習(xí)的散漫認識上,我們要從學(xué)生的認識水平和實際能力出發(fā),研究學(xué)生的心理特征,做好初三與高一的銜接工作,幫助學(xué)生解決好從初中到高中學(xué)習(xí)方法的過渡。從高一起就注意培養(yǎng)學(xué)生良好的數(shù)學(xué)思維方法,良好的學(xué)習(xí)態(tài)度和學(xué)習(xí)習(xí)慣,以適應(yīng)高中領(lǐng)悟性的學(xué)習(xí)方法。
二、教學(xué)內(nèi)容任務(wù):
本學(xué)期完成數(shù)學(xué)人教A版《必修1》和《必修2》兩冊內(nèi)容。
三、教學(xué)措施要求:
(1)注意研究學(xué)生,做好初、高中學(xué)習(xí)方法的銜接工作;加強自我學(xué)習(xí),特別是兩個綱領(lǐng)性文件——《國家普通高中數(shù)學(xué)課程標準教學(xué)要求》和《20xx年山東省高考數(shù)學(xué)科考試說明》的學(xué)習(xí),吃透大綱,準確把握教學(xué)要求,提高教學(xué)效率,不做無用功。
(2)加強集體備課,發(fā)動全組同志,確定階段主講人,集思廣益,討論優(yōu)化教學(xué)方案;各班級統(tǒng)一進度,分層要求,分層作業(yè),分層考試;注意運用現(xiàn)代化教學(xué)手段輔助數(shù)學(xué)教學(xué);注意運用多媒體、投影儀、電腦軟件等現(xiàn)代化教學(xué)手段輔助教學(xué),提高課堂效率,激發(fā)學(xué)生學(xué)習(xí)興趣。
(3)著眼于基礎(chǔ)知識與重點內(nèi)容,集中精力打好基礎(chǔ),分項突破難點。充分重視基礎(chǔ)知識、基本技能、基本方法的教學(xué),為進一步的學(xué)習(xí)打好堅實的基礎(chǔ),切勿忙于過早的拔高,上難題。同時放眼高中教學(xué)全局,注意高考命題中的知識要求,能力要求及新趨勢,這樣統(tǒng)籌安排,循序漸進,使高一的數(shù)學(xué)教學(xué)與高中教學(xué)的全局有機結(jié)合。
(4)培養(yǎng)學(xué)生解答考題的能力,通過例題,從形式和內(nèi)容兩方面對所學(xué)知識進行能力方面的分析,引導(dǎo)學(xué)生了解、訓(xùn)練數(shù)學(xué)能力和培養(yǎng)數(shù)學(xué)素養(yǎng)。
(5)讓學(xué)生通過單元考試,檢測自己的實際應(yīng)用能力,從而及時總結(jié)經(jīng)驗,找出不足,做好充分的準備。
(6)精心組織教學(xué),保護學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,重視數(shù)學(xué)學(xué)習(xí)能力培養(yǎng);抓好尖子生與后進生的輔導(dǎo)工作,提前展開數(shù)學(xué)分層培養(yǎng)和數(shù)學(xué)基礎(chǔ)輔導(dǎo)。
2024高中教案數(shù)學(xué)必修一 篇7
一、設(shè)計理念
新課標指出:學(xué)生的數(shù)學(xué)學(xué)習(xí)活動不應(yīng)只是接受、記憶、模仿、練習(xí),教師應(yīng)引導(dǎo)學(xué)生自主探究、合作學(xué)習(xí)、動手操作、閱讀自學(xué),應(yīng)注重提升學(xué)生的數(shù)學(xué)思維能力,注重發(fā)展學(xué)生的數(shù)學(xué)應(yīng)用意識。
二、教材分析
本節(jié)課選自人教版《普通高中課程標準實驗教課書》必修1,第一章1.1.2集合間的基本關(guān)系。集合是數(shù)學(xué)的基本和重要語言之一,在數(shù)學(xué)以及其他的領(lǐng)域都有著廣泛的應(yīng)用,用集合及對應(yīng)的語言來描述函數(shù),是高中階段的一個難點也是重點,因此集合語言作為一種研究工具,它的學(xué)習(xí)非常重要。本節(jié)內(nèi)容主要是集合間基本關(guān)系的學(xué)習(xí),重在讓學(xué)生類比實數(shù)間的關(guān)系,來進行探究,同時培養(yǎng)學(xué)生用數(shù)學(xué)符號語言,圖形語言進行交流的能力,讓學(xué)生在直觀的基礎(chǔ)上,理解抽象的概念,同時它也是后續(xù)學(xué)習(xí)集合運算的知識儲備,因此有著至關(guān)重要的作用。
三、學(xué)情分析
【年齡特點】:
假設(shè)本次的授課對象是普通高中高一學(xué)生,高一的學(xué)生求知欲強,精力旺盛,思維活躍,已經(jīng)具備了一定的觀察、分析、歸納能力,能夠很好的配合教師開展教學(xué)活動。
【認知優(yōu)點】
一方面學(xué)生已經(jīng)學(xué)習(xí)了集合的概念,初步掌握了集合的三種表示法,對于本節(jié)課的學(xué)習(xí)有利一定的認知基礎(chǔ)。
【學(xué)習(xí)難點】
但是,本節(jié)課這種類比實數(shù)關(guān)系研究集合間的關(guān)系,這種類比學(xué)習(xí)對于學(xué)生來說還有一定的難度。
四、教學(xué)目標
知識與技能:
1.理解子集、V圖、真子集、空集的概念。
2.掌握用數(shù)學(xué)符號語言以及V圖語言表示集合間的基本關(guān)系。
3.能夠區(qū)分集合間的包含關(guān)系與元素與集合的屬于關(guān)系。
過程與方法:
1.通過類比實數(shù)間的關(guān)系,研究集合間的關(guān)系,培養(yǎng)學(xué)生類比、觀察、分析、歸納的能力。
2.培養(yǎng)學(xué)生用數(shù)學(xué)符號語言、圖形語言進行交流的能力。
情感態(tài)度與價值觀:
1.激發(fā)學(xué)生學(xué)習(xí)的興趣,圖形、符號所帶來的魅力。
2.感悟數(shù)學(xué)知識間的聯(lián)系,養(yǎng)成良好的思維習(xí)慣及數(shù)學(xué)品質(zhì)。
五、教學(xué)重、難點
重點:集合間基本關(guān)系。
難點:類比實數(shù)間的關(guān)系研究集合間的關(guān)系。
六、教學(xué)手段
PPT輔助教學(xué)
七、教法、學(xué)法
教法:探究式教學(xué)、講練式教學(xué)。
遵循“教師主導(dǎo)作用與學(xué)生主體地位相結(jié)合的”教學(xué)規(guī)律,引導(dǎo)學(xué)生自主探究,合作學(xué)習(xí),在教學(xué)中引導(dǎo)學(xué)生類比實數(shù)間關(guān)系,來研究集合間的關(guān)系,降低了學(xué)生學(xué)習(xí)的難度,同時也激發(fā)了學(xué)生學(xué)習(xí)的興趣,充分體現(xiàn)了以學(xué)生為本的教學(xué)思想。
學(xué)法:自主探究、類比學(xué)習(xí)、合作交流。
教師的“教”其本質(zhì)是為了“不教”,教師除了讓學(xué)生獲得知識,提高解題能力,還應(yīng)該讓學(xué)生學(xué)會學(xué)習(xí),樂于學(xué)習(xí),充分體現(xiàn)“以學(xué)定教”的教學(xué)理念。通過引導(dǎo)學(xué)生類比學(xué)習(xí),同學(xué)間的合作交流,讓學(xué)生更好的學(xué)習(xí)集合的知識。
八、課型、課時
課型:新授課
課時:一課時
2024高中教案數(shù)學(xué)必修一 篇8
學(xué)習(xí)引導(dǎo)
一、自主學(xué)習(xí)
1. 閱讀課本 練習(xí)止.
2. 回答問題
(1)課本內(nèi)容分成幾個層次?每個層次的中心內(nèi)容是什么?
(2)層次間的聯(lián)系是什么?
(3)對數(shù)函數(shù)的定義是什么?
(4)對數(shù)函數(shù)與指數(shù)函數(shù)有什么關(guān)系?
3. 完成 練習(xí)
4. 小結(jié).
二、方法指導(dǎo)
1. 在學(xué)習(xí)對數(shù)函數(shù)時,同學(xué)們應(yīng)從熟悉的指數(shù)問題出發(fā),通過對指數(shù)函數(shù)的認識逐步轉(zhuǎn)化為對對數(shù)函數(shù)的認識,而且畫對數(shù)函數(shù)圖象時,既要考慮到對底數(shù)的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì).
2. 本節(jié)課的主線是對數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),所有的問題都應(yīng)圍繞著這條主線展開.同學(xué)們在學(xué)習(xí)時應(yīng)該把兩個函數(shù)進行類比,通過互為反函數(shù)的兩個函數(shù)的關(guān)系由已知函數(shù)研究未知函數(shù)的性質(zhì)
思考引導(dǎo)
一、提問題
1. 對數(shù)函數(shù)的自變量和函數(shù)分別在指數(shù)函數(shù)中是什么?
2.兩個函數(shù)如果互為反函數(shù),則他們的值域,定義域有什么關(guān)系?
3.是否所有的函數(shù)都有反函數(shù)?試舉例說明.
二、變題目
1. 試求下列函數(shù)的反函數(shù):
(1) ; (2) ;
(3) ; (4) .
2. 求下列函數(shù)的定義域:
(1) ; (2) ; (3) .
3. 已知 則 = ; 的定義域為 .
總結(jié)引導(dǎo)
1.對數(shù)函數(shù)的有關(guān)概念
(1)把函數(shù) 叫做對數(shù)函數(shù), 叫做對數(shù)函數(shù)的底數(shù);
(2)以10為底數(shù)的對數(shù)函數(shù) 為常用對數(shù)函數(shù);
(3)以無理數(shù) 為底數(shù)的對數(shù)函數(shù) 為自然對數(shù)函數(shù).
2. 反函數(shù)的概念
在指數(shù)函數(shù) 中, 是自變量, 是 的函數(shù),其定義域是 ,值域是 ;在對數(shù)函數(shù) 中, 是自變量, 是 的函數(shù),其定義域是 ,值域是 ,像這樣的兩個函數(shù)叫做互為反函數(shù).
3. 與對數(shù)函數(shù)有關(guān)的定義域的求法:
4. 舉例說明如何求反函數(shù).
拓展引導(dǎo)
一、課外作業(yè): 習(xí)題3-5 A組 1,2,3, B組1,
二、課外思考:
1. 求定義域: .
2. 求使函數(shù) 的函數(shù)值恒為負值的 的取值范圍.