指數(shù)函數(shù)教案
發(fā)布時間:2023-12-24 指數(shù)函數(shù)教案指數(shù)函數(shù)教案精華。
編寫教案課件是每位老師日常必做的任務(wù)。教案和課件的不斷改進(jìn)是教學(xué)創(chuàng)新的追求。我們提供這些信息,希望能為您提供一些參考和指導(dǎo)!
指數(shù)函數(shù)教案 篇1
教學(xué)目標(biāo):
進(jìn)一步理解指數(shù)函數(shù)及其性質(zhì),能運用指數(shù)函數(shù)模型,解決實際問題。
教學(xué)重點:
用指數(shù)函數(shù)模型解決實際問題。
教學(xué)難點:
指數(shù)函數(shù)模型的建構(gòu)。
教學(xué)過程:
一、情境創(chuàng)設(shè)
1.某工廠今年的年產(chǎn)值為a萬元,為了增加產(chǎn)值,今年增加了新產(chǎn)品的研發(fā),預(yù)計從明年起,年產(chǎn)值每年遞增15%,則明年的產(chǎn)值為萬元,后年的產(chǎn)值為萬元.若設(shè)x年后實現(xiàn)產(chǎn)值翻兩番,則得方程。
二、數(shù)學(xué)建構(gòu)
指數(shù)函數(shù)是常見的數(shù)學(xué)模型,也是重要的數(shù)學(xué)模型,常見于工農(nóng)業(yè)生產(chǎn),環(huán)境治理以及投資理財?shù)冗f增的常見模型為=(1+p%)x(p>0);遞減的常見模型則為=(1-p%)x(p>0)。
三、數(shù)學(xué)應(yīng)用
例1某種放射性物質(zhì)不斷變化為其他,每經(jīng)過一年,這種物質(zhì)剩留的質(zhì)量是原來的84%,寫出這種物質(zhì)的剩留量關(guān)于時間的函數(shù)關(guān)系式。
例2某醫(yī)藥研究所開發(fā)一種新藥,據(jù)檢測:如果成人按規(guī)定的劑量服用,服藥后每毫升血液中的含藥量為(微克),與服藥后的時間t(小時)之間近似滿足如圖曲線,其中OA是線段,曲線ABC是函數(shù)=at的圖象。試根據(jù)圖象,求出函數(shù)=f(t)的解析式。
例3某位公民按定期三年,年利率為2.70%的方式把5000元存入銀行.問三年后這位公民所得利息是多少元?
例4某種儲蓄按復(fù)利計算利息,若本金為a元,每期利率為r,設(shè)存期是x,本利和(本金加上利息)為元。
(1)寫出本利和隨存期x變化的函數(shù)關(guān)系式;
(2)如果存入本金1000元,每期利率為2.25%,試計算5期后的本利和。
(復(fù)利是把前一期的利息和本金加在一起作本金,再計算下一期利息的一種計算利息方法)
小結(jié):銀行存款往往采用單利計算方式,而分期付款、按揭則采用復(fù)利計算.這是因為在存款上,為了減少儲戶的重復(fù)操作給銀行帶來的工作壓力,同時也是為了提高儲戶的長期存款的積極性,往往定期現(xiàn)年的利息比再次存取定期一年的收益要高;而在分期付款的過程中,由于每次存入的現(xiàn)金存期不一樣,故需要采用復(fù)利計算方式.比如“本金為a元,每期還b元,每期利率為r”,第一期還款時本息和應(yīng)為a(1+p%),還款后余額為a(1+p%)-b,第二次還款時本息為(a(1+p%)-b)(1+p%),再還款后余額為(a(1+p%)-b)(1+p%)-b=a(1+p%)2-b(1+p%)-b,……,第n次還款后余額為a(1+p%)n-b(1+p%)n1-b(1+p%)n2-……-b.這就是復(fù)利計算方式。
例52000~2002年,我國國內(nèi)生產(chǎn)總值年平均增長7.8%左右.按照這個增長速度,畫出從2000年開始我國年國內(nèi)生產(chǎn)總值隨時間變化的圖象,并通過圖象觀察到2010年我國年國內(nèi)生產(chǎn)總值約為2000年的多少倍(結(jié)果取整數(shù))。
指數(shù)函數(shù)教案 篇2
一、教材分析
1. 《指數(shù)函數(shù)》在教材中的地位和作用
《指數(shù)函數(shù)》是蘇教版中專數(shù)學(xué)國家審定教材第一冊第三章《幾個基本初等函數(shù)》第三節(jié)的內(nèi)容,是在學(xué)習(xí)了《冪函數(shù)》一節(jié)內(nèi)容之后編排的。通過本節(jié)課的學(xué)習(xí),既可以對指數(shù)的概念和冪函數(shù)的概念等知識進(jìn)一步鞏固和深化,又可以為后面進(jìn)一步學(xué)習(xí)對數(shù)、對數(shù)函數(shù)打下堅實的基礎(chǔ),對中專階段研究對數(shù)函數(shù)、三角函數(shù)等完整的函數(shù)知識,初步培養(yǎng)函數(shù)的應(yīng)用意識打下了良好的基礎(chǔ),所以《指數(shù)函數(shù)》不僅是本章的重點內(nèi)容,也是中專學(xué)段的主要研究內(nèi)容之一,有著不可替代的重要作用。
此外,《指數(shù)函數(shù)》的知識與我們的日常生活、生產(chǎn)和科學(xué)研究有著緊密的聯(lián)系,尤其體現(xiàn)在細(xì)胞分裂、貸款利率的計算等方面,因此學(xué)習(xí)這部分知識還有著廣泛的現(xiàn)實意義。本節(jié)內(nèi)容的特點之一是概念性強,特點之二是凸顯了圖象在研究函數(shù)性質(zhì)時的重要作用。
2.課時安排:兩課時
二、學(xué)情及目標(biāo)
通過初中學(xué)段的學(xué)習(xí)和中專對集合、函數(shù)等知識的系統(tǒng)學(xué)習(xí),學(xué)生對函數(shù)和圖象的關(guān)系已經(jīng)構(gòu)建了一定的認(rèn)知結(jié)構(gòu),主要體現(xiàn)在三個方面:
知識方面:學(xué)生對正比例函數(shù)、反比例函數(shù)、一次函數(shù),二次函數(shù)等函數(shù)概念和性質(zhì)已有了初步認(rèn)識,從冪函數(shù)的學(xué)習(xí)中了解了學(xué)習(xí)函數(shù)的基本步驟。
技能方面:學(xué)生對采用“描點法”作函數(shù)圖象的方法已大致掌握,能夠為研究《指數(shù)函數(shù)》做好準(zhǔn)備。
素質(zhì)方面:由觀察到抽象的數(shù)學(xué)活動過程有初步了解,在數(shù)形結(jié)合、分類討論等思想方面還有待提高
鑒于對學(xué)生已有的知識基礎(chǔ)和認(rèn)知能力的分析,根據(jù)《教學(xué)大綱》的要求,我確定本節(jié)課的教學(xué)目標(biāo)、教學(xué)重點和難點如下:
(1)知識目標(biāo):
①掌握指數(shù)函數(shù)的概念;
②掌握指數(shù)函數(shù)的圖象
(2)技能目標(biāo):
①滲透數(shù)形結(jié)合和分類討論的思想方法
②培養(yǎng)學(xué)生觀察、類比、猜測、歸納的能力
(3)情感目標(biāo):
①體驗從特殊到一般的學(xué)習(xí)規(guī)律,認(rèn)識事物之間的普遍聯(lián)系與相互轉(zhuǎn)化,培養(yǎng)學(xué)生用聯(lián)系的觀點看問題
②通過教學(xué)互動促進(jìn)師生情感,激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生抽象、概括、分析、綜合的能力
③讓學(xué)生感受數(shù)學(xué)的對稱美、和諧美。
(4)教學(xué)重點:指數(shù)函數(shù)的概念和圖象
(5)教學(xué)難點:取適當(dāng)?shù)狞c作圖
確定依據(jù):冪函數(shù)和指數(shù)函數(shù)的一般形式學(xué)生容易混淆,并且學(xué)生作圖的精確度還有待提高
突破難點的關(guān)鍵:結(jié)合二次函數(shù)、冪函數(shù)等取點的方法,再次強調(diào)間隔適當(dāng)、數(shù)值大小合適、對稱
三、教法分析
由于《指數(shù)函數(shù)》這節(jié)課的特殊地位,在本節(jié)課的教法設(shè)計中,我力圖通過這一節(jié)課的教學(xué)達(dá)到不僅使學(xué)生初步理解指數(shù)函數(shù)的知識,更期望能引領(lǐng)學(xué)生掌握研究初等函數(shù)的一般思路和方法,為今后研究其它的函數(shù)做好準(zhǔn)備,從而達(dá)到培養(yǎng)學(xué)生學(xué)習(xí)能力的目的,主要突出了以下幾個方面:
1.創(chuàng)設(shè)情景.由指數(shù)函數(shù)在生活中的實際應(yīng)用給出兩個實例,充分調(diào)動學(xué)生的學(xué)習(xí)興趣,激發(fā)學(xué)生的探究心理,順利引入課題,而這兩個例子又恰好為研究指數(shù)函數(shù)中底數(shù)大于1和底數(shù)大于0小于1的圖象做好了準(zhǔn)備。
2.類比及分類討論的應(yīng)用.引導(dǎo)學(xué)生結(jié)合冪函數(shù)的一般形式來歸納出指數(shù)函數(shù)的概念,并向?qū)W生指出指數(shù)函數(shù)的形式特點,請學(xué)生思考對于底數(shù)a是否需要限制,如不限制會有什么問題出現(xiàn),這樣避免了學(xué)生對于底數(shù)a范圍分類的不清楚,也為研究指數(shù)函數(shù)的圖象做了“分類討論”的鋪墊。
3.突出圖象的作用.在數(shù)學(xué)學(xué)習(xí)過程中,圖形始終使我們需要借助的重要輔助手段。華羅庚曾經(jīng)說過“數(shù)離形時少直觀,形離數(shù)時難入微”,在研究指數(shù)函數(shù)的性質(zhì)時,更是直接由圖象觀察得出性質(zhì),因此圖象發(fā)揮了主要的作用。
4.注意數(shù)學(xué)與生活和實踐的聯(lián)系.數(shù)學(xué)的本質(zhì)是來源于生活,服務(wù)于實踐。在課堂教學(xué)的引入、課外知識的拓展等部分,都介紹了與指數(shù)函數(shù)息息相關(guān)的生活問題,力圖使學(xué)生了解到數(shù)學(xué)的基礎(chǔ)學(xué)科作用,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識。
四、學(xué)法分析
本節(jié)課是在學(xué)習(xí)完冪函數(shù)的概念和性質(zhì)之后編排的,針對學(xué)生實際情況,我主要在以下幾個方面做了嘗試:
1.再現(xiàn)原有認(rèn)知結(jié)構(gòu)。在引入兩個生活實例后,請學(xué)生回憶有關(guān)冪函數(shù)的概念,幫助學(xué)生再現(xiàn)原有認(rèn)知結(jié)構(gòu),為理解指數(shù)函數(shù)的概念做好準(zhǔn)備。
2.領(lǐng)會常見數(shù)學(xué)思想方法。在研究底數(shù)的限制時會遇到分類討論等基本數(shù)學(xué)思想方法,這些方法將會貫穿整個中專的數(shù)學(xué)學(xué)習(xí)。
3.在互相交流和自主探究中獲得發(fā)展。在生活實例的課堂導(dǎo)入、例題與訓(xùn)練、課內(nèi)小節(jié)等教學(xué)環(huán)節(jié)中都安排了學(xué)生的討論、分組、交流等活動,讓學(xué)生變被動的接受和記憶知識為在合作學(xué)習(xí)的樂趣中主動地建構(gòu)新知識的框架和體系,從而完成知識的內(nèi)化過程。
4.注意學(xué)習(xí)過程的循序漸進(jìn)。在概念、圖象、性質(zhì)、應(yīng)用、拓展的過程中按照先易后難的順序?qū)訉舆f進(jìn),讓學(xué)生感到有挑戰(zhàn)、有收獲,跳一跳,夠得著,不同難度的題目設(shè)計將盡可能照顧到課堂學(xué)生的個體差異。
五、程序設(shè)計
在設(shè)計本節(jié)課的教學(xué)過程中,本著遵循學(xué)生的認(rèn)知規(guī)律、讓學(xué)生去經(jīng)歷知識的形成與發(fā)展過程的原則,我設(shè)計了如下的教學(xué)程序
1.知識的回顧及新課的導(dǎo)入
教師活動:
①回顧研究冪函數(shù)的一般步驟,并請學(xué)生回答冪函數(shù)的相關(guān)知識
②用電腦展示兩個實例,第一個是生物中細(xì)胞分裂的例子,第二個是機器價值的折舊率問題
③引導(dǎo)學(xué)生進(jìn)行類比
④分析出對指數(shù)函數(shù)底數(shù)討論的必要性以及分類的方法。
學(xué)生活動:
①回憶冪函數(shù)的概念及圖象和性質(zhì)
②分別寫出細(xì)胞個數(shù)y與分裂次數(shù)x的關(guān)系式和機器價值y與經(jīng)過年數(shù)x的關(guān)系式,并互相交流
③比較冪函數(shù)的一般形式和上述兩個式子,歸納指數(shù)函數(shù)的一般形式
④根據(jù)底數(shù)分類討論的結(jié)果,試著寫出指數(shù)函數(shù)的定義域和值域
設(shè)計意圖:通過回顧冪函數(shù)的知識,再現(xiàn)研究函數(shù)的基本步驟;通過生活實例激發(fā)學(xué)生的學(xué)習(xí)興趣,通過類比掃清由概念不清而造成的知識障礙,培養(yǎng)學(xué)生思維的主動性,為突破難點做好準(zhǔn)備。
2.啟發(fā)誘導(dǎo)、探求新知
教師活動:
①作圖步驟回顧
②給出兩個簡單指數(shù)函數(shù),多媒體演示取點和作圖,強調(diào)虛線、點、函數(shù)圖象的先后順序
學(xué)生活動:
①回憶畫函數(shù)圖象的步驟
②注意取點的間隔及大小
③觀察作圖過程以及圖象的形狀和底數(shù)的關(guān)系
設(shè)計意圖:使學(xué)生對作圖步驟加深印象,對取點的合適度有更深刻的理解,使用多媒體畫圖以增加學(xué)生練習(xí)的時間,強調(diào)作圖過程的規(guī)范性,培養(yǎng)學(xué)生良好的作圖習(xí)慣
3.鞏固新知、反饋回授
教師活動:
①多媒體演示練習(xí)1
②給出兩個指數(shù)函數(shù),要求學(xué)生對照例題作圖并指導(dǎo)取點
③請一名學(xué)生板演作圖,對其作圖步驟和圖象精確度進(jìn)行點評
④引導(dǎo)學(xué)生對底數(shù)和圖象形狀的關(guān)系進(jìn)行歸納
學(xué)生活動:
①口答練習(xí)1
②在草稿紙上畫出兩個指數(shù)函數(shù)的圖象
③觀察圖象形狀和底數(shù)并互相交流,最后得出兩者的關(guān)系
設(shè)計意圖:加深學(xué)生對指數(shù)函數(shù)一般形式的印象以及和冪函數(shù)一般形式的區(qū)別;讓學(xué)生動手作簡單的指數(shù)函數(shù)的圖象,能夠進(jìn)一步規(guī)范學(xué)生的作圖習(xí)慣,也能讓學(xué)生通過作圖發(fā)現(xiàn)底數(shù)和圖象形狀的關(guān)系,對深刻理解本小節(jié)的內(nèi)容有著一定的促進(jìn)作用。
4.歸納小結(jié)、深化目標(biāo)
教師活動:
①引導(dǎo)學(xué)生對課堂知識進(jìn)行歸納,完成對分類討論、數(shù)形結(jié)合等數(shù)學(xué)方法的歸納;
②布置課后及拓展作業(yè)
學(xué)生活動:完成對指數(shù)函數(shù)的概念和圖象基本形狀的課內(nèi)小結(jié)并通過課后作業(yè)進(jìn)一步深化學(xué)習(xí)目標(biāo),有能力的同學(xué)完成網(wǎng)上調(diào)研并在下節(jié)課與同學(xué)交流我國在利用14C進(jìn)行考古所取得的成果。
設(shè)計意圖:教師在本環(huán)節(jié)引導(dǎo)學(xué)生對指數(shù)函數(shù)的知識進(jìn)行梳理,深化知識與技能目標(biāo),并通過作業(yè)實現(xiàn)目標(biāo)的鞏固。
5.板書設(shè)計
本節(jié)課以多媒體為主,同時考慮到板書在教學(xué)過程中發(fā)揮的作用,我設(shè)計了由兩個板塊構(gòu)成的板書,板面分配比例為1:2,第一板塊包含三個部分,一是指數(shù)函數(shù)的一般形式,二是定義域和值域,三是作圖的基本步驟;第二板塊留給學(xué)生板演練習(xí)2
六、教學(xué)評價
教學(xué)評價的及時有效能調(diào)動課堂的氣氛、感染學(xué)生的情緒,對課堂教學(xué)發(fā)揮著積極的推動作用,因此,我將教學(xué)評價將貫穿于本節(jié)課的每個教學(xué)環(huán)節(jié)中。例如回憶冪函數(shù)知識的記憶評價、情景導(dǎo)入的表達(dá)式評價、得出指數(shù)函數(shù)一般形式的歸納評價、作圖時取點準(zhǔn)確性和圖象精確度的評價、小結(jié)時的`表述性評價等。在學(xué)生交流、討論、探究等環(huán)節(jié)注意啟發(fā)學(xué)生完成知識互評、能力互評,通過多種評價方式讓更多的學(xué)生獲得學(xué)習(xí)的自信,在輕松融洽的課堂評價氛圍中完成本節(jié)課的教學(xué)和學(xué)習(xí)任務(wù)。
當(dāng)然教師會通過對學(xué)生作業(yè)的批改獲得更全面的對學(xué)生知識掌握的評價和課堂效果的反思,并在后續(xù)的時間里修訂課堂設(shè)計方案,達(dá)到預(yù)期的教學(xué)效果,實現(xiàn)學(xué)生的能力發(fā)展。以上是我對指數(shù)函數(shù)這節(jié)課的設(shè)計和思考,敬請批評指正!
指數(shù)函數(shù)教案 篇3
一、說教材
1.《指數(shù)函數(shù)》在教材中的地位、作用和特點
今天說課的內(nèi)容為“指數(shù)函數(shù)”第一課時。它是在學(xué)習(xí)指數(shù)概念和冪函數(shù)的基礎(chǔ)上學(xué)習(xí)指數(shù)函數(shù)的概念和性質(zhì),通過學(xué)習(xí)指數(shù)函數(shù)的定義,圖像及性質(zhì),可以進(jìn)一步深化學(xué)生對函數(shù)概念的理解與認(rèn)識,使學(xué)生得到較系統(tǒng)的函數(shù)知識和研究函數(shù)的方法,并且為學(xué)習(xí)對數(shù)函數(shù)尤其是利用互為反函數(shù)的圖象間的關(guān)系來研究對數(shù)函數(shù)的性質(zhì)打下堅實的概念和圖象基礎(chǔ)。所以指數(shù)函數(shù)起到了承上啟下的作用。
此外,《指數(shù)函數(shù)》的知識與我們的日常生產(chǎn)、生活和科學(xué)研究有著緊密的聯(lián)系,尤其體現(xiàn)在細(xì)胞分裂、貸款利率的計算、股市的漲跌、服飾的打折和化學(xué)中對放射性物質(zhì)的變化研究等方面,因此學(xué)習(xí)這部分知識還有著廣泛的現(xiàn)實意義與在專業(yè)知識中的應(yīng)用作用。本節(jié)內(nèi)容的特點之一是概念性強,特點之二是凸顯了數(shù)學(xué)圖形在研究函數(shù)性質(zhì)時的重要作用。
2.教學(xué)目標(biāo)、重點和難點
通過初中學(xué)段的學(xué)習(xí)和職業(yè)高中對集合、函數(shù)等知識的系統(tǒng)學(xué)習(xí),學(xué)生對函數(shù)和圖象的關(guān)系已經(jīng)構(gòu)建了一定的認(rèn)知結(jié)構(gòu),主要體現(xiàn)在三個方面:
知識維度:初中已經(jīng)學(xué)習(xí)了正比例函數(shù)、反比例函數(shù)和 一次函數(shù),上冊第三章又進(jìn)一步學(xué)習(xí)了函數(shù)的概念及其通性,并對一次函數(shù)、二次函數(shù)作了更深入研究,學(xué)生已經(jīng)初步掌握了研究函數(shù)的一般方法,能夠從初中運動變化的角度認(rèn)識函數(shù)初步轉(zhuǎn)化到從集合與對應(yīng)的觀點來認(rèn)識函數(shù)。
能力維度:學(xué)生對采用“描點法”描繪函數(shù)圖象的方法已基本掌握,能夠為研究指數(shù)函數(shù)的性質(zhì)做好準(zhǔn)備。
素質(zhì)維度:由觀察到抽象的數(shù)學(xué)活動過程已有一定的體會,已初步了解了數(shù)形結(jié)合的思想。
(1)教學(xué)目標(biāo)
知識目標(biāo):①了解指數(shù)函數(shù)模型的實際背景,認(rèn)識數(shù)學(xué)與現(xiàn)實生活、其他學(xué)科的聯(lián)系②掌握指數(shù)函數(shù)的概念③掌握指數(shù)函數(shù)的圖象和性質(zhì)
能力目標(biāo):①滲透數(shù)形結(jié)合的基本數(shù)學(xué)思想方法②培養(yǎng)學(xué)生觀察、聯(lián)想、類比、猜測、歸納的能力;
情感目標(biāo):①在學(xué)習(xí)的過程中體會研究具體函數(shù)及其性質(zhì)的過程和方法,如體驗從特殊到一般的學(xué)習(xí)規(guī)律,認(rèn)識事物之間的普遍聯(lián)系與相互轉(zhuǎn)化,培養(yǎng)學(xué)生用聯(lián)系的觀點看問題②通過教學(xué)互動促進(jìn)師生情感,激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生抽象、概括、分析、綜合的能力
(2)教學(xué)重點和難點
教學(xué)重點:指數(shù)函數(shù)的圖象和性質(zhì)。
教學(xué)難點:指數(shù)函數(shù)的圖象性質(zhì)與底數(shù)a的關(guān)系。
(3)教學(xué)關(guān)鍵:
從實際出發(fā),使學(xué)生在獲得一定的感性認(rèn)識和基礎(chǔ)上,通過觀察、比較、歸納提高到理性認(rèn)識,以形成完整的概念;在理解概念的基礎(chǔ)上充分結(jié)合圖象,利用數(shù)形結(jié)合來掃清障礙。
二、教法與學(xué)法指導(dǎo)
1.學(xué)法指導(dǎo)
由于職高學(xué)生大部分?jǐn)?shù)學(xué)基礎(chǔ)較差,理解能力、運算能力、思維能力等方面參差不齊,同時學(xué)生學(xué)好數(shù)學(xué)的自信心不強,學(xué)習(xí)積極性不高,厭學(xué)情緒嚴(yán)重。針對實際情況,考慮到學(xué)生非智力因素的影響,我主要在以下幾個方面做了嘗試:
(1)激發(fā)學(xué)生的求知欲和學(xué)習(xí)積極性。從學(xué)生感興趣的生活實例著手,激發(fā)學(xué)生的學(xué)習(xí)興趣,指導(dǎo)學(xué)生積極思維,主動獲取知識。
(2)領(lǐng)會常見數(shù)學(xué)思想方法。在借助圖象研究指數(shù)函數(shù)的性質(zhì)時會遇到分類討論、數(shù)形結(jié)合等基本數(shù)學(xué)思想方法,這些方法將會貫穿整個職業(yè)高中的數(shù)學(xué)學(xué)習(xí)。
(3)在互相交流和自主探究中獲得發(fā)展。在生活實例的課堂導(dǎo)入、指數(shù)函數(shù)的性質(zhì)研究、例題與訓(xùn)練、課內(nèi)小節(jié)等教學(xué)環(huán)節(jié)中都安排了學(xué)生的討論、分組、交流等活動,讓學(xué)生變被動的接受和記憶知識為在合作學(xué)習(xí)的樂趣中主動地建構(gòu)新知識的框架和體系,從而完成知識的內(nèi)化過程。
(4)注意學(xué)生的個體差異。利用小組合作來幫助后進(jìn)的學(xué)生,不同難度的題目設(shè)計將盡可能照顧到課堂學(xué)生的個體差異。
2.教法選擇
(1)本節(jié)課采用的方法有;啟發(fā)發(fā)現(xiàn)法、課堂討論法、多媒體教學(xué)法
(2)采用這些方法的理論依據(jù):為了調(diào)動學(xué)生的學(xué)習(xí)積極性,使學(xué)生變被動為主動愉快的學(xué)習(xí)。教學(xué)中我引導(dǎo)學(xué)生從實例出發(fā)啟發(fā)出指數(shù)函數(shù)的定義,在概念理解上,用步步設(shè)問、課堂討論來加深理解。在指數(shù)函數(shù)圖像的畫法上,借助電腦,演示作圖過程以及圖像變化的動畫過程,新技術(shù)、新工具、新模式給了學(xué)生以新的感受,從而使學(xué)生直接地接受并提高學(xué)生的學(xué)習(xí)興趣和積極性,很好地突破難點和提高教學(xué)效率,從而增大教學(xué)的容量和直觀性、準(zhǔn)確性。(有條件的可以安排在機房上課,讓學(xué)生也利用函數(shù)作圖器作圖)
三、教學(xué)設(shè)計
在設(shè)計本節(jié)課的教學(xué)過程中,本著遵循學(xué)生的認(rèn)知規(guī)律、讓學(xué)生去經(jīng)歷知識的形成與發(fā)展過程的原則,我設(shè)計了如下的教學(xué)程序,啟發(fā)學(xué)生逐步發(fā)現(xiàn)和認(rèn)識指數(shù)函數(shù)的圖象和性質(zhì)。
1.創(chuàng)設(shè)情景、導(dǎo)入新課
教師活動:①用電腦展示兩個實例,第一個是生物中細(xì)胞分裂問題(某種細(xì)胞分裂時由1 個分裂成2 個,2個分裂成4個,......,一個這樣的細(xì)胞分裂 x 次后,得到的細(xì)胞個數(shù)y與x有怎樣的函數(shù)關(guān)系?),第二個是放射性物質(zhì)變化的例子(一種放射性物質(zhì)不斷變化為其他物質(zhì),每經(jīng)過一年剩留的質(zhì)量約是原來的84%,求經(jīng)過多少年,剩留量是原來的一半,結(jié)果保留一位有效數(shù)字)。②組織學(xué)生思考、分小組討論所提出的問題,注意引導(dǎo)學(xué)生從定義出發(fā)來解釋兩個問題中變量之間的關(guān)系。③引導(dǎo)學(xué)生把對應(yīng)關(guān)系概括到形式。
學(xué)生活動:分別寫出細(xì)胞個數(shù)y與分裂次數(shù)x的關(guān)系式和剩留量y與經(jīng)過的年數(shù)x的關(guān)系式;
設(shè)計意圖:①通過生活實例充分調(diào)動學(xué)生的學(xué)習(xí)興趣,激發(fā)學(xué)生的探究心理,順利引入課題,也為引出指數(shù)函數(shù)的概念做準(zhǔn)備,掃清由概念不清而造成的知識障礙,培養(yǎng)學(xué)生思維的主動性,為突破難點做好準(zhǔn)備;②由具體數(shù)字抽象概括出指數(shù)函數(shù)y=ax的模型,為研究指數(shù)函數(shù)做準(zhǔn)備;③兩個例子又恰好為研究指數(shù)函數(shù)中底數(shù)大于1和底數(shù)大于0小于1的圖象做好了準(zhǔn)備。
2.啟發(fā)誘導(dǎo)、探求新知
(1)指數(shù)函數(shù)概念的引出
教師活動:①引導(dǎo)學(xué)生觀察這兩個函數(shù),尋找他們的特征②請學(xué)生思考對于底數(shù)a是否需要限制,如不限制會有什么問題出現(xiàn)③引導(dǎo)學(xué)生觀察指數(shù)函數(shù)與冪函數(shù)在概念上的區(qū)別。
學(xué)生活動:①學(xué)生獨立思考并回憶指數(shù)的概念;②解釋這兩個問題中變量間的關(guān)系為什么構(gòu)成函數(shù),從而歸納指數(shù)函數(shù)的概念;③理清指數(shù)函數(shù)與冪函數(shù)在概念上的區(qū)別。
設(shè)計意圖:①引導(dǎo)學(xué)生結(jié)合指數(shù)的有關(guān)概念來歸納出指數(shù)函數(shù)的定義,并向?qū)W生指出指數(shù)函數(shù)的形式特點;②注意提示底數(shù)的取值范圍,這樣避免了學(xué)生對于底數(shù)a范圍分類的不清楚,也為研究指數(shù)函數(shù)的圖象做了“分類討論”的鋪墊。③將指數(shù)函數(shù)與冪函數(shù)在定義上進(jìn)行區(qū)別,加深了對指數(shù)函數(shù)概念的掌握。
(2)研究指數(shù)函數(shù)的圖象
教師活動:①給出兩個簡單的指數(shù)函數(shù) 和 ,并要求學(xué)生畫它們的圖象②在準(zhǔn)備好的小黑板上利用列表描點法規(guī)范地畫出這兩個指數(shù)函數(shù)的圖象③利用函數(shù)作圖器和幾何畫板作圖。
學(xué)生活動:①思考畫函數(shù)圖象的方法有哪些?②畫出這兩個簡單的指數(shù)函數(shù)圖象③讓學(xué)生利用計算器或計算機來畫。
設(shè)計意圖:讓學(xué)生動手作簡單的指數(shù)函數(shù)的圖象對深刻理解本節(jié)課的內(nèi)容有著一定的促進(jìn)作用,在學(xué)生完成基本作圖之后,教師再利用課前已列表、建立坐標(biāo)系的小黑板展示準(zhǔn)確的作圖方法,達(dá)到進(jìn)一步規(guī)范學(xué)生的作圖習(xí)慣的目的,然后借助“函數(shù)作圖器”或“幾何畫板”準(zhǔn)確作圖,既可以培養(yǎng)學(xué)生的學(xué)習(xí)興趣也可以使圖象更精確。
四、板書設(shè)計
考慮到板書在教學(xué)過程中發(fā)揮的功能,本節(jié)課我設(shè)計了由四個板塊構(gòu)成的板書,
說明;這冊新教材更突出了學(xué)生的生活數(shù)學(xué),從引入到應(yīng)用,都圍繞著生活數(shù)學(xué),對學(xué)生的學(xué)習(xí)積極性的培養(yǎng)起到了很好的作用。這節(jié)知識還提到了函數(shù)作圖器,相信它比幾何畫板更容易學(xué),學(xué)生對它更感興趣。
指數(shù)函數(shù)教案 篇4
指數(shù)函數(shù)的圖象及其性質(zhì)
一、教學(xué)內(nèi)容分析
本節(jié)課是 《普通高中課程標(biāo)準(zhǔn)實驗教科書·數(shù)學(xué)(1)》(人教A版)第二章第一節(jié)第二課(2.1.2)《指數(shù)函數(shù)及其性質(zhì)》。根據(jù)我所任教的學(xué)生的實際情況,我將《指數(shù)函數(shù)及其性質(zhì)》劃分為兩節(jié)課(探究圖象及其性質(zhì),指數(shù)函數(shù)及其性質(zhì)的應(yīng)用),這是第一節(jié)課“探究圖象及其性質(zhì)”。指數(shù)函數(shù)是重要的基本初等函數(shù)之一,作為常見函數(shù),它不僅是今后學(xué)習(xí)對數(shù)函數(shù)和冪函數(shù)的基礎(chǔ),同時在生活及生產(chǎn)實際中有著廣泛的應(yīng)用,所以指數(shù)函數(shù)應(yīng)重點研究。
二、學(xué)生學(xué)習(xí)況情分析
指數(shù)函數(shù)是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進(jìn)行研究的,是學(xué)生對函數(shù)概念及性質(zhì)的第一次應(yīng)用。教材在之前的學(xué)習(xí)中給出了兩個實際例子(GDP的增長問題和炭14的衰減問題),已經(jīng)讓學(xué)生感受到指數(shù)函數(shù)的實際背景,但這兩個例子背景對于學(xué)生來說有些陌生。本節(jié)課先設(shè)計一個看似簡單的問題,通過超出想象的結(jié)果來激發(fā)學(xué)生學(xué)習(xí)新知的興趣和欲望。
三、設(shè)計思想
1.函數(shù)及其圖象在高中數(shù)學(xué)中占有很重要的位置。如何突破這個即重要又抽象的內(nèi)容,其實質(zhì)就是將抽象的符號語言與直觀的圖象語言有機的結(jié)合起來,通過具有一定思考價值的問題,激發(fā)學(xué)生的求知欲望――持久的好奇心。我們知道,函數(shù)的表示法有三種:列表法、圖象法、解析法,以往的函數(shù)的學(xué)習(xí)大多只關(guān)注到圖象的作用,這其實只是借助了圖象的直觀性,只是從一個角度看函數(shù),是片面的。本節(jié)課,力圖讓學(xué)生從不同的角度去研究函數(shù),對函數(shù)進(jìn)行一個全方位的研究,并通過對比總結(jié)得到研究的方法,讓學(xué)生去體會這種的研究方法,以便能將其遷移到其他函數(shù)的研究中去。
2.結(jié)合參加我校組織的兩個課題《對話——反思——選擇》和《新課程實施中同伴合作和師生互動研究》的研究,在本課的教學(xué)中我努力實踐以下兩點:
⑴.在課堂活動中通過同伴合作、自主探究培養(yǎng)學(xué)生積極主動、勇于探索的學(xué)習(xí)方式。
⑵.在教學(xué)過程中努力做到生生對話、師生對話,并且在對話之后重視體會、總結(jié)、反思,力圖在培養(yǎng)和發(fā)展學(xué)生數(shù)學(xué)素養(yǎng)的同時讓學(xué)生掌握一些學(xué)習(xí)、研究數(shù)學(xué)的方法。
通過課堂教學(xué)活動向?qū)W生滲透數(shù)學(xué)思想方法。
四、教學(xué)目標(biāo)
根據(jù)任教班級學(xué)生的實際情況,本節(jié)課我確定的教學(xué)目標(biāo)是:理解指數(shù)函數(shù)的概念,能畫出具體指數(shù)函數(shù)的圖象;在理解指數(shù)函數(shù)概念、性質(zhì)的基礎(chǔ)上,能應(yīng)用所學(xué)知識解決簡單的數(shù)學(xué)問題;在教學(xué)過程中通過類比,回顧歸納從圖象和解析式這兩種不同角度研究函數(shù)性質(zhì)的數(shù)學(xué)方法,加深對指數(shù)函數(shù)的認(rèn)識,讓學(xué)生在數(shù)學(xué)活動中感受數(shù)學(xué)思想方法之美、體會數(shù)學(xué)思想方法之重要;同時通過本節(jié)課的學(xué)習(xí),使學(xué)生獲得研究函數(shù)的規(guī)律和方法;培養(yǎng)學(xué)生主動學(xué)習(xí)、合作交流的意識。
五、教學(xué)重點與難點
教學(xué)重點:指數(shù)函數(shù)的概念、圖象和性質(zhì)。
教學(xué)難點:對底數(shù)的分類,如何由圖象、解析式歸納指數(shù)函數(shù)的性質(zhì)。
六、教學(xué)過程:
(一)創(chuàng)設(shè)情景、提出問題(約3分鐘)師:如果讓1號同學(xué)準(zhǔn)備2粒米,2號同學(xué)準(zhǔn)備4粒米,3號同學(xué)準(zhǔn)備6粒米,4號同學(xué)準(zhǔn)備8粒米,5號同學(xué)準(zhǔn)備10粒米,??按這樣的規(guī)律,51號同學(xué)該準(zhǔn)備多少米?
學(xué)生回答后教師公布事先估算的數(shù)據(jù):51號同學(xué)該準(zhǔn)備102粒米,大約5克重。師:如果改成讓1號同學(xué)準(zhǔn)備2粒米,2號同學(xué)準(zhǔn)備4粒米,3號同學(xué)準(zhǔn)備8粒米,4號同學(xué)準(zhǔn)備16粒米,5號同學(xué)準(zhǔn)備32粒米,??按這樣的規(guī)律,51號同學(xué)該準(zhǔn)備多少米?
【學(xué)情預(yù)設(shè)】學(xué)生可能說很多或能算出具體數(shù)目
師:大家能否估計一下,51號同學(xué)該準(zhǔn)備的米有多重?
教師公布事先估算的數(shù)據(jù):51號同學(xué)所需準(zhǔn)備的大米約重1.2億噸。
師:1.2億噸是一個什么概念?根據(jù)2007年9月13日美國農(nóng)業(yè)部發(fā)布的最新數(shù)據(jù)顯示,2007~2008我國大米產(chǎn)量預(yù)計為1.27億噸。這就是說51號同學(xué)所需準(zhǔn)備的大米相當(dāng)于2007~2008我國全年的大米產(chǎn)量!【設(shè)計意圖】用一個看似簡單的實例,為引出指數(shù)函數(shù)的概念做準(zhǔn)備;同時通過與一次函數(shù)的對比讓學(xué)生感受指數(shù)函數(shù)的爆炸增長,激發(fā)學(xué)生學(xué)習(xí)新知的興趣和欲望。
在以上兩個問題中,每位同學(xué)所需準(zhǔn)備的米粒數(shù)用y表示,每位同學(xué)的座號數(shù)用
x表示,y與x之間的關(guān)系分別是什么?
學(xué)生很容易得出y?2x(x?N*)和y?2x(x?N*)
【學(xué)情預(yù)設(shè)】學(xué)生可能會漏掉x的取值范圍,教師要引導(dǎo)學(xué)生思考具體問題中x的范圍。
(二)師生互動、探究新知
1.指數(shù)函數(shù)的定義
老師:其實,在本章開頭的問題2中,也有一個與y?2類似的關(guān)系x*y?1.073(x?N,x?20)式
x⑴讓學(xué)生思考討論以下問題(問題逐個給出):(約3分鐘)
x*x*y?2(x?N)y?1.073(x?N,x?20)這兩個解析式有什么共同特征?
①和②它們能否構(gòu)成函數(shù)?
③是我們學(xué)過的哪個函數(shù)?如果不是,你能否根據(jù)該函數(shù)的特征給它起個恰當(dāng)?shù)拿郑?/p>
【設(shè)計意圖】 引導(dǎo)學(xué)生從具體問題、實際問題中抽象出數(shù)學(xué)模型。學(xué)生對比已經(jīng)學(xué)過一次函數(shù)、反比例函數(shù)、二次函數(shù),發(fā)現(xiàn)xy2?,xy073.1?是一個新的函數(shù)模型,再讓學(xué)生給這個新的函數(shù)命名,由此激發(fā)學(xué)生的學(xué)習(xí)興趣。
引導(dǎo)學(xué)生觀察,兩個函數(shù)中,底數(shù)是常數(shù),指數(shù)是自變量。
老師:如果可以用字母a代替其中的底數(shù),那么上述兩式就可以表示成xay?的形式。自變量在指數(shù)位置,所以我們把它稱作指數(shù)函數(shù)。
⑵讓學(xué)生討論并給出指數(shù)函數(shù)的定義。(約6分鐘)
對于底數(shù)的分類,可將問題分解為:
a??2,x?2則在實數(shù)范圍內(nèi)相應(yīng)的函數(shù)值不存 ①若a?0會有什么問題?(如
1在)
②若a?0 會有什么問題?(對于x?0,a都無意義)
③若a?1又會怎么樣?(1無論x取何值,它總是1,對它沒有研究的必要.)
老師:為了避免上述各種情況的發(fā)生,所以規(guī)定a?0且a?1。在這里要注意生生之間、師生之間的對話。
xx【學(xué)情預(yù)設(shè)】
①若學(xué)生從教科書中已經(jīng)看到指數(shù)函數(shù)的定義,教師可以問,為什么要求a?0且a?1。a?1為什么不行?
xy?a②若學(xué)生只給出,教師可以引導(dǎo)學(xué)生通過類比一次函數(shù)y?kx?b(k?0)、反比例函數(shù)
y?k(k?0)2y?ax?bx?c(a?0)中x,二次函數(shù)的限制條件,思
考指數(shù)函數(shù)中底數(shù)的限制條件。【設(shè)計意圖 】
①對指數(shù)函數(shù)中底數(shù)限制條件的討論可以引導(dǎo)學(xué)生研究一個函數(shù)應(yīng)注意它的實際意義和研究價值;
②討論出10?aa,且?,也為下面研究性質(zhì)時對底數(shù)的分類做準(zhǔn)備。
接下來教師可以問學(xué)生是否明確了指數(shù)函數(shù)的定義,能否寫出一兩個指數(shù)函數(shù)?教師也在黑板上寫出一些解析式讓學(xué)生判斷,如y?2?3x,y?32x,y??2x。
【學(xué)情預(yù)設(shè)】學(xué)生可能只是關(guān)注指數(shù)是否是變量,而不考慮其它的?!驹O(shè)計意圖 】加深學(xué)生對指數(shù)函數(shù)定義和呈現(xiàn)形式的理解。
2.指數(shù)函數(shù)性質(zhì)
⑴提出兩個問題(約3分鐘)
①目前研究函數(shù)一般可以包括哪些方面;
【設(shè)計意圖】讓學(xué)生在研究指數(shù)函數(shù)時有明確的目標(biāo):函數(shù)三個要素(對應(yīng)法則、定義域、值域、)和函數(shù)的基本性質(zhì)(單調(diào)性、奇偶性)。
②研究函數(shù)(比如今天的指數(shù)函數(shù))可以怎么研究?用什么方法、從什么角度研究?
可以從圖象和解析式這兩個不同的角度進(jìn)行研究;可以從具體的函數(shù)入手(即底數(shù)取一些數(shù)值);當(dāng)然也可以用列表法研究函數(shù),只是今天我們所學(xué)的函數(shù)用列表法不易得出此函數(shù)的性質(zhì),可見具體問題要選擇適當(dāng)?shù)姆椒▉硌芯坎拍苁掳牍Ρ?!還可以借助一些數(shù)學(xué)思想方法來思考。
【設(shè)計意圖】
①讓學(xué)生知道圖象法不是研究函數(shù)的唯一方法,由此引導(dǎo)學(xué)生可以從圖象和解析式(包括列表)不同的角度對函數(shù)進(jìn)行研究;
②對學(xué)生進(jìn)行數(shù)學(xué)思想方法(從一般到特殊再到一般、數(shù)形結(jié)合、分類討論)的有機滲透。
⑵分組活動,合作學(xué)習(xí)(約8分鐘)
老師:好,下面我們就從圖象和解析式這兩個不同的角度對指數(shù)函數(shù)進(jìn)行研究。
①讓學(xué)生分為兩大組,一組從解析式的角度入手(不畫圖)研究指數(shù)函數(shù),一組借助電腦通過幾何畫板的操作從圖象的角度入手研究指數(shù)函數(shù);
②每一大組再分為若干合作小組(建議4人一小組);
③每組都將研究所得到的結(jié)論或成果寫出來以便交流。
【學(xué)情預(yù)設(shè)】考慮到各組的水平可能有所不同,教師應(yīng)巡視,對個別組可做適當(dāng)?shù)闹笇?dǎo)。
【設(shè)計意圖】通過自主探索、合作學(xué)習(xí)不僅讓學(xué)生充當(dāng)學(xué)習(xí)的主人更可加深對所得到結(jié)論的理解。
⑶交流、總結(jié)(約10~12分鐘)師:下面我們開一個成果展示會!
教師在巡視過程中應(yīng)關(guān)注各組的研究情況,此時可選一些有代表性的小組上臺展示研究成果,并對比從兩個角度入手研究的結(jié)果。
教師可根據(jù)上課的實際情況對學(xué)生發(fā)現(xiàn)、得出的結(jié)論進(jìn)行適當(dāng)?shù)狞c評或要求學(xué)生分析。這里除了研究定義域、值域、單調(diào)性、奇偶性外,再引導(dǎo)學(xué)生注意是否還有其它性質(zhì)?
師:各組在研究過程中除了定義域、值域、單調(diào)性、奇偶性外是否還得到一些有價值
1y?ax與y?()xa的圖象關(guān)于y軸對稱)的副產(chǎn)品呢?(如過定點(0,1),【學(xué)情預(yù)設(shè)】
①首先選一從解析式的角度研究的小組上臺匯報;
②對于從圖象的角度研究的,可先選沒對底數(shù)進(jìn)行分類的小組上臺匯報;
③問其它小組有沒不同的看法,上臺補充,讓學(xué)生對底數(shù)進(jìn)行分類,引導(dǎo)學(xué)生思考哪個量決定著指數(shù)函數(shù)的單調(diào)性,以什么為分界,教師可以馬上通過電腦操作看函數(shù)圖象的變化。
【設(shè)計意圖】
①函數(shù)的表示法有三種:列表法、圖象法、解析法,通過這個活動,讓學(xué)生知道研究一個具體的函數(shù)可以也應(yīng)該從多個角度入手,從圖象角度研究只是能直觀的看出函數(shù)的一些性質(zhì),而具體的性質(zhì)還是要通過對解析式的論證;特別是定義域、值域更是可以直接從解析式中得到的。
②讓學(xué)生上臺匯報研究成果,讓學(xué)生有種成就感,同時還可訓(xùn)練其對數(shù)學(xué)問題的分析和表達(dá)能力,培養(yǎng)其數(shù)學(xué)素養(yǎng);
③對指數(shù)函數(shù)的底數(shù)進(jìn)行分類是本課的一個難點,讓學(xué)生在討論中自己解決分類問題使該難點的突破顯得自然。
師:從圖象入手我們很容易看出函數(shù)的單調(diào)性、奇偶性、以及過定點(0,1),但定義域、值域卻不可確定;從解析式(結(jié)合列表)可以很容易得出函數(shù)的定義域、值域,但對底數(shù)的分類卻很難想到。
xy?a教師通過幾何畫板中改變參數(shù)a的值,追蹤的圖象,在變化過程中,讓全體學(xué)生進(jìn)一步觀察指數(shù)函數(shù)的變化規(guī)律。
師生共同總結(jié)指數(shù)函數(shù)的圖象和性質(zhì),教師可以邊總結(jié)邊板書。
(三)鞏固訓(xùn)練、提升總結(jié)(約8分鐘)
1.例:已知指數(shù)函數(shù)的值。
解:因為f(x)的圖象經(jīng)過點(3,?)所以f(3)??
3a??,解得a?3? 即f(x)?ax(a?0且a?1)的圖象經(jīng)過點(3,?),求f(0),f(1),f(?3)?于是 f(x)??x3
13? 所以?f(0)?1,f(1)??,f(?3)?1?.【設(shè)計意圖】通過本題加深學(xué)生對指數(shù)函數(shù)的理解。
師:根據(jù)本題,你能說出確定一個指數(shù)函數(shù)需要什么條件嗎?
師:從方程思想來看,求指數(shù)函數(shù)就是確定底數(shù),因此只要一個條件,即布列一個方程就可以了。
【設(shè)計意圖】讓學(xué)生明確底數(shù)是確定指數(shù)函數(shù)的要素,同時向?qū)W生滲透方程的思想。
?1?y?3和y????3? 的大致圖2.練習(xí):⑴在同一平面直角坐標(biāo)系中畫出
xx象,并說出這兩個函數(shù)的性質(zhì);
⑵求下列函數(shù)的定義域: ?
y?2x?21??y????2? ?
1x
3.老師:通過本節(jié)課的學(xué)習(xí),你對指數(shù)函數(shù)有什么認(rèn)識?你有什么收獲?
【學(xué)情預(yù)設(shè)】學(xué)生可能只是把指數(shù)函數(shù)的性質(zhì)總結(jié)一下,教師要引導(dǎo)學(xué)生談?wù)剬瘮?shù)研究的學(xué)習(xí),即怎么研究一個函數(shù)。【設(shè)計意圖】
①讓學(xué)生再一次復(fù)習(xí)對函數(shù)的研究方法(可以從也應(yīng)該從多個角度進(jìn)行),讓學(xué)生體會本課的研究方法,以便能將其遷移到其他函數(shù)的研究中去。
②總結(jié)本節(jié)課中所用到的數(shù)學(xué)思想方法。
③強調(diào)各種研究數(shù)學(xué)的方法之間有區(qū)別又有聯(lián)系,相互作用,才能融會貫通。
4.作業(yè):課本59頁習(xí)題2.1A組第5題。
七、教學(xué)反思
1.本節(jié)課改變了以往常見的函數(shù)研究方法,讓學(xué)生從不同的角度去研究函數(shù),對函數(shù)進(jìn)行一個全方位的研究,不僅僅是通過對比總結(jié)得到指數(shù)函數(shù)的性質(zhì),更重要的是讓學(xué)生體會到對函數(shù)的研究方法,以便能將其遷移到其他函數(shù)的研究中去,教師可以真正做到“授之以漁”而非“授之以魚”。
2.教學(xué)中借助信息技術(shù)可以彌補傳統(tǒng)教學(xué)在直觀感、立體感和動態(tài)感方面的不足,可以很容易的化解教學(xué)難點、突破教學(xué)重點、提高課堂效率,本課使用幾何畫板可以動態(tài)地演示出指數(shù)函數(shù)的底數(shù)的動態(tài)過程,讓學(xué)生直觀觀察底數(shù)對指數(shù)函數(shù)單調(diào)性的影響。
3.在教學(xué)過程中不斷向?qū)W生滲透數(shù)學(xué)思想方法,讓學(xué)生在活動中感受數(shù)學(xué)思想方法之美、體會數(shù)學(xué)思想方法之重要,部分學(xué)生還能自覺得運用這些數(shù)學(xué)思想方法去分析、思考問題。
指數(shù)函數(shù)教案 篇5
我本節(jié)課說課的內(nèi)容是高中數(shù)學(xué)必修一第三章第一節(jié)第二課時——指數(shù)函數(shù)的定義、圖像及性質(zhì)。我將嘗試運用新課標(biāo)的理念指導(dǎo)本節(jié)課的教學(xué),新課標(biāo)指出,學(xué)生是教學(xué)的主體,教師的教應(yīng)本著從學(xué)生的認(rèn)知規(guī)律出發(fā),以學(xué)生活動為主線,在原有知識的基礎(chǔ)上,建構(gòu)新的知識體系。我將以此為基礎(chǔ),從教材分析,教學(xué)目標(biāo)分析,教法學(xué)法分析和教學(xué)過程分析這四個方面加以說明。
一、教材分析
1、教材的地位和作用:
函數(shù)是高中數(shù)學(xué)學(xué)習(xí)的重點和難點,函數(shù)的思想貫穿于整個高中數(shù)學(xué)之中。本節(jié)課是學(xué)生在已掌握了函數(shù)的一般性質(zhì)和簡單的指數(shù)運算的基礎(chǔ)上,進(jìn)一步研究指數(shù)函數(shù)及指數(shù)函數(shù)的圖像和性質(zhì),同時也為今后研究對數(shù)函數(shù)及其性質(zhì)打下堅實的基礎(chǔ)。因此本節(jié)課內(nèi)容十分重要,它對知識起著承上啟下的作用。
2、教學(xué)的重點和難點:
根據(jù)這節(jié)課的內(nèi)容特點及學(xué)生的實際情況,我將本節(jié)課教學(xué)重點定為指數(shù)函數(shù)的圖像、性質(zhì)及應(yīng)用,難點定為指數(shù)函數(shù)性質(zhì)的發(fā)現(xiàn)過程及指數(shù)函數(shù)與底的關(guān)系。
二、教學(xué)目標(biāo)分析
基于對教材的理解和分析,我制定了以下教學(xué)目標(biāo):
1、理解指數(shù)函數(shù)的定義,掌握指數(shù)函數(shù)圖像、性質(zhì)及其簡單應(yīng)用。
2、通過教學(xué)培養(yǎng)學(xué)生觀察、分析、歸納等思維能力,體會數(shù)形結(jié)合思想和分類討論思想,增強學(xué)生識圖用圖的能力。
3、培養(yǎng)學(xué)生對知識的嚴(yán)謹(jǐn)科學(xué)態(tài)度和辯證唯物主義觀點。
三、教法學(xué)法分析
1、學(xué)情分析
教學(xué)對象是剛進(jìn)入高中的學(xué)生,雖然具有一定的分析問題和解決問題的能力,邏輯思維能力也逐步形成,但由于年齡的原因,思維盡管活躍敏捷,卻缺乏冷靜深刻。因此思考問題片面不嚴(yán)謹(jǐn)。
2、教法分析:基于以上學(xué)情分析,我采用先學(xué)生討論,再教師講授教學(xué)方法。一方面培養(yǎng)學(xué)生的觀察、分析、歸納等思維能力。另一方面用教師的講授來糾正由于學(xué)生思維過分活躍而走入的誤區(qū),和彌補知識的不足,達(dá)到能力與知識的雙重效果。
3、學(xué)法分析
讓學(xué)生仔細(xì)觀察書中給出的實際例子,使他們發(fā)現(xiàn)指數(shù)函數(shù)與現(xiàn)實生活息息相關(guān)。再根據(jù)高一學(xué)生愛動腦懶動手的特點,讓學(xué)生自己描點畫圖,畫出指數(shù)函數(shù)的圖像,繼而用自己的語言總結(jié)指數(shù)函數(shù)的性質(zhì),學(xué)生經(jīng)歷了探究的過程,培養(yǎng)探究能力和抽象概括的能力。
四、教學(xué)過程:
(一)創(chuàng)設(shè)情景
問題1:某種細(xì)胞分裂時,由1個分裂成2個,2個分裂成4個,……一個這樣的細(xì)胞分裂次后,得到的細(xì)胞分裂的個數(shù)與之間,構(gòu)成一個函數(shù)關(guān)系,能寫出與之間的函數(shù)關(guān)系式嗎?
學(xué)生回答:與之間的關(guān)系式,可以表示為。
問題2:折紙問題:讓學(xué)生動手折紙
學(xué)生回答:①對折的次數(shù)與所得的層數(shù)之間的關(guān)系,得出結(jié)論
②對折的次數(shù)與折后面積之間的關(guān)系(記折前紙張面積為1),得出結(jié)論
問題3:《莊子。天下篇》中寫到“一尺之棰,日取其半,萬世不竭”。
學(xué)生回答:寫出取次后,木棰的剩留量與與的函數(shù)關(guān)系式。
設(shè)計意圖:
(1)讓學(xué)生在問題的情景中發(fā)現(xiàn)問題,遇到挑戰(zhàn),激發(fā)斗志,又引導(dǎo)學(xué)生在簡單的具體問題中抽象出共性,體驗從簡單到復(fù)雜,從特殊到一般的認(rèn)知規(guī)律。從而引入兩種常見的指數(shù)函數(shù)①②
(2)讓學(xué)生感受我們生活中存在這樣的指數(shù)函數(shù)模型,便于學(xué)生接
受指數(shù)函數(shù)的形式。
(二)導(dǎo)入新課
引導(dǎo)學(xué)生觀察,三個函數(shù)中,底數(shù)是常數(shù),指數(shù)是自變量。
設(shè)計意圖:充實實例,突出底數(shù)a的取值范圍,讓學(xué)生體會到數(shù)學(xué)來源于生產(chǎn)生活實際。函數(shù)分別以的數(shù)為底,加深對定義的感性認(rèn)識,為順利引出指數(shù)函數(shù)定義作鋪墊。
(三)新課講授
1.指數(shù)函數(shù)的定義
一般地,函數(shù)叫做指數(shù)函數(shù),其中是自變量,函數(shù)的定義域是R。
的含義:
設(shè)計意圖:為按兩種情況得出指數(shù)函數(shù)性質(zhì)作鋪墊。若學(xué)生回答不合適,引導(dǎo)學(xué)生用區(qū)間表示:
問題:指數(shù)函數(shù)定義中,為什么規(guī)定“”如果不這樣規(guī)定會出現(xiàn)什么情況?
設(shè)計意圖:教師首先提出問題:為什么要規(guī)定底數(shù)大于0且不等于1呢?這是本節(jié)的一個難點,為突破難點,采取學(xué)生自由討論的形式,達(dá)到互相啟發(fā),補充,活躍氣氛,激發(fā)興趣的目的。
對于底數(shù)的分類,可將問題分解為:
(1)若會有什么問題?(如,則在實數(shù)范圍內(nèi)相應(yīng)的函數(shù)值不存在)
(2)若會有什么問題?(對于,都無意義)
(3)若又會怎么樣?(無論取何值,它總是1,對它沒有研究的必要.)
師:為了避免上述各種情況的發(fā)生,所以規(guī)定。
在這里要注意生生之間、師生之間的對話。
設(shè)計意圖:認(rèn)識清楚底數(shù)a的特殊規(guī)定,才能深刻理解指數(shù)函數(shù)的定義域是R;并為學(xué)習(xí)對數(shù)函數(shù),認(rèn)識指數(shù)與對數(shù)函數(shù)關(guān)系打基礎(chǔ)。
教師還要提醒學(xué)生指數(shù)函數(shù)的定義是形式定義,必須在形式上一模一樣才行,然后把問題引向深入。
1:指出下列函數(shù)那些是指數(shù)函數(shù):
2:若函數(shù)是指數(shù)函數(shù),則
3:已知是指數(shù)函數(shù),且,求函數(shù)的解析式。
設(shè)計意圖:加深學(xué)生對指數(shù)函數(shù)定義和呈現(xiàn)形式的理解。
2.指數(shù)函數(shù)的圖像及性質(zhì)
在同一平面直角坐標(biāo)系內(nèi)畫出下列指數(shù)函數(shù)的圖象
畫函數(shù)圖象的步驟:列表、描點、連線
思考如何列表取值?
教師與學(xué)生共同作出圖像。
設(shè)計意圖:在理解指數(shù)函數(shù)定義的基礎(chǔ)上掌握指數(shù)函數(shù)的圖像與性質(zhì),是本節(jié)的重點。關(guān)鍵在于弄清底數(shù)a對于函數(shù)值變化的影響。對于時函數(shù)值變化的不同情況,學(xué)生往往容易混淆,這是教學(xué)中的一個難點。為此,必須利用圖像,數(shù)形結(jié)合。教師親自板演,學(xué)生親自在課前準(zhǔn)備好的坐標(biāo)系里畫圖,而不是采用幾何畫板直接得到圖像,目的是使學(xué)生更加信服,加深印象,并為以后畫圖解題,采用數(shù)形結(jié)合思想方法打下基礎(chǔ)。
利用幾何畫板演示函數(shù)的圖象,觀察分析圖像的共同特征。由特殊到一般,得出指數(shù)函數(shù)的圖象特征,進(jìn)一步得出圖象性質(zhì):
教師組織學(xué)生結(jié)合圖像討論指數(shù)函數(shù)的性質(zhì)。
設(shè)計意圖:這是本節(jié)課的重點和難點,要充分調(diào)動學(xué)生的積極性、主動性,發(fā)揮他們的潛能,盡量由學(xué)生自主得出性質(zhì),以便能夠更深刻的記憶、更熟練的運用。
師生共同總結(jié)指數(shù)函數(shù)的性質(zhì),教師邊總結(jié)邊板書。
特別地,函數(shù)值的分布情況如下:
設(shè)計意圖:再次強調(diào)指數(shù)函數(shù)的單調(diào)性與底數(shù)a的關(guān)系,并具體分析了函數(shù)值的分布情況,深刻理解指數(shù)函數(shù)值域情況。
(四)鞏固與練習(xí)
例1:比較下列各題中兩值的大小
教師引導(dǎo)學(xué)生觀察這些指數(shù)值的特征,思考比較大小的方法。
(1)(2)兩題底相同,指數(shù)不同,(3)(4)兩題可化為同底的,可以利用函數(shù)的單調(diào)性比較大小。
(5)題底不同,指數(shù)相同,可以利用函數(shù)的圖像比較大小。
(6)題底不同,指數(shù)也不同,可以借助中介值比較大小。
例2:已知下列不等式,比較的大小:
設(shè)計意圖:這是指數(shù)函數(shù)性質(zhì)的簡單應(yīng)用,使學(xué)生在解題過程中加深對指數(shù)函數(shù)的圖像及性質(zhì)的理解和記憶。
(五)課堂小結(jié)
通過本節(jié)課的學(xué)習(xí),你學(xué)到了哪些知識?
你又掌握了哪些數(shù)學(xué)思想方法?
你能將指數(shù)函數(shù)的學(xué)習(xí)與實際生活聯(lián)系起來嗎?
設(shè)計意圖:讓學(xué)生在小結(jié)中明確本節(jié)課的學(xué)習(xí)內(nèi)容,強化本節(jié)課的學(xué)習(xí)重點,并為后續(xù)學(xué)習(xí)打下基礎(chǔ)。
(六)布置作業(yè)
1、練習(xí)B組第2題;習(xí)題3-1A組第3題
2、A先生從今天開始每天給你10萬元,而你承擔(dān)如下任務(wù):第一天給A先生1元,第二天給A先生2元,,第三天給A先生4元,第四天給A先生8元,依次下去,…,A先生要和你簽定15天的合同,你同意嗎?又A先生要和你簽定30天的合同,你能簽這個合同嗎?
3、觀察指數(shù)函數(shù)的圖象,比較的大小。
設(shè)計意圖:課后思考的安排,激發(fā)學(xué)生的學(xué)習(xí)興趣,主要為學(xué)有余力的學(xué)生準(zhǔn)備的。并為下一節(jié)課講授指數(shù)函數(shù)圖像隨底數(shù)a變化規(guī)律作鋪墊。
板書設(shè)計:
指數(shù)函數(shù)及其性質(zhì)
一.定義剖析:二.圖像及其性質(zhì)三.例題
(1)的常數(shù)1.圖像例1
(2)系數(shù)是12.性質(zhì)例2
(3)指數(shù)位置只能是自變量
指數(shù)函數(shù)教案 篇6
指數(shù)函數(shù)課件
在數(shù)學(xué)中,指數(shù)函數(shù)是一種常見的函數(shù)類型,其以指數(shù)形式描述了數(shù)的增長或衰減規(guī)律。指數(shù)函數(shù)的研究在數(shù)學(xué)教育中占有重要地位,因為它不僅廣泛應(yīng)用于物理、經(jīng)濟(jì)等領(lǐng)域,還是解決實際問題的有力工具。本文將詳細(xì)介紹指數(shù)函數(shù)的基本概念、特性及應(yīng)用,并結(jié)合生動的例子進(jìn)行解釋。
指數(shù)函數(shù)是以自然常數(shù)e為底的函數(shù),可以表示為f(x) = a^x。其中,a是底數(shù),也就是指數(shù)函數(shù)的底,x是指數(shù)。指數(shù)函數(shù)的圖像呈現(xiàn)出特殊的形狀,具有快速增長或緩慢衰減的特點。下面我們將分析指數(shù)函數(shù)的一些重要特性。
首先,指數(shù)函數(shù)的定義域是實數(shù)集R,其值域為正實數(shù)集(0,+∞)。這意味著指數(shù)函數(shù)的圖像在x軸的左側(cè)不會觸及,且在y軸的正半軸上逐漸增長。
其次,當(dāng)?shù)讛?shù)a大于1時,指數(shù)函數(shù)呈現(xiàn)出遞增的趨勢。也就是說,隨著指數(shù)x的增加,函數(shù)的值也隨之增大。例如,f(x) = 2^x表示底數(shù)為2的指數(shù)函數(shù),當(dāng)x從負(fù)無窮大逐漸增加到正無窮大時,f(x)的值也呈指數(shù)級的增長。
相反地,當(dāng)?shù)讛?shù)a位于(0, 1)之間時,指數(shù)函數(shù)呈現(xiàn)出遞減趨勢。這意味著隨著指數(shù)x的增加,函數(shù)的值逐漸減小。例如,f(x) = (1/2)^x表示底數(shù)為1/2的指數(shù)函數(shù),當(dāng)x從負(fù)無窮大逐漸增加到正無窮大時,f(x)的值也以指數(shù)形式衰減。
指數(shù)函數(shù)的另一個重要特性是對稱性。當(dāng)?shù)讛?shù)a大于1時,指數(shù)函數(shù)f(x) = a^x關(guān)于y軸對稱;當(dāng)?shù)讛?shù)a位于(0, 1)之間時,指數(shù)函數(shù)f(x) = a^x關(guān)于x軸對稱。這種對稱性使得指數(shù)函數(shù)在圖像上呈現(xiàn)出優(yōu)美的曲線。
指數(shù)函數(shù)的應(yīng)用廣泛,包括金融、人口學(xué)、物理學(xué)等領(lǐng)域。在金融領(lǐng)域中,指數(shù)函數(shù)常用于計算復(fù)利的增長。例如,一筆本金以每年5%的復(fù)利增長,我們可以使用指數(shù)函數(shù)來計算未來幾年的增長情況。在人口學(xué)中,指數(shù)函數(shù)用于描述人口增長或衰減的規(guī)律。而在物理學(xué)中,指數(shù)函數(shù)常用于描述放射性衰變的速度。
接下來,我們通過一些生動的例子來說明指數(shù)函數(shù)的應(yīng)用。
假設(shè)有一家公司每年銷售額增長10%,現(xiàn)在計算未來五年的銷售額。我們可以使用指數(shù)函數(shù)來解決這個問題。設(shè)初始銷售額為100萬元,我們可以用指數(shù)函數(shù)f(x) = (1.1)^x來表示每年的銷售額。將x取值從1到5,分別計算出五年的銷售額。結(jié)果顯示,銷售額分別為100萬元、121萬元、146.41萬元、177.16萬元和214.36萬元。
另一個例子是放射性衰變的速度。假設(shè)一個放射性物質(zhì)的半衰期為5天,初始含量為100克,我們可以使用指數(shù)函數(shù)f(x) = 100 * (1/2)^(x/5)來描述衰變的速度。其中,x表示時間,當(dāng)x取值從0到10時,可以計算得到不同時間點的放射性物質(zhì)的含量。結(jié)果顯示,經(jīng)過10天后,放射性物質(zhì)的含量約為3.125克。
綜上所述,指數(shù)函數(shù)在數(shù)學(xué)教育中扮演著重要的角色。通過學(xué)習(xí)指數(shù)函數(shù)的基本概念、特性及應(yīng)用,我們能夠更好地理解數(shù)學(xué)中的指數(shù)規(guī)律,并能夠應(yīng)用于解決各種實際問題。無論是在金融領(lǐng)域、人口學(xué)領(lǐng)域還是物理學(xué)領(lǐng)域,指數(shù)函數(shù)都提供了強大的工具,幫助我們更好地理解和分析現(xiàn)象。希望通過本文的介紹,讀者們能對指數(shù)函數(shù)有更深入的了解,并在實際應(yīng)用中加以運用。
指數(shù)函數(shù)教案 篇7
高一數(shù)學(xué)指數(shù)函數(shù)教案:教學(xué)目標(biāo)
1.使學(xué)生掌握指數(shù)函數(shù)的概念,圖象和性質(zhì).
(1)能根據(jù)定義判斷形如什么樣的函數(shù)是指數(shù)函數(shù),了解對底數(shù)的限制條件的合理性,明確指數(shù)函數(shù)的定義域.
(2)能在基本性質(zhì)的指導(dǎo)下,用列表描點法畫出指數(shù)函數(shù)的圖象,能從數(shù)形兩方面認(rèn)識指數(shù)函數(shù)的性質(zhì).
(3)能利用指數(shù)函數(shù)的性質(zhì)比較某些冪形數(shù)的大小,會利用指數(shù)函數(shù)的圖象畫出形如
的圖象.
2.通過對指數(shù)函數(shù)的概念圖象性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析歸納的能力,進(jìn)一步體會數(shù)形結(jié)合的思想方法.
3.通過對指數(shù)函數(shù)的研究,讓學(xué)生認(rèn)識到數(shù)學(xué)的應(yīng)用價值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.使學(xué)生善于從現(xiàn)實生活中數(shù)學(xué)的發(fā)現(xiàn)問題,解決問題.
高一數(shù)學(xué)指數(shù)函數(shù)教案:教學(xué)建議
高一數(shù)學(xué)指數(shù)函數(shù)教案:教材分析
(1)指數(shù)函數(shù)是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進(jìn)行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應(yīng)用,也是今后學(xué)習(xí)對數(shù)函數(shù)的基礎(chǔ),同時在生活及生產(chǎn)實際中有著廣泛的應(yīng)用,所以指數(shù)函數(shù)應(yīng)重點研究.
(2)本節(jié)的教學(xué)重點是在理解指數(shù)函數(shù)定義的基礎(chǔ)上掌握指數(shù)函數(shù)的圖象和性質(zhì).難點是對底數(shù)
在
和
時,函數(shù)值變化情況的區(qū)分.
(3)指數(shù)函數(shù)是學(xué)生完全陌生的一類函數(shù),對于這樣的函數(shù)應(yīng)怎樣進(jìn)行較為系統(tǒng)的理論研究是學(xué)生面臨的重要問題,所以從指數(shù)函數(shù)的研究過程中得到相應(yīng)的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學(xué)中要特別讓學(xué)生去體會研究的方法,以便能將其遷移到其他函數(shù)的研究.
高一數(shù)學(xué)指數(shù)函數(shù)教案:教法建議
(1)關(guān)于指數(shù)函數(shù)的定義按照課本上說法它是一種形式定義即解析式的特征必須是
的樣子,不能有一點差異,諸如
,
等都不是指數(shù)函數(shù).
(2)對底數(shù)
的限制條件的理解與認(rèn)識也是認(rèn)識指數(shù)函數(shù)的重要內(nèi)容.如果有可能盡量讓學(xué)生自己去研究對底數(shù),指數(shù)都有什么限制要求,教師再給予補充或用具體例子加以說明,因為對這個條件的認(rèn)識不僅關(guān)系到對指數(shù)函數(shù)的認(rèn)識及性質(zhì)的分類討論,還關(guān)系到后面學(xué)習(xí)對數(shù)函數(shù)中底數(shù)的認(rèn)識,所以一定要真正了解它的由來.
關(guān)于指數(shù)函數(shù)圖象的繪制,雖然是用列表描點法,但在具體教學(xué)中應(yīng)避免描點前的盲目列表計算,也應(yīng)避免盲目的連點成線,要把表列在關(guān)鍵之處,要把點連在恰當(dāng)之處,所以應(yīng)在列表描點前先把函數(shù)的性質(zhì)作一些簡單的討論,取得對要畫圖象的存在范圍,大致特征,變化趨勢的大概認(rèn)識后,以此為指導(dǎo)再列表計算,描點得圖象.
指數(shù)函數(shù)教案 篇8
尊敬的評委老師:
大家好,我是今天的5號考生,今天我說課的題目是《指數(shù)函數(shù)》。
總結(jié)語
為了更好的呈現(xiàn)我的教學(xué)思路,我將以教什么、怎么教以及為什么這么教為思路,具體從教材分析、教學(xué)目標(biāo)分析、學(xué)情分析、教法、學(xué)法以及教學(xué)過程等幾個方面展開我的說課。
教材分析
教材是課程標(biāo)準(zhǔn)的具體化,是課堂知識呈現(xiàn)的載體,對于教材的深入理解是上好一堂課前提。本課選自人教版,高中數(shù)學(xué)必修一第二章第六節(jié)。在漫長的高中數(shù)學(xué)學(xué)習(xí)的過程中,函數(shù)的學(xué)習(xí)貫穿始終。從教材的書寫邏輯上看,之前的教材內(nèi)容已經(jīng)對于函數(shù)的一般性質(zhì)進(jìn)行了排布。而本節(jié)課指數(shù)函數(shù)的學(xué)習(xí)則對接下來對數(shù)函數(shù)等復(fù)雜函數(shù)的深入學(xué)習(xí)奠定了堅實的基礎(chǔ)??梢哉f,指數(shù)函數(shù)的學(xué)習(xí)對于高中函數(shù)的學(xué)習(xí)起到了承上啟下的重要作用。
學(xué)情分析
新的學(xué)生觀告訴我們,我們要在課堂中充分發(fā)揮學(xué)生的主體地位,因此對于學(xué)生的情況了解也是十分重要的。從思維層面上看,高中的學(xué)生已經(jīng)具備了比較成熟的抽象邏輯思維能力,有著較強的理解力,這對于我們課堂的開展是十分有幫助的。而這個階段的學(xué)生好勝心比較強,容易產(chǎn)生負(fù)面情緒,這對于我們課堂的教學(xué)也帶來了一定的挑戰(zhàn)。從經(jīng)驗上看,在之前的學(xué)習(xí)中,學(xué)生已經(jīng)對于“指數(shù)”“函數(shù)”等概念有了深刻的認(rèn)識,為本節(jié)課程的開展提供了幫助,而指數(shù)函數(shù)相對比較抽象,對于學(xué)生的學(xué)習(xí)、老師的教授都提出了較高的要求,因此合理的教法學(xué)法選擇顯得尤為重要。
教學(xué)目標(biāo)
教學(xué)目標(biāo)是教育教學(xué)活動的出發(fā)點和依據(jù),結(jié)合新課改的思想和新課標(biāo)的要求,本節(jié)課我所制定的三維教學(xué)目標(biāo)如下:
知識與技能目標(biāo):掌握指數(shù)函數(shù)的概念,圖像性質(zhì);能夠利用指數(shù)函數(shù)的概念解決實際問題。
過程與方法目標(biāo):通過分組討論參與發(fā)現(xiàn)的過程,培養(yǎng)學(xué)生觀察,聯(lián)想,類比,猜測,歸納的能力。
情感態(tài)度與價值觀目標(biāo):通過教學(xué)互動,促進(jìn)師生情感,激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生的抽象概括,分析,綜合的能力,培養(yǎng)學(xué)生聯(lián)系觀點看問題,領(lǐng)會數(shù)學(xué)科學(xué)的應(yīng)用價值。
而本節(jié)課,我將重難點確立為:指數(shù)函數(shù)的圖像和性質(zhì),以及它與底數(shù)a的關(guān)系。
教學(xué)教法
正如蘇霍姆林斯基所說:只有能夠激發(fā)學(xué)生去進(jìn)行自我教育的教育,才是真正的教育。在滿足學(xué)習(xí)者需求的基礎(chǔ)之上,我將制定適合本階段學(xué)生的教法來展開教學(xué),以體現(xiàn)教師的主導(dǎo)性。分別以圖片展示、討論、講授、參與練習(xí)等相結(jié)合的方式進(jìn)行教學(xué)。同時我將采用誘思探究和自主學(xué)習(xí)相結(jié)合的方式,以激發(fā)學(xué)生的學(xué)習(xí)主動性,充分地體現(xiàn)學(xué)生的主體地位。
教學(xué)過程
以上所有的準(zhǔn)備都是為了更好的呈現(xiàn)我的課堂,下面來談一談我對于教學(xué)過程的設(shè)計。
首先創(chuàng)設(shè)情境,導(dǎo)入新課我將用電腦展示兩個實例:計算機價格下降問題和生物中細(xì)胞分裂的例子。我會請同學(xué)們仔細(xì)觀察并分組討論,分別寫出計算機價格y與經(jīng)過月份x的關(guān)系以及細(xì)胞個數(shù)y與分裂次數(shù)x的關(guān)系,用所學(xué)知識結(jié)合探究法,分析出指數(shù)函數(shù)底數(shù)討論的必要性以及分類方法。通過這樣的實例,可以很好地激發(fā)學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生思維的主動性,為接下來的學(xué)習(xí)做好準(zhǔn)備。
其次啟發(fā)誘導(dǎo),探求新知我會給出兩個簡單的指數(shù)函數(shù),并要求學(xué)生畫出它們的圖像,并在準(zhǔn)備好的小黑板上規(guī)范地畫出這兩個指數(shù)函數(shù)的圖像,同時板書出指數(shù)函數(shù)的性質(zhì)。同學(xué)們通過動手,促進(jìn)學(xué)生對本課內(nèi)容的理解學(xué)習(xí),并借助小黑板演示其規(guī)范性。利用多媒體將指數(shù)函數(shù)的圖像加以展示,利于觀察圖像總結(jié)所學(xué)知識的性質(zhì),也能對于接下來的知識點導(dǎo)入起到自然結(jié)合的作用。當(dāng)然學(xué)生通過我的引導(dǎo)交流討論會很快畫出兩個簡單的指數(shù)函數(shù),歸納出函數(shù)的性質(zhì)涉及方面,總結(jié)出它的性質(zhì)。
接著鞏固新知,反饋回授我會板書出例一及例二第一問,并介紹相關(guān)考古知識,本著實踐為主的原則,完成學(xué)生學(xué)習(xí):實踐到認(rèn)識再到實踐的過程。通過練習(xí)實現(xiàn)教師的再指導(dǎo)和學(xué)生的漸進(jìn)式提高。這個環(huán)節(jié)介紹的化學(xué)知識在考古中的應(yīng)用,這樣的設(shè)計既開拓了學(xué)生的視野,又為下一步學(xué)習(xí):計算分期付款的利率等問題埋下伏筆,因此學(xué)生能夠了解解題的規(guī)范步驟,并完成例題,拓展視野體會數(shù)學(xué)的應(yīng)用價值。緊接著我會帶領(lǐng)學(xué)生進(jìn)行歸納,總結(jié)升華我會將同學(xué)們進(jìn)行分組討論、探究,引導(dǎo)學(xué)生對指數(shù)函數(shù)的知識進(jìn)行梳理和深化認(rèn)知。知識與技能目標(biāo)設(shè)置分組pk機制,引導(dǎo)學(xué)生對課堂知識進(jìn)行分類討論、數(shù)形結(jié)合等數(shù)學(xué)方法的歸納。最后我會布置課后作業(yè)以幫助學(xué)生鞏固練習(xí),溫故而知新。
板書設(shè)計
當(dāng)然一堂完整的課程離不開簡潔明了的板書設(shè)計,我的板書設(shè)計如下:在黑板中間的正上方,我會寫下今天的課題:指數(shù)函數(shù),我會在黑板的中間擺上小黑板以展示其規(guī)范性。在黑板的左面,我會在練習(xí)過程中寫下今天練習(xí)的,計算步驟。黑板的右面,我會寫下例題一以及例題二的第一問。這樣的設(shè)計,可以幫助學(xué)生更好地學(xué)習(xí)本課的內(nèi)容。以上就是我所有的授課內(nèi)容,感謝各位老師的聆聽。
指數(shù)函數(shù)教案 篇9
一、說教材
◆教材的地位及前后聯(lián)系
本節(jié)課是《中等職業(yè)教育規(guī)劃教材數(shù)學(xué)》第一冊第四章第二節(jié)《指數(shù)函數(shù)》。本節(jié)課是學(xué)生在已掌握了函數(shù)的一般性質(zhì)之后系統(tǒng)學(xué)習(xí)的第一個函數(shù),通過學(xué)習(xí)可進(jìn)一步深化學(xué)生對函數(shù)概念的理解與認(rèn)識,使學(xué)生得到較系統(tǒng)的函數(shù)知識和研究函數(shù)的方法,也為今后進(jìn)一步研究函數(shù)的性質(zhì)特別是后面的對數(shù)函數(shù)打下堅實的基礎(chǔ),同時也培養(yǎng)了學(xué)生對函數(shù)的應(yīng)用意識。因此本課有十分重要地位和作用,它對知識起到了承上啟下的作用。
◆教學(xué)目標(biāo):
☆知識目標(biāo):
1、掌握指數(shù)函數(shù)的概念,并能根據(jù)定義判斷一個函數(shù)是否為指數(shù)函數(shù);
2、掌握指數(shù)函數(shù)的圖像和性質(zhì);
3、能根據(jù)單調(diào)性解決比較大小的問題。
☆能力目標(biāo):
1、培養(yǎng)學(xué)生觀察、分析、分類、歸納、探索發(fā)現(xiàn)解決問題的能力,體會從特殊到一般的研究方法和分類討論思想。
2、提高學(xué)生運用現(xiàn)代信息化手段解決數(shù)學(xué)問題的能力。
☆情感目標(biāo)
1、通過問題的解決,樹立學(xué)生的自信心,體會成功與快樂;
2、滲透數(shù)形結(jié)合、分類討論的思想,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)學(xué)生探索精神和創(chuàng)新意識;
3、通過學(xué)習(xí)讓學(xué)生感受到數(shù)學(xué)與現(xiàn)實生活的聯(lián)系,讓學(xué)生發(fā)現(xiàn)生活中的函數(shù)問題。Yjs21.Com
◆教材的重點和難點:
☆教學(xué)重點:指數(shù)函數(shù)的概念、圖像和性質(zhì);
☆教學(xué)難點:如何由圖像歸納指數(shù)函數(shù)的性質(zhì)以及性質(zhì)的應(yīng)用。
二、◆學(xué)情分析
根據(jù)這幾年的教學(xué)我發(fā)現(xiàn)學(xué)生在后面學(xué)習(xí)中一遇到指對數(shù)問題就發(fā)蒙,原因是什么呢?問題就出在學(xué)生剛剛學(xué)完第三章函數(shù)的性質(zhì),應(yīng)用的又是初中比較熟悉的一元二次函數(shù)。一下子出現(xiàn)了一個非常陌生的函數(shù)而且需要記很多性質(zhì),學(xué)生感覺很吃力。對于我任教的12財會班的學(xué)生整體理論知識水平參差不齊,學(xué)生缺乏自主探索、發(fā)現(xiàn)的意識。但是性格活潑、興趣廣泛,樂于實踐。因此我在備課時以學(xué)生為本,以學(xué)生活動為主線,從興趣出發(fā),由2012年春節(jié)晚會的魔術(shù)引出本節(jié)課的指數(shù)函數(shù),讓學(xué)生從特殊到一般去認(rèn)識指數(shù)函數(shù),然后通過多媒體課件的充分展示讓學(xué)生分組討論、歸納出指數(shù)函數(shù)的性質(zhì)。
三、教法、學(xué)法
◆教學(xué)方法:啟發(fā)、合作探究、講練結(jié)合等教學(xué)方法。充分遵循“教師為主導(dǎo),學(xué)生為主體”的教學(xué)原則,采用多媒體輔助教學(xué)手段,借助多媒體,演示指數(shù)函數(shù)的圖像形成過程,便于總結(jié)函數(shù)的性質(zhì)。
◆學(xué)習(xí)方法:采用自主探究、小組合作、觀察歸納的學(xué)習(xí)方法。
四、教學(xué)程序
◆教學(xué)流程:
教學(xué)流程設(shè)計
1、創(chuàng)設(shè)情境,導(dǎo)入新課
2、構(gòu)建模型,形成概念
3、深入探究,發(fā)現(xiàn)性質(zhì)
4、講練結(jié)合,鞏固提高
5、課堂小結(jié),構(gòu)建體系
6、作業(yè)布置,延伸課堂
◆教學(xué)過程:
1、創(chuàng)設(shè)情境,導(dǎo)入新課
通過春節(jié)的撕報紙的魔術(shù)調(diào)動學(xué)生的興趣,教師接著引導(dǎo)學(xué)生分析撕報紙得到的分?jǐn)?shù)與撕報紙的次數(shù)之間的函數(shù)關(guān)系,分析出撕報紙得到的每一分小報紙的面積與撕報紙的次數(shù)之間得到的函數(shù)關(guān)系,從而建立一個關(guān)于指數(shù)函數(shù)的數(shù)學(xué)模型,為學(xué)生提出問題;提高學(xué)生學(xué)習(xí)新知識的積極性以及體會數(shù)學(xué)與生活密切相關(guān)。
2、構(gòu)建模型,形成概念
通過兩個具體的指數(shù)函數(shù)模型,給出指數(shù)函數(shù)概念,讓學(xué)生體會由特殊到一般的思想,并通過練習(xí)一判斷一個函數(shù)是否是指數(shù)函數(shù),加深學(xué)生對指數(shù)函數(shù)概念的理解。
3、深入探究,發(fā)現(xiàn)性質(zhì)
在這個環(huán)節(jié),函數(shù)圖像的性質(zhì)是本節(jié)課的重點也是難點,我準(zhǔn)備采用多媒體技術(shù)輔助教學(xué)突破重點、難點,這一環(huán)節(jié)關(guān)鍵是弄清楚底數(shù)a的變化對函數(shù)圖像及性質(zhì)的影響,利用多媒體動感顯示,通過顏色的區(qū)別,加深感性認(rèn)識,非常直觀形象地演示a的變化與圖像的變化規(guī)律,突破靜態(tài)思維,使難點迎刃而解。
華羅庚先生曾說:“數(shù)缺形時少直觀,形缺數(shù)時難入微?!碧骄恐笖?shù)函數(shù)的性質(zhì)從“數(shù)”的角度用解析式不易解決,轉(zhuǎn)而由“形”——圖像突破,體會數(shù)形結(jié)合的思想。通過兩個指數(shù)函數(shù)的作圖過程鞏固學(xué)生作圖能力,讓學(xué)生初步發(fā)現(xiàn)圖像規(guī)律。緊接著同時通過軟件讓學(xué)生舉出4個指數(shù)函數(shù),通過軟件快速畫出四個具體的指數(shù)函數(shù)圖像,充分引導(dǎo)學(xué)生通過觀察圖像發(fā)現(xiàn)指數(shù)函數(shù)的圖像規(guī)律,從而歸納指數(shù)函數(shù)的一般性質(zhì),經(jīng)歷一個由特殊到一般的探究過程。讓學(xué)生在研究出指數(shù)函數(shù)的一般性質(zhì)后進(jìn)行總結(jié)歸納函數(shù)的其他性質(zhì),從而對函數(shù)進(jìn)行較為系統(tǒng)的研究。
4、講練結(jié)合,鞏固提高
教師通過對例題一比較兩個函數(shù)值的大小、例題二求函數(shù)的定義域引導(dǎo)學(xué)生如何使用函數(shù)的性質(zhì)解決問題,同時通過學(xué)生進(jìn)行一些鞏固練習(xí)使學(xué)生對函數(shù)能進(jìn)行較為基本的應(yīng)用。
5、課堂小結(jié),構(gòu)建體系
小結(jié)環(huán)節(jié),讓學(xué)生自己總結(jié)函數(shù)的概念和性質(zhì),讓學(xué)生建立研究函數(shù)的知識體系
6、作業(yè)布置,延伸課堂
作業(yè)布置環(huán)節(jié)必做題鞏固學(xué)生上課內(nèi)容,選做題“古蓮子年齡之謎”的問題為學(xué)習(xí)能力較強的同學(xué)更大的發(fā)揮空間,因材施教,分層作業(yè),鞏固提高,為后續(xù)的學(xué)習(xí)奠定基礎(chǔ),同時也拓展學(xué)生的知識視野。
YJS21.cOm更多幼兒園教案小編推薦
指數(shù)函數(shù)教案2000字精選8篇
撰寫內(nèi)容合理,符合課程目的,符合培養(yǎng)目標(biāo)的教案要求,教師根據(jù)課堂內(nèi)容編寫教案是義不容辭的義務(wù)。教案能幫助教師調(diào)動學(xué)生學(xué)習(xí)的積極性。有沒有快速編寫教案的技巧呢?欄目小編收集并整理了“指數(shù)函數(shù)教案”,歡迎你參考,希望對你有所助益!
指數(shù)函數(shù)教案 篇1
一、教材分析
1. 《指數(shù)函數(shù)》在教材中的地位和作用
《指數(shù)函數(shù)》是蘇教版中專數(shù)學(xué)國家審定教材第一冊第三章《幾個基本初等函數(shù)》第三節(jié)的內(nèi)容,是在學(xué)習(xí)了《冪函數(shù)》一節(jié)內(nèi)容之后編排的。通過本節(jié)課的學(xué)習(xí),既可以對指數(shù)的概念和冪函數(shù)的概念等知識進(jìn)一步鞏固和深化,又可以為后面進(jìn)一步學(xué)習(xí)對數(shù)、對數(shù)函數(shù)打下堅實的基礎(chǔ),對中專階段研究對數(shù)函數(shù)、三角函數(shù)等完整的函數(shù)知識,初步培養(yǎng)函數(shù)的應(yīng)用意識打下了良好的基礎(chǔ),所以《指數(shù)函數(shù)》不僅是本章的重點內(nèi)容,也是中專學(xué)段的主要研究內(nèi)容之一,有著不可替代的重要作用。
此外,《指數(shù)函數(shù)》的知識與我們的日常生活、生產(chǎn)和科學(xué)研究有著緊密的聯(lián)系,尤其體現(xiàn)在細(xì)胞分裂、貸款利率的計算等方面,因此學(xué)習(xí)這部分知識還有著廣泛的現(xiàn)實意義。本節(jié)內(nèi)容的特點之一是概念性強,特點之二是凸顯了圖象在研究函數(shù)性質(zhì)時的重要作用。
2.課時安排:兩課時
二、學(xué)情及目標(biāo)
通過初中學(xué)段的學(xué)習(xí)和中專對集合、函數(shù)等知識的系統(tǒng)學(xué)習(xí),學(xué)生對函數(shù)和圖象的關(guān)系已經(jīng)構(gòu)建了一定的認(rèn)知結(jié)構(gòu),主要體現(xiàn)在三個方面:
知識方面:學(xué)生對正比例函數(shù)、反比例函數(shù)、一次函數(shù),二次函數(shù)等函數(shù)概念和性質(zhì)已有了初步認(rèn)識,從冪函數(shù)的學(xué)習(xí)中了解了學(xué)習(xí)函數(shù)的基本步驟。
技能方面:學(xué)生對采用“描點法”作函數(shù)圖象的方法已大致掌握,能夠為研究《指數(shù)函數(shù)》做好準(zhǔn)備。
素質(zhì)方面:由觀察到抽象的數(shù)學(xué)活動過程有初步了解,在數(shù)形結(jié)合、分類討論等思想方面還有待提高
鑒于對學(xué)生已有的知識基礎(chǔ)和認(rèn)知能力的分析,根據(jù)《教學(xué)大綱》的要求,我確定本節(jié)課的教學(xué)目標(biāo)、教學(xué)重點和難點如下:
(1)知識目標(biāo):
①掌握指數(shù)函數(shù)的概念;
②掌握指數(shù)函數(shù)的圖象
(2)技能目標(biāo):
①滲透數(shù)形結(jié)合和分類討論的思想方法
②培養(yǎng)學(xué)生觀察、類比、猜測、歸納的能力
(3)情感目標(biāo):
①體驗從特殊到一般的學(xué)習(xí)規(guī)律,認(rèn)識事物之間的普遍聯(lián)系與相互轉(zhuǎn)化,培養(yǎng)學(xué)生用聯(lián)系的觀點看問題
②通過教學(xué)互動促進(jìn)師生情感,激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生抽象、概括、分析、綜合的能力
③讓學(xué)生感受數(shù)學(xué)的對稱美、和諧美。
(4)教學(xué)重點:指數(shù)函數(shù)的概念和圖象
(5)教學(xué)難點:取適當(dāng)?shù)狞c作圖
確定依據(jù):冪函數(shù)和指數(shù)函數(shù)的一般形式學(xué)生容易混淆,并且學(xué)生作圖的精確度還有待提高
突破難點的關(guān)鍵:結(jié)合二次函數(shù)、冪函數(shù)等取點的方法,再次強調(diào)間隔適當(dāng)、數(shù)值大小合適、對稱
三、教法分析
由于《指數(shù)函數(shù)》這節(jié)課的特殊地位,在本節(jié)課的教法設(shè)計中,我力圖通過這一節(jié)課的教學(xué)達(dá)到不僅使學(xué)生初步理解指數(shù)函數(shù)的知識,更期望能引領(lǐng)學(xué)生掌握研究初等函數(shù)的一般思路和方法,為今后研究其它的函數(shù)做好準(zhǔn)備,從而達(dá)到培養(yǎng)學(xué)生學(xué)習(xí)能力的目的,主要突出了以下幾個方面:
1.創(chuàng)設(shè)情景.由指數(shù)函數(shù)在生活中的實際應(yīng)用給出兩個實例,充分調(diào)動學(xué)生的學(xué)習(xí)興趣,激發(fā)學(xué)生的探究心理,順利引入課題,而這兩個例子又恰好為研究指數(shù)函數(shù)中底數(shù)大于1和底數(shù)大于0小于1的圖象做好了準(zhǔn)備。
2.類比及分類討論的應(yīng)用.引導(dǎo)學(xué)生結(jié)合冪函數(shù)的一般形式來歸納出指數(shù)函數(shù)的概念,并向?qū)W生指出指數(shù)函數(shù)的形式特點,請學(xué)生思考對于底數(shù)a是否需要限制,如不限制會有什么問題出現(xiàn),這樣避免了學(xué)生對于底數(shù)a范圍分類的不清楚,也為研究指數(shù)函數(shù)的圖象做了“分類討論”的鋪墊。
3.突出圖象的作用.在數(shù)學(xué)學(xué)習(xí)過程中,圖形始終使我們需要借助的重要輔助手段。華羅庚曾經(jīng)說過“數(shù)離形時少直觀,形離數(shù)時難入微”,在研究指數(shù)函數(shù)的性質(zhì)時,更是直接由圖象觀察得出性質(zhì),因此圖象發(fā)揮了主要的作用。
4.注意數(shù)學(xué)與生活和實踐的聯(lián)系.數(shù)學(xué)的本質(zhì)是來源于生活,服務(wù)于實踐。在課堂教學(xué)的引入、課外知識的拓展等部分,都介紹了與指數(shù)函數(shù)息息相關(guān)的生活問題,力圖使學(xué)生了解到數(shù)學(xué)的基礎(chǔ)學(xué)科作用,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識。
四、學(xué)法分析
本節(jié)課是在學(xué)習(xí)完冪函數(shù)的概念和性質(zhì)之后編排的,針對學(xué)生實際情況,我主要在以下幾個方面做了嘗試:
1.再現(xiàn)原有認(rèn)知結(jié)構(gòu)。在引入兩個生活實例后,請學(xué)生回憶有關(guān)冪函數(shù)的概念,幫助學(xué)生再現(xiàn)原有認(rèn)知結(jié)構(gòu),為理解指數(shù)函數(shù)的概念做好準(zhǔn)備。
2.領(lǐng)會常見數(shù)學(xué)思想方法。在研究底數(shù)的限制時會遇到分類討論等基本數(shù)學(xué)思想方法,這些方法將會貫穿整個中專的數(shù)學(xué)學(xué)習(xí)。
3.在互相交流和自主探究中獲得發(fā)展。在生活實例的課堂導(dǎo)入、例題與訓(xùn)練、課內(nèi)小節(jié)等教學(xué)環(huán)節(jié)中都安排了學(xué)生的討論、分組、交流等活動,讓學(xué)生變被動的接受和記憶知識為在合作學(xué)習(xí)的樂趣中主動地建構(gòu)新知識的框架和體系,從而完成知識的內(nèi)化過程。
4.注意學(xué)習(xí)過程的循序漸進(jìn)。在概念、圖象、性質(zhì)、應(yīng)用、拓展的過程中按照先易后難的順序?qū)訉舆f進(jìn),讓學(xué)生感到有挑戰(zhàn)、有收獲,跳一跳,夠得著,不同難度的題目設(shè)計將盡可能照顧到課堂學(xué)生的個體差異。
五、程序設(shè)計
在設(shè)計本節(jié)課的教學(xué)過程中,本著遵循學(xué)生的認(rèn)知規(guī)律、讓學(xué)生去經(jīng)歷知識的形成與發(fā)展過程的原則,我設(shè)計了如下的教學(xué)程序
1.知識的回顧及新課的導(dǎo)入
教師活動:
①回顧研究冪函數(shù)的一般步驟,并請學(xué)生回答冪函數(shù)的相關(guān)知識
②用電腦展示兩個實例,第一個是生物中細(xì)胞分裂的例子,第二個是機器價值的折舊率問題
③引導(dǎo)學(xué)生進(jìn)行類比
④分析出對指數(shù)函數(shù)底數(shù)討論的必要性以及分類的方法。
學(xué)生活動:
①回憶冪函數(shù)的概念及圖象和性質(zhì)
②分別寫出細(xì)胞個數(shù)y與分裂次數(shù)x的關(guān)系式和機器價值y與經(jīng)過年數(shù)x的關(guān)系式,并互相交流
③比較冪函數(shù)的一般形式和上述兩個式子,歸納指數(shù)函數(shù)的一般形式
④根據(jù)底數(shù)分類討論的結(jié)果,試著寫出指數(shù)函數(shù)的定義域和值域
設(shè)計意圖:通過回顧冪函數(shù)的知識,再現(xiàn)研究函數(shù)的基本步驟;通過生活實例激發(fā)學(xué)生的學(xué)習(xí)興趣,通過類比掃清由概念不清而造成的知識障礙,培養(yǎng)學(xué)生思維的主動性,為突破難點做好準(zhǔn)備。
2.啟發(fā)誘導(dǎo)、探求新知
教師活動:
①作圖步驟回顧
②給出兩個簡單指數(shù)函數(shù),多媒體演示取點和作圖,強調(diào)虛線、點、函數(shù)圖象的先后順序
學(xué)生活動:
①回憶畫函數(shù)圖象的步驟
②注意取點的間隔及大小
③觀察作圖過程以及圖象的形狀和底數(shù)的關(guān)系
設(shè)計意圖:使學(xué)生對作圖步驟加深印象,對取點的合適度有更深刻的理解,使用多媒體畫圖以增加學(xué)生練習(xí)的時間,強調(diào)作圖過程的規(guī)范性,培養(yǎng)學(xué)生良好的作圖習(xí)慣
3.鞏固新知、反饋回授
教師活動:
①多媒體演示練習(xí)1
②給出兩個指數(shù)函數(shù),要求學(xué)生對照例題作圖并指導(dǎo)取點
③請一名學(xué)生板演作圖,對其作圖步驟和圖象精確度進(jìn)行點評
④引導(dǎo)學(xué)生對底數(shù)和圖象形狀的關(guān)系進(jìn)行歸納
學(xué)生活動:
①口答練習(xí)1
②在草稿紙上畫出兩個指數(shù)函數(shù)的圖象
③觀察圖象形狀和底數(shù)并互相交流,最后得出兩者的關(guān)系
設(shè)計意圖:加深學(xué)生對指數(shù)函數(shù)一般形式的印象以及和冪函數(shù)一般形式的區(qū)別;讓學(xué)生動手作簡單的指數(shù)函數(shù)的圖象,能夠進(jìn)一步規(guī)范學(xué)生的作圖習(xí)慣,也能讓學(xué)生通過作圖發(fā)現(xiàn)底數(shù)和圖象形狀的關(guān)系,對深刻理解本小節(jié)的內(nèi)容有著一定的促進(jìn)作用。
4.歸納小結(jié)、深化目標(biāo)
教師活動:
①引導(dǎo)學(xué)生對課堂知識進(jìn)行歸納,完成對分類討論、數(shù)形結(jié)合等數(shù)學(xué)方法的歸納;
②布置課后及拓展作業(yè)
學(xué)生活動:完成對指數(shù)函數(shù)的概念和圖象基本形狀的課內(nèi)小結(jié)并通過課后作業(yè)進(jìn)一步深化學(xué)習(xí)目標(biāo),有能力的同學(xué)完成網(wǎng)上調(diào)研并在下節(jié)課與同學(xué)交流我國在利用14C進(jìn)行考古所取得的成果。
設(shè)計意圖:教師在本環(huán)節(jié)引導(dǎo)學(xué)生對指數(shù)函數(shù)的知識進(jìn)行梳理,深化知識與技能目標(biāo),并通過作業(yè)實現(xiàn)目標(biāo)的鞏固。
5.板書設(shè)計
本節(jié)課以多媒體為主,同時考慮到板書在教學(xué)過程中發(fā)揮的作用,我設(shè)計了由兩個板塊構(gòu)成的板書,板面分配比例為1:2,第一板塊包含三個部分,一是指數(shù)函數(shù)的一般形式,二是定義域和值域,三是作圖的基本步驟;第二板塊留給學(xué)生板演練習(xí)2
六、教學(xué)評價
教學(xué)評價的及時有效能調(diào)動課堂的氣氛、感染學(xué)生的情緒,對課堂教學(xué)發(fā)揮著積極的推動作用,因此,我將教學(xué)評價將貫穿于本節(jié)課的每個教學(xué)環(huán)節(jié)中。例如回憶冪函數(shù)知識的記憶評價、情景導(dǎo)入的表達(dá)式評價、得出指數(shù)函數(shù)一般形式的歸納評價、作圖時取點準(zhǔn)確性和圖象精確度的評價、小結(jié)時的`表述性評價等。在學(xué)生交流、討論、探究等環(huán)節(jié)注意啟發(fā)學(xué)生完成知識互評、能力互評,通過多種評價方式讓更多的學(xué)生獲得學(xué)習(xí)的自信,在輕松融洽的課堂評價氛圍中完成本節(jié)課的教學(xué)和學(xué)習(xí)任務(wù)。
當(dāng)然教師會通過對學(xué)生作業(yè)的批改獲得更全面的對學(xué)生知識掌握的評價和課堂效果的反思,并在后續(xù)的時間里修訂課堂設(shè)計方案,達(dá)到預(yù)期的教學(xué)效果,實現(xiàn)學(xué)生的能力發(fā)展。以上是我對指數(shù)函數(shù)這節(jié)課的設(shè)計和思考,敬請批評指正!
指數(shù)函數(shù)教案 篇2
高一數(shù)學(xué)指數(shù)函數(shù)教案:教學(xué)目標(biāo)
1.使學(xué)生掌握指數(shù)函數(shù)的概念,圖象和性質(zhì).
(1)能根據(jù)定義判斷形如什么樣的函數(shù)是指數(shù)函數(shù),了解對底數(shù)的限制條件的合理性,明確指數(shù)函數(shù)的定義域.
(2)能在基本性質(zhì)的指導(dǎo)下,用列表描點法畫出指數(shù)函數(shù)的圖象,能從數(shù)形兩方面認(rèn)識指數(shù)函數(shù)的性質(zhì).
(3)能利用指數(shù)函數(shù)的性質(zhì)比較某些冪形數(shù)的大小,會利用指數(shù)函數(shù)的圖象畫出形如
的圖象.
2.通過對指數(shù)函數(shù)的概念圖象性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析歸納的能力,進(jìn)一步體會數(shù)形結(jié)合的思想方法.
3.通過對指數(shù)函數(shù)的研究,讓學(xué)生認(rèn)識到數(shù)學(xué)的應(yīng)用價值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.使學(xué)生善于從現(xiàn)實生活中數(shù)學(xué)的發(fā)現(xiàn)問題,解決問題.
高一數(shù)學(xué)指數(shù)函數(shù)教案:教學(xué)建議
高一數(shù)學(xué)指數(shù)函數(shù)教案:教材分析
(1)指數(shù)函數(shù)是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進(jìn)行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應(yīng)用,也是今后學(xué)習(xí)對數(shù)函數(shù)的基礎(chǔ),同時在生活及生產(chǎn)實際中有著廣泛的應(yīng)用,所以指數(shù)函數(shù)應(yīng)重點研究.
(2)本節(jié)的教學(xué)重點是在理解指數(shù)函數(shù)定義的基礎(chǔ)上掌握指數(shù)函數(shù)的圖象和性質(zhì).難點是對底數(shù)
在
和
時,函數(shù)值變化情況的區(qū)分.
(3)指數(shù)函數(shù)是學(xué)生完全陌生的一類函數(shù),對于這樣的函數(shù)應(yīng)怎樣進(jìn)行較為系統(tǒng)的理論研究是學(xué)生面臨的重要問題,所以從指數(shù)函數(shù)的研究過程中得到相應(yīng)的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學(xué)中要特別讓學(xué)生去體會研究的方法,以便能將其遷移到其他函數(shù)的研究.
高一數(shù)學(xué)指數(shù)函數(shù)教案:教法建議
(1)關(guān)于指數(shù)函數(shù)的定義按照課本上說法它是一種形式定義即解析式的特征必須是
的樣子,不能有一點差異,諸如
,
等都不是指數(shù)函數(shù).
(2)對底數(shù)
的限制條件的理解與認(rèn)識也是認(rèn)識指數(shù)函數(shù)的重要內(nèi)容.如果有可能盡量讓學(xué)生自己去研究對底數(shù),指數(shù)都有什么限制要求,教師再給予補充或用具體例子加以說明,因為對這個條件的認(rèn)識不僅關(guān)系到對指數(shù)函數(shù)的認(rèn)識及性質(zhì)的分類討論,還關(guān)系到后面學(xué)習(xí)對數(shù)函數(shù)中底數(shù)的認(rèn)識,所以一定要真正了解它的由來.
關(guān)于指數(shù)函數(shù)圖象的繪制,雖然是用列表描點法,但在具體教學(xué)中應(yīng)避免描點前的盲目列表計算,也應(yīng)避免盲目的連點成線,要把表列在關(guān)鍵之處,要把點連在恰當(dāng)之處,所以應(yīng)在列表描點前先把函數(shù)的性質(zhì)作一些簡單的討論,取得對要畫圖象的存在范圍,大致特征,變化趨勢的大概認(rèn)識后,以此為指導(dǎo)再列表計算,描點得圖象.
指數(shù)函數(shù)教案 篇3
指數(shù)函數(shù)說課稿
我本節(jié)課說課的內(nèi)容是高中數(shù)學(xué)第一冊第二章第六節(jié)“指數(shù)函數(shù)”的第一課時——指數(shù)函數(shù)的定義,圖像及性質(zhì)。我將嘗試運用新課標(biāo)的理念指導(dǎo)本節(jié)課的教學(xué)。新課標(biāo)指出,學(xué)生是教學(xué)的主體,教師的教要應(yīng)本著從學(xué)生的認(rèn)知規(guī)律出發(fā),以學(xué)生活動為主線,在原有知識的基礎(chǔ)上,建構(gòu)新的知識體系。我將以此為基礎(chǔ)從教材分析,教學(xué)目標(biāo)分析,教法學(xué)法分析和教學(xué)過程分析這幾個方面加以說明。
一、教材分析
1、教材的地位和作用
函數(shù)是高中數(shù)學(xué)學(xué)習(xí)的重點和難點,函數(shù)的思想貫穿于整個高中數(shù)學(xué)之中。本節(jié)課是學(xué)生在已掌握了函數(shù)的一般性質(zhì)和簡單的指數(shù)運算的基礎(chǔ)上,進(jìn)一步研究指數(shù)函數(shù),以及指數(shù)函數(shù)的圖像與性質(zhì),它一方面可以進(jìn)一步深化學(xué)生對函數(shù)概念的理解與認(rèn)識,使學(xué)生得到較系統(tǒng)的函數(shù)知識和研究函數(shù)的方法,同時也為今后進(jìn)一步熟悉函數(shù)的性質(zhì)和作用,研究對數(shù)函數(shù)以及等比數(shù)列的性質(zhì)打下堅實的基礎(chǔ)。因此,本節(jié)課的內(nèi)容十分重要,它對知識起到了承上啟下的作用。
2、教學(xué)的重點和難點
根據(jù)這一節(jié)課的內(nèi)容特點以及學(xué)生的實際情況,學(xué)生對抽象的指數(shù)函數(shù)及其圖象缺乏感性認(rèn)識。為此,在教學(xué)過程中讓學(xué)生自己去感受指數(shù)函數(shù)的生成過程以及圖象和性質(zhì)是這一堂課的突破口。因此,指數(shù)函數(shù)的圖像、性質(zhì)及其運用作為教學(xué)重點,本節(jié)課的難點是指數(shù)函數(shù)圖像和性質(zhì)的發(fā)現(xiàn)過程,及指數(shù)函數(shù)圖像與底的關(guān)系。
3、課前思考與準(zhǔn)備
包括學(xué)生在學(xué)習(xí)新課前的知識儲備,和能力儲備,這不意味著我們形式化的給予學(xué)生一個預(yù)習(xí)任務(wù),所以我將通過課前思考題讓問題引領(lǐng)學(xué)生自覺地投入對新知識的探究之中。我設(shè)計了幾個簡單問題
指數(shù)函數(shù)教案 篇4
一、說教材
1.《指數(shù)函數(shù)》在教材中的地位、作用和特點
今天說課的內(nèi)容為“指數(shù)函數(shù)”第一課時。它是在學(xué)習(xí)指數(shù)概念和冪函數(shù)的基礎(chǔ)上學(xué)習(xí)指數(shù)函數(shù)的概念和性質(zhì),通過學(xué)習(xí)指數(shù)函數(shù)的定義,圖像及性質(zhì),可以進(jìn)一步深化學(xué)生對函數(shù)概念的理解與認(rèn)識,使學(xué)生得到較系統(tǒng)的函數(shù)知識和研究函數(shù)的方法,并且為學(xué)習(xí)對數(shù)函數(shù)尤其是利用互為反函數(shù)的圖象間的關(guān)系來研究對數(shù)函數(shù)的性質(zhì)打下堅實的概念和圖象基礎(chǔ)。所以指數(shù)函數(shù)起到了承上啟下的作用。
此外,《指數(shù)函數(shù)》的知識與我們的日常生產(chǎn)、生活和科學(xué)研究有著緊密的聯(lián)系,尤其體現(xiàn)在細(xì)胞分裂、貸款利率的計算、股市的漲跌、服飾的打折和化學(xué)中對放射性物質(zhì)的變化研究等方面,因此學(xué)習(xí)這部分知識還有著廣泛的現(xiàn)實意義與在專業(yè)知識中的應(yīng)用作用。本節(jié)內(nèi)容的特點之一是概念性強,特點之二是凸顯了數(shù)學(xué)圖形在研究函數(shù)性質(zhì)時的重要作用。
2.教學(xué)目標(biāo)、重點和難點
通過初中學(xué)段的學(xué)習(xí)和職業(yè)高中對集合、函數(shù)等知識的系統(tǒng)學(xué)習(xí),學(xué)生對函數(shù)和圖象的關(guān)系已經(jīng)構(gòu)建了一定的認(rèn)知結(jié)構(gòu),主要體現(xiàn)在三個方面:
知識維度:初中已經(jīng)學(xué)習(xí)了正比例函數(shù)、反比例函數(shù)和 一次函數(shù),上冊第三章又進(jìn)一步學(xué)習(xí)了函數(shù)的概念及其通性,并對一次函數(shù)、二次函數(shù)作了更深入研究,學(xué)生已經(jīng)初步掌握了研究函數(shù)的一般方法,能夠從初中運動變化的角度認(rèn)識函數(shù)初步轉(zhuǎn)化到從集合與對應(yīng)的觀點來認(rèn)識函數(shù)。
能力維度:學(xué)生對采用“描點法”描繪函數(shù)圖象的方法已基本掌握,能夠為研究指數(shù)函數(shù)的性質(zhì)做好準(zhǔn)備。
素質(zhì)維度:由觀察到抽象的數(shù)學(xué)活動過程已有一定的體會,已初步了解了數(shù)形結(jié)合的思想。
(1)教學(xué)目標(biāo)
知識目標(biāo):①了解指數(shù)函數(shù)模型的實際背景,認(rèn)識數(shù)學(xué)與現(xiàn)實生活、其他學(xué)科的聯(lián)系②掌握指數(shù)函數(shù)的概念③掌握指數(shù)函數(shù)的圖象和性質(zhì)
能力目標(biāo):①滲透數(shù)形結(jié)合的基本數(shù)學(xué)思想方法②培養(yǎng)學(xué)生觀察、聯(lián)想、類比、猜測、歸納的能力;
情感目標(biāo):①在學(xué)習(xí)的過程中體會研究具體函數(shù)及其性質(zhì)的過程和方法,如體驗從特殊到一般的學(xué)習(xí)規(guī)律,認(rèn)識事物之間的普遍聯(lián)系與相互轉(zhuǎn)化,培養(yǎng)學(xué)生用聯(lián)系的觀點看問題②通過教學(xué)互動促進(jìn)師生情感,激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生抽象、概括、分析、綜合的能力
(2)教學(xué)重點和難點
教學(xué)重點:指數(shù)函數(shù)的圖象和性質(zhì)。
教學(xué)難點:指數(shù)函數(shù)的圖象性質(zhì)與底數(shù)a的關(guān)系。
(3)教學(xué)關(guān)鍵:
從實際出發(fā),使學(xué)生在獲得一定的感性認(rèn)識和基礎(chǔ)上,通過觀察、比較、歸納提高到理性認(rèn)識,以形成完整的概念;在理解概念的基礎(chǔ)上充分結(jié)合圖象,利用數(shù)形結(jié)合來掃清障礙。
二、教法與學(xué)法指導(dǎo)
1.學(xué)法指導(dǎo)
由于職高學(xué)生大部分?jǐn)?shù)學(xué)基礎(chǔ)較差,理解能力、運算能力、思維能力等方面參差不齊,同時學(xué)生學(xué)好數(shù)學(xué)的自信心不強,學(xué)習(xí)積極性不高,厭學(xué)情緒嚴(yán)重。針對實際情況,考慮到學(xué)生非智力因素的影響,我主要在以下幾個方面做了嘗試:
(1)激發(fā)學(xué)生的求知欲和學(xué)習(xí)積極性。從學(xué)生感興趣的生活實例著手,激發(fā)學(xué)生的學(xué)習(xí)興趣,指導(dǎo)學(xué)生積極思維,主動獲取知識。
(2)領(lǐng)會常見數(shù)學(xué)思想方法。在借助圖象研究指數(shù)函數(shù)的性質(zhì)時會遇到分類討論、數(shù)形結(jié)合等基本數(shù)學(xué)思想方法,這些方法將會貫穿整個職業(yè)高中的數(shù)學(xué)學(xué)習(xí)。
(3)在互相交流和自主探究中獲得發(fā)展。在生活實例的課堂導(dǎo)入、指數(shù)函數(shù)的性質(zhì)研究、例題與訓(xùn)練、課內(nèi)小節(jié)等教學(xué)環(huán)節(jié)中都安排了學(xué)生的討論、分組、交流等活動,讓學(xué)生變被動的接受和記憶知識為在合作學(xué)習(xí)的樂趣中主動地建構(gòu)新知識的框架和體系,從而完成知識的內(nèi)化過程。
(4)注意學(xué)生的個體差異。利用小組合作來幫助后進(jìn)的學(xué)生,不同難度的題目設(shè)計將盡可能照顧到課堂學(xué)生的個體差異。
2.教法選擇
(1)本節(jié)課采用的方法有;啟發(fā)發(fā)現(xiàn)法、課堂討論法、多媒體教學(xué)法
(2)采用這些方法的理論依據(jù):為了調(diào)動學(xué)生的學(xué)習(xí)積極性,使學(xué)生變被動為主動愉快的學(xué)習(xí)。教學(xué)中我引導(dǎo)學(xué)生從實例出發(fā)啟發(fā)出指數(shù)函數(shù)的定義,在概念理解上,用步步設(shè)問、課堂討論來加深理解。在指數(shù)函數(shù)圖像的畫法上,借助電腦,演示作圖過程以及圖像變化的動畫過程,新技術(shù)、新工具、新模式給了學(xué)生以新的感受,從而使學(xué)生直接地接受并提高學(xué)生的學(xué)習(xí)興趣和積極性,很好地突破難點和提高教學(xué)效率,從而增大教學(xué)的容量和直觀性、準(zhǔn)確性。(有條件的可以安排在機房上課,讓學(xué)生也利用函數(shù)作圖器作圖)
三、教學(xué)設(shè)計
在設(shè)計本節(jié)課的教學(xué)過程中,本著遵循學(xué)生的認(rèn)知規(guī)律、讓學(xué)生去經(jīng)歷知識的形成與發(fā)展過程的原則,我設(shè)計了如下的教學(xué)程序,啟發(fā)學(xué)生逐步發(fā)現(xiàn)和認(rèn)識指數(shù)函數(shù)的圖象和性質(zhì)。
1.創(chuàng)設(shè)情景、導(dǎo)入新課
教師活動:①用電腦展示兩個實例,第一個是生物中細(xì)胞分裂問題(某種細(xì)胞分裂時由1 個分裂成2 個,2個分裂成4個,......,一個這樣的細(xì)胞分裂 x 次后,得到的細(xì)胞個數(shù)y與x有怎樣的函數(shù)關(guān)系?),第二個是放射性物質(zhì)變化的例子(一種放射性物質(zhì)不斷變化為其他物質(zhì),每經(jīng)過一年剩留的質(zhì)量約是原來的84%,求經(jīng)過多少年,剩留量是原來的一半,結(jié)果保留一位有效數(shù)字)。②組織學(xué)生思考、分小組討論所提出的問題,注意引導(dǎo)學(xué)生從定義出發(fā)來解釋兩個問題中變量之間的關(guān)系。③引導(dǎo)學(xué)生把對應(yīng)關(guān)系概括到形式。
學(xué)生活動:分別寫出細(xì)胞個數(shù)y與分裂次數(shù)x的關(guān)系式和剩留量y與經(jīng)過的年數(shù)x的關(guān)系式;
設(shè)計意圖:①通過生活實例充分調(diào)動學(xué)生的學(xué)習(xí)興趣,激發(fā)學(xué)生的探究心理,順利引入課題,也為引出指數(shù)函數(shù)的概念做準(zhǔn)備,掃清由概念不清而造成的知識障礙,培養(yǎng)學(xué)生思維的主動性,為突破難點做好準(zhǔn)備;②由具體數(shù)字抽象概括出指數(shù)函數(shù)y=ax的模型,為研究指數(shù)函數(shù)做準(zhǔn)備;③兩個例子又恰好為研究指數(shù)函數(shù)中底數(shù)大于1和底數(shù)大于0小于1的圖象做好了準(zhǔn)備。
2.啟發(fā)誘導(dǎo)、探求新知
(1)指數(shù)函數(shù)概念的引出
教師活動:①引導(dǎo)學(xué)生觀察這兩個函數(shù),尋找他們的特征②請學(xué)生思考對于底數(shù)a是否需要限制,如不限制會有什么問題出現(xiàn)③引導(dǎo)學(xué)生觀察指數(shù)函數(shù)與冪函數(shù)在概念上的區(qū)別。
學(xué)生活動:①學(xué)生獨立思考并回憶指數(shù)的概念;②解釋這兩個問題中變量間的關(guān)系為什么構(gòu)成函數(shù),從而歸納指數(shù)函數(shù)的概念;③理清指數(shù)函數(shù)與冪函數(shù)在概念上的區(qū)別。
設(shè)計意圖:①引導(dǎo)學(xué)生結(jié)合指數(shù)的有關(guān)概念來歸納出指數(shù)函數(shù)的定義,并向?qū)W生指出指數(shù)函數(shù)的形式特點;②注意提示底數(shù)的取值范圍,這樣避免了學(xué)生對于底數(shù)a范圍分類的不清楚,也為研究指數(shù)函數(shù)的圖象做了“分類討論”的鋪墊。③將指數(shù)函數(shù)與冪函數(shù)在定義上進(jìn)行區(qū)別,加深了對指數(shù)函數(shù)概念的掌握。
(2)研究指數(shù)函數(shù)的圖象
教師活動:①給出兩個簡單的指數(shù)函數(shù) 和 ,并要求學(xué)生畫它們的圖象②在準(zhǔn)備好的小黑板上利用列表描點法規(guī)范地畫出這兩個指數(shù)函數(shù)的圖象③利用函數(shù)作圖器和幾何畫板作圖。
學(xué)生活動:①思考畫函數(shù)圖象的方法有哪些?②畫出這兩個簡單的指數(shù)函數(shù)圖象③讓學(xué)生利用計算器或計算機來畫。
設(shè)計意圖:讓學(xué)生動手作簡單的指數(shù)函數(shù)的圖象對深刻理解本節(jié)課的內(nèi)容有著一定的促進(jìn)作用,在學(xué)生完成基本作圖之后,教師再利用課前已列表、建立坐標(biāo)系的小黑板展示準(zhǔn)確的作圖方法,達(dá)到進(jìn)一步規(guī)范學(xué)生的作圖習(xí)慣的目的,然后借助“函數(shù)作圖器”或“幾何畫板”準(zhǔn)確作圖,既可以培養(yǎng)學(xué)生的學(xué)習(xí)興趣也可以使圖象更精確。
四、板書設(shè)計
考慮到板書在教學(xué)過程中發(fā)揮的功能,本節(jié)課我設(shè)計了由四個板塊構(gòu)成的板書,
說明;這冊新教材更突出了學(xué)生的生活數(shù)學(xué),從引入到應(yīng)用,都圍繞著生活數(shù)學(xué),對學(xué)生的學(xué)習(xí)積極性的培養(yǎng)起到了很好的作用。這節(jié)知識還提到了函數(shù)作圖器,相信它比幾何畫板更容易學(xué),學(xué)生對它更感興趣。
指數(shù)函數(shù)教案 篇5
尊敬的評委老師:
大家好,我是今天的5號考生,今天我說課的題目是《指數(shù)函數(shù)》。
總結(jié)語
為了更好的呈現(xiàn)我的教學(xué)思路,我將以教什么、怎么教以及為什么這么教為思路,具體從教材分析、教學(xué)目標(biāo)分析、學(xué)情分析、教法、學(xué)法以及教學(xué)過程等幾個方面展開我的說課。
教材分析
教材是課程標(biāo)準(zhǔn)的具體化,是課堂知識呈現(xiàn)的載體,對于教材的深入理解是上好一堂課前提。本課選自人教版,高中數(shù)學(xué)必修一第二章第六節(jié)。在漫長的高中數(shù)學(xué)學(xué)習(xí)的過程中,函數(shù)的學(xué)習(xí)貫穿始終。從教材的書寫邏輯上看,之前的教材內(nèi)容已經(jīng)對于函數(shù)的一般性質(zhì)進(jìn)行了排布。而本節(jié)課指數(shù)函數(shù)的學(xué)習(xí)則對接下來對數(shù)函數(shù)等復(fù)雜函數(shù)的深入學(xué)習(xí)奠定了堅實的基礎(chǔ)??梢哉f,指數(shù)函數(shù)的學(xué)習(xí)對于高中函數(shù)的學(xué)習(xí)起到了承上啟下的重要作用。
學(xué)情分析
新的學(xué)生觀告訴我們,我們要在課堂中充分發(fā)揮學(xué)生的主體地位,因此對于學(xué)生的情況了解也是十分重要的。從思維層面上看,高中的學(xué)生已經(jīng)具備了比較成熟的抽象邏輯思維能力,有著較強的理解力,這對于我們課堂的開展是十分有幫助的。而這個階段的學(xué)生好勝心比較強,容易產(chǎn)生負(fù)面情緒,這對于我們課堂的教學(xué)也帶來了一定的挑戰(zhàn)。從經(jīng)驗上看,在之前的學(xué)習(xí)中,學(xué)生已經(jīng)對于“指數(shù)”“函數(shù)”等概念有了深刻的認(rèn)識,為本節(jié)課程的開展提供了幫助,而指數(shù)函數(shù)相對比較抽象,對于學(xué)生的學(xué)習(xí)、老師的教授都提出了較高的要求,因此合理的教法學(xué)法選擇顯得尤為重要。
教學(xué)目標(biāo)
教學(xué)目標(biāo)是教育教學(xué)活動的出發(fā)點和依據(jù),結(jié)合新課改的思想和新課標(biāo)的要求,本節(jié)課我所制定的三維教學(xué)目標(biāo)如下:
知識與技能目標(biāo):掌握指數(shù)函數(shù)的概念,圖像性質(zhì);能夠利用指數(shù)函數(shù)的概念解決實際問題。
過程與方法目標(biāo):通過分組討論參與發(fā)現(xiàn)的過程,培養(yǎng)學(xué)生觀察,聯(lián)想,類比,猜測,歸納的能力。
情感態(tài)度與價值觀目標(biāo):通過教學(xué)互動,促進(jìn)師生情感,激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生的抽象概括,分析,綜合的能力,培養(yǎng)學(xué)生聯(lián)系觀點看問題,領(lǐng)會數(shù)學(xué)科學(xué)的應(yīng)用價值。
而本節(jié)課,我將重難點確立為:指數(shù)函數(shù)的圖像和性質(zhì),以及它與底數(shù)a的關(guān)系。
教學(xué)教法
正如蘇霍姆林斯基所說:只有能夠激發(fā)學(xué)生去進(jìn)行自我教育的教育,才是真正的教育。在滿足學(xué)習(xí)者需求的基礎(chǔ)之上,我將制定適合本階段學(xué)生的教法來展開教學(xué),以體現(xiàn)教師的主導(dǎo)性。分別以圖片展示、討論、講授、參與練習(xí)等相結(jié)合的方式進(jìn)行教學(xué)。同時我將采用誘思探究和自主學(xué)習(xí)相結(jié)合的方式,以激發(fā)學(xué)生的學(xué)習(xí)主動性,充分地體現(xiàn)學(xué)生的主體地位。
教學(xué)過程
以上所有的準(zhǔn)備都是為了更好的呈現(xiàn)我的課堂,下面來談一談我對于教學(xué)過程的設(shè)計。
首先創(chuàng)設(shè)情境,導(dǎo)入新課我將用電腦展示兩個實例:計算機價格下降問題和生物中細(xì)胞分裂的例子。我會請同學(xué)們仔細(xì)觀察并分組討論,分別寫出計算機價格y與經(jīng)過月份x的關(guān)系以及細(xì)胞個數(shù)y與分裂次數(shù)x的關(guān)系,用所學(xué)知識結(jié)合探究法,分析出指數(shù)函數(shù)底數(shù)討論的必要性以及分類方法。通過這樣的實例,可以很好地激發(fā)學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生思維的主動性,為接下來的學(xué)習(xí)做好準(zhǔn)備。
其次啟發(fā)誘導(dǎo),探求新知我會給出兩個簡單的指數(shù)函數(shù),并要求學(xué)生畫出它們的圖像,并在準(zhǔn)備好的小黑板上規(guī)范地畫出這兩個指數(shù)函數(shù)的圖像,同時板書出指數(shù)函數(shù)的性質(zhì)。同學(xué)們通過動手,促進(jìn)學(xué)生對本課內(nèi)容的理解學(xué)習(xí),并借助小黑板演示其規(guī)范性。利用多媒體將指數(shù)函數(shù)的圖像加以展示,利于觀察圖像總結(jié)所學(xué)知識的性質(zhì),也能對于接下來的知識點導(dǎo)入起到自然結(jié)合的作用。當(dāng)然學(xué)生通過我的引導(dǎo)交流討論會很快畫出兩個簡單的指數(shù)函數(shù),歸納出函數(shù)的性質(zhì)涉及方面,總結(jié)出它的性質(zhì)。
接著鞏固新知,反饋回授我會板書出例一及例二第一問,并介紹相關(guān)考古知識,本著實踐為主的原則,完成學(xué)生學(xué)習(xí):實踐到認(rèn)識再到實踐的過程。通過練習(xí)實現(xiàn)教師的再指導(dǎo)和學(xué)生的漸進(jìn)式提高。這個環(huán)節(jié)介紹的化學(xué)知識在考古中的應(yīng)用,這樣的設(shè)計既開拓了學(xué)生的視野,又為下一步學(xué)習(xí):計算分期付款的利率等問題埋下伏筆,因此學(xué)生能夠了解解題的規(guī)范步驟,并完成例題,拓展視野體會數(shù)學(xué)的應(yīng)用價值。緊接著我會帶領(lǐng)學(xué)生進(jìn)行歸納,總結(jié)升華我會將同學(xué)們進(jìn)行分組討論、探究,引導(dǎo)學(xué)生對指數(shù)函數(shù)的知識進(jìn)行梳理和深化認(rèn)知。知識與技能目標(biāo)設(shè)置分組pk機制,引導(dǎo)學(xué)生對課堂知識進(jìn)行分類討論、數(shù)形結(jié)合等數(shù)學(xué)方法的歸納。最后我會布置課后作業(yè)以幫助學(xué)生鞏固練習(xí),溫故而知新。
板書設(shè)計
當(dāng)然一堂完整的課程離不開簡潔明了的板書設(shè)計,我的板書設(shè)計如下:在黑板中間的正上方,我會寫下今天的課題:指數(shù)函數(shù),我會在黑板的中間擺上小黑板以展示其規(guī)范性。在黑板的左面,我會在練習(xí)過程中寫下今天練習(xí)的,計算步驟。黑板的右面,我會寫下例題一以及例題二的第一問。這樣的設(shè)計,可以幫助學(xué)生更好地學(xué)習(xí)本課的內(nèi)容。以上就是我所有的授課內(nèi)容,感謝各位老師的聆聽。
指數(shù)函數(shù)教案 篇6
一、說教材:
1.在教材中的地位和作用
本節(jié)內(nèi)容是高等教育出版社出版的中等職業(yè)教育課程改革國家規(guī)劃新教材《數(shù)學(xué)(基礎(chǔ)模塊)》上冊第四章第二節(jié)第一課時,屬于數(shù)與代數(shù)領(lǐng)域的知識。在之前,學(xué)生已學(xué)習(xí)了函數(shù)的概念與性質(zhì)掌握了研究函數(shù)的一般思路,并將冪指數(shù)從整數(shù)推廣到了實數(shù)范圍的知識,這為過度到本節(jié)的學(xué)習(xí)起著鋪墊作用,本節(jié)內(nèi)容是函數(shù)內(nèi)容的深化,又是后續(xù)學(xué)習(xí)對數(shù)函數(shù)及等比數(shù)列的性質(zhì)的基礎(chǔ),有非常高的實用價值例如在細(xì)胞分裂、貸款利息、考古中年份的測算都有較大的應(yīng)用。也是教材中起承上啟下作用的核心知識之一。因此,在指數(shù)函數(shù)是函數(shù)的重要內(nèi)容之中,在高中階段有不可替代的作用。
二、說學(xué)情:
2.學(xué)情分析
心理特點:中職生的共性是一般學(xué)習(xí)數(shù)學(xué)的興趣不高,學(xué)習(xí)比較被動,自主學(xué)習(xí)能力比較差,因此在課堂的一開始就要激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的動機,學(xué)習(xí)動機是直接推動學(xué)生學(xué)好數(shù)學(xué)達(dá)到學(xué)習(xí)目的的內(nèi)在動力,直接影響學(xué)習(xí)效果。變“要我學(xué)”為“我要學(xué)”。
此外職高生生理上表現(xiàn)為少年好動,注意力易分散抓住學(xué)生特點,積極采用形象生動,形式多樣的教學(xué)方法和學(xué)生廣泛的積極主動參與的學(xué)習(xí)方式,定能激發(fā)學(xué)生興趣,有效地培養(yǎng)學(xué)生能力,促進(jìn)學(xué)生個性發(fā)展。
知識障礙上:知識掌握上,學(xué)生剛剛學(xué)習(xí)了函數(shù)的定義、圖象、性質(zhì),已經(jīng)掌握了研究函數(shù)的一般思路,對于本節(jié)課的學(xué)習(xí)會有很大幫助。許多學(xué)生出現(xiàn)知識遺忘,所以應(yīng)全面系統(tǒng)的去回顧與講述;學(xué)生學(xué)習(xí)本節(jié)課的知識障礙,底數(shù)對函數(shù)圖象的影響學(xué)生不易理解,所以教學(xué)中老師應(yīng)予以簡單明白,深入淺出的分析。
三、說教學(xué)目標(biāo):
知識與技能:理解指數(shù)函數(shù)的概念,掌握指數(shù)函數(shù)的圖像及其性質(zhì),并用指數(shù)函數(shù)的性質(zhì)解決一些問題。
過程與方法: 讓學(xué)生經(jīng)歷“特殊→一般→特殊”的認(rèn)識過程,完善認(rèn)知結(jié)構(gòu),領(lǐng)會數(shù)形結(jié)合、分類討論、歸納推理等數(shù)學(xué)思想方法;通過運用多媒體的教學(xué)手段,引領(lǐng)學(xué)生主動探索指數(shù)函數(shù)性質(zhì),體會學(xué)習(xí)數(shù)學(xué)規(guī)律的方法,體驗成功的樂趣。
情感態(tài)度價值觀:讓學(xué)生感受數(shù)學(xué)問題探索的樂趣和成功的喜悅,體會數(shù)學(xué)的理性、嚴(yán)謹(jǐn)及數(shù)與形的和諧統(tǒng)一美;使學(xué)生獲得研究函數(shù)的規(guī)律和方法,提高學(xué)生的學(xué)習(xí)能力養(yǎng)成積極主動,勇于探索,不斷創(chuàng)新的學(xué)習(xí)習(xí)慣和品質(zhì)。
四、說教學(xué)方法:
教法的選擇與教學(xué)手段:基于本節(jié)課的特點,應(yīng)著重采用多種的教學(xué)方法和手段,其理論依據(jù)是堅持“以學(xué)生為主體,以教師為主導(dǎo)”的原則,根據(jù)學(xué)生的心理發(fā)展規(guī)律,采用學(xué)生參與程度高討論教學(xué)法。
在學(xué)生看書,討論的基礎(chǔ)上,在老師啟發(fā)引導(dǎo)下,運用問題解決式教法,師生交談法,圖像法,問答式,課堂討論法。在采用問答法時,特別注重不同難度的問題,提問不同層次的學(xué)生,面向全體,使基礎(chǔ)差的學(xué)生也能有表現(xiàn)機會,培養(yǎng)其自信心,激發(fā)其學(xué)習(xí)熱情。有效的開發(fā)各層次學(xué)生的潛在智能,力求使學(xué)生能在原有的基礎(chǔ)上得到發(fā)展。同時通過課堂練習(xí)和課后作業(yè),啟發(fā)學(xué)生從書本知識回到社會實踐。提供給學(xué)生與其生活和周圍世界密切相關(guān)的數(shù)學(xué)知識,學(xué)習(xí)基礎(chǔ)性的知識和技能,在教學(xué)中積極培養(yǎng)學(xué)生學(xué)習(xí)興趣和動機,明確的學(xué)習(xí)目的,老師應(yīng)在課堂上充分調(diào)動學(xué)生的學(xué)習(xí)積極性,激發(fā)來自學(xué)生主體的最有力的動力。
(1)故事激趣法:通過小故事牽動學(xué)生的思維,在他們不會解決又急于的心理之間制造一種懸念,激起學(xué)生強烈的求知欲望;
(2)多種教學(xué)方法結(jié)合:教學(xué)形式上開展分組比賽、課堂搶答等多種形式的活動,使學(xué)生在學(xué)習(xí)中有光榮感、成就感,使他們獲得學(xué)習(xí)的樂趣。
(3)任務(wù)驅(qū)動法:根據(jù)學(xué)生的心理發(fā)展規(guī)律,采用學(xué)生參與程度高討論教學(xué)法。在老師啟發(fā)引導(dǎo)下,運用問題解決式教法,師生交談法,圖像法,問答式,課堂討論法。在采用問答法時,特別注重不同難度的問題,提問不同層次的學(xué)生,面向全體,使基礎(chǔ)差的學(xué)生也能有表現(xiàn)機會,培養(yǎng)其自信心,激發(fā)其學(xué)習(xí)熱情。
五、說教學(xué)過程:
1、導(dǎo)入新課(2分鐘)
創(chuàng)設(shè)情境 ,興趣導(dǎo)入:從前有個財主,為人刻薄吝嗇,常常克扣工人的工錢,因此附近村民都不愿意到他那里打工。有一天,這個財主家來了一位年輕人,要求打工一個月,報酬是:第一天的工錢只要一分錢,第二天是二分錢,第三天是四分錢……以后每天的工錢是前一天的2倍,直到30天期滿。這個財主聽了,心想這工錢也真便宜,就馬上與這個年輕人簽訂了合同??墒且粋€月后,這個財主卻破產(chǎn)了,因為他付不了那么多的工錢。那么這工錢到底有多少呢?
財主應(yīng)付給打工者的工錢為1073741824分≈1073萬元
(為了激發(fā)學(xué)生探究的好奇心和學(xué)習(xí)的興趣,引起注意,讓學(xué)生在不會解決又急于的心理狀態(tài)下學(xué)習(xí))
2、探索新知(7分鐘)
問題1:某種物質(zhì)的細(xì)胞分裂,由1個分裂成2個,2個分裂成4個,4個分裂成8個,……,1個這樣的細(xì)胞分裂x次后,得到的細(xì)胞個數(shù)y與x的關(guān)系式是什么?
問題2:《莊子天下篇》中寫道:“一尺之棰,日取其半,萬世不竭?!闭埬銓懗鼋厝次后,木棰剩余量y關(guān)于x的關(guān)系式?
歸納:函數(shù) 中,指數(shù)x為自變量,底2為常數(shù).
概念:一般地,形如 的函數(shù)叫做指數(shù)函數(shù),其中底 ( )為常量.指數(shù)函數(shù)的定義域為 ,值域為
(設(shè)計意圖:兩個例子恰好為研究指數(shù)函數(shù)中底數(shù)大于1和底數(shù)大于0小于1的圖象做好了準(zhǔn)備。 )
3、分組討論(8分鐘)
4、例題講解(12分鐘)
5、強化練習(xí)(8分鐘)
6、課堂總結(jié)(2分鐘)
7、布置作業(yè)(1分鐘)
指數(shù)函數(shù)教案 篇7
一、說教材
◆教材的地位及前后聯(lián)系
本節(jié)課是《中等職業(yè)教育規(guī)劃教材數(shù)學(xué)》第一冊第四章第二節(jié)《指數(shù)函數(shù)》。本節(jié)課是學(xué)生在已掌握了函數(shù)的一般性質(zhì)之后系統(tǒng)學(xué)習(xí)的第一個函數(shù),通過學(xué)習(xí)可進(jìn)一步深化學(xué)生對函數(shù)概念的理解與認(rèn)識,使學(xué)生得到較系統(tǒng)的函數(shù)知識和研究函數(shù)的方法,也為今后進(jìn)一步研究函數(shù)的性質(zhì)特別是后面的對數(shù)函數(shù)打下堅實的基礎(chǔ),同時也培養(yǎng)了學(xué)生對函數(shù)的應(yīng)用意識。因此本課有十分重要地位和作用,它對知識起到了承上啟下的作用。
◆教學(xué)目標(biāo):
☆知識目標(biāo):
1、掌握指數(shù)函數(shù)的概念,并能根據(jù)定義判斷一個函數(shù)是否為指數(shù)函數(shù);
2、掌握指數(shù)函數(shù)的圖像和性質(zhì);
3、能根據(jù)單調(diào)性解決比較大小的問題。
☆能力目標(biāo):
1、培養(yǎng)學(xué)生觀察、分析、分類、歸納、探索發(fā)現(xiàn)解決問題的能力,體會從特殊到一般的研究方法和分類討論思想。
2、提高學(xué)生運用現(xiàn)代信息化手段解決數(shù)學(xué)問題的能力。
☆情感目標(biāo)
1、通過問題的解決,樹立學(xué)生的自信心,體會成功與快樂;
2、滲透數(shù)形結(jié)合、分類討論的思想,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)學(xué)生探索精神和創(chuàng)新意識;
3、通過學(xué)習(xí)讓學(xué)生感受到數(shù)學(xué)與現(xiàn)實生活的聯(lián)系,讓學(xué)生發(fā)現(xiàn)生活中的函數(shù)問題。
◆教材的重點和難點:
☆教學(xué)重點:指數(shù)函數(shù)的概念、圖像和性質(zhì);
☆教學(xué)難點:如何由圖像歸納指數(shù)函數(shù)的性質(zhì)以及性質(zhì)的應(yīng)用。
二、◆學(xué)情分析
根據(jù)這幾年的教學(xué)我發(fā)現(xiàn)學(xué)生在后面學(xué)習(xí)中一遇到指對數(shù)問題就發(fā)蒙,原因是什么呢?問題就出在學(xué)生剛剛學(xué)完第三章函數(shù)的性質(zhì),應(yīng)用的又是初中比較熟悉的一元二次函數(shù)。一下子出現(xiàn)了一個非常陌生的函數(shù)而且需要記很多性質(zhì),學(xué)生感覺很吃力。對于我任教的12財會班的學(xué)生整體理論知識水平參差不齊,學(xué)生缺乏自主探索、發(fā)現(xiàn)的意識。但是性格活潑、興趣廣泛,樂于實踐。因此我在備課時以學(xué)生為本,以學(xué)生活動為主線,從興趣出發(fā),由2012年春節(jié)晚會的魔術(shù)引出本節(jié)課的指數(shù)函數(shù),讓學(xué)生從特殊到一般去認(rèn)識指數(shù)函數(shù),然后通過多媒體課件的充分展示讓學(xué)生分組討論、歸納出指數(shù)函數(shù)的性質(zhì)。
三、教法、學(xué)法
◆教學(xué)方法:啟發(fā)、合作探究、講練結(jié)合等教學(xué)方法。充分遵循“教師為主導(dǎo),學(xué)生為主體”的教學(xué)原則,采用多媒體輔助教學(xué)手段,借助多媒體,演示指數(shù)函數(shù)的圖像形成過程,便于總結(jié)函數(shù)的性質(zhì)。
◆學(xué)習(xí)方法:采用自主探究、小組合作、觀察歸納的學(xué)習(xí)方法。
四、教學(xué)程序
◆教學(xué)流程:
教學(xué)流程設(shè)計
1、創(chuàng)設(shè)情境,導(dǎo)入新課
2、構(gòu)建模型,形成概念
3、深入探究,發(fā)現(xiàn)性質(zhì)
4、講練結(jié)合,鞏固提高
5、課堂小結(jié),構(gòu)建體系
6、作業(yè)布置,延伸課堂
◆教學(xué)過程:
1、創(chuàng)設(shè)情境,導(dǎo)入新課
通過春節(jié)的撕報紙的魔術(shù)調(diào)動學(xué)生的興趣,教師接著引導(dǎo)學(xué)生分析撕報紙得到的分?jǐn)?shù)與撕報紙的次數(shù)之間的函數(shù)關(guān)系,分析出撕報紙得到的每一分小報紙的面積與撕報紙的次數(shù)之間得到的函數(shù)關(guān)系,從而建立一個關(guān)于指數(shù)函數(shù)的數(shù)學(xué)模型,為學(xué)生提出問題;提高學(xué)生學(xué)習(xí)新知識的積極性以及體會數(shù)學(xué)與生活密切相關(guān)。
2、構(gòu)建模型,形成概念
通過兩個具體的指數(shù)函數(shù)模型,給出指數(shù)函數(shù)概念,讓學(xué)生體會由特殊到一般的思想,并通過練習(xí)一判斷一個函數(shù)是否是指數(shù)函數(shù),加深學(xué)生對指數(shù)函數(shù)概念的理解。
3、深入探究,發(fā)現(xiàn)性質(zhì)
在這個環(huán)節(jié),函數(shù)圖像的性質(zhì)是本節(jié)課的重點也是難點,我準(zhǔn)備采用多媒體技術(shù)輔助教學(xué)突破重點、難點,這一環(huán)節(jié)關(guān)鍵是弄清楚底數(shù)a的變化對函數(shù)圖像及性質(zhì)的影響,利用多媒體動感顯示,通過顏色的區(qū)別,加深感性認(rèn)識,非常直觀形象地演示a的變化與圖像的變化規(guī)律,突破靜態(tài)思維,使難點迎刃而解。
華羅庚先生曾說:“數(shù)缺形時少直觀,形缺數(shù)時難入微。”探究指數(shù)函數(shù)的性質(zhì)從“數(shù)”的角度用解析式不易解決,轉(zhuǎn)而由“形”——圖像突破,體會數(shù)形結(jié)合的思想。通過兩個指數(shù)函數(shù)的作圖過程鞏固學(xué)生作圖能力,讓學(xué)生初步發(fā)現(xiàn)圖像規(guī)律。緊接著同時通過軟件讓學(xué)生舉出4個指數(shù)函數(shù),通過軟件快速畫出四個具體的指數(shù)函數(shù)圖像,充分引導(dǎo)學(xué)生通過觀察圖像發(fā)現(xiàn)指數(shù)函數(shù)的圖像規(guī)律,從而歸納指數(shù)函數(shù)的一般性質(zhì),經(jīng)歷一個由特殊到一般的探究過程。讓學(xué)生在研究出指數(shù)函數(shù)的一般性質(zhì)后進(jìn)行總結(jié)歸納函數(shù)的其他性質(zhì),從而對函數(shù)進(jìn)行較為系統(tǒng)的研究。
4、講練結(jié)合,鞏固提高
教師通過對例題一比較兩個函數(shù)值的大小、例題二求函數(shù)的定義域引導(dǎo)學(xué)生如何使用函數(shù)的性質(zhì)解決問題,同時通過學(xué)生進(jìn)行一些鞏固練習(xí)使學(xué)生對函數(shù)能進(jìn)行較為基本的應(yīng)用。
5、課堂小結(jié),構(gòu)建體系
小結(jié)環(huán)節(jié),讓學(xué)生自己總結(jié)函數(shù)的概念和性質(zhì),讓學(xué)生建立研究函數(shù)的知識體系
6、作業(yè)布置,延伸課堂
作業(yè)布置環(huán)節(jié)必做題鞏固學(xué)生上課內(nèi)容,選做題“古蓮子年齡之謎”的問題為學(xué)習(xí)能力較強的同學(xué)更大的發(fā)揮空間,因材施教,分層作業(yè),鞏固提高,為后續(xù)的學(xué)習(xí)奠定基礎(chǔ),同時也拓展學(xué)生的知識視野。
指數(shù)函數(shù)教案 篇8
一、教材分析
1?!吨笖?shù)函數(shù)》在教材中的地位、作用和特點
《指數(shù)函數(shù)》是人教版高中數(shù)學(xué)(必修)第一冊第二章“函數(shù)”的第六節(jié)內(nèi)容,是在學(xué)習(xí)了《指數(shù)》一節(jié)內(nèi)容之后編排的。通過本節(jié)課的學(xué)習(xí),既可以對指數(shù)和函數(shù)的概念等知識進(jìn)一步鞏固和深化,又可以為后面進(jìn)一步學(xué)習(xí)對數(shù)、對數(shù)函數(shù)尤其是利用互為反函數(shù)的圖象間的關(guān)系來研究對數(shù)函數(shù)的性質(zhì)打下堅實的概念和圖象基礎(chǔ),又因為《指數(shù)函數(shù)》是進(jìn)入高中以后學(xué)生遇到的第一個系統(tǒng)研究的函數(shù),對高中階段研究對數(shù)函數(shù)、三角函數(shù)等完整的函數(shù)知識,初步培養(yǎng)函數(shù)的應(yīng)用意識打下了良好的學(xué)習(xí)基礎(chǔ),所以《指數(shù)函數(shù)》不僅是本章《函數(shù)》的重點內(nèi)容,也是高中學(xué)段的主要研究內(nèi)容之一,有著不可替代的重要作用。
此外,《指數(shù)函數(shù)》的知識與我們的日常生產(chǎn)、生活和科學(xué)研究有著緊密的聯(lián)系,尤其體現(xiàn)在細(xì)胞分裂、貸款利率的計算和考古中的年代測算等方面,因此學(xué)習(xí)這部分知識還有著廣泛的現(xiàn)實意義。本節(jié)內(nèi)容的特點之一是概念性強,特點之二是凸顯了數(shù)學(xué)圖形在研究函數(shù)性質(zhì)時的重要作用。
2。教學(xué)目標(biāo)、重點和難點
通過初中學(xué)段的學(xué)習(xí)和高中對集合、函數(shù)等知識的系統(tǒng)學(xué)習(xí),學(xué)生對函數(shù)和圖象的關(guān)系已經(jīng)構(gòu)建了一定的認(rèn)知結(jié)構(gòu),主要體現(xiàn)在三個方面:
知識維度:對正比例函數(shù)、反比例函數(shù)、一次函數(shù),二次函數(shù)等最簡單的函數(shù)概念和性質(zhì)已有了初步認(rèn)識,能夠從初中運動變化的角度認(rèn)識函數(shù)初步轉(zhuǎn)化到從集合與對應(yīng)的觀點來認(rèn)識函數(shù)。
技能維度:學(xué)生對采用“描點法”描繪函數(shù)圖象的方法已基本掌握,能夠為研究《指數(shù)函數(shù)》的性質(zhì)做好準(zhǔn)備。
素質(zhì)維度:由觀察到抽象的數(shù)學(xué)活動過程已有一定的體會,已初步了解了數(shù)形結(jié)合的思想。
鑒于對學(xué)生已有的知識基礎(chǔ)和認(rèn)知能力的分析,根據(jù)《教學(xué)大綱》的要求,我確定本節(jié)課的教學(xué)目標(biāo)、教學(xué)重點和難點如下:
(1)知識目標(biāo):①掌握指數(shù)函數(shù)的概念;②掌握指數(shù)函數(shù)的圖象和性質(zhì);③能初步利用指數(shù)函數(shù)的概念解決實際問題;
(2)技能目標(biāo):①滲透數(shù)形結(jié)合的基本數(shù)學(xué)思想方法②培養(yǎng)學(xué)生觀察、聯(lián)想、類比、猜測、歸納的能力;
(3)情感目標(biāo):①體驗從特殊到一般的學(xué)習(xí)規(guī)律,認(rèn)識事物之間的普遍聯(lián)系與相互轉(zhuǎn)化,培養(yǎng)學(xué)生用聯(lián)系的觀點看問題②通過教學(xué)互動促進(jìn)師生情感,激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生抽象、概括、分析、綜合的能力③領(lǐng)會數(shù)學(xué)科學(xué)的應(yīng)用價值。
(4)教學(xué)重點:指數(shù)函數(shù)的圖象和性質(zhì)。
(5)教學(xué)難點:指數(shù)函數(shù)的圖象性質(zhì)與底數(shù)a的關(guān)系。
突破難點的關(guān)鍵:尋找新知生長點,建立新舊知識的聯(lián)系,在理解概念的基礎(chǔ)上充分結(jié)合圖象,利用數(shù)形結(jié)合來掃清障礙。
二、教法設(shè)計
由于《指數(shù)函數(shù)》這節(jié)課的特殊地位,在本節(jié)課的教法設(shè)計中,我力圖通過這一節(jié)課的教學(xué)達(dá)到不僅使學(xué)生初步理解并能簡單應(yīng)用指數(shù)函數(shù)的知識,更期望能引領(lǐng)學(xué)生掌握研究初等函數(shù)圖象性質(zhì)的一般思路和方法,為今后研究其它的函數(shù)做好準(zhǔn)備,從而達(dá)到培養(yǎng)學(xué)生學(xué)習(xí)能力的目的,我根據(jù)自己對“誘思探究”教學(xué)模式和“情景式”教學(xué)模式的認(rèn)識,將二者結(jié)合起來,主要突出了幾個方面:
1。創(chuàng)設(shè)問題情景。按照指數(shù)函數(shù)的在生活中的實際背景給出兩個實例,充分調(diào)動學(xué)生的學(xué)習(xí)興趣,激發(fā)學(xué)生的探究心理,順利引入課題,而這兩個例子又恰好為研究指數(shù)函數(shù)中底數(shù)大于1和底數(shù)大于0小于1的圖象做好了準(zhǔn)備。
2。強化“指數(shù)函數(shù)”概念。引導(dǎo)學(xué)生結(jié)合指數(shù)的有關(guān)概念來歸納出指數(shù)函數(shù)的定義,并向?qū)W生指出指數(shù)函數(shù)的形式特點,請學(xué)生思考對于底數(shù)a是否需要限制,如不限制會有什么問題出現(xiàn),這樣避免了學(xué)生對于底數(shù)a范圍分類的不清楚,也為研究指數(shù)函數(shù)的圖象做了“分類討論”的鋪墊。
3。突出圖象的作用。在數(shù)學(xué)學(xué)習(xí)過程中,圖形始終使我們需要借助的重要輔助手段。一位數(shù)學(xué)家曾經(jīng)說過“數(shù)離形時少直觀,形離數(shù)時難入微”,而在研究指數(shù)函數(shù)的性質(zhì)時,更是直接由圖象觀察得出性質(zhì),因此圖象發(fā)揮了主要的作用。
4。注意數(shù)學(xué)與生活和實踐的聯(lián)系。數(shù)學(xué)的本質(zhì)是來源于生活,服務(wù)于實踐。在課堂教學(xué)的引入、例題的講解和課外知識的拓展部分,都介紹了與指數(shù)函數(shù)息息相關(guān)的生活問題,力圖使學(xué)生了解到數(shù)學(xué)的基礎(chǔ)學(xué)科作用,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識。
三、學(xué)法指導(dǎo)
本節(jié)課是在學(xué)習(xí)完“指數(shù)”的概念和運算后編排的,針對學(xué)生實際情況,我主要在以下幾個方面做了嘗試:
1。再現(xiàn)原有認(rèn)知結(jié)構(gòu)。在引入兩個生活實例后,請學(xué)生回憶有關(guān)指數(shù)的概念,幫助學(xué)生再現(xiàn)原有認(rèn)知結(jié)構(gòu),為理解指數(shù)函數(shù)的概念做好準(zhǔn)備。
2。領(lǐng)會常見數(shù)學(xué)思想方法。在借助圖象研究指數(shù)函數(shù)的性質(zhì)時會遇到分類討論、數(shù)形結(jié)合等基本數(shù)學(xué)思想方法,這些方法將會貫穿整個高中的數(shù)學(xué)學(xué)習(xí)。
3。在互相交流和自主探
指數(shù)函數(shù)及性質(zhì)教案10篇
作為一名辛苦耕耘的教育工作者,時常需要編寫教案,借助教案可以恰當(dāng)?shù)剡x擇和運用教學(xué)方法,調(diào)動學(xué)生學(xué)習(xí)的積極性。那么應(yīng)當(dāng)如何寫教案呢?下面是小編為大家整理的數(shù)學(xué)《指數(shù)與指數(shù)函數(shù)》教案,供大家參考借鑒,希望可以幫助到有需要的朋友。
指數(shù)函數(shù)及性質(zhì)教案 篇1
在整個的教學(xué)過程中,始終體現(xiàn)以學(xué)生為本的教育理念。在學(xué)生已有的認(rèn)知基礎(chǔ)上進(jìn)行設(shè)問和引導(dǎo),關(guān)注學(xué)生的認(rèn)知過程,強調(diào)學(xué)生的'品德、思維和心理等方面的發(fā)展。重視討論、交流和合作,重視探究問題的習(xí)慣的培養(yǎng)和養(yǎng)成。同時,考慮不同學(xué)生的個性差異和發(fā)展層次,使不同的學(xué)生都有發(fā)展,體現(xiàn)因材施教的原則。
雖然在課前通過各種渠道和途徑努力了解學(xué)生情況和學(xué)習(xí)情況,但是由于各種原因也發(fā)現(xiàn)了一些問題。
1、由于是剛接的班級,雖然對學(xué)生情況有所了解,但還是估計不足。在例題的講解過程中發(fā)現(xiàn)學(xué)生對指數(shù)函數(shù)仍然很陌生,這一部分我的引導(dǎo)啟發(fā)應(yīng)再充分些。
2、課堂駕馭能力有待提高,教學(xué)節(jié)奏過于緊湊應(yīng)該多考慮大部分學(xué)生的學(xué)習(xí)能力。有些例題的處理沒能達(dá)到預(yù)期的效果是遺憾。
3、通過性質(zhì)探究環(huán)節(jié)讓我進(jìn)一步認(rèn)識到,不應(yīng)因為文科班學(xué)生基礎(chǔ)較差,就忽視他們的自主探究,合作交流的能力的培養(yǎng),重視基礎(chǔ)不等于簡單機械重復(fù),應(yīng)為學(xué)生打牢基礎(chǔ)。
4、教學(xué)中借助信息技術(shù)可以彌補傳統(tǒng)教學(xué)在直觀感、立體感和動態(tài)感方面的不足,可以很容易的化解教學(xué)難點、突破教學(xué)重點、提高課堂效率,本課使用幾何畫板可以動態(tài)地演示出指數(shù)函數(shù)的底數(shù)的動態(tài)過程,讓學(xué)生直觀觀察底數(shù)對指數(shù)函數(shù)單調(diào)性的影響。
指數(shù)函數(shù)及性質(zhì)教案 篇2
“指數(shù)函數(shù)及性質(zhì)”的教學(xué)共分兩個課時完成,這是第一課時。本節(jié)課主要學(xué)習(xí)了指數(shù)函數(shù)的定義,研究了指數(shù)函數(shù)的圖像及相關(guān)的性質(zhì)。回顧這節(jié)課,心中有很多感想,也有下面一些思考:
1、這節(jié)課是在學(xué)生系統(tǒng)的學(xué)習(xí)了指數(shù)概念、函數(shù)概念,基本掌握了函數(shù)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,具有初步的函數(shù)知識,但是對于研究具體的初等函數(shù)的性質(zhì)的基本方法和步驟還比較陌生,對于指數(shù)函數(shù)要怎么樣進(jìn)行較為系統(tǒng)的研究對學(xué)生來說是有困難的,因此這節(jié)課的每一個環(huán)節(jié)以我引導(dǎo),以學(xué)生的自主探究為主來完成是符合學(xué)情的。
2、設(shè)計“指數(shù)函數(shù)的圖象及性質(zhì)”,“y=ax的圖象和y=(1/a)x的圖象間的關(guān)系”. “a的大小對函數(shù)圖象的影響”三個問題,讓學(xué)生通過幾何畫板軟件動手畫圖操作、自主探究、主動思考來達(dá)到對知識的發(fā)現(xiàn)和接受,改變過去機械接受和死記結(jié)論的.狀況,符合新課改的理念,同時也完成了這節(jié)課的主要教學(xué)任務(wù)。
3、在對底數(shù)a的范圍的思考及三個探究性問題后都設(shè)置了練習(xí),能及時反饋學(xué)生對所探求到的知識的掌握程度,便于及時調(diào)整課堂教學(xué)行為。從課后看學(xué)生對這些知識的掌握應(yīng)該是比較好的。
4、這節(jié)課的學(xué)習(xí)及對函數(shù)研究方法和步驟的總結(jié)對后續(xù)學(xué)習(xí)新的函數(shù)起到了重要的示范作用。
指數(shù)函數(shù)及性質(zhì)教案 篇3
教材分析:
“指數(shù)函數(shù)”是在學(xué)生系統(tǒng)地學(xué)習(xí)了函數(shù)概念及性質(zhì),掌握了指數(shù)與指數(shù)冪的運算性質(zhì)的基礎(chǔ)上展開研究的作為重要的基本初等函數(shù)之一,指數(shù)函數(shù)既是函數(shù)近代定義及性質(zhì)的第一次應(yīng)用,也為今后研究其他函數(shù)提供了方法和模式,為后續(xù)的學(xué)習(xí)奠定基礎(chǔ).指數(shù)函數(shù)在知識體系中起了承上啟下的作用,同時在生活及生產(chǎn)實際中有著廣泛的應(yīng)用,因此它也是對學(xué)生進(jìn)行情感價值觀教育的好素材,所以指數(shù)函數(shù)應(yīng)重點研究.
學(xué)情分析:
通過初中階段的學(xué)習(xí)和高中對函數(shù)、指數(shù)的運算等知識的系統(tǒng)學(xué)習(xí),學(xué)生對函數(shù)已經(jīng)有了一定的認(rèn)識,學(xué)生對用“描點法”描繪出函數(shù)圖象的方法已基本掌握,已初步了解數(shù)形結(jié)合的思想.另外,學(xué)生對由特殊到一般再到特殊的數(shù)學(xué)活動過程已有一定的體會.
教學(xué)目標(biāo):
知識與技能:理解指數(shù)函數(shù)的概念和意義,能正確作出其圖象,掌握指數(shù)函數(shù)的性質(zhì)并能自覺、靈活地應(yīng)用其性質(zhì)(單調(diào)性、中介值)比較大小.
過程與方法:
(1) 體會從特殊到一般再到特殊的研究問題的方法,培養(yǎng)學(xué)生觀察、歸納、猜想、概括的能力,讓學(xué)生了解數(shù)學(xué)來源于生活又在生活中有廣泛的應(yīng)用;理解并掌握探求函數(shù)性質(zhì)的一般方法;
(2) 從數(shù)和形兩方面理解指數(shù)函數(shù)的性質(zhì),體會數(shù)形結(jié)合、分類討論的數(shù)學(xué)思想方法,提高思維的靈活性,培養(yǎng)學(xué)生直觀、嚴(yán)謹(jǐn)?shù)乃季S品質(zhì).
情感、態(tài)度與價值觀:
(1)體驗從特殊到一般再到特殊的學(xué)習(xí)規(guī)律,認(rèn)識事物之間的'普遍聯(lián)系與相互轉(zhuǎn)化,培養(yǎng)學(xué)生用聯(lián)系的觀點看問題,激發(fā)學(xué)生自主探究的精神,在探究過程中體驗合作學(xué)習(xí)的樂趣;
(2)讓學(xué)生在數(shù)形結(jié)合中感悟數(shù)學(xué)的統(tǒng)一美、和諧美,進(jìn)一步培養(yǎng)學(xué)生的學(xué)習(xí)興趣.
教學(xué)重點:
指數(shù)函數(shù)的圖象和性質(zhì)
教學(xué)難點:
指數(shù)函數(shù)概念的引入及指數(shù)函數(shù)性質(zhì)的應(yīng)用
教法研究:
本節(jié)課準(zhǔn)備由實際問題引入指數(shù)函數(shù)的概念,這樣可以讓學(xué)生知道指數(shù)函數(shù)的概念來源于客觀實際,便于學(xué)生接受并有利于培養(yǎng)學(xué)生用數(shù)學(xué)的意識.
利用函數(shù)圖象來研究函數(shù)性質(zhì)是函數(shù)中的一個非常重要的思想,本節(jié)課將是利用特殊的指數(shù)函數(shù)圖象歸納總結(jié)指數(shù)函數(shù)的性質(zhì),這樣便于學(xué)生研究其變化規(guī)律,理解其性質(zhì)并掌握一般地探求函數(shù)性質(zhì)的方法 同時運用現(xiàn)代信息技術(shù)學(xué)習(xí)、探索和解決問題,幫助學(xué)生理解新知識
本節(jié)課使用的教學(xué)方法有:直觀教學(xué)法、啟發(fā)引導(dǎo)法、發(fā)現(xiàn)法
教學(xué)過程:
一、問題情境 :
問題1:某種細(xì)胞分裂時,由一個分裂成2個,2個分裂成4個,4個分裂成8個,以此類推,一個這樣的細(xì)胞分裂x次后,得到的細(xì)胞個數(shù)y與x的函數(shù)關(guān)系式是什么?
問題2:一種放射性物質(zhì)不斷變化為其它物質(zhì),每經(jīng)過一年剩余質(zhì)量約是原來的 ,設(shè)該物質(zhì)的初始質(zhì)量為1,經(jīng)過 年后的剩余質(zhì)量為 ,你能寫出 之間的函數(shù)關(guān)系式嗎?
分析可知,函數(shù)的關(guān)系式分別是 與
問題3:在問題1和2中,兩個函數(shù)的自變量都是正整數(shù),但在實際問題中自變量不一定都是正整數(shù),比如在問題2中,我們除了關(guān)心1年、2年、3年后該物質(zhì)的剩余量外,還想知道3個月、一年半后該物質(zhì)的剩余量,怎么辦?
這就需要對函數(shù)的定義域進(jìn)行擴(kuò)充,結(jié)合指數(shù)概念的的擴(kuò)充,我們也可以將函數(shù)的定義域擴(kuò)充至全體實數(shù),這樣就得到了一個新的函數(shù)——指數(shù)函數(shù).
二、數(shù)學(xué)建構(gòu) :
1]定義:
一般地,函數(shù) 叫做指數(shù)函數(shù),其中 .
問題4:為什么規(guī)定 ?
問題5:你能舉出指數(shù)函數(shù)的例子嗎?
閱讀材料(“放射性碳法”測定古物的年代):
在動植物體內(nèi)均含有微量的放射性 ,動植物死亡后,停止了新陳代謝, 不在產(chǎn)生,且原有的 會自動衰變.經(jīng)過5740年( 的半衰期),它的殘余量為原來的一半.經(jīng)過科學(xué)測定,若 的原始含量為1,則經(jīng)過x年后的殘留量為 = .
這種方法經(jīng)常用來推算古物的年代.
練習(xí)1:判斷下列函數(shù)是否為指數(shù)函數(shù).
(1) (2)
(3) (4)
說明:指數(shù)函數(shù)的解析式y(tǒng)= 中, 的系數(shù)是1.
有些函數(shù)貌似指數(shù)函數(shù),實際上卻不是,如y= +k (a>0且a 1,k Z);
有些函數(shù)看起來不像指數(shù)函數(shù),實際上卻是,如y= (a>0,且a 1),因為它可以化為y= ,其中 >0,且 1
2]通過圖象探究指數(shù)函數(shù)的性質(zhì)及其簡單應(yīng)用:利用幾何畫板及其他多媒體軟件和學(xué)生一起完成
問題6:我們研究函數(shù)的性質(zhì),通常都研究哪些性質(zhì)?一般如何去研究?
函數(shù)的定義域,值域,單調(diào)性,奇偶性等;
利用函數(shù)圖象研究函數(shù)的性質(zhì)
問題7:作函數(shù)圖象的一般步驟是什么?
列表,描點,作圖
探究活動1:用列表描點法作出 , 的圖像(借助幾何畫板演示),觀察、比較這兩個函數(shù)的圖像,我們可以得到這兩個函數(shù)哪些共同的性質(zhì)?請同學(xué)們仔細(xì)觀察.
引導(dǎo)學(xué)生分析圖象并總結(jié)此時指數(shù)函數(shù)的性質(zhì)(底數(shù)大于1):
(1)定義域?R
(2)值域?函數(shù)的值域為
(3)過哪個定點?恒過 點,即
(4)單調(diào)性? 時, 為 上的增函數(shù)
(5)何時函數(shù)值大于1?小于1? 當(dāng) 時, ;當(dāng) 時,
問題8::是否所有的指數(shù)函數(shù)都是這樣的性質(zhì)?你能找出與剛才的函數(shù)性質(zhì)不一樣的指數(shù)函數(shù)嗎?
(引導(dǎo)學(xué)生自我分析和反思,培養(yǎng)學(xué)生的反思能力和解決問題的能力).
根據(jù)學(xué)生的發(fā)現(xiàn),再總結(jié)當(dāng)?shù)讛?shù)小于1時指數(shù)函數(shù)的相關(guān)性質(zhì)并作比較.
問題9:到現(xiàn)在,你能自制一份表格,比較 及 兩種不同情況下 的圖象和性質(zhì)嗎?
(學(xué)生完成表格的設(shè)計,教師適當(dāng)引導(dǎo))
指數(shù)函數(shù)及性質(zhì)教案 篇4
一、教學(xué)類型
新知課
二、教學(xué)目標(biāo)
1、理解指數(shù)函數(shù)的定義,初步掌握指數(shù)函數(shù)的定義域,值域及其奇偶性。
2、通過對指數(shù)函數(shù)的研究,使學(xué)生能把握函數(shù)研究的基本方法,激發(fā)學(xué)生的學(xué)習(xí)興趣。
三、教學(xué)重點和難點
重點:理解指數(shù)函數(shù)的定義,把握圖象和性質(zhì)。
難點:認(rèn)識底數(shù)對函數(shù)值影響的認(rèn)識。
四、教學(xué)用具
投影儀
五、教學(xué)方法
啟發(fā)討論研究式
六、教學(xué)過程
1)引入新課
我們前面學(xué)習(xí)了指數(shù)運算,在此基礎(chǔ)上,今天我們要來研究一類新的常見函數(shù)———————指數(shù)函數(shù)。指數(shù)函數(shù)(板書)
這類函數(shù)之所以重點介紹的原因就是它是實際生活中的一種需要。比如我們看下面的問題:
問題1:某種細(xì)胞分裂時,由1個分裂成2個,2個分裂成4個,……一個這樣的細(xì)胞分裂次后,得到的細(xì)胞分裂的個數(shù)與之間,構(gòu)成一個函數(shù)關(guān)系,能寫出與之間的`函數(shù)關(guān)系式嗎?
問題2:有一根1米長的繩子,第一次剪去繩長一半,第二次再剪去剩余繩子的一半,……剪了次后繩子剩余的長度為米,試寫出與之間的函數(shù)關(guān)系。
1、定義:形如的函數(shù)稱為指數(shù)函數(shù)。(板書)
教師在給出定義之后再對定義作幾點說明。
2、幾點說明(板書)
(1)關(guān)于對的規(guī)定:
(2)關(guān)于指數(shù)函數(shù)的定義域(板書)
(3)關(guān)于是否是指數(shù)函數(shù)的判斷(板書)剛才分別認(rèn)識了指數(shù)函數(shù)中底數(shù),指數(shù)的要求,下面我們從整體的角度來認(rèn)識一下,根據(jù)定義我們知道什么樣的函數(shù)是指數(shù)函數(shù),請看下面函數(shù)是否是指數(shù)函數(shù)。學(xué)生回答并說明理由,教師根據(jù)情況作點評,指出只有(1)和(3)是指數(shù)函數(shù),其中(3)可以寫成,也是指數(shù)圖象。最后提醒學(xué)生指數(shù)函數(shù)的定義是形式定義,就必須在形式上一摸一樣才行,然后把問題引向深入,有了定義域和初步研究的函數(shù)的性質(zhì),此時研究的關(guān)鍵在于畫出它的圖象,再細(xì)致歸納性質(zhì)。
3、歸納性質(zhì)
七、思考問題,設(shè)置懸念
八、小結(jié)
指數(shù)函數(shù)及性質(zhì)教案 篇5
教學(xué)目標(biāo):
1.進(jìn)一步理解指數(shù)函數(shù)的性質(zhì);
2.能較熟練地運用指數(shù)函數(shù)的性質(zhì)解決指數(shù)函數(shù)的平移問題。
教學(xué)重點:
指數(shù)函數(shù)的性質(zhì)的應(yīng)用。
教學(xué)難點:
指數(shù)函數(shù)圖象的平移變換。
教學(xué)過程:
一、情境創(chuàng)設(shè)
1.復(fù)習(xí)指數(shù)函數(shù)的概念、圖象和性質(zhì)
練習(xí):函數(shù)y=ax(a0且a1)的定義域是_____,值域是______,函數(shù)圖象所過的定點坐標(biāo)為。若a1,則當(dāng)x0時,y1;而當(dāng)x0時,y1。若00時,y1;而當(dāng)x0時,y1。
2.情境問題:指數(shù)函數(shù)的性質(zhì)除了比較大小,還有什么作用呢?我們知道對任意的a0且a1,函數(shù)y=ax的圖象恒過(0,1),那么對任意的a0且a1,函數(shù)y=a2x1的圖象恒過哪一個定點呢?
二、數(shù)學(xué)應(yīng)用與建構(gòu)
例1解不等式:
小結(jié):解關(guān)于指數(shù)的不等式與判斷幾個指數(shù)值的大小一樣,是指數(shù)性質(zhì)的運用,關(guān)鍵是底數(shù)所在的范圍。
例2說明下列函數(shù)的圖象與指數(shù)函數(shù)y=2x的圖象的關(guān)系,并畫出它們的示意圖:
小結(jié):指數(shù)函數(shù)的平移規(guī)律:y=f(x)左右平移y=f(x+k)(當(dāng)k0時,向左平移,反之向右平移),上下平移y=f(x)+h(當(dāng)h0時,向上平移,反之向下平移)。
練習(xí):
(1)將函數(shù)f(x)=3x的圖象向右平移3個單位,再向下平移2個單位,可以得到函數(shù)的圖象。
(2)將函數(shù)f(x)=3x的圖象向右平移2個單位,再向上平移3個單位,可以得到函數(shù)的圖象。
(3)將函數(shù)圖象先向左平移2個單位,再向下平移1個單位所得函數(shù)的解析式是。
(4)對任意的`a0且a1,函數(shù)y=a2x1的圖象恒過的定點的坐標(biāo)是。函數(shù)y=a2x-1的圖象恒過的定點的坐標(biāo)是。
小結(jié):指數(shù)函數(shù)的定點往往是解決問題的突破口!定點與單調(diào)性相結(jié)合,就可以構(gòu)造出函數(shù)的簡圖,從而許多問題就可以找到解決的突破口。
(5)如何利用函數(shù)f(x)=2x的圖象,作出函數(shù)y=2x和y=2|x2|的圖象?
(6)如何利用函數(shù)f(x)=2x的圖象,作出函數(shù)y=|2x-1|的圖象?
小結(jié):函數(shù)圖象的對稱變換規(guī)律。
例3已知函數(shù)y=f(x)是定義在R上的奇函數(shù),且x0時,f(x)=1-2x,試畫出此函數(shù)的圖象。
例4求函數(shù)的最小值以及取得最小值時的x值。
小結(jié):復(fù)合函數(shù)常常需要換元來求解其最值。
練習(xí):
(1)函數(shù)y=ax在[0,1]上的最大值與最小值的和為3,則a等于;
(2)函數(shù)y=2x的值域為;
(3)設(shè)a0且a1,如果y=a2x+2ax-1在[-1,1]上的最大值為14,求a的值;
(4)當(dāng)x0時,函數(shù)f(x)=(a2-1)x的值總大于1,求實數(shù)a的取值范圍。
三、小結(jié)
1.指數(shù)函數(shù)的性質(zhì)及應(yīng)用;
2.指數(shù)型函數(shù)的定點問題;
3.指數(shù)型函數(shù)的草圖及其變換規(guī)律。
四、作業(yè):
課本P55-6,7。
五、課后探究
(1)函數(shù)f(x)的定義域為(0,1),則函數(shù)的定義域為。
(2)對于任意的x1,x2R,若函數(shù)f(x)=2x,試比較的大小。
指數(shù)函數(shù)及性質(zhì)教案 篇6
一、教材分析
(一)教材的地位和作用
本課時主要學(xué)習(xí)指數(shù)函數(shù)的圖像和性質(zhì)概念,通過指數(shù)函數(shù)圖像的研究歸納其性質(zhì)?!爸笖?shù)函數(shù)”是函數(shù)中的一個重要基本初等函數(shù),是后續(xù)知識——對數(shù)函數(shù)(指數(shù)函數(shù)的反函數(shù))的準(zhǔn)備知識。本節(jié)課的重點是指數(shù)函數(shù)的圖像及性質(zhì),難點在于弄清楚底數(shù)a對于函數(shù)變化的影響。通過這部分知識的學(xué)習(xí)進(jìn)一步深化學(xué)生對函數(shù)概念的理解與認(rèn)識,使學(xué)生得到較系統(tǒng)的函數(shù)知識并體會研究函數(shù)較為完整的思維方法,此外還可類比學(xué)習(xí)后面的其它函數(shù)。
(二)教學(xué)目標(biāo)
知識維度:初中已經(jīng)學(xué)習(xí)了正比例函數(shù)、反比例函數(shù)和一次函數(shù),并對一次函數(shù)、二次函數(shù)作了更深入研究,學(xué)生已經(jīng)初步掌握了研究函數(shù)的一般方法,能夠從初中運動變化的角度認(rèn)識函數(shù)初步轉(zhuǎn)化到從集合與對應(yīng)的觀點來認(rèn)識函數(shù)。
能力維度:學(xué)生利用描點法畫出函數(shù)的圖像,并描述出函數(shù)的圖像特征,能夠為研究指數(shù)函數(shù)的性質(zhì)做好準(zhǔn)備。
素質(zhì)維度:由觀察到抽象的數(shù)學(xué)活動過程已有一定的體會,已初步了解了數(shù)形結(jié)合的思想。
1、知識與技能目標(biāo):
(1)掌握指數(shù)函數(shù)的概念(能理解對a的限定以及自變量的取值可推廣至實數(shù)范圍);
(2)會做指數(shù)函數(shù)的圖像;
(3)能初步把握指數(shù)函數(shù)的圖像,性質(zhì)及其簡單應(yīng)用。
2、過程與方法目標(biāo):
通過由指數(shù)函數(shù)的圖像歸納其性質(zhì)的學(xué)習(xí)過程,由圖像研究指數(shù)函數(shù)的性質(zhì)。利用性質(zhì)解決實際問題,培養(yǎng)學(xué)生探究、歸納分析問題的'能力。
3、情感態(tài)度與價值觀目標(biāo):
(1)在學(xué)習(xí)的過程中體會研究具體函數(shù)及其性質(zhì)的過程和方法,如體驗從特殊到一般的學(xué)習(xí)規(guī)律,認(rèn)識事物之間的普遍聯(lián)系與相互轉(zhuǎn)化,培養(yǎng)學(xué)生用聯(lián)系的觀點看問題。
(2)通過教學(xué)互動促進(jìn)師生情感,激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生抽象、概括、分析、綜合的能力通過探究體會“數(shù)形結(jié)合”的思想;感受知識之間的關(guān)聯(lián)性;體會研究函數(shù)由特殊到一般再到特殊的研究學(xué)習(xí)過程;體驗研究函數(shù)的一般思維方法。
(三)教學(xué)重點和難點
教學(xué)重點:指數(shù)函數(shù)的圖象和性質(zhì)。
教學(xué)難點:指數(shù)函數(shù)的圖象性質(zhì)與底數(shù)a的關(guān)系。
教學(xué)關(guān)鍵:從實際出發(fā),使學(xué)生在獲得一定的感性認(rèn)識和基礎(chǔ)上,通過觀察、比較、歸納提高到理性認(rèn)識,以形成完整的概念;在理解概念的基礎(chǔ)上充分結(jié)合圖象,利用數(shù)形結(jié)合來掃清障礙。
課時安排:1課時
二、學(xué)情分析
學(xué)生已有一定的函數(shù)基本知識、可建立簡單的函數(shù)關(guān)系,為以函數(shù)關(guān)系的建立作為本節(jié)知識的引入做了知識準(zhǔn)備。此外,初中所學(xué)有理數(shù)范圍內(nèi)的指數(shù)相關(guān)知識,將已有知識推廣至實數(shù)范圍。在此基礎(chǔ)上進(jìn)入指數(shù)函數(shù)的學(xué)習(xí),并將所學(xué)對函數(shù)的認(rèn)識進(jìn)一步推向系統(tǒng)化。
三、教法分析
(一)教學(xué)方式
直接講授與啟發(fā)探究相結(jié)合
(二)教學(xué)手段
借助多媒體,展示學(xué)生的做圖結(jié)果;演示指數(shù)函數(shù)的圖像
四、教學(xué)基本思路:
(一)創(chuàng)設(shè)情境,揭示課題。
1、創(chuàng)設(shè)情境。(如何建立一個關(guān)于指數(shù)函數(shù)的數(shù)學(xué)模型——后續(xù)解決)
2、引入指數(shù)函數(shù)概念。
(二)探究新知。
1、研究指數(shù)函數(shù)的圖象。
2、歸納總結(jié)指數(shù)函數(shù)的性質(zhì)。
(三)鞏固深化,發(fā)展思維。
(四)歸納整理,提高認(rèn)識。
(五)鞏固練習(xí)與作業(yè)。
(六)教學(xué)設(shè)計說明。
1、拋出生活中的實例,需要建立一個關(guān)于指數(shù)函數(shù)的數(shù)學(xué)模型,為學(xué)生提出問題;提高學(xué)生學(xué)習(xí)新知識的積極性以及體會數(shù)學(xué)與生活密切相關(guān)。
2、用簡單易懂的實例引入指數(shù)函數(shù)概念,體會由特殊到一般的思想。
3、探究指數(shù)函數(shù)的性質(zhì)從“數(shù)”的角度用解析式不易解決,轉(zhuǎn)而由“形”——圖象突破,體會數(shù)形結(jié)合的思想。通過研究幾個具體的指數(shù)函數(shù)引導(dǎo)學(xué)生通過觀察圖象發(fā)現(xiàn)指數(shù)函數(shù)的圖象規(guī)律,從而歸納指數(shù)函數(shù)的一般性質(zhì),經(jīng)歷一個由特殊到一般的探究過程。讓學(xué)生在研究出指數(shù)函數(shù)的一般性質(zhì)后進(jìn)行總結(jié)歸納函數(shù)的其他性質(zhì),從而對函數(shù)進(jìn)行較為系統(tǒng)的研究。
4、進(jìn)行一些鞏固練習(xí)從而能對函數(shù)進(jìn)行較為基本的應(yīng)用。
指數(shù)函數(shù)及性質(zhì)教案 篇7
指數(shù)函數(shù)是學(xué)生在學(xué)習(xí)了函數(shù)基本概念和性質(zhì)以后接觸到得第一個具體函數(shù)、所以在這部分的教學(xué)安排上、我更注意學(xué)生思維習(xí)慣的養(yǎng)成、特作如下思考:
1、設(shè)計應(yīng)從哪些方面、哪些角度去探索一個具體函數(shù)、我在這部分設(shè)置了三個環(huán)節(jié)
(1)由具體的折紙的例子引出指數(shù)函數(shù)
設(shè)計意圖:貼近學(xué)生的生活實際、便于動手操作與觀察。
讓學(xué)生充分感受我們生活中大量存在指數(shù)函數(shù)模型、從而便于學(xué)生接受指數(shù)函數(shù)的形式、突破符號語言的障礙。
(2)通過研究幾個特殊的底數(shù)的指數(shù)函數(shù)得到一般指數(shù)函數(shù)的規(guī)律。
符合學(xué)生由特殊到一般的、由具體到抽象的學(xué)習(xí)認(rèn)知規(guī)律。
(3)通過多媒體手段、用計算機作出底數(shù)a變換的圖像、讓學(xué)生更直觀、深刻的感受指數(shù)函數(shù)的圖像及性質(zhì)。
通過引入定義剖析辨析運用、這個由特殊到一般的過程揭示了概念的內(nèi)涵和外延;而后在教師的點撥下、學(xué)生作圖觀察探究交流概括運用、使學(xué)生在動手操作、動眼觀察、動腦思考、合作探究中達(dá)到對知識的發(fā)現(xiàn)和接受、同時滲透了分類討論、數(shù)形結(jié)合的思想、提高了學(xué)生學(xué)習(xí)數(shù)學(xué)概念、性質(zhì)和方法的能力、養(yǎng)成了良好的學(xué)習(xí)習(xí)慣。
2、課堂練習(xí)前后呼應(yīng)、各有側(cè)重、通過問題呈現(xiàn)、變式教學(xué)、不但突出了重點內(nèi)容、把知識加固、挖深。使教學(xué)目標(biāo)得以實現(xiàn)。而且注重知識的延續(xù)性、為以后的`學(xué)習(xí)奠定了基礎(chǔ)。
3、教學(xué)過程設(shè)計為六個環(huán)節(jié):
1.情景設(shè)置、形成概念
2.發(fā)現(xiàn)問題、深化概念
3.深入探究圖像、加深理解性質(zhì)
4.強化訓(xùn)練、落實掌握
5.小結(jié)歸納、拓展深化
6.布置作業(yè)、延伸課堂。各個環(huán)節(jié)層層深入、環(huán)環(huán)相扣、充分體現(xiàn)了在教師的指導(dǎo)下、師生、生生之間的交流互動、使學(xué)生親身經(jīng)歷知識的形成和發(fā)展過程。
4、通過學(xué)案教學(xué)為抓手、讓學(xué)生先學(xué)、老師在課前充分了解了學(xué)情、以學(xué)定教、進(jìn)行二次備課、抓住學(xué)生的學(xué)習(xí)困難、站在學(xué)生學(xué)的角度設(shè)計教學(xué)。
5、學(xué)生真思考、學(xué)生的真探究、才是保障教學(xué)目標(biāo)得以實現(xiàn)的前提、在教學(xué)中、教師通過教學(xué)設(shè)計要以給學(xué)生充分的思維空間、推理運算空間和交流學(xué)習(xí)空間、努力創(chuàng)設(shè)一個活動化的課堂才可能真正喚起學(xué)生的生命主體意識、引領(lǐng)他們走上自主構(gòu)建知識意義的發(fā)展路徑。
指數(shù)函數(shù)及性質(zhì)教案 篇8
《指數(shù)函數(shù)》是人教b版高中數(shù)學(xué)必修1第三章第二節(jié)第1課時,是繼第二章函數(shù)的概念、函數(shù)的性質(zhì)、一次函數(shù)、二次函數(shù)之后,學(xué)生要認(rèn)識的一個新的函數(shù)。下面是我對本節(jié)課的教學(xué)反思:
(一)對課前準(zhǔn)備的反思
上課前認(rèn)真?zhèn)湔n,多次請教了指導(dǎo)教師孫久志老師的意見與建議,在他的指導(dǎo)下,我對新課標(biāo)和新教材有了較為整體的把握和認(rèn)識,將知識系統(tǒng)化,注意知識前后的聯(lián)系,形成了知識框架,了解了學(xué)生的現(xiàn)狀和認(rèn)知結(jié)構(gòu),做到了因材施教。
(一)對情境創(chuàng)設(shè)的反思
這是本節(jié)課的一個成功之處,整堂課的問題情景創(chuàng)設(shè)很恰當(dāng),幾乎所有的結(jié)論都是在教師的引導(dǎo)下,學(xué)生自己總結(jié)出來的。
本節(jié)課是以問題的形式引入,采用兩個實際問題,既激發(fā)了學(xué)生學(xué)習(xí)的積極性,又讓他們體會到數(shù)學(xué)是來自于生活,也是服務(wù)于生活的。引出函數(shù)的一般式 12y=ax ' type="#_x0000_t75"> 以后,我又讓學(xué)生自己舉幾個例子,他們舉的例子中有a=1,a=0,a0且a 12鈮? ' type="#_x0000_t75"> 的范圍,進(jìn)而讓學(xué)生自己求出此時函數(shù)的定義域,此時指數(shù)函數(shù)的定義已經(jīng)呼之欲出,不言自明了,甚至學(xué)生自己已經(jīng)可以給指數(shù)函數(shù)下定義了。
對于指數(shù)函數(shù)的圖像與性質(zhì),我仍然是創(chuàng)設(shè)問題情景,步步深入,層層逼近,先讓學(xué)生回憶我們研究一次函數(shù)和二次函數(shù)的思路,自然會聯(lián)想到用這個思路來研究指數(shù)函數(shù);再回憶畫函數(shù)圖象的方法,自己動手畫出函數(shù) 12y=2x鐨?/m:t>:sectpr wsp:rsidr="00000000">' type="#_x0000_t75"> 圖象,并提問:猜想函數(shù) 12y=(12)x' type="#_x0000_t75"> , 12 y=3x' type="#_x0000_t75"> , 12 y=(13)x' type="#_x0000_t75"> 的圖象,學(xué)生在猜想的過程中就會意識到指數(shù)函數(shù)的圖象形狀會因底數(shù)a的不同而不同:一方面,a>1與0
(二)對教學(xué)模式的反思
本節(jié)課的另一個成功之處就是采用“引導(dǎo)啟發(fā)探討”式教學(xué),在授課的過程中,我一直在和學(xué)生進(jìn)行探討,讓學(xué)生自己舉例子,自己畫圖象,自己歸納概括。剛上課的時候,有位同學(xué)就對我們舉的例子提出了問題,我耐心地進(jìn)行了解答,正好他的問題也為下一步的討論提供了思路,我就順勢進(jìn)行了。其實在平時的課堂中,我就比較注意和學(xué)生的交流,盡量地讓學(xué)生把問題暴漏出來,因為這樣的問題一般就是大家共同的問題。在和學(xué)生探討指數(shù)函數(shù)的特性時,他們觀察得非常細(xì)致,幾乎把圖象上能反映出來的函數(shù)性質(zhì)都說出來了,每位發(fā)言的同學(xué)我都給予了肯定,大家很積極,有位同學(xué)還說出了函數(shù)增長速度的問題,我就順勢講了一個與此有關(guān)的故事,大家聽得津津有味。
(三)對現(xiàn)代化多媒體應(yīng)用的反思
本節(jié)課的第三個成功之處是:教學(xué)課件用得恰到好處,我采用的`是幾何畫板數(shù)學(xué)軟件,非常形象直觀地展示了描點法作圖的全過程,因為這個過程是我們歸納圖像與性質(zhì)的一個準(zhǔn)備工作,應(yīng)該向?qū)W生展示,但是如果在黑板上演示,既要花費大量的時間,對于較精確的計算也無法進(jìn)行。幾何畫板正好解決了這個問題,通過演示,讓學(xué)生了解到數(shù)學(xué)需要嚴(yán)謹(jǐn)科學(xué)的計算,而且數(shù)學(xué)其實也是一種很美的科學(xué)。但是數(shù)學(xué)這門學(xué)科又要求老師要正確規(guī)范地板書,除了練習(xí)、例題的題目和作圖的過程,其他重要內(nèi)容我都進(jìn)行了規(guī)范的板書,讓學(xué)生的思維始終跟著我。在課堂中,我還用投影儀展示了個別學(xué)生的作業(yè),進(jìn)行了點評,讓學(xué)生發(fā)現(xiàn)自己學(xué)習(xí)中的優(yōu)點和缺點。
(四)對于贊賞評價的反思
對于學(xué)生創(chuàng)造性的回答我給予了鼓勵與肯定,而對于學(xué)生不足甚至錯誤的回答,指出了不足,但沒有損傷其自尊心和自信心。在新課標(biāo)下,我們的學(xué)生應(yīng)該是自由的、真實的、快樂的、幸福的。我們的數(shù)學(xué)課堂教學(xué),應(yīng)該從數(shù)學(xué)的實際出發(fā)給學(xué)生自由、真實、快樂、幸福。
(五)對不足之處的反思
在讓學(xué)生歸納指數(shù)函數(shù)的圖象時,學(xué)生總結(jié)了a>1與01的代表就是我們畫出的 12y=2x涓?/m:t>m:rpr>y=3x' type="#_x0000_t75"> 的圖像,而0y=(13)x' type="#_x0000_t75"> 的圖像,這樣就更形象直觀一些;由于上課的教室聽不見鈴聲,時間控制得不是很準(zhǔn)確,提前了一分鐘下課,如果能利用這一分鐘再稍深入地探討一下例2中利用找中間量的方法比較兩個冪的大小,這堂課就更加完滿,雖然是一個很小的問題,不影響整堂課的效果,但是卻提醒我自己在平時的上課中就得注意小的細(xì)節(jié)問題;板書方面,行與行的疏密控制得不夠準(zhǔn)確,導(dǎo)致最后一行的空間有點小了。
指數(shù)函數(shù)及性質(zhì)教案 篇9
教學(xué)目標(biāo)
1.使學(xué)生理解函數(shù)單調(diào)性的概念,并能判斷一些簡單函數(shù)在給定區(qū)間上的單調(diào)性.
2.通過函數(shù)單調(diào)性概念的教學(xué),培養(yǎng)學(xué)生分析問題、認(rèn)識問題的能力.通過例題培養(yǎng)學(xué)生利用定義進(jìn)行推理的邏輯思維能力.
3.通過本節(jié)課的教學(xué),滲透數(shù)形結(jié)合的數(shù)學(xué)思想,對學(xué)生進(jìn)行辯證唯物主義的教育.
教學(xué)重點與難點
教學(xué)重點:函數(shù)單調(diào)性的概念.
教學(xué)難點:函數(shù)單調(diào)性的判定.
教學(xué)過程設(shè)計
一、引入新課
師:請同學(xué)們觀察下面兩組在相應(yīng)區(qū)間上的函數(shù),然后指出這兩組函數(shù)之間在性質(zhì)上的主要區(qū)別是什么?
(用投影幻燈給出兩組函數(shù)的圖象.)
第一組:
第二組:
生:第一組函數(shù),函數(shù)值y隨x的增大而增大;第二組函數(shù),函數(shù)值y隨x的增大而減小.
師:(手執(zhí)投影棒使之沿曲線移動)對.他(她)答得很好,這正是兩組函數(shù)的主要區(qū)別.當(dāng)x變大時,第一組函數(shù)的函數(shù)值都變大,而第二組函數(shù)的函數(shù)值都變小.雖然在每一組函數(shù)中,函數(shù)值變大或變小的方式并不相同,但每一組函數(shù)卻具有一種共同的性質(zhì).我們在學(xué)習(xí)一次函數(shù)、二次函數(shù)、反比例函數(shù)以及冪函數(shù)時,就曾經(jīng)根據(jù)函數(shù)的圖象研究過函數(shù)的函數(shù)值隨自變量的變大而變大或變小的性質(zhì).而這些研究結(jié)論是直觀地由圖象得到的在函數(shù)的集合中,有很多函數(shù)具有這種性質(zhì),因此我們有必要對函數(shù)這種性質(zhì)作更進(jìn)一步的一般性的討論和研究,這就是我們今天這一節(jié)課的內(nèi)容.
(點明本節(jié)課的內(nèi)容,既是曾經(jīng)有所認(rèn)識的,又是新的知識,引起學(xué)生的注意.)
二、對概念的分析
(板書課題:)
師:請同學(xué)們打開課本第51頁,請××同學(xué)把增函數(shù)、減函數(shù)、單調(diào)區(qū)間的定義朗讀一遍.
(學(xué)生朗讀.)
師:好,請坐.通過剛才閱讀增函數(shù)和減函數(shù)的定義,請同學(xué)們思考一個問題:這種定義方法和我們剛才所討論的函數(shù)值y隨自變量x的增大而增大或減小是否一致?如果一致,定義中是怎樣描述的?
生:我認(rèn)為是一致的定義中的“當(dāng)x1<x2時,都有f(x1)<f(x2)”描述了y隨x的增大而增大;“當(dāng)x1<x2時,都有f(x1)>f(x2)”描述了y隨x的增大而減少.
師:說得非常正確.定義中用了兩個簡單的不等關(guān)系“x1<x2”和“f(x1)<f(x2)或f(x1)>f(x2)”,它刻劃了函數(shù)的單調(diào)遞增或單調(diào)遞減的性質(zhì).這就是數(shù)學(xué)的魅力!
(通過教師的情緒感染學(xué)生,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.)
師:現(xiàn)在請同學(xué)們和我一起來看剛才的兩組圖中的第一個函數(shù)y=f1(x)和y=f2(x)的圖象,體會這種魅力.
(指圖說明.)
師:圖中y=f1(x)對于區(qū)間[a,b]上的任意x1,x2,當(dāng)x1<x2時,都有f1(x1)<f1(x),因此y=f1(x)在區(qū)間[a,b]上是單調(diào)遞增的,區(qū)間[a,b]是函數(shù)y=f1(x)的單調(diào)增區(qū)間;而圖中y=f2(x)對于區(qū)間[a,b]上的任意x1,x2,當(dāng)x1<x2時,都有f2(x1)>f2(x2),因此y=f2(x)在區(qū)間[a,b]上是單調(diào)遞減的,區(qū)間[a,b]是函數(shù)y=f2(x)的單調(diào)減區(qū)間.
(教師指圖說明分析定義,使學(xué)生把函數(shù)單調(diào)性的定義與直觀圖象結(jié)合起來,使新舊知識融為一體,加深對概念的理解.滲透數(shù)形結(jié)合分析問題的數(shù)學(xué)思想方法.)
師:因此我們可以說,增函數(shù)就其本質(zhì)而言是在相應(yīng)區(qū)間上較大的自變量對應(yīng)……
(不把話說完,指一名學(xué)生接著說完,讓學(xué)生的思維始終跟著老師.)
生:較大的函數(shù)值的函數(shù).
師:那么減函數(shù)呢?
生:減函數(shù)就其本質(zhì)而言是在相應(yīng)區(qū)間上較大的自變量對應(yīng)較小的函數(shù)值的函數(shù).
(學(xué)生可能回答得不完整,教師應(yīng)指導(dǎo)他說完整.)
師:好.我們剛剛以增函數(shù)和減函數(shù)的定義作了初步的`分析,通過閱讀和分析你認(rèn)為在定義中我們應(yīng)該抓住哪些關(guān)鍵詞語,才能更透徹地認(rèn)識定義?
(學(xué)生思索.)
學(xué)生在高中階段以至在以后的學(xué)習(xí)中經(jīng)常會遇到一些概念(或定義),能否抓住定義中的關(guān)鍵詞語,是能否正確地、深入地理解和掌握概念的重要條件,更是學(xué)好數(shù)學(xué)及其他各學(xué)科的重要一環(huán).因此教師應(yīng)該教會學(xué)生如何深入理解一個概念,以培養(yǎng)學(xué)生分析問題,認(rèn)識問題的能力.
(教師在學(xué)生思索過程中,再一次有感情地朗讀定義,并注意在關(guān)鍵詞語處適當(dāng)加重語氣.在學(xué)生感到無從下手時,給以適當(dāng)?shù)奶崾?)
生:我認(rèn)為在定義中,有一個詞“給定區(qū)間”是定義中的關(guān)鍵詞語.
師:很好,我們在學(xué)習(xí)任何一個概念的時候,都要善于抓住定義中的關(guān)鍵詞語,在學(xué)習(xí)幾個相近的概念時還要注意區(qū)別它們之間的不同.增函數(shù)和減函數(shù)都是對相應(yīng)的區(qū)間而言的,離開了相應(yīng)的區(qū)間就根本談不上函數(shù)的增減性.請大家思考一個問題,我們能否說一個函數(shù)在x=5時是遞增或遞減的?為什么?
生:不能.因為此時函數(shù)值是一個數(shù).
師:對.函數(shù)在某一點,由于它的函數(shù)值是唯一確定的常數(shù)(注意這四個字“唯一確定”),因而沒有增減的變化.那么,我們能不能脫離區(qū)間泛泛談?wù)撃骋粋€函數(shù)是增函數(shù)或是減函數(shù)呢?你能否舉一個我們學(xué)過的例子?
生:不能.比如二次函數(shù)y=x2,在y軸左側(cè)它是減函數(shù),在y軸右側(cè)它是增函數(shù).因而我們不能說y=x2是增函數(shù)或是減函數(shù).
(在學(xué)生回答問題時,教師板演函數(shù)y=x2的圖像,從“形”上感知.)
師:好.他(她)舉了一個例子來幫助我們理解定義中的詞語“給定區(qū)間”.這說明是函數(shù)在某一個區(qū)間上的性質(zhì),但這不排斥有些函數(shù)在其定義域內(nèi)都是增函數(shù)或減函數(shù).因此,今后我們在談?wù)摵瘮?shù)的增減性時必須指明相應(yīng)的區(qū)間.
師:還有沒有其他的關(guān)鍵詞語?
生:還有定義中的“屬于這個區(qū)間的任意兩個”和“都有”也是關(guān)鍵詞語.
師:你答的很對.能解釋一下為什么嗎?
(學(xué)生不一定能答全,教師應(yīng)給予必要的提示.)
師:“屬于”是什么意思?
生:就是說兩個自變量x1,x2必須取自給定的區(qū)間,不能從其他區(qū)間上取.
師:如果是閉區(qū)間的話,能否取自區(qū)間端點?
生:可以.
師:那么“任意”和“都有”又如何理解?
生:“任意”就是指不能取特定的值來判斷函數(shù)的增減性,而“都有”則是說只要x1<x2,f(x1)就必須都小于f(x2),或f(x1)都大于f(x2).
師:能不能構(gòu)造一個反例來說明“任意”呢?
(讓學(xué)生思考片刻.)
生:可以構(gòu)造一個反例.考察函數(shù)y=x2,在區(qū)間[-2,2]上,如果取兩個特定的值x1=-2,x2=1,顯然x1<x2,而f(x1)=4,f(x2)=1,有f(x1)>f(x2),若由此判定y=x2是[-2,2]上的減函數(shù),那就錯了.
師:那么如何來說明“都有”呢?
生:y=x2在[-2,2]上,當(dāng)x1=-2,x2=-1時,有f(x1)>f(x2);當(dāng)x1=1,x2=2時,有f(x1)<f(x2),這時就不能說y=x2,在[-2,2]上是增函數(shù)或減函數(shù).
師:好極了!通過分析定義和舉反例,我們知道要判斷函數(shù)y=f(x)在某個區(qū)間內(nèi)是增函數(shù)或減函數(shù),不能由特定的兩個點的情況來判斷,而必須嚴(yán)格依照定義在給定區(qū)間內(nèi)任取兩個自變量x1,x2,根據(jù)它們的函數(shù)值f(x1)和f(x2)的大小來判定函數(shù)的增減性.
(教師通過一系列的設(shè)問,使學(xué)生處于積極的思維狀態(tài),從抽象到具體,并通過反例的反襯,使學(xué)生加深對定義的理解.在概念教學(xué)中,反例常常幫助學(xué)生更深刻地理解概念,鍛煉學(xué)生的發(fā)散思維能力.)
師:反過來,如果我們已知f(x)在某個區(qū)間上是增函數(shù)或是減函數(shù),那么,我們就可以通過自變量的大小去判定函數(shù)值的大小,也可以由函數(shù)值的大小去判定自變量的大小.即一般成立則特殊成立,反之,特殊成立,一般不一定成立.這恰是辯證法中一般和特殊的關(guān)系.
(用辯證法的原理來解釋數(shù)學(xué)知識,同時用數(shù)學(xué)知識去理解辯證法的原理,這樣的分析,有助于深入地理解和掌握概念,分清概念的內(nèi)涵和外延,培養(yǎng)學(xué)生學(xué)習(xí)的能力.)
三、概念的應(yīng)用
例1 圖4所示的是定義在閉區(qū)間[-5,5]上的函數(shù)f(x)的圖象,根據(jù)圖象說出f(x)的單調(diào)區(qū)間,并回答:在每一個單調(diào)區(qū)間上,f(x)是增函數(shù)還是減函數(shù)?
(用投影幻燈給出圖象.)
生甲:函數(shù)y=f(x)在區(qū)間[-5,-2],[1,3]上是減函數(shù),因此[-5,-2],[1,3]是函數(shù)y=f(x)的單調(diào)減區(qū)間;在區(qū)間[-2,1],[3,5]上是增函數(shù),因此[-2,1],[3,5]是函數(shù)y=f(x)的單調(diào)增區(qū)間.
生乙:我有一個問題,[-5,-2]是函數(shù)f(x)的單調(diào)減區(qū)間,那么,是否可認(rèn)為(-5,-2)也是f(x)的單調(diào)減區(qū)間呢?
師:問得好.這說明你想的很仔細(xì),思考問題很嚴(yán)謹(jǐn).容易證明:若f(x)在[a,b]上單調(diào)(增或減),則f(x)在(a,b)上單調(diào)(增或減).反之不然,你能舉出反例嗎?一般來說.若f(x)在[a,(增或減).反之不然.
例2 證明函數(shù)f(x)=3x+2在(-∞,+∞)上是增函數(shù).
師:從函數(shù)圖象上觀察固然形象,但在理論上不夠嚴(yán)格,尤其是有些函數(shù)不易畫出圖象,因此必須學(xué)會根據(jù)解析式和定義從數(shù)量上分析辨認(rèn),這才是我們研究函數(shù)單調(diào)性的基本途徑.
(指出用定義證明的必要性.)
師:怎樣用定義證明呢?請同學(xué)們思考后在筆記本上寫出證明過程.
(教師巡視,并指定一名中等水平的學(xué)生在黑板上板演.學(xué)生可能會對如何比較f(x1)和f(x2)的大小關(guān)系感到無從入手,教師應(yīng)給以啟發(fā).)
師:對于f(x1)和f(x2)我們?nèi)绾伪容^它們的大小呢?我們知道對兩個實數(shù)a,b,如果a>b,那么它們的差a-b就大于零;如果a=b,那么它們的差a—b就等于零;如果a<b,那么它們的差a-b就小于零,反之也成立.因此我們可由差的符號來決定兩個數(shù)的大小關(guān)系.
生:(板演)設(shè)x1,x2是(-∞,+∞)上任意兩個自變量,當(dāng)x1<x2時,
f(x1)-f(x2)=(3x1+2)-(3x2+2)=3x1-3x2=3(x1-x2)<0,
所以f(x)是增函數(shù).
師:他的證明思路是清楚的一開始設(shè)x1,x2是(-∞,+∞)內(nèi)任意兩個自變量,并設(shè)x1<x2(邊說邊用彩色粉筆在相應(yīng)的語句下劃線,并標(biāo)注“①→設(shè)”),然后看f(x1)-f(x2),這一步是證明的關(guān)鍵,再對式子進(jìn)行變形,一般方法是分解因式或配成完全平方的形式,這一步可概括為“作差,變形”(同上,劃線并標(biāo)注”②→作差,變形”).但美中不足的是他沒能說明為什么f(x1)-f(x2)<0,沒有用到開始的假設(shè)“x1<x2”,不要以為其顯而易見,在這里一定要對變形后的式子說明其符號.應(yīng)寫明“因為x1<x2,所以x1-x2<0,從而f(x1)-f(x2)<0,即f(x1)<f(x2).”這一步可概括為“定符號”(在黑板上板演,并注明“③→定符號”).最后,作為證明題一定要有結(jié)論,我們把它稱之為第四步“下結(jié)論”(在相應(yīng)位置標(biāo)注“④→下結(jié)論”).
這就是我們用定義證明函數(shù)增減性的四個步驟,請同學(xué)們記住.需要指出的是第二步,如果函數(shù)y=f(x)在給定區(qū)間上恒大于零,也可以小.
(對學(xué)生的做法進(jìn)行分析,把證明過程步驟化,可以形成思維的定勢.在學(xué)生剛剛接觸一個新的知識時,思維定勢對理解知識本身是有益的,同時對學(xué)生養(yǎng)成一定的思維習(xí)慣,形成一定的解題思路也是有幫助的)
調(diào)函數(shù)嗎?并用定義證明你的結(jié)論.
師:你的結(jié)論是什么呢?
上都是減函數(shù),因此我覺得它在定義域(-∞,0)∪(0,+∞)上是減函數(shù).
生乙:我有不同的意見,我認(rèn)為這個函數(shù)不是整個定義域內(nèi)的減函數(shù),因為它不符合減函數(shù)的定義.比如取x1∈(-∞,0),取x2∈(0,+∞),x1<x2顯然成立,而f(x1)<0,f(x2)>0,顯然有f(x1)<f(x2),而不是f(x1)>f(x2),因此它不是定義域內(nèi)的減函數(shù).
生:也不能這樣認(rèn)為,因為由圖象可知,它分別在(-∞,0)和(0,+∞)上都是減函數(shù).
域內(nèi)的增函數(shù),也不是定義域內(nèi)的減函數(shù),它在(-∞,0)和(0,+∞)每一個單調(diào)區(qū)間內(nèi)都是減函數(shù).因此在函數(shù)的幾個單調(diào)增(減)區(qū)間之間不要用符號“∪”連接.另外,x=0不是定義域中的元素,此時不要寫成閉區(qū)間.
上是減函數(shù).
(教師巡視.對學(xué)生證明中出現(xiàn)的問題給予點拔.可依據(jù)學(xué)生的問題,給出下面的提示:
(1)分式問題化簡方法一般是通分.
(2)要說明三個代數(shù)式的符號:k,x1·x2,x2-x1.
要注意在不等式兩邊同乘以一個負(fù)數(shù)的時候,不等號方向要改變.
對學(xué)生的解答進(jìn)行簡單的分析小結(jié),點出學(xué)生在證明過程中所出現(xiàn)的問題,引起全體學(xué)生的重視.)
四、課堂小結(jié)
師:請同學(xué)小結(jié)一下這節(jié)課的主要內(nèi)容,有哪些是應(yīng)該特別注意的?
(請一個思路清晰,善于表達(dá)的學(xué)生口述,教師可從中給予提示.)
生:這節(jié)課我們學(xué)習(xí)了函數(shù)單調(diào)性的定義,要特別注意定義中“給定區(qū)間”、“屬于”、“任意”、“都有”這幾個關(guān)鍵詞語;在寫單調(diào)區(qū)間時不要輕易用并集的符號連接;最后在用定義證明時,應(yīng)該注意證明的四個步驟.
五、作業(yè)
1.課本P53練習(xí)第1,2,3,4題.
數(shù).
=a(x1-x2)(x1+x2)+b(x1-x2)
=(x1-x2)[a(x1+x2)+b].(*)
+b>0.由此可知(*)式小于0,即f(x1)<f(x2).
指數(shù)函數(shù)及性質(zhì)教案 篇10
本節(jié)課的主題是指數(shù)函數(shù)及其性質(zhì),是高一新生在學(xué)習(xí)了函數(shù)相關(guān)知識后來研究函數(shù)的開始,也是高一學(xué)生對自己前面所學(xué)知識的一個檢驗過程,同時也為后面學(xué)習(xí)對數(shù)函數(shù)和冪函數(shù)打好基矗而作為教師,上好這節(jié)課至關(guān)重要。在整個匯報課的準(zhǔn)備、開展和評課過程,受到XX老師的悉心指導(dǎo),以及評課過程中各位數(shù)學(xué)教師提出的建議,讓我學(xué)到了很多,也讓我發(fā)現(xiàn)我自身存在的問題還有很多,以及在接下來的時間里,我需要認(rèn)真?zhèn)湔n、多聽課,并且及時反思自己的教學(xué),同時也要在平時教學(xué)實踐中不斷改善自己的,讓自己更好的成長。在匯報課上課過程中,自己所設(shè)計的.教學(xué)過程被XX老師和XX老師以及其他數(shù)學(xué)老師和學(xué)校領(lǐng)導(dǎo)的認(rèn)可,但是在實際操作上,還存在不足,例如所使用實物投影,沒有關(guān)注到所有學(xué)生,坐在后面的學(xué)生可能看不太清,并且對于學(xué)生所寫的內(nèi)容評講的不太詳細(xì),在與學(xué)生互動的過程中,所花費的時間較多,這方面也說明了一個問題,自己在實際教學(xué)中的時間把握還不太熟練,同時因為時間沒有把握好,造成最后還有部分例題沒有講完,同時從板書來看,上課時自己的板書較為簡單,沒有體現(xiàn)出本節(jié)課的結(jié)構(gòu)。對于自己的優(yōu)點,我將會繼續(xù)保持,而對于自己的不足,我也要認(rèn)真聽取其他教師的意見,并在以后的教學(xué)過程中,不斷改善。同時這次匯報課,我要感謝XX老師和數(shù)學(xué)組其他的老師以及來聽我匯報課的所有老師。
對數(shù)函數(shù)教案精選
以下內(nèi)容“對數(shù)函數(shù)教案”是編輯特意分享給您的。教案課件是我們老師工作的一部分,這就要老師好好去自己教案課件了。教案是完整課堂教學(xué)的核心。供你參考,希望能夠幫助到大家!
對數(shù)函數(shù)教案【篇1】
一、說教材
1、教材的地位和作用
函數(shù)是高中數(shù)學(xué)的核心,而對數(shù)函數(shù)是高中階段所要研究的重要的基本初等函數(shù)之一.本節(jié)內(nèi)容是在學(xué)生已經(jīng)學(xué)過指數(shù)函數(shù)、對數(shù)及反函數(shù)的基礎(chǔ)上引入的,因此既是對上述知識的應(yīng)用,也是對函數(shù)這一重要數(shù)學(xué)思想的進(jìn)一步認(rèn)識與理解.對數(shù)函數(shù)在生產(chǎn)、生活實踐中都有許多應(yīng)用.本節(jié)課的學(xué)習(xí)使學(xué)生的知識體系更加完整、系統(tǒng),為學(xué)生今后進(jìn)一步學(xué)習(xí)對數(shù)方程、對數(shù)不等式等提供了必要的基礎(chǔ)知識.
2、教學(xué)目標(biāo)的確定及依據(jù)
根據(jù)教學(xué)大綱要求,結(jié)合教材,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征,我制定了如下的教學(xué)目標(biāo):
(1)知識目標(biāo):理解對數(shù)函數(shù)的意義;掌握對數(shù)函數(shù)的圖像與性質(zhì);初步學(xué)會用
對數(shù)函數(shù)的性質(zhì)解決簡單的問題.
(2)能力目標(biāo):滲透類比、數(shù)形結(jié)合、分類討論等數(shù)學(xué)思想方法,培養(yǎng)學(xué)生觀察、
分析、歸納等邏輯思維能力.
(3)情感目標(biāo):通過指數(shù)函數(shù)和對數(shù)函數(shù)在圖像與性質(zhì)上的對比,使學(xué)生欣賞數(shù)
學(xué)的精確和美妙之處,調(diào)動學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性.
3、教學(xué)重點與難點
重點:對數(shù)函數(shù)的意義、圖像與性質(zhì).
難點:對數(shù)函數(shù)性質(zhì)中對于在與兩種情況函數(shù)值的不同變化.
二、說教法
學(xué)生在整個教學(xué)過程中始終是認(rèn)知的主體和發(fā)展的主體,教師作為學(xué)生學(xué)習(xí)的指導(dǎo)者,應(yīng)充分地調(diào)動學(xué)生學(xué)習(xí)的積極性和主動性,有效地滲透數(shù)學(xué)思想方法.根據(jù)這樣的原則和所要完成的教學(xué)目標(biāo),對于本節(jié)課我主要考慮了以下兩個方面:
1、教學(xué)方法:
(1)啟發(fā)引導(dǎo)學(xué)生實驗、觀察、聯(lián)想、思考、分析、歸納;
(2)采用“從特殊到一般”、“從具體到抽象”的方法;
(3)滲透類比、數(shù)形結(jié)合、分類討論等數(shù)學(xué)思想方法.
2、教學(xué)手段:
計算機多媒體輔助教學(xué).
三、說學(xué)法
“授之以魚,不如授之以漁”,方法的掌握,思想的形成,才能使學(xué)生受益終身.本節(jié)課注重調(diào)動學(xué)生積極思考、主動探索,盡可能地增加學(xué)生參與教學(xué)活動的時間和空間,我進(jìn)行了以下學(xué)法指導(dǎo):
(1)類比學(xué)習(xí):與指數(shù)函數(shù)類比學(xué)習(xí)對數(shù)函數(shù)的圖像與性質(zhì).
(2)探究定向性學(xué)習(xí):學(xué)生在教師建立的情境下,通過思考、分析、操作、探索,
歸納得出對數(shù)函數(shù)的圖像與性質(zhì).
(3)主動合作式學(xué)習(xí):學(xué)生在歸納得出對數(shù)函數(shù)的圖像與性質(zhì)時,通過小組討論,
使問題得以圓滿解決.
四、說教程
1、溫故知新
我通過復(fù)習(xí)細(xì)胞分裂問題,由指數(shù)函數(shù)引導(dǎo)學(xué)生逐步得到對數(shù)函數(shù)的意義及對數(shù)函數(shù)與指數(shù)函數(shù)的關(guān)系:互為反函數(shù).
設(shè)計意圖:既復(fù)習(xí)了指數(shù)函數(shù)和反函數(shù)的有關(guān)知識,又與本節(jié)內(nèi)容有密切關(guān)系,
有利于引出新課.為學(xué)生理解新知清除了障礙,有意識地培養(yǎng)學(xué)生
分析問題的能力.
2、探求新知
在理解對數(shù)函數(shù)的意義的基礎(chǔ)上,研究對數(shù)函數(shù)的圖像與性質(zhì).關(guān)鍵是抓住對數(shù)函數(shù)與指數(shù)函數(shù)互為反函數(shù)的關(guān)系,圖像關(guān)于直線對稱,從而作出對數(shù)函數(shù)的圖像.由學(xué)生自主作出對數(shù)函數(shù)和的圖像后,引導(dǎo)學(xué)生填寫所發(fā)表格(該表格一列填有在及兩種情況下的圖像與性質(zhì)),通過類比學(xué)習(xí),小組討論,采用“從特殊到一般”、“從具體到抽象”的方法,歸納總結(jié)出的圖像與性質(zhì).
在學(xué)生得出對數(shù)函數(shù)的圖像和性質(zhì)后,教師再加以升華,強調(diào)“數(shù)形結(jié)合”記憶其性質(zhì),做到“心中有圖”.另外,對于對數(shù)函數(shù)的性質(zhì)3和性質(zhì)4在用多媒體演示時,有意識地用(1)(2)進(jìn)行分類表示,培養(yǎng)學(xué)生的分類意識.
設(shè)計意圖:教師建立了一個有助于學(xué)生進(jìn)行獨立探究的情境,學(xué)生通過動手操作、
觀察、聯(lián)想、類比、思考、分析、探索,在此過程中,通過小組討論,
協(xié)作構(gòu)建起新的知識.這充分體現(xiàn)了基于建構(gòu)主義學(xué)習(xí)理論的探究定
向性學(xué)習(xí)和主動合作式學(xué)習(xí).
3、課堂研究,鞏固應(yīng)用
例1主要利用對數(shù)函數(shù)的定義域是來求解.在這個例題中,重點、難點是第三小題的理解.這一小題是課后練習(xí)“求函數(shù)(其中)的定義域”這道題目的變形.我覺得讓學(xué)生直接解決課后練習(xí)有較大困難,因此設(shè)計了“求函數(shù)的定義域”這一小題;理解了這個小題,課后練習(xí)也就迎刃而解了.而在解題過程中,學(xué)生發(fā)現(xiàn)求解不等式是一個難點.我在解決這一難點時,采用了兩種方法:一是啟發(fā)學(xué)生將“0”寫成1的對數(shù),并且是寫成,這樣就可以利用對數(shù)函數(shù)的單調(diào)性求出不等式的解,最后向?qū)W生介紹不等式是一個對數(shù)不等式;二是引導(dǎo)學(xué)生觀察對數(shù)函數(shù)的圖像,通過數(shù)形結(jié)合來求解不等式.
例2利用對數(shù)函數(shù)的單調(diào)性,比較兩個同底對數(shù)值的大?。谶@個例題中,注意第三小題的點撥,要分底數(shù)及兩種情況.
設(shè)計意圖:通過這個環(huán)節(jié)學(xué)生可以加深對本節(jié)知識的理解和運用,在此過程中充
分體現(xiàn)了數(shù)形結(jié)合和分類討論的數(shù)學(xué)思想方法.同時為課外研究題的
解決提供了必要條件,為學(xué)生今后進(jìn)一步學(xué)習(xí)對數(shù)不等式埋下伏筆.
4、課外研究
使學(xué)生學(xué)會知識的遷移,利用課堂研究中體現(xiàn)的重要的數(shù)形結(jié)合和分類討論的數(shù)學(xué)思想方法,學(xué)生課后完全有能力解決這個問題.
5、課堂小結(jié)
引導(dǎo)學(xué)生進(jìn)行知識回顧,使學(xué)生對本節(jié)課有一個整體把握.從三方面進(jìn)行小結(jié):
(1)理解對數(shù)函數(shù)的意義;
(2)掌握對數(shù)函數(shù)的圖像與性質(zhì),體會類比、數(shù)形結(jié)合的思想方法;
(3)會利用對數(shù)函數(shù)的性質(zhì)比較兩個同底對數(shù)值的大小,初步學(xué)會對數(shù)不等式的
解法,體會分類討論的思想方法.
6、課外作業(yè)
公式無法顯示,完整WORD文檔點擊下載此文件
對數(shù)函數(shù)教案【篇2】
同一只封建宗法制度的黑手,伸出了兩條繩索,捆住了婦女的脖子,朝著相反的方向緊勒,要把勞動婦女置于死地而后快。祥林嫂當(dāng)時就處在這種極端悲慘的境地中:
族權(quán)迫使她寡而再嫁,夫權(quán)又視此為奇恥大辱,使她忍辱含冤,永遠(yuǎn)生活在恥辱之中。祥林嫂以后的悲劇,都是由此而引起的。
那么,祥林嫂是如何對待新迫害的呢?
3.高潮:
①祥林嫂為什么又一次來到魯四老爺家?
②有人認(rèn)為,喪夫失子有偶然性,這種看法對不對?
喪夫失子似乎有偶然性,然而隱藏在偶然性背后的,是那起決定作用的必然性。祥林嫂的丈夫死于舊社會中蔓延著的傳染病傷寒,阿毛死于祥林嫂的貧困、勞碌。(若不是忙著打柴摘茶養(yǎng)蠶,能讓年僅兩三歲的孩子去剝豆嗎?)因此,實質(zhì)上,是罪惡的政權(quán)奪走了祥林嫂的丈夫和兒子的生命,使她陷于嫁而再寡的境地。作者開始把批判的筆觸由封建夫權(quán)、族權(quán)擴(kuò)展到封建政權(quán)。
按照封建宗法觀念,婦女出嫁從夫,夫死從子,一旦喪夫失子,則連在家庭中生存的權(quán)利都被剝奪了。因此,大伯來收屋使祥林嫂走投無路,只好再一次來到魯家。她到魯家后,又遭受了更大的打擊。
③在魯四老爺,人們對待祥林嫂這個嫁而再寡的不幸女人態(tài)度如何?
A.魯四老爺?shù)膽B(tài)度:
魯四老爺站在頑固維護(hù)封建宗法制度的立場上,從精神上殘酷地虐殺她。他暗暗地告誡四嬸的那段話,就是置祥林嫂于死地而又不露一絲血痕的軟刀子。(通過四嬸先后喊出三句你放著罷,殺人不見血地葬送了祥林嫂的性命。)
B.人們的態(tài)度:
人們叫她的聲調(diào)和先前很不同。
魯迅用他那犀利的筆鋒,從廣闊的領(lǐng)域里揭示了封建社會黑暗的程度。
人們對祥林嫂的態(tài)度,使她感到痛苦與迷惑。她不時地向人們訴說著自己不幸的遭遇,她的精神卻慘遭蹂躪。而柳媽的說鬼又給祥林嫂新的打擊。
C.柳媽說鬼:
④祥林嫂是如何對待這如此沉重的打擊的?其結(jié)果如何?
為了爭得做人的權(quán)利,為了求得一線生存的希望,她在竭盡全力地反抗著:
她背著沉重的精神包袱,整日勞碌著,以便積夠十二元鷹洋,用捐門檻的方法去擺脫人們在陽世、陰世間給她設(shè)下的罪名,她忍受著咬嚙人心的嘲笑和侮辱,在無邊的寂寞和悲哀中,默默干了一年,這是何等堅韌的反抗精神啊!
而反抗的結(jié)果,出乎柳媽、祥林嫂的預(yù)想,這血淋淋的事實深刻地說明了:祥林嫂是無法贖罪的,祥林嫂陷入了求生不得,欲死不能的境地。
4.結(jié)局:
當(dāng)祥林嫂被折磨得像木偶人,喪失了當(dāng)牛做馬的條件后,魯四老爺就一腳把她踢出門外,使她終于成了只有那眼珠間或一輪,還可以表示她是一個活物的僵尸。即使這樣,她在臨死前,還向我提出了三個問題:
A.一個人死了之后,究竟有沒有魂靈的?
B.那么,也就有地獄了?
C.那么,死掉的一家的人,都能見面的?
這是對魂靈的有無表示疑惑。
她希望人死后有靈魂,因為她想看見自己的兒子;她害怕人死后有靈魂,因為她害怕在陰間被鋸成兩半。這種疑惑是她對自己命運的疑惑,但也正是這種疑惑,這種無法解脫的矛盾,使她在臨死前受到了極大的精神折磨,最后,悲慘地死去。
從祥林嫂一生的悲慘遭遇中,可以清楚地看到,封建的宗法制度正是用政權(quán)、族權(quán)、神權(quán)、夫權(quán)這四條繩索把祥林嫂活活地勒死的。
祥林嫂一生的悲慘遭遇,正是舊中國千百萬勞動婦女悲慘遭遇的真實寫照。作者正是通過塑造祥林嫂這一典型人物,對吃人的封建制度和封建禮教進(jìn)行深刻的揭露和有力地抨擊的。
小結(jié):
祥林嫂是生活在舊中國的一個被踐踏、被愚弄、被迫害、被鄙視的勤勞、善良、質(zhì)樸、頑強的勞動婦女的典型形象。
總之,祥林嫂的悲劇是一個社會悲劇,造成這一悲劇的根源是封建禮教對中國勞動婦女的摧殘和封建思想對當(dāng)時中國社會的根深蒂固的統(tǒng)治。
第三課時
本課時重點分析魯四老爺、我和柳媽的形象。
一、檢查作業(yè):
二、分析魯四老爺:
魯四老爺是當(dāng)時農(nóng)村中地主階級的代表人物,是資產(chǎn)階級民主革命時期地主階級知識分子的典型形象。他政治上迂腐、保守,頑固地維護(hù)舊有的封建制度,反對一切改革與革命。他思想上反動,尊崇理學(xué)和孔孟之道。自覺維護(hù)封建制度和封建禮教。他是造成祥林嫂悲劇的一個重要人物。
1.作者是通過什么手法來刻畫這個人物的呢?
①間接描寫:
通過魯四老爺?shù)臅筷愒O(shè)的描寫,點明了魯四老爺?shù)纳矸郑ǖ刂麟A級、封建理學(xué)的衛(wèi)道士),揭露了他的丑惡本質(zhì),從而揭示出他成為殺害祥林嫂的劊子手的深刻的階級根源和思想根源。
②直接描寫:
A.行動描寫:
這表現(xiàn)在祥林嫂被搶走的兩件事上:
當(dāng)婆婆一邊搶人一邊來領(lǐng)工錢時,魯四老爺把祥林嫂一文還沒有的工錢全交給了婆婆。
與此相對照的是對被壓迫的寡婦祥林嫂的冷酷無情。
祥林嫂曾那樣辛勤地為魯家勞動過,可當(dāng)她遭到惡運時,魯家卻無動于衷,連祥林嫂走沒走、怎么走的,都毫不過問,只是到了正午,四嬸肚子餓了,這才想起了祥林嫂淘米時拿走米和淘籮,于是傾巢出動分頭尋淘籮;連平時擺派頭、端架子的魯四老爺都踱出門外,直到河邊,等看見米和淘籮平平正正的放在岸上,旁邊還有一株菜時,這才放心。這場虛驚,入木三分地揭露了:在封建統(tǒng)治者的眼里,一個勞動婦女的命運都不如一個淘籮、一點米、一株菜,魯四老爺冷酷殘忍的嘴臉躍然紙上。
B.語言描寫:
在祥林嫂的問題上,魯四老爺一共開過六次口,說了百十來個字,卻就把他反動、頑固、虛偽自私、陰險狠毒的性格特征,把他殺害祥林嫂的罪行,揭露得淋漓盡致。
a.祥林嫂被搶前:
b.祥林嫂被搶時:
c.當(dāng)他為尋淘籮,踱到河邊時:
d.緊接著,午飯之后,衛(wèi)婆子又來時:
e.對四嬸的暗暗告誡:
f.祥林嫂死后:
作為這六次開口背景的是魯四老爺虛偽寒暄后的大罵其新黨,它恰恰深刻地揭示了那六次開口的根源。
三、分析我這一形象:
小說中的我是一個具有進(jìn)步思想的小資產(chǎn)階級知識分子的形象。我有反封建的思想傾向,憎惡魯四老爺,同情祥林嫂。對祥林嫂提出的魂靈的有無的問題,之所以作了含糊的回答,有其善良的一面;同時也反映了我的軟弱和無能。
在小說的結(jié)構(gòu)上,我又起著線索的作用。祥林嫂一生的悲慘遭遇都是通過我的所見所聞來展現(xiàn)的。我是事件的見證人。
四、分析柳媽:
問:有人認(rèn)為柳媽是幫助魯四老爺殺害祥林嫂的兇手。你是怎樣來看待這一問題呢?
明確:柳媽和祥林嫂一樣都是舊社會的受害者。雖然她臉上已經(jīng)打皺,眼睛已經(jīng)干枯,可是在年節(jié)時還要給地主去幫工,可見,她也是一個受壓迫的勞動婦女。但是,由于她受封建迷信思想和封建禮教的毒害很深,相信天堂、地獄之類邪說和餓死事小,失節(jié)事大的理學(xué)信條,所以她對祥林嫂改嫁時頭上留下的傷疤,采取奚落的態(tài)度。至于她講陰司故事給祥林嫂聽,也完全出于善意,主觀愿望還是想為祥林嫂尋求贖罪的辦法,救她跳出苦海,并非要置祥林嫂于死地,只是結(jié)果適得其反。
她的主觀愿望和客觀效果的矛盾說明柳媽是以剝削階級統(tǒng)治人民的思想──封建禮教和封建迷信思想為指導(dǎo),來尋求解救祥林嫂的藥方的,這不但不會產(chǎn)生療效的效果,反而給自己的姐妹造成了難以支持的精神重壓,把祥林嫂推向更恐怖的深淵之中。
對數(shù)函數(shù)教案【篇3】
教學(xué)目標(biāo):
1.掌握對數(shù)函數(shù)的性質(zhì),能初步運用性質(zhì)解決問題.
2.運用對數(shù)函數(shù)的圖形和性質(zhì).
3.培養(yǎng)學(xué)生數(shù)形結(jié)合的思想,以及分析推理的能力.
教學(xué)重點:
對數(shù)函數(shù)性質(zhì)的應(yīng)用.
教學(xué)難點:
對數(shù)函數(shù)圖象的變換.
教學(xué)過程:
一、問題情境
1.復(fù)習(xí)對數(shù)函數(shù)的定義及性質(zhì).
2.問題:如何解決與對數(shù)函數(shù)的定義、圖象和性質(zhì)有關(guān)的問題?
二、學(xué)生活動
1.畫出 、 等函數(shù)的圖象,并與對數(shù)函數(shù) 的圖象進(jìn)行對比,總結(jié)出圖象變換的一般規(guī)律.
2.探求函數(shù)圖象對稱變換的規(guī)律.
三、建構(gòu)數(shù)學(xué)
1.函數(shù) ( )的圖象是由函數(shù) 的圖象
得到;
2.函數(shù) 的圖象與函數(shù) 的圖象關(guān)系是 ;
3.函數(shù) 的圖象與函數(shù) 的圖象關(guān)系是 .
四、數(shù)學(xué)運用
例1 如圖所示曲線是對數(shù)函數(shù)=lgax的圖象,
已知a值取0.2,0.5,1.5,e,則相應(yīng)于C1,C2,
C3,C4的a的'值依次為 .
例2 分別作出下列函數(shù)的圖象,并與函數(shù)=lg3x的圖象進(jìn)行比較,找出它們之間的關(guān)系
(1)=lg3(x-2);(2)=lg3(x+2);
(3)=lg3x-2;(4)=lg3x+2.
練習(xí):1.將函數(shù)=lgax的圖象沿x軸向右平移2個單位,再向下平移1個單位,所得到函數(shù)圖象的解析式為 .
2.對任意的實數(shù)a(a>0,a≠1),函數(shù)=lga(x-1)+2的圖象所過的定點坐標(biāo)為 .
3.由函數(shù)= lg3(x+2), =lg3x的圖象與直線=-1,=1所圍成的封閉圖形的面積是 .
例3 分別作出下列函數(shù)的圖象,并與函數(shù)=lg2x的圖象進(jìn)行比較,找出它們之間的關(guān)系
(1) =lg2|x|;(2)=|lg2x|;
(3) =lg2(-x);(4)=-lg2x.
練習(xí) 結(jié)合函數(shù)=lg2|x|的圖象,完成下列各題:
(1)函數(shù)=lg2|x|的奇偶性為 ;
(2)函數(shù)=lg2|x|的單調(diào)增區(qū)間為 ,減區(qū)間為 .
(3)函數(shù)=lg2(x-2)2的單調(diào)增區(qū)間為 ,減區(qū)間為 .
(4)函數(shù)=|lg2x-1|的單調(diào)增區(qū)間為 ,減區(qū)間為 .
五、要點歸納與方法小結(jié)
(1)函數(shù)圖象的變換(平移變換和對稱變換)的規(guī)律;
(2)能畫出較復(fù)雜函數(shù)的圖象,根據(jù)圖象研究函數(shù)的性質(zhì)(數(shù)形結(jié)合).
六、作業(yè)
1.課本P87-6,8,11.
2.課后探究:試說出函數(shù)=lg2 的圖象與函數(shù)=lg2x圖象的關(guān)系.
對數(shù)函數(shù)教案【篇4】
一、說教材
1、地位和作用
本章學(xué)習(xí)是在學(xué)生完成函數(shù)的第一階段學(xué)習(xí)(初中)的基礎(chǔ)上,進(jìn)行第二階段的函數(shù)學(xué)習(xí)。而對數(shù)函數(shù)作為這一階段的重要的基本初等函數(shù)之一,它是在學(xué)生已經(jīng)學(xué)習(xí)了指數(shù)函數(shù)及對數(shù)的內(nèi)容,這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用;"對數(shù)函數(shù)"這節(jié)教材,是在沒學(xué)習(xí)反函數(shù)的基礎(chǔ)上研究的指數(shù)函數(shù)和對數(shù)函數(shù)的自變量與因變量之間的關(guān)系,同時對數(shù)函數(shù)作為常用數(shù)學(xué)模型在解決社會生活中的實例有廣泛的應(yīng)用,本節(jié)課的學(xué)習(xí)為學(xué)生進(jìn)一步學(xué)習(xí)、參加生產(chǎn)和實際生活提供必要的基礎(chǔ)知識。
2、教學(xué)目標(biāo)的確定及依據(jù)
依據(jù)新課標(biāo)和學(xué)生獲得知識、培養(yǎng)能力及思想教育等方面的要求:我制定了如下教育教學(xué)目標(biāo):
(1) 理解對數(shù)函數(shù)的概念、掌握對數(shù)函數(shù)的圖象和性質(zhì)。
(2) 培養(yǎng)學(xué)生自主學(xué)習(xí)、綜合歸納、數(shù)形結(jié)合的能力。
(3) 培養(yǎng)學(xué)生用類比方法探索研究數(shù)學(xué)問題的素養(yǎng);
(4) 培養(yǎng)學(xué)生對待知識的科學(xué)態(tài)度、勇于探索和創(chuàng)新的精神。
(5) 在民主、和諧的教學(xué)氣氛中,促進(jìn)師生的情感交流。
3、教學(xué)重點、難點及關(guān)鍵
重點:對數(shù)函數(shù)的概念、圖象和性質(zhì);在教學(xué)中只有突出這個重點,才能使教材脈絡(luò)分明,才能有利于學(xué)生聯(lián)系舊知識,學(xué)習(xí)新知識。
難點:底數(shù)a對對數(shù)函數(shù)的圖象和性質(zhì)的影響;
關(guān)鍵:對數(shù)函數(shù)與指數(shù)函數(shù)的類比教學(xué)
由指數(shù)函數(shù)的圖象過渡到對數(shù)函數(shù)的圖象,通過類比分析達(dá)到深刻地了解對數(shù)函數(shù)的圖象及其性質(zhì)是掌握重點和突破難點的關(guān)鍵,在教學(xué)中一定要使學(xué)生的思考緊緊圍繞圖象,數(shù)形結(jié)合,加強直觀教學(xué),使學(xué)生能形成以圖象為根本,以性質(zhì)為主體的知識網(wǎng)絡(luò),同時在例題的講解中,重視加強題組的設(shè)計和變形,使教學(xué)真正體現(xiàn)出由淺入深,由易到難,由具體到抽象的特點,從而突出重點、突破難點。
二、說教法
教學(xué)過程是教師和學(xué)生共同參與的過程,啟發(fā)學(xué)生自主性學(xué)習(xí),充分調(diào)動學(xué)生的積極性、主動性;有效地滲透數(shù)學(xué)思想方法,提高學(xué)生素質(zhì)。根據(jù)這樣的原則和所要完成的教學(xué)目標(biāo),并為激發(fā)學(xué)生的學(xué)習(xí)興趣,我采用如下的教學(xué)方法:
(1)啟發(fā)引導(dǎo)學(xué)生思考、分析、實驗、探索、歸納。
(2)采用"從特殊到一般"、"從具體到抽象"的方法。
(3)體現(xiàn)"對比聯(lián)系"、"數(shù)形結(jié)合"及"分類討論"的思想方法。
(4)投影儀演示法。
在整個過程中,應(yīng)以學(xué)生看,學(xué)生想,學(xué)生議,學(xué)生練為主體,教師在學(xué)生仔細(xì)觀察、類比、想象的基礎(chǔ)上通過問題串的形式加以引導(dǎo)點撥,與指數(shù)函數(shù)性質(zhì)對照,歸納、整理,只有這樣,才能喚起學(xué)生對原有知識的回憶,自覺地找到新舊知識的聯(lián)系,使新學(xué)知識更牢固,理解更深刻。
三、說學(xué)法
教給學(xué)生方法比教給學(xué)生知識更重要,本節(jié)課注重調(diào)動學(xué)生積極思考、主動探索,盡可能地增加學(xué)生參與教學(xué)活動的時間和空間,我進(jìn)行了以下學(xué)法指導(dǎo):
(1)對照比較學(xué)習(xí)法:學(xué)習(xí)對數(shù)函數(shù),處處與指數(shù)函數(shù)相對照。
(2)探究式學(xué)習(xí)法:學(xué)生通過分析、探索,得出對數(shù)函數(shù)的定義。
(3)自主性學(xué)習(xí)法:通過實驗畫出函數(shù)圖象、觀察圖象自得其性質(zhì)。
(4)反饋練習(xí)法:檢驗知識的應(yīng)用情況,找出未掌握的內(nèi)容及其差距。
這樣可發(fā)揮學(xué)生的主觀能動性,有利于提高學(xué)生的各種能力。
四。說教程
在認(rèn)真分析教材、教法、學(xué)法的基礎(chǔ)上,設(shè)計教學(xué)過程如下:
(一) 創(chuàng)設(shè)問題情景、提出問題
在某細(xì)胞分裂過程中,細(xì)胞個數(shù)y是分裂次數(shù)x的函數(shù) ,因此,知道x的值(輸入值是分裂次數(shù))就能求出y的值(輸出值為細(xì)胞的個數(shù)),這樣就建立了一個細(xì)胞個數(shù)和分裂次數(shù)x之間的函數(shù)關(guān)系式。
問題一:這是一個怎樣的函數(shù)模型類型呢?
設(shè)計意圖:復(fù)習(xí)指數(shù)函數(shù)
問題二:現(xiàn)在我們來研究相反的問題,如果知道了細(xì)胞個數(shù)y,如何求分裂的次數(shù)x呢?這將會是我們研究的哪類問題?
設(shè)計意圖:為了引出對數(shù)函數(shù)
問題三:在關(guān)系式 每輸入一個細(xì)胞的個數(shù)y的值,是否一定都能得到唯一一個分裂次數(shù)x的值呢?
設(shè)計意圖:一是為了更好地理解函數(shù),同時也是為了讓學(xué)生更好地理解對數(shù)函數(shù)的概念。
(二) 意義建構(gòu):
1. 對數(shù)函數(shù)的概念:
同樣,在前面提到的放射性物質(zhì),經(jīng)過的時間x年與物質(zhì)剩余量y的關(guān)系式為 ,我們也可以把它改為對數(shù)式, ,其中x年也可以看作物質(zhì)剩余量y的函數(shù),()可見這樣的問題在現(xiàn)實生活中還是不少的。
設(shè)計意圖:前面的問題情景的底數(shù)為2,而這個問題情景的底數(shù)為0.84,我認(rèn)為這個情景并不是多余的,其實它暗示了對數(shù)函數(shù)的底數(shù)與指數(shù)函數(shù)的底數(shù)一樣有兩類。
但在習(xí)慣上,我們用x表示自變量,用y表示函數(shù)值
問題一:你能把以上兩個函數(shù)表示出來嗎?
問題二:你能得到此類函數(shù)的一般式嗎?(在此體現(xiàn)了由特殊到一般的數(shù)學(xué)思想)
問題三:在 中,a有什么限制條件嗎?請結(jié)合指數(shù)式給以解釋。
問題四:你能根據(jù)指數(shù)函數(shù)的定義給出對數(shù)函數(shù)的定義嗎?
問題五: 與 中的x,y的相同之處是什么?不同之處是什么?
問題六: 與 中的x,y的相同之處是什么?不同之處是什么?
設(shè)計意圖:前四個問題是為了引導(dǎo)出對數(shù)函數(shù)的概念,然而,光有前四個問題還是不夠的,學(xué)生最容易忽略的或最不理解的是函數(shù)的定義域,所以設(shè)計這兩個問題是為了讓學(xué)生更好地理解對數(shù)函數(shù)的定義域
2. 對數(shù)函數(shù)的圖象與性質(zhì)
問題:有了研究指數(shù)函數(shù)的經(jīng)歷,你覺得下面該學(xué)習(xí)什么內(nèi)容了?
(提示學(xué)生進(jìn)行類比學(xué)習(xí))
合作探究1;借助于計算器在同一直角坐標(biāo)系中畫出下列兩組函數(shù)的圖象,并觀察各組函數(shù)的圖象,探求他們之間的關(guān)系。
(1)
(2)
合作探究2:當(dāng) 函數(shù) 與 的圖象之間有什么關(guān)系?(在這兒體現(xiàn)"從特殊到一般"、"從具體到抽象"的方法)
合作探究3:分析你所畫的兩組函數(shù)的圖象,對照指數(shù)函數(shù)的性質(zhì),總結(jié)歸納對數(shù)函數(shù)的性質(zhì)。
(學(xué)生討論并交流各自的發(fā)現(xiàn)成果,教師結(jié)合學(xué)生的交流,適時歸納總結(jié),并板書對數(shù)函數(shù)的性質(zhì))
問題1:對數(shù)函數(shù) ( )是否具有奇偶性,為什么?
問題2:對數(shù)函數(shù) ( ),當(dāng) 時,x取何值,y 0,x取何值,y ,當(dāng) 呢?
問題3:對數(shù)式 的值的符號與a,b的取值之間有何關(guān)系?請用一句簡潔的話語敘述。
知識拓展:函數(shù) 稱為 的反函數(shù),反之,函數(shù) 也稱為 的反函數(shù)。一般地,如果函數(shù) 存在反函數(shù),那么它的反函數(shù)記作為
(三) 數(shù)學(xué)應(yīng)用
1. 例題
例1:求下列函數(shù)的定義域
(1)
(2) ( )
(該題主要考查對數(shù)函數(shù) 的定義域 這一限制條件根據(jù)函數(shù)的解析式求得不等式,解對應(yīng)的不等式。同時通過本題也可讓學(xué)生總結(jié)求函數(shù)的定義域應(yīng)從哪些方面入手)
例2:利用對數(shù)函數(shù)的性質(zhì),比較下列各組數(shù)中兩個數(shù)的大?。?/p>
(1) ,
(2) ,
(3) ,
(4) , ,
(在這兒要求學(xué)生通過回顧指數(shù)函數(shù)的有關(guān)性質(zhì)比較大小的步驟和方法,完成前3小題,第四題可通過教師的適當(dāng)點撥完成解答,最后進(jìn)行歸納總結(jié)比較數(shù)的大小常用的方法)
合作探究4:已知 ,比較m,n的大?。ㄔ擃}不僅運用了對數(shù)函數(shù)的圖象和性質(zhì),還培養(yǎng)了學(xué)生數(shù)形結(jié)合、分類討論等數(shù)學(xué)思想。)
本題可以從以下幾方面加以引導(dǎo)點撥
1.本題的難點在哪兒?
2.你希望不等式的兩邊的對數(shù)式變成怎樣的形式,你能否找到它們之間的聯(lián)系
本題也可以從形的角度來思考。
(四) 目標(biāo)檢測
P69 1,2,3
(五) 課堂小結(jié)
由學(xué)生小結(jié)(對數(shù)函數(shù)的概念,對數(shù)函數(shù)的圖象和性質(zhì),利用對數(shù)函數(shù)的性質(zhì)比較大小的一般方法和步驟,求定義域應(yīng)從幾方面考慮等)
(六)布置作業(yè) P70 1,2,3
對數(shù)函數(shù)教案【篇5】
教學(xué)目標(biāo):
(1)能夠根據(jù)實際問題,熟練地列出二次函數(shù)關(guān)系式,并求出函數(shù)的自變量的取值范圍。
(2)注重學(xué)生參與,聯(lián)系實際,豐富學(xué)生的感性認(rèn)識,培養(yǎng)學(xué)生的良好的學(xué)習(xí)習(xí)慣
重點難點:
能夠根據(jù)實際問題,熟練地列出二次函數(shù)關(guān)系式,并求出函數(shù)的自變量的取值范圍。
教學(xué)過程:
一、試一試
1.設(shè)矩形花圃的垂直于墻的一邊AB的長為xm,先取x的一些值,算出矩形的另一邊BC的長,進(jìn)而得出矩形的面積ym2.試將計算結(jié)果填寫在下表的空格中,
AB長x(m)123456789
BC長(m)12
面積y(m2)48
2.x的值是否可以任意取?有限定范圍嗎?
3.我們發(fā)現(xiàn),當(dāng)AB的長(x)確定后,矩形的面積(y)也隨之確定,y是x的函數(shù),試寫出這個函數(shù)的關(guān)系式,
對于1.,可讓學(xué)生根據(jù)表中給出的AB的長,填出相應(yīng)的BC的長和面積,然后引導(dǎo)學(xué)生觀察表格中數(shù)據(jù)的變化情況,提出問題:(1)從所填表格中,你能發(fā)現(xiàn)什么?(2)對前面提出的問題的解答能作出什么猜想?讓學(xué)生思意見,達(dá)成共識:當(dāng)AB的長為5cm,BC的長為10m時,圍成的矩形面積最大;最大面積為50m2。
對于2,可讓學(xué)生分組討論、交流,然后意見。形成共識,x的值不可以任意取,有限定范圍,其范圍是0
對數(shù)函數(shù)教案【篇6】
尊敬的各位專家、評委:
上午好!
今天我說課的課題是人教A版必修1第二章第二節(jié)《對數(shù)函數(shù)》。
我嘗試?yán)眯抡n標(biāo)的理念來指導(dǎo)教學(xué),對于本節(jié)課,我將以“教什么,怎么教,為什么這樣教”為思路,從教材分析、目標(biāo)分析、教法學(xué)法分析、教學(xué)過程分析和評價分析五個方面來談?wù)勎覍滩牡睦斫夂徒虒W(xué)的設(shè)計,敬請各位專家、評委批評指正。
一、教材分析
地位和作用
本章學(xué)習(xí)是在學(xué)生完成函數(shù)的第一階段學(xué)習(xí)(初中)的基礎(chǔ)上,進(jìn)行第二階段的函數(shù)學(xué)習(xí)。而對數(shù)函數(shù)作為這一階段的重要的基本初等函數(shù)之一,它是在學(xué)生已經(jīng)學(xué)習(xí)了指數(shù)函數(shù)及對數(shù)的內(nèi)容,這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。“對數(shù)函數(shù)”這節(jié)教材,是在沒有學(xué)習(xí)反函數(shù)的基礎(chǔ)上研究的指數(shù)函數(shù)和對數(shù)函數(shù)的自變量和因變量之間的關(guān)系。同時對數(shù)函數(shù)作為常用數(shù)學(xué)模型在解決社會生活中的實例有著廣泛的應(yīng)用,本節(jié)課的學(xué)習(xí)為學(xué)生進(jìn)一步學(xué)習(xí),參加生產(chǎn)和實際生活提供必要的基礎(chǔ)知識。
二、目標(biāo)分析
(一)、教學(xué)目標(biāo)
根據(jù)《對數(shù)函數(shù)》在教材內(nèi)容中的地位與作用,結(jié)合學(xué)情分析,本節(jié)課教學(xué)應(yīng)實現(xiàn)如下的教學(xué)目標(biāo):
1、知識與技能
(1)、進(jìn)一步體會函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型;
(2)、理解對數(shù)函數(shù)的概念、掌握對數(shù)函數(shù)的圖像和性質(zhì);
(3)、由實際問題出發(fā),培養(yǎng)學(xué)生探索知識和抽象概括知識等方面的能力。
2、過程與方法
引導(dǎo)學(xué)生觀察,探尋變量和變量的對應(yīng)關(guān)系,通過歸納、抽象、概括,自主建構(gòu)對數(shù)函數(shù)的概念;體驗結(jié)合舊知識探索新知識,研究新問題的快樂。
3、情感態(tài)度與價值觀
通過對對數(shù)函數(shù)函數(shù)圖像和性質(zhì)的探究過程,培養(yǎng)學(xué)生發(fā)現(xiàn)問題,探索問題,不斷超越的創(chuàng)新品質(zhì)。在民主、和諧的教學(xué)氣氛中,促進(jìn)師生的情感交流。
(二)教學(xué)重點、難點及關(guān)鍵
1、重點:對數(shù)函數(shù)的概念、圖像和性質(zhì);在教學(xué)中只有突出這個重點,才能使教材脈絡(luò)分明,才能有利于學(xué)生聯(lián)系舊知識,學(xué)習(xí)新知識。
2、 難點:底數(shù)a對對數(shù)函數(shù)的圖像和性質(zhì)的影響。
[關(guān)鍵]對數(shù)函數(shù)與指數(shù)函數(shù)的類比教學(xué)。
由指數(shù)函數(shù)的圖像過渡到對數(shù)函數(shù)的圖像,通過類比分析達(dá)到深刻地了解對數(shù)函數(shù)的圖像及其性質(zhì)是掌握重點和突破難點的關(guān)鍵,在教學(xué)中一定要使學(xué)生的思考緊緊圍繞圖像,數(shù)形結(jié)合,加強直觀教學(xué),使學(xué)生能形成以圖像為根本,以性質(zhì)為主體的知識網(wǎng)絡(luò),同時在立體的講解中,重視加強題組的設(shè)計和變形,使教學(xué)真正體現(xiàn)出由淺入深,由易到難,由具體到抽象的特點,從而突破重點、突破難點。
三、教法、學(xué)法分析
(一)、教法
教學(xué)過程是教師和學(xué)生共同參與的過程,啟發(fā)學(xué)生自主性學(xué)習(xí),充分調(diào)動學(xué)生的積極性、主動性;有效地滲透數(shù)學(xué)思想方法,提高學(xué)生素質(zhì)。根據(jù)這樣的原則和所要完成的教學(xué)目標(biāo),并為激發(fā)學(xué)生的學(xué)習(xí)興趣,我采用如下的教學(xué)方法:
1、啟發(fā)引導(dǎo)學(xué)生思考、分析、實驗、探索、歸納;
2、采用“從特殊到一般”、“從具體到抽象”的方法;
3、體現(xiàn)“對比聯(lián)系”、“數(shù)形結(jié)合”及“分類討論”的思想方法;
4、投影儀演示法。
在整個過程中,應(yīng)以學(xué)生看,學(xué)生想,學(xué)生議,學(xué)生練為主體,教師在學(xué)生仔細(xì)觀察、類比、想象的基礎(chǔ)上通過問題串的形式加以引導(dǎo)點撥,與指數(shù)函數(shù)性質(zhì)對照,歸納,整理,只有這樣,才能喚起學(xué)生對原有知識的回憶,自覺地找到新舊知識的聯(lián)系,使新學(xué)知識更牢固,理解更深刻。
(二)、學(xué)法
教給學(xué)生方法比教給學(xué)生知識更重要,本節(jié)課注重調(diào)動學(xué)生積極思考、主動探索,盡可能地增加學(xué)生參與教學(xué)活動的時間和空間,我進(jìn)行了以下學(xué)法指導(dǎo):
1、對照比較學(xué)習(xí)法:學(xué)習(xí)對數(shù)函數(shù),處處與指數(shù)函數(shù)相對照;
2、探究式學(xué)習(xí)法:學(xué)生通過分析、探索,得出對數(shù)函數(shù)的定義;
3、自主性學(xué)習(xí)法:通過實驗畫出函數(shù)圖像、觀察圖像自得其性質(zhì);
4、反饋練習(xí)法:檢驗知識的應(yīng)用情況,找出未掌握的內(nèi)容及其差距。
四、教學(xué)過程分析
(一)、教學(xué)過程設(shè)計
1、創(chuàng)設(shè)情境,提出問題。
在某細(xì)胞分裂過程中,細(xì)胞個數(shù)y是分裂次數(shù)x的函數(shù)y=2x,因此,知道x的值(輸入值是分裂次數(shù))就能求出y的值(輸出值為細(xì)胞的個數(shù)),這樣就建立了一個細(xì)胞個數(shù)和分裂次數(shù)x之間的函數(shù)關(guān)系式。
問題一:這是一個怎樣的函數(shù)模型類型呢?
設(shè)計意圖
復(fù)習(xí)指數(shù)函數(shù)
問題二:現(xiàn)在我們來研究相反的問題,如果知道了細(xì)胞的個數(shù)y,如何求分裂的次數(shù)x呢?這將會是我們研究的哪類問題?
設(shè)計意圖
為了引出對數(shù)函數(shù)
問題三:在關(guān)系式x=log2y每輸入一個細(xì)胞的個數(shù)y的值,是否一定都能得到唯一一個分裂次數(shù)x的值呢?
設(shè)計意圖
(1)、為了讓學(xué)生更好地理解函數(shù);
(2)、為了讓學(xué)生更好地理解對數(shù)函數(shù)的概念。
2、引導(dǎo)探究,建構(gòu)概念。
(1)、對數(shù)函數(shù)的概念:
同樣,在前面提到的發(fā)射性物質(zhì),經(jīng)過的時間x年與物質(zhì)剩余量y的關(guān)系式為y=0.84x,我們也可以把它改成對數(shù)式x=log0.84y,其中x年夜可以看作物質(zhì)剩余量y的函數(shù),可見這樣的問題在現(xiàn)實生活中還是不少的。
設(shè)計意圖
前面的問題情景的底數(shù)為2,而這個問題情景的底數(shù)是0.84,我認(rèn)為這個情景并不是多余的,其實它暗示了對數(shù)函數(shù)的底數(shù)與指數(shù)函數(shù)的底數(shù)一樣有兩類。
但是在習(xí)慣上,我們用x表示自變量,用y表示函數(shù)值。
問題一:你能把以上兩個函數(shù)表示出來嗎?
問題二:你能得到此類函數(shù)的一般式嗎?
設(shè)計意圖
體現(xiàn)出了由特殊到一般的數(shù)學(xué)思想
問題三:在y=logax中,a有什么限制條件嗎?請結(jié)合指數(shù)式給以解釋。
問題四:你能根據(jù)指數(shù)函數(shù)的定義給出對數(shù)函數(shù)的定義嗎?
問題五:x=logay與y=ax中的x,y的相同之處是什么?不同之處是什么?
設(shè)計意圖
前四個問題是為了引導(dǎo)出對數(shù)函數(shù)的概念,然而,光有前四個問題還是不夠的,學(xué)生最容易忽略或最不容易理解的是函數(shù)的定義域,所以設(shè)計這個問題是為了讓學(xué)生更好地理解對數(shù)函數(shù)的定義域。
(2)、對數(shù)函數(shù)的圖像與性質(zhì)
問題:有了研究指數(shù)函數(shù)的經(jīng)歷,你覺得下面該學(xué)習(xí)什么內(nèi)容了?
設(shè)計意圖
提示學(xué)生進(jìn)行類比學(xué)習(xí)
合作探究1:借助計算器在同一直角坐標(biāo)系中畫出下列兩組函數(shù)的圖像,并觀察各族函數(shù)圖像,探求他們之間的關(guān)系。
y=2x;y=log2x y=( )x,y=log x
合作探究2:當(dāng)a>0,a≠ 1,函數(shù)y=ax與y=logax圖像之間有什么關(guān)系?
設(shè)計意圖
在這兒體現(xiàn)“從特殊到一般”、“從具體到抽象”的方法。
合作探究3:分析你所畫的兩組函數(shù)的圖像,對照指數(shù)函數(shù)的性質(zhì),總結(jié)歸納對數(shù)函數(shù)的性質(zhì)。
設(shè)計意圖
學(xué)生討論并交流各自的而發(fā)現(xiàn)成果,教師結(jié)合學(xué)生的交流,適時歸納總結(jié),并板書對數(shù)函數(shù)的性質(zhì))。問題1:對數(shù)函數(shù)y=logax( a>0,a≠1,)是否具有奇偶性,為什么?
問題2:對數(shù)函數(shù)y=logax( a>0,a≠1,),當(dāng)a>1時,x取何值,y>0,x取何值,y問題3:對數(shù)式logab的值的符號與a,b的取值之間有何關(guān)系?
知識拓展:函數(shù)y=ax稱為y=logax的反函數(shù),反之,也成立,一般地,如果函數(shù)y=f(x)存在反函數(shù),那么它的反函數(shù)記作y=f-1(x)。
3、自我嘗試,初步應(yīng)用。
例1:求下列函數(shù)的定義域
y=log0.2(4-x)(該題主要考查對函數(shù)y=logax的定義域(0,+∞)這一限制條件,根據(jù)函數(shù)的解析式求得不等式,解對應(yīng)的不等式。)
例2:利用對數(shù)函數(shù)的性質(zhì),比較下列各組數(shù)中兩個數(shù)的大?。?/p>
(1)、㏒2 3.4,log2 3.8;
(2)、log0.5 1.8,log0.5 2.1;
(3)、log7 5,log6 7
(在這兒要求學(xué)生通過回顧指數(shù)函數(shù)的有關(guān)性質(zhì)比較大小的步驟和方法,完成完成前兩題,最后一題可以通過教師的適當(dāng)點撥完成解答,最后進(jìn)行歸納總結(jié)比較數(shù)的大小常用的方法)
合作探究4:已知logm 4設(shè)計意圖該題不僅運用了對數(shù)函數(shù)的圖像和性質(zhì),還培養(yǎng)了學(xué)生數(shù)形結(jié)合、分類討論等數(shù)學(xué)思想。4、當(dāng)堂訓(xùn)練,鞏固深化。通過學(xué)生的主體性參與,使學(xué)生深刻體會到本節(jié)課的主要內(nèi)容和思想方法,從而實現(xiàn)對知識的再次深化。采用課后習(xí)題1,2,3.5、小結(jié)歸納,回顧反思。小結(jié)歸納不僅是對知識的簡單回顧,還要發(fā)揮學(xué)生的主體地位,從知識、方法、經(jīng)驗等方面進(jìn)行總結(jié)。(1)、小結(jié):①對數(shù)函數(shù)的概念②對數(shù)函數(shù)的圖像和性質(zhì)③利用對數(shù)函數(shù)的性質(zhì)比較大小的一般方法和步驟,(2)、反思我設(shè)計了三個問題①、通過本節(jié)課的學(xué)習(xí),你學(xué)到了哪些知識?②、通過本節(jié)課的學(xué)習(xí),你最大的體驗是什么?③、通過本節(jié)課的學(xué)習(xí),你掌握了哪些技能?(二)、作業(yè)設(shè)計作業(yè)分為必做題和選做題,必做題是對本節(jié)課學(xué)生知識水平的反饋,選做題是對本節(jié)課內(nèi)容的延伸與連貫,強調(diào)學(xué)以致用。通過作業(yè)設(shè)置,使不同層次的學(xué)生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學(xué)生飽滿的學(xué)習(xí)興趣,促進(jìn)學(xué)生的自主發(fā)展、合作探究的學(xué)習(xí)氛圍的形成。我設(shè)計了以下作業(yè):必做題:課后習(xí)題A 1,2,3;選做題:課后習(xí)題B 1,2,3;(三)、板書設(shè)計板書要基本體現(xiàn)課堂的內(nèi)容和方法,體現(xiàn)課堂進(jìn)程,能簡明扼要反映知識結(jié)構(gòu)及其相互關(guān)系:能指導(dǎo)教師的教學(xué)進(jìn)程、引導(dǎo)學(xué)生探索知識;通過使用幻燈片輔助板書,節(jié)省課堂時間,使課堂進(jìn)程更加連貫。五、評價分析學(xué)生學(xué)習(xí)的結(jié)果評價固然重要,但是更重要的是學(xué)生學(xué)習(xí)的過程評價。我采用了及時點評、延時點評與學(xué)生互評相結(jié)合,全面考查學(xué)生在知識、思想、能力等方面的發(fā)展情況,在質(zhì)疑探究的過程中,評價學(xué)生是否有積極的情感態(tài)度和頑強的理性精神,在概念反思過程中評價學(xué)生的歸納猜想能力是否得到發(fā)展,通過鞏固練習(xí)考查學(xué)生對本節(jié)是否有一個完整的集訓(xùn),并進(jìn)行及時的調(diào)整和補充。以上就是我對本節(jié)課的理解和設(shè)計,敬請各位專家、評委批評指正。謝謝!
對數(shù)函數(shù)教案【篇7】
我校是一所農(nóng)村高中學(xué)校,學(xué)生的基礎(chǔ)比較薄弱,發(fā)散性思維還未能得到充分的開發(fā).因此,一直以來,我的數(shù)學(xué)課堂教學(xué)的側(cè)重點是:運用探究式教學(xué)方式,積極調(diào)動學(xué)生學(xué)習(xí)的主動性,大力培養(yǎng)學(xué)生的開放性思維.
我本次授課的內(nèi)容是《對數(shù)函數(shù)及其性質(zhì)》,整個課題按照新課程標(biāo)準(zhǔn)的要求大概需要3個課時來完成,我提交的是第一個課時的教案.
函數(shù)是高中數(shù)學(xué)的核心,對數(shù)函數(shù)是函數(shù)的重要分支,對數(shù)函數(shù)的知識在實際生活中有著廣泛的應(yīng)用.對數(shù)函數(shù)這部分教學(xué)內(nèi)容,蘊含了函數(shù)與方程及轉(zhuǎn)化的數(shù)學(xué)思想和方法,是后續(xù)學(xué)習(xí)中不可缺少的部分,也是高考的必考內(nèi)容.因此在第一課時的教學(xué)中,如何有效地激發(fā)學(xué)生學(xué)習(xí)對數(shù)函數(shù)的興趣是這節(jié)課的首要任務(wù).為了降低學(xué)生學(xué)習(xí)的難度,我按照新課程標(biāo)準(zhǔn)的要求制定了適合學(xué)生實際水平的教學(xué)目標(biāo),并在教學(xué)過程中把重點放在如何準(zhǔn)確把握對數(shù)函數(shù)的圖象與特征上.下面從三個方面來說明我的教案設(shè)計.
一、教學(xué)把握得當(dāng)
(一)概念引入自然.我首先和學(xué)生一起回顧了考古學(xué)家是如何估算古遺址的年代,然后讓學(xué)生動手計算當(dāng)碳14的含量P取不同數(shù)值時相對應(yīng)的生物死亡年數(shù)t,最后再引導(dǎo)學(xué)生共同觀察t與p之間的關(guān)系,從而自然而然的引入概念.
(二)透徹講解定義.在引入對數(shù)函數(shù)的概念后,許多學(xué)生可能未能及時地意識到它只是一個形式定義,因此我通過材料1來幫助學(xué)生消化與掌握概念.
(三)堅持讓學(xué)生自己動手實驗.一方面學(xué)生已經(jīng)掌握了畫圖的一般方法,另一方面通過讓學(xué)生自己畫圖,使得他們對圖象有豐富的感性認(rèn)識,印象更加深刻.這樣處理,體現(xiàn)了以學(xué)生為主體,教師為主導(dǎo)的教學(xué)方式.
(四)巧妙地突破難點.我采取把學(xué)生分成若干個小組的形式,由他們進(jìn)行小組合作討論、探究、相互補充的方法得出對數(shù)函數(shù)的性質(zhì).這樣不但激發(fā)了學(xué)生學(xué)習(xí)新知識的興趣,也提高了學(xué)生分析問題的能力以及團(tuán)隊合作的精神,同時也加深了他們對圖象的認(rèn)識.
另外,學(xué)生討論完畢后,我先讓一個小組選派代表上講臺跟全班同學(xué)交流他們所得到對數(shù)函數(shù)的一般圖象和性質(zhì),然后再請其它小組選派代表提出補充意見,再由老師進(jìn)行歸納、總結(jié).這樣做不但使學(xué)生愉快地接受了新知識、活躍了課堂氣氛,而且突出雙邊活動,開啟了學(xué)生的思維,也符合新課標(biāo)的教學(xué)理念.
(五)靈活處理例題與練習(xí)題.我是通過兩則材料(材料2、4)來加深學(xué)生對對數(shù)函數(shù)性質(zhì)的理解與運用.材料2是作為例題來體現(xiàn)的,目的是讓學(xué)生利用對數(shù)函數(shù)的單調(diào)性來解決,使學(xué)生學(xué)會運用數(shù)形結(jié)合的思想來解決問題.其中材料2的第1、2小題是以具體數(shù)字為底數(shù)的對數(shù)值大小的比較,第3小題則是以字母為底數(shù)的對數(shù)值大小的比較,這樣子設(shè)計體現(xiàn)了由具體到抽象、由易到難的原則,符合學(xué)生的認(rèn)知水平.
而材料4是以練習(xí)題的形式出現(xiàn)的,它是材料2的再現(xiàn),以口答的形式解決,目的主要是加深學(xué)生對新知識的理解與應(yīng)用;至于材料3是為了提高學(xué)生如何求對數(shù)型函數(shù)定義域的認(rèn)識而設(shè)置的.
二、充分發(fā)揮多媒體輔助教學(xué)的優(yōu)勢.一方面為學(xué)生展現(xiàn)自己的才華提供了平臺:(一)鼓勵學(xué)生在得到具體的對數(shù)函數(shù)圖象并且經(jīng)過充分的討論后敢于上臺把觀察得出的結(jié)論與其他同學(xué)交流;(二)為學(xué)生之間互相點評各自解答的練習(xí)提供支持.另一方面在講解對數(shù)函數(shù)的性質(zhì)時,多媒體演示的直觀性、生動性躍然于紙上.這樣不僅激發(fā)了學(xué)生學(xué)習(xí)的興趣,還提高了課堂效率.
三、課堂采取靈活多樣的教學(xué)方法.既有教師的講解,又有小組的合作討論,還有師生的互動交流.這樣就充分調(diào)動了學(xué)生探索新知識的積極性,發(fā)揮了學(xué)生的主體作用,營造了和諧的課堂氣氛,做到了寓學(xué)于樂.
小結(jié)側(cè)重于再次講解對數(shù)函數(shù)的圖象特征及其性質(zhì),以期加深學(xué)生的印象,同時與教學(xué)目的相呼應(yīng).
數(shù)學(xué)這門科學(xué)需要觀察和探究,我所設(shè)計的這節(jié)課就是讓學(xué)生通過動手實驗,然后觀察、探究新知的過程,但由于缺乏經(jīng)驗,難免有不足之處,真誠地希望得到各位專家學(xué)者的批評指正,使我能夠不斷地成長與進(jìn)步.
對數(shù)函數(shù)教案【篇8】
一、知識與技能
1.理解對數(shù)函數(shù)的概念.
2.掌握對數(shù)函數(shù)的性質(zhì).了解對數(shù)函數(shù)在生產(chǎn)實際中的簡單應(yīng)用.
二、過程與方法
1.培養(yǎng)學(xué)生數(shù)學(xué)交流能力和與人合作精神.
2.用聯(lián)系的觀點分析問題.通過對對數(shù)函數(shù)的學(xué)習(xí),滲透數(shù)形結(jié)合的數(shù)學(xué)思想.
三、情感態(tài)度與價值觀
1.通過學(xué)習(xí)對數(shù)函數(shù)的概念、圖象和性質(zhì),使學(xué)生體會知識之間的有機聯(lián)系,激發(fā)學(xué)生的學(xué)習(xí)興趣.
2.在教學(xué)過程中,通過對數(shù)函數(shù)有關(guān)性質(zhì)的研究,培養(yǎng)觀察、分析、歸納的思維能力以及數(shù)學(xué)交流能力,增強學(xué)習(xí)的積極性,同時培養(yǎng)學(xué)生傾聽、接受別人意見的優(yōu)良品質(zhì).
教學(xué)重點
1.對數(shù)函數(shù)的定義、圖象和性質(zhì).
2.對數(shù)函數(shù)性質(zhì)的初步應(yīng)用.
教學(xué)難點
底數(shù)a對對數(shù)函數(shù)性質(zhì)的影響.
教具準(zhǔn)備
多媒體課件、投影儀、作業(yè)講義.
課時安排
1課時
教學(xué)過程
一、創(chuàng)設(shè)情景,引入新課
我們已經(jīng)比較系統(tǒng)地學(xué)習(xí)了指數(shù)和對數(shù)這兩種運算,請同學(xué)們回顧指數(shù)冪運算和對數(shù)運算的定義并說出這兩種運算的本質(zhì)區(qū)別.
在等式ab=N(a>0,且a≠1,N>0)中,已知底數(shù)a和指數(shù)b求冪值N就是指數(shù)問題,已知底數(shù)a和冪值N求指數(shù)b就是我們前面剛剛學(xué)習(xí)過的對數(shù)問題,而且無論是求冪值N還是求指數(shù)b,結(jié)果都有一個.
在某細(xì)胞分裂過程中,細(xì)胞個數(shù)y是分裂次數(shù)x的函數(shù),y=2x,因此,若已知細(xì)胞的分裂次數(shù)x的值(即輸入值是分裂次數(shù)x),就能求出細(xì)胞個數(shù)y的值(即輸出值是細(xì)胞個數(shù)y).這樣,就建立起細(xì)胞個數(shù)y和分裂次數(shù)x之間的一個函數(shù)關(guān)系式.你還記得這個函數(shù)模型的類型嗎?
反過來,在等式y(tǒng)=2x中,如果我們知道了細(xì)胞個數(shù)y,求分裂次數(shù)x,這將會是我們研究的哪類問題?
能否根據(jù)等式y(tǒng)=2x把分裂次數(shù)x表示出來?
分裂次數(shù)x可以表示為x=log2y.
在關(guān)系式x=log2y中每輸入一個細(xì)胞個數(shù)y的值,是否一定都能得到唯一一個分裂次數(shù)x的值?
師:我們通過研究發(fā)現(xiàn):在關(guān)系式x=log2y中,把細(xì)胞個數(shù)y看作自變量,則每輸入一個y值,都能得到唯一一個分裂次數(shù)x的值.根據(jù)函數(shù)的定義,分裂次數(shù)x就可以看作是細(xì)胞個數(shù)y的函數(shù),這樣就得到了我們生活中的又一類與指數(shù)函數(shù)有著密切關(guān)系的函數(shù)模型
對數(shù)函數(shù)教案【篇9】
1.掌握對數(shù)函數(shù)的概念,圖象和性質(zhì),且在掌握性質(zhì)的基礎(chǔ)上能進(jìn)行初步的應(yīng)用.
(1)能在指數(shù)函數(shù)及反函數(shù)的概念的基礎(chǔ)上理解對數(shù)函數(shù)的定義,了解對底數(shù)的要求,及對定義域的要求,能利用互為反函數(shù)的兩個函數(shù)圖象間的關(guān)系正確描繪對數(shù)函數(shù)的圖象.
(2)能把握指數(shù)函數(shù)與對數(shù)函數(shù)的實質(zhì)去研究認(rèn)識對數(shù)函數(shù)的性質(zhì),初步學(xué)會用對數(shù)函數(shù)的性質(zhì)解決簡單的問題.
2.通過對數(shù)函數(shù)概念的學(xué)習(xí),樹立相互聯(lián)系相互轉(zhuǎn)化的觀點,通過對數(shù)函數(shù)圖象和性質(zhì)的學(xué)習(xí),滲透數(shù)形結(jié)合,分類討論等思想,注重培養(yǎng)學(xué)生的觀察,分析,歸納等邏輯思維能力.
3.通過指數(shù)函數(shù)與對數(shù)函數(shù)在圖象與性質(zhì)上的對比,對學(xué)生進(jìn)行對稱美,簡潔美等審美教育,調(diào)動學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性.
教學(xué)建議
教材分析
(1)對數(shù)函數(shù)又是函數(shù)中一類重要的基本初等函數(shù),它是在學(xué)生已經(jīng)學(xué)過對數(shù)與常用對數(shù),反函數(shù)以及指數(shù)函數(shù)的基礎(chǔ)上引入的.故是對上述知識的應(yīng)用,也是對函數(shù)這一重要數(shù)學(xué)思想的進(jìn)一步認(rèn)識與理解.對數(shù)函數(shù)的概念,圖象與性質(zhì)的學(xué)習(xí)使學(xué)生的知識體系更加完整,系統(tǒng),同時又是對數(shù)和函數(shù)知識的拓展與延伸.它是解決有關(guān)自然科學(xué)領(lǐng)域中實際問題的重要工具,是學(xué)生今后學(xué)習(xí)對數(shù)方程,對數(shù)不等式的基礎(chǔ).
(2)本節(jié)的教學(xué)重點是理解對數(shù)函數(shù)的定義,掌握對數(shù)函數(shù)的圖象性質(zhì).難點是利用指數(shù)函數(shù)的圖象和性質(zhì)得到對數(shù)函數(shù)的圖象和性質(zhì).由于對數(shù)函數(shù)的概念是一個抽象的形式,學(xué)生不易理解,而且又是建立在指數(shù)與對數(shù)關(guān)系和反函數(shù)概念的基礎(chǔ)上,故應(yīng)成為教學(xué)的重點.
(3)本節(jié)課的主線是對數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),所有的問題都應(yīng)圍繞著這條主線展開.而通過互為反函數(shù)的兩個函數(shù)的關(guān)系由已知函數(shù)研究未知函數(shù)的性質(zhì),這種方法是第一次使用,學(xué)生不適應(yīng),把握不住關(guān)鍵,所以應(yīng)是本節(jié)課的難點.
教法建議
(1)對數(shù)函數(shù)在引入時,就應(yīng)從學(xué)生熟悉的指數(shù)問題出發(fā),通過對指數(shù)函數(shù)的認(rèn)識逐步轉(zhuǎn)化為對對數(shù)函數(shù)的認(rèn)識,而且畫對數(shù)函數(shù)圖象時,既要考慮到對底數(shù)的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標(biāo)系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì).
(2)在本節(jié)課中結(jié)合對數(shù)函數(shù)教學(xué)的特點,一定要讓學(xué)生動手做,動腦想,大膽猜,要以學(xué)生的研究為主,教師只是不斷地反函數(shù)這條主線引導(dǎo)學(xué)生思考的方向.這樣既增強了學(xué)生的參與意識又教給他們思考問題的方法,獲取知識的途徑,使學(xué)生學(xué)有所思,思有所得,練有所獲,,從而提高學(xué)習(xí)興趣.
教學(xué)設(shè)計示例對數(shù)函數(shù)教案【篇10】
各位評委、老師們:大家好!我說課的內(nèi)容是《對數(shù)函數(shù)及其性質(zhì)》,《對數(shù)函數(shù)及其性質(zhì)》是高中數(shù)學(xué)必修1第二章第二節(jié)的第2課時的教學(xué)內(nèi)容。下面我從教材分析、教學(xué)目標(biāo)設(shè)計、教學(xué)重難點、教法學(xué)法、教學(xué)媒體設(shè)計、教學(xué)過程設(shè)計六個方面對本節(jié)課進(jìn)行說明:
一、教材的地位、作用及編寫意圖
《對數(shù)函數(shù)》出現(xiàn)在職業(yè)高中數(shù)學(xué)第一冊第四章第四節(jié)。函數(shù)是高中數(shù)學(xué)的核心,對數(shù)函數(shù)是函數(shù)的重要分支,對數(shù)函數(shù)的知識在數(shù)學(xué)和其他許多學(xué)科中有著廣泛的應(yīng)用;學(xué)生已經(jīng)學(xué)習(xí)了對數(shù)、反函數(shù)以及指數(shù)函數(shù)等內(nèi)容,這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用;“對數(shù)函數(shù)”這節(jié)教材,指出對數(shù)函數(shù)和指數(shù)函數(shù)互為反函數(shù),反映了兩個變量的相互關(guān)系,蘊含了函數(shù)與方程的數(shù)學(xué)思想與數(shù)學(xué)方法,是以后數(shù)學(xué)學(xué)習(xí)中不可缺少的部分,也是高考的必考內(nèi)容。
二、教學(xué)目標(biāo)設(shè)計:
依據(jù)教學(xué)大綱和學(xué)生獲得知識、培養(yǎng)能力及思想教育等方面的要求:我制定了如下教育教學(xué)目標(biāo):
1、知識目標(biāo):理解指數(shù)函數(shù)的定義,掌握對數(shù)函數(shù)的圖性質(zhì)及其簡單應(yīng)用。
2、能力目標(biāo):通過教學(xué)培養(yǎng)學(xué)生觀察問題、分析問題的能力,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)乃季S和科學(xué)正確的計算能力。
3、情感目標(biāo):通過學(xué)習(xí),使學(xué)生學(xué)會認(rèn)識事物的特殊與一般性之間的關(guān)系,構(gòu)建和諧的課堂氛圍,培養(yǎng)學(xué)生勇于提問,善于探索的思維品質(zhì)。
三、教學(xué)重點、難點分析
1、理解函數(shù)的概念、掌握函數(shù)值的求法、函數(shù)定義域的求法是本節(jié)課的重點
2、學(xué)生的基礎(chǔ)較好,大多數(shù)學(xué)生的動手能力較好,因此可以通過描點,讓學(xué)生動手畫圖像,觀察圖像的特征,進(jìn)一步理解性質(zhì),因此我將本課的難點確定為:用數(shù)形結(jié)合的方法從具體到一般地探索、概括對數(shù)函數(shù)的性質(zhì)。
四、說教法、學(xué)法
在教學(xué)中,我引導(dǎo)學(xué)生從實例出發(fā)啟發(fā)指數(shù)函數(shù)的定義,在概念理解上,用步步設(shè)問、課堂討論來加深理解。在對數(shù)函數(shù)圖像的畫法上,我借助多媒體,演示作圖過程及圖像變化的動畫過程,從而使學(xué)生直接地接受并提高學(xué)生的學(xué)習(xí)興趣和積極性,很好地突破難點和提高教學(xué)效率。
說學(xué)法“授人與魚,不如授人與漁”。教給學(xué)生方法比教給學(xué)生知識更重要,本節(jié)課注重調(diào)動學(xué)生積極思考、主動探索,盡可能地增加學(xué)生參與教學(xué)活動的時間和空間,進(jìn)行以下學(xué)法指導(dǎo):
比較法:在初步理解函數(shù)概念的同時,要求學(xué)生比較兩種概念,特別加深理解數(shù)學(xué)知識之間的相互滲透性。
觀察分析:讓學(xué)生要學(xué)會觀察問題,分析問題和解決新問題
(2)探究式學(xué)習(xí)法:學(xué)生通過分析、探索、得出對數(shù)函數(shù)的定義。
(3)自主性學(xué)習(xí)法:通過實驗畫出函數(shù)圖象、觀察圖象自得其性質(zhì)。
(4)反饋練習(xí)法:檢驗知識的應(yīng)用情況,找出未掌握的內(nèi)容及其差距。這樣可發(fā)揮學(xué)生的主觀能動性,有利于提高學(xué)生的各種能力。
五、教學(xué)媒體設(shè)計:
根據(jù)本節(jié)課的教學(xué)任務(wù),和學(xué)生學(xué)習(xí)的需要,教學(xué)媒體設(shè)計如下:
教師利用多媒體準(zhǔn)備的素材①對數(shù)函數(shù)的圖像②例題和習(xí)題③與本節(jié)課相關(guān)的結(jié)論
設(shè)計意圖:利用電腦,演示作圖過程及圖像的變化的動態(tài)過程,例題和習(xí)題,從而使學(xué)生直接的接受并提高學(xué)生的學(xué)習(xí)興趣和積極性,很好地突破難點和提高教學(xué)效率,從而增大教學(xué)的容量和直觀性、準(zhǔn)確性。
六、教學(xué)過程的設(shè)計:
環(huán)節(jié)一:引入課題,初步感知概念
1.知識回顧
1)學(xué)習(xí)指數(shù)函數(shù)時,對其性質(zhì)研究了哪些內(nèi)容,采取怎樣的方法?
設(shè)計意圖:結(jié)合指數(shù)函數(shù),讓學(xué)生熟知對于函數(shù)性質(zhì)的研究內(nèi)容,熟練研究函數(shù)性質(zhì)的方法——借助圖象研究性質(zhì).
2)對數(shù)的定義
設(shè)計意圖:為講解對數(shù)函數(shù)時對底數(shù)的限制做準(zhǔn)備.
2.教學(xué)情景
由學(xué)生前面學(xué)習(xí)的熟悉的細(xì)胞有絲分裂問題入手,引入對數(shù)函數(shù)的概念設(shè)計意圖:學(xué)生通過實際問題,體會函數(shù)
環(huán)節(jié)二:新知探究,構(gòu)建概念
(一)對數(shù)函數(shù)的概念
1.定義:函數(shù),且叫做對數(shù)函數(shù)(logarithmic function)其中是自變量,函數(shù)的定義域是(0,+∞).
學(xué)生思考問題:①為什么對數(shù)函數(shù)概念中規(guī)定②對數(shù)函數(shù)對底數(shù)的限制:
設(shè)計意圖:為學(xué)習(xí)對數(shù)函數(shù)的定義,圖像和性質(zhì)做鋪墊(
(二)對數(shù)函數(shù)的圖象和性質(zhì)
教師和學(xué)生通過列表,描點畫出函數(shù)1)(2)(3)(4)的圖像,并引導(dǎo)學(xué)生類比指數(shù)函數(shù)的圖像和性質(zhì)觀察,歸納對數(shù)函數(shù)圖像的特征,得出性質(zhì)。
探索研究:在同一坐標(biāo)系中畫出下列對數(shù)函數(shù)的圖象;(可用描點法,也可計算器)(1)(2)(3)(4)
環(huán)節(jié)三、典例分析,深化知識、
例1:
解:(略)
設(shè)計意圖:本例主要考察學(xué)生對對數(shù)函數(shù)定義中底數(shù)和定義域的限制,加深對對數(shù)函數(shù)的理鞏固練習(xí):
環(huán)節(jié)四、歸納小結(jié),強化思想
本節(jié)課主要講解了對數(shù)函數(shù)的定義,圖像和性質(zhì)及其求定義域,了解通過圖像觀性質(zhì)。
環(huán)節(jié)五、作業(yè)布置(加深對知識的理解)
作業(yè)分為必做題和選做題,必做題對本節(jié)課學(xué)生知識水平的反饋,選做題是對本節(jié)課內(nèi)容的延伸與,注重知識的延伸與連貫,強調(diào)學(xué)以致用。通過作業(yè)設(shè)置,使不同層次的學(xué)生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學(xué)生飽滿的學(xué)習(xí)興趣,促進(jìn)學(xué)生自主發(fā)展、合作探究的學(xué)習(xí)氛圍的形成.
以上就是我對本節(jié)課的理解和設(shè)計,敬請各位專家、評委批評指正
對數(shù)函數(shù)教案【篇11】
教學(xué)目標(biāo)
1.準(zhǔn)確把握祥林嫂的形象特征,理解造成人物悲劇的社會根源,從而認(rèn)識舊社會封建禮教的罪惡本質(zhì)。
2.學(xué)習(xí)本文綜合運用肖像描寫、動作描寫、語言描寫等塑造人物的方法。
3.體會并理解本文環(huán)境描寫的作用,理解本文倒敘手法的作用。
教學(xué)課時:四課時
教學(xué)步驟:
第一課時
本課時重點理清小說的情節(jié)結(jié)構(gòu),了解倒敘的作用。
一、導(dǎo)入新課:
我們在初中曾經(jīng)學(xué)過魯迅的小說《故鄉(xiāng)》、《孔乙己》,其中由活潑可愛而變成麻木愚昧的閏土,站著喝酒而穿長衫的孔乙己,都給我們留下了深刻的印象。今天,我們學(xué)習(xí)的是魯迅先生又一篇著名的小說《祝?!?。
二、介紹背景:
《祝?!穼懹?924年2月7日,是魯迅短篇小說集《彷徨》的第一篇,最初發(fā)表于1924年3月25日出版的上?!稏|方雜志》半月刊第二十一卷第6號上,后收入《魯迅全集》第二卷。
魯迅以極大的熱情歡呼辛亥革命的爆發(fā),可是不久就失望了。他看到辛亥革命以后,帝制政權(quán)雖被推翻,但代之而起的卻是地主階級的軍閥官僚的統(tǒng)治,封建社會的基礎(chǔ)并沒有徹底摧毀,中國的廣大人民,尤其是農(nóng)民,日益貧困化,他們過著饑寒交迫的生活,宗法觀念、封建禮教仍然是壓在人民頭上的精神枷鎖。魯迅在《祝?!防?,深刻地展示了這一時期中國農(nóng)村的真實面貌。
這一時期的魯迅基本上還是一個革命民主主義者,還不可能用馬克思主義來分析觀察,有時就不免發(fā)生懷疑,感到失望。他把這一時期的小說集叫做《彷徨》,顯然反映了其時自己憂憤的心情。但魯迅畢竟是一個真的猛士,敢于直面慘淡的人生,敢于正視淋漓的鮮血,他決不會畏縮、退避,而是積極奮斗。
《祝?!愤@篇小說通過祥林嫂一生的悲慘遭遇,反映了辛亥革命以后中國的社會矛盾,深刻地揭露了地主階級對勞動婦女的摧殘與迫害,揭示了封建禮教吃人的本質(zhì),指出徹底反封建的必要性。
三、研習(xí)課文:
1、自讀預(yù)習(xí)提示,了解小說的教學(xué)重點,明確教學(xué)目標(biāo)。
2、理清情節(jié),了解倒敘的作用。
3、速讀課文,概括各段內(nèi)容。
提問:這篇小說是按時間順序敘述,還是另有安排?
明確:本文在序幕以后就寫出了故事的結(jié)局,這是采取了倒敘的手法。
提問:在結(jié)構(gòu)上采取倒敘手法有什么作用?
討論歸納:
設(shè)置懸念,使讀者急于追根溯源探求原委;寫祥林嫂在富人們一片祝福中死去,造成了濃重的悲劇氣氛,而且死后引起了魯四老爺?shù)恼鹋?,揭示了祥林嫂與魯四老爺之間的尖銳的矛盾,突出了小說反封建的主題。
第二課時
本課時重點分析祥林嫂形象。
一、回顧小說的三要素:
情節(jié)、人物、環(huán)境(社會環(huán)境、自然環(huán)境)
二、分析祥林嫂形象:
小說的主題是靠人物形象來體現(xiàn)的。這一課的主人公就是祥林嫂。我們只有弄清楚祥林嫂的性格和命運,才能懂得《祝?!返闹黝}。而作為人物形象又是通過故事情節(jié)──人和人之間的聯(lián)系或沖突表現(xiàn)出來的。那么,祥林嫂究竟是一個什么樣的人呢?我們就先來分析一下故事情節(jié)的開端、發(fā)展、高潮、結(jié)局,由此來把握祥林嫂的形象,領(lǐng)會《祝?!返闹黝}。
1.開端:
①祥林嫂為什么要到魯家做工?
小說的一開始,祥林嫂就是封建的宗法制度的犧牲品。因為正是父母之命,媒妁之言,迫使她嫁給一個比她小十歲的丈夫,而丈夫又過早地喪了命。祥林嫂因此陷入了嫁而守寡的悲慘的命運之中。按理說,年紀(jì)大約二十六七的祥林嫂是完全可以用自己的勞動在農(nóng)村生活下去的,可是她家里還有嚴(yán)厲的婆婆,于是祥林嫂才被迫逃到魯四老爺家里。
②祥林嫂是怎樣對待使她嫁而守寡、備受虐待的宗法制度的呢?
高一數(shù)學(xué)函數(shù)教案
俗話說,做什么事都要有計劃和準(zhǔn)備。作為幼兒園的老師,我們都希望小朋友們能在課堂上學(xué)到知識,為了給孩子提供更高效的學(xué)習(xí)效率,教案是個不錯的選擇,教案可以讓上課自己輕松的同時,學(xué)生也更好的消化課堂內(nèi)容。所以你在寫幼兒園教案時要注意些什么呢?經(jīng)過收集,小編整理了高一數(shù)學(xué)函數(shù)教案,希望你更多關(guān)注本網(wǎng)站更新。
高一數(shù)學(xué)函數(shù)教案 篇1
教學(xué)目標(biāo)
1.準(zhǔn)確把握祥林嫂的形象特征,理解造成人物悲劇的社會根源,從而認(rèn)識舊社會封建禮教的罪惡本質(zhì)。
2.學(xué)習(xí)本文綜合運用肖像描寫、動作描寫、語言描寫等塑造人物的方法。
3.體會并理解本文環(huán)境描寫的作用,理解本文倒敘手法的作用。
教學(xué)課時:四課時
教學(xué)步驟:
第一課時
本課時重點理清小說的情節(jié)結(jié)構(gòu),了解倒敘的作用。
一、導(dǎo)入新課:
我們在初中曾經(jīng)學(xué)過魯迅的小說《故鄉(xiāng)》、《孔乙己》,其中由活潑可愛而變成麻木愚昧的閏土,站著喝酒而穿長衫的孔乙己,都給我們留下了深刻的印象。今天,我們學(xué)習(xí)的是魯迅先生又一篇著名的小說《祝?!?。
二、介紹背景:
《祝?!穼懹?924年2月7日,是魯迅短篇小說集《彷徨》的第一篇,最初發(fā)表于1924年3月25日出版的上?!稏|方雜志》半月刊第二十一卷第6號上,后收入《魯迅全集》第二卷。
魯迅以極大的熱情歡呼辛亥革命的爆發(fā),可是不久就失望了。他看到辛亥革命以后,帝制政權(quán)雖被推翻,但代之而起的卻是地主階級的軍閥官僚的統(tǒng)治,封建社會的基礎(chǔ)并沒有徹底摧毀,中國的廣大人民,尤其是農(nóng)民,日益貧困化,他們過著饑寒交迫的生活,宗法觀念、封建禮教仍然是壓在人民頭上的精神枷鎖。魯迅在《祝?!防?,深刻地展示了這一時期中國農(nóng)村的真實面貌。
這一時期的魯迅基本上還是一個革命民主主義者,還不可能用馬克思主義來分析觀察,有時就不免發(fā)生懷疑,感到失望。他把這一時期的小說集叫做《彷徨》,顯然反映了其時自己憂憤的心情。但魯迅畢竟是一個真的猛士,敢于直面慘淡的人生,敢于正視淋漓的鮮血,他決不會畏縮、退避,而是積極奮斗。
《祝?!愤@篇小說通過祥林嫂一生的悲慘遭遇,反映了辛亥革命以后中國的社會矛盾,深刻地揭露了地主階級對勞動婦女的摧殘與迫害,揭示了封建禮教吃人的本質(zhì),指出徹底反封建的必要性。
三、研習(xí)課文:
1、自讀預(yù)習(xí)提示,了解小說的教學(xué)重點,明確教學(xué)目標(biāo)。
2、理清情節(jié),了解倒敘的作用。
3、速讀課文,概括各段內(nèi)容。
提問:這篇小說是按時間順序敘述,還是另有安排?
明確:本文在序幕以后就寫出了故事的結(jié)局,這是采取了倒敘的手法。
提問:在結(jié)構(gòu)上采取倒敘手法有什么作用?
討論歸納:
設(shè)置懸念,使讀者急于追根溯源探求原委;寫祥林嫂在富人們一片祝福中死去,造成了濃重的悲劇氣氛,而且死后引起了魯四老爺?shù)恼鹋?,揭示了祥林嫂與魯四老爺之間的尖銳的矛盾,突出了小說反封建的主題。
第二課時
本課時重點分析祥林嫂形象。
一、回顧小說的三要素:
情節(jié)、人物、環(huán)境(社會環(huán)境、自然環(huán)境)
二、分析祥林嫂形象:
小說的主題是靠人物形象來體現(xiàn)的。這一課的主人公就是祥林嫂。我們只有弄清楚祥林嫂的性格和命運,才能懂得《祝?!返闹黝}。而作為人物形象又是通過故事情節(jié)──人和人之間的聯(lián)系或沖突表現(xiàn)出來的。那么,祥林嫂究竟是一個什么樣的人呢?我們就先來分析一下故事情節(jié)的開端、發(fā)展、高潮、結(jié)局,由此來把握祥林嫂的形象,領(lǐng)會《祝?!返闹黝}。
1.開端:
①祥林嫂為什么要到魯家做工?
小說的一開始,祥林嫂就是封建的宗法制度的犧牲品。因為正是父母之命,媒妁之言,迫使她嫁給一個比她小十歲的丈夫,而丈夫又過早地喪了命。祥林嫂因此陷入了嫁而守寡的悲慘的命運之中。按理說,年紀(jì)大約二十六七的祥林嫂是完全可以用自己的勞動在農(nóng)村生活下去的,可是她家里還有嚴(yán)厲的婆婆,于是祥林嫂才被迫逃到魯四老爺家里。
②祥林嫂是怎樣對待使她嫁而守寡、備受虐待的宗法制度的呢?
高一數(shù)學(xué)函數(shù)教案 篇2
教學(xué)目的:
1.訓(xùn)練按一定目的從課文中篩選信息的能力。
2.理解辯證立論,重點突出,廣征博引,逐層深人的寫法。
3.認(rèn)識治學(xué)中占有材料與鉆研理論的關(guān)系;樹立實踐第一的辯證唯物主義觀點。
教學(xué)設(shè)想:
1.解讀,關(guān)鍵要抓住“虛”與“實”的關(guān)系,理清課文的脈絡(luò),重點認(rèn)識圍繞基本觀點立論辯證,廣征博引、層層深人的論述特點,理清文章觀點與材料之間的關(guān)系,把握課文的重點。
2.安排二課時。
教學(xué)過程及步驟:
一、開場白:
1980年10月22日,中國語言學(xué)會成立。呂叔湘先了題為《把我國語言科學(xué)推向前進(jìn)》的講話。全文分“中和外的關(guān)系”、“虛和實的關(guān)系”、“動和靜的關(guān)系”、“通和專的關(guān)系”四個部分,分別論述了語言研究工作中需要處理好的四對關(guān)系。是其中的第二部分。題目是選作教材時編者加的。文章雖然“主要談漢語研究”,但正如作者所言“在不同程度上也適用于其他方面”,對于一般治學(xué)和研究問題,對于中職學(xué)生的學(xué)習(xí),包括.寫作時處理好選材與立意的關(guān)系,都具有重要的指導(dǎo)意義。
二、作者簡介:
呂叔湘(1904—1998),江蘇丹陽人。當(dāng)代著名語言學(xué)家、語文教育家,先后擔(dān)任中國社會科學(xué)院語言研究所研究員、所長,兼任《中國語文》雜志主編,全國文字改革研究會主席,中國語言學(xué)會會長,語文出版社社長,并擔(dān)任全國政協(xié)第二、三屆委員,全國人大第三、四、五、六屆代表,五屆常委,法制委員會委員。他于1926年畢業(yè)于國立東南大學(xué),曾任過中學(xué)教員。1936年留學(xué)英國,1938年回國。先后任云南大學(xué)文史系副教授、華西協(xié)和大學(xué)中國文化研究所研究員、金陵大學(xué)文化研究所研究員兼中央大學(xué)中文系教授、開明書店編輯。建國后任清華大學(xué)中文系教授,1952年到中國社會科學(xué)院語言研究所工作。他幾十年來一直從事語文教學(xué)和研究,重點研究漢語語法,對我國語言學(xué)的發(fā)展作出了重要貢獻(xiàn)。主要著作有《中國文法要略》、《語法修辭講話》、《現(xiàn)代漢語八百詞》等。他治學(xué)嚴(yán)謹(jǐn),著述材料豐富,引證充分,闡述詳盡,見解精辟。他還寫有許多普及性語文讀物,通俗實用,生動有趣。
三、分析課文:
全文共11段,可分為三個部分。
第一部分(第1~2段):系全文的總綱,提出論題并表明了觀點:理論從事例中來,事例從觀察中來、從實驗中來。文章首句提出論題,緊接著以兩個設(shè)問表明了觀點。在接下來的闡述中,作者以語言學(xué)研究為例說明了理論來自于事例,事例來自于觀察和實驗的道理。文章的第2段運用古人做學(xué)問、國外各種學(xué)派林立和“禪宗和尚”的例子闡述對前人的理論也要靠觀察來驗證的道理。在論述中,作者既承認(rèn)“前人的理論是我們的財富”,又指出“前人的理論無論多么重要”,都“要用自己的觀察來驗證”;既肯定了講“家法”的好處,又指出其缺點,全面辯證,客觀公允,令人信服。這一段是對第1段的進(jìn)一步強調(diào)和補充。
第二部分(第3~6段):具體闡述理論和事實的辯證關(guān)系并指出了具體的處理方法。第3段從事實對理論的作用角度舉出“反切”、“等韻”和“文字學(xué)”等理論的形成作為例證,指出事實能夠決定理論。第4段從比較理論和事實輕重的角度,運用達(dá)爾文物種起源理論的形成和明朝兩位理學(xué)家的故事作為論據(jù),指出沒有事實作基礎(chǔ),理論就靠不住,更加突出了事實對理論的決定性作用。第5段是從理論對事實的作用角度,肯定了理論能引導(dǎo)人去發(fā)現(xiàn)事實的作用。運用了門捷列夫元素周期表填寫等例子。第6段具體提出處理二者關(guān)系的方法,特別強調(diào)“不可走極端”。這一部分的論述強調(diào)了事實對理論的決定性作用,其目的在于糾正現(xiàn)實中存在的重理論輕事實的認(rèn)識??少F的是作者“矯枉”而不“過正”,沒有偏執(zhí)一端,沒有抹殺理論在治學(xué)中的作用,而是在輕重有別、詳略有致、突出重點的同時,兼顧到了事物的各個方面,從而顯得全面周到,辯證科學(xué)。作者對問題認(rèn)識的深刻性和完整性由此可見一斑。
第三部分(第7~11段):著重論述觀察和實驗方面的有關(guān)問題。文章聯(lián)系實際,在分析重理論輕事例的原因、指出其危害的同時,闡述了觀察和實驗必須具備的精神和態(tài)度,強調(diào)要親自去觀察、實驗,收集事例。第7段對重理論輕事例的錯誤傾向提出批評,引用了饒裕泰教授的話作為論據(jù),切合實際,富于針對性。第8段運用“有限與無眼”的故事和葉斯丕森的例子闡述觀察、實驗“不容易”的一個原因,指出觀察、實驗不能懶惰,必須具備換而不舍的精神。第9段闡述了觀察、實驗“不容易”的另一個原因,指出觀察、實驗不能有成見,必須有客觀的態(tài)度。第10段收束上文,進(jìn)一步指出不愿觀察實驗的害處。第11段指出觀察、實驗必須自己去做,徹底堵住了不愿觀察、實驗者的退路。這一部分是第二部分論述的具體化和深化。
四、.總結(jié)全文:
文章緊緊圍繞治學(xué)過程中“虛與實”也就是理論和事例的關(guān)系問題,運用大量典型、生動的事實和理論材料,進(jìn)行了全面透徹的論述。明確提出理論從事例中來,事例則從觀察和實驗中來的觀點。文章針對重理論輕事例的現(xiàn)實,在辯證立論、全面論述的基礎(chǔ)上,強調(diào)突出了觀察、實驗對理論形成的作用這一重點。全文第一部分提出兩者關(guān)系的問題,表明觀點;第二部分緊緊圍繞觀點,對兩者關(guān)系展開論述;第三部分在論述兩者關(guān)系的基礎(chǔ)上,進(jìn)一步闡述觀察和實驗的有關(guān)問題,從整體到局部,逐步剖析,層層深人,不斷具體、深化,具有嚴(yán)密的邏輯性和較強的說服力。
高一數(shù)學(xué)函數(shù)教案 篇3
設(shè)函數(shù)y=f(x)的定義域為I,如果對應(yīng)定義域I內(nèi)的某個區(qū)間D內(nèi)的任意兩個變量x1、x2,當(dāng)x1
ⅰ在給出區(qū)間內(nèi)任取x1、x2,則x1、x2∈D,且x1
ⅱ 做差值f(x1)-f(x2),并進(jìn)行變形和配方,變?yōu)橐子谂袛嗾?fù)的形式。
ⅲ判斷變形后的表達(dá)式f(x1)-f(x2)的符號,指出單調(diào)性。
復(fù)合函數(shù)y=f[g(x)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律為“同增異減”;多個函數(shù)的復(fù)合函數(shù),根據(jù)原則“減偶則增,減奇則減”。
函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間,不能把單調(diào)性相同的區(qū)間和在一起寫成并集,如果函數(shù)在區(qū)間A和B上都遞增,則表示為f(x)的單調(diào)遞增區(qū)間為A和B,不能表示為A∪B。
對于函數(shù)f(x)定義域內(nèi)的任意一個x,都有f(x) =f(-x),則f(x)就為偶函數(shù);
對于函數(shù)f(x)定義域內(nèi)的任意一個x,都有f(x) =-f(x),則f(x)就為奇函數(shù)。
ⅰ無論函數(shù)是奇函數(shù)還是偶函數(shù),只要函數(shù)具有奇偶性,該函數(shù)的定義域一定關(guān)于原點對稱。
ⅱ奇函數(shù)的圖像關(guān)于原點對稱,偶函數(shù)的圖像關(guān)于y軸對稱。
ⅰ先確定函數(shù)的定義域是否關(guān)于原點對稱,若不關(guān)于原點對稱,則為非奇非偶函數(shù)。
ⅱ確定f(x) 和f(-x)的關(guān)系:
若f(x) -f(-x)=0,或f(x) /f(-x)=1,則函數(shù)為偶函數(shù);
若f(x)+f(-x)=0,或f(x)/ f(-x)=-1,則函數(shù)為奇函數(shù)。
⑴對于二次函數(shù),利用配方法,將函數(shù)化為y=(x-a)2+b的形式,得出函數(shù)的最大值或最小值。
⑵對于易于畫出函數(shù)圖像的函數(shù),畫出圖像,從圖像中觀察最值。
ⅰ判斷二次函數(shù)的頂點是否在所求區(qū)間內(nèi),若在區(qū)間內(nèi),則接ⅱ,若不在區(qū)間內(nèi),則接ⅲ。
ⅱ 若二次函數(shù)的頂點在所求區(qū)間內(nèi),則在二次函數(shù)y=ax2+bx+c中,a>0時,頂點為最小值,a0時的最大值或a
若函數(shù)在[a,b]上遞增,則最小值為f(a),最大值為f(b);
若函數(shù)在[a,b]上遞減,則最小值為f(b),最大值為f(a)。
高一數(shù)學(xué)函數(shù)教案 篇4
教學(xué)目標(biāo):
(1)能夠根據(jù)實際問題,熟練地列出二次函數(shù)關(guān)系式,并求出函數(shù)的自變量的取值范圍。
(2)注重學(xué)生參與,聯(lián)系實際,豐富學(xué)生的感性認(rèn)識,培養(yǎng)學(xué)生的良好的學(xué)習(xí)習(xí)慣
重點難點:
能夠根據(jù)實際問題,熟練地列出二次函數(shù)關(guān)系式,并求出函數(shù)的自變量的取值范圍。
教學(xué)過程:
一、試一試
1.設(shè)矩形花圃的垂直于墻的一邊AB的長為xm,先取x的一些值,算出矩形的另一邊BC的長,進(jìn)而得出矩形的面積ym2.試將計算結(jié)果填寫在下表的空格中,
AB長x(m)123456789
BC長(m)12
面積y(m2)48
2.x的值是否可以任意取?有限定范圍嗎?
3.我們發(fā)現(xiàn),當(dāng)AB的長(x)確定后,矩形的面積(y)也隨之確定,y是x的函數(shù),試寫出這個函數(shù)的關(guān)系式,
對于1.,可讓學(xué)生根據(jù)表中給出的AB的長,填出相應(yīng)的BC的長和面積,然后引導(dǎo)學(xué)生觀察表格中數(shù)據(jù)的變化情況,提出問題:(1)從所填表格中,你能發(fā)現(xiàn)什么?(2)對前面提出的問題的解答能作出什么猜想?讓學(xué)生思意見,達(dá)成共識:當(dāng)AB的長為5cm,BC的長為10m時,圍成的矩形面積最大;最大面積為50m2。
對于2,可讓學(xué)生分組討論、交流,然后意見。形成共識,x的值不可以任意取,有限定范圍,其范圍是0
高一數(shù)學(xué)函數(shù)教案 篇5
(一)通過具體函數(shù),讓學(xué)生經(jīng)歷奇函數(shù)、偶函數(shù)定義的討論,體驗數(shù)學(xué)概念的建立過程,培養(yǎng)其抽象概括能力.
(二)理解、掌握函數(shù)奇偶性的定義,奇函數(shù)和偶函數(shù)圖像的特征,并能初步應(yīng)用定義判斷一些簡單函數(shù)的奇偶性.
(三)在經(jīng)歷概念形成的過程中,培養(yǎng)學(xué)生歸納、抽象概括能力,體驗數(shù)學(xué)既是抽象的又是具體的.
這節(jié)內(nèi)容學(xué)生在初中雖沒學(xué)過,但已經(jīng)學(xué)習(xí)過具有奇偶性的具體的函數(shù):正比例函數(shù)y=kx,反比例函數(shù),(k≠0),二次函數(shù)y=ax■,(a≠0),故可在此基礎(chǔ)上,引入奇、偶函數(shù)的概念,便于學(xué)生理解.在引入概念時始終結(jié)合具體函數(shù)的圖像,增強直觀性,這樣更符合學(xué)生的認(rèn)知規(guī)律,同時為闡述奇、偶函數(shù)的幾何特征埋下了伏筆.對于概念可從代數(shù)特征與幾何特征兩個角度去分析,讓學(xué)生理解:奇函數(shù)、偶函數(shù)的定義域是關(guān)于原點對稱的非空數(shù)集;對于有定義域奇函數(shù)y=f(x),一定有f(0)=0;既是奇函數(shù),又是偶函數(shù)的函數(shù)有f(x)=0,x∈R.在此基礎(chǔ)上,讓學(xué)生了解:奇函數(shù)、偶函數(shù)的矛盾概念——非奇非偶函數(shù).關(guān)于單調(diào)性與奇偶性關(guān)系,引導(dǎo)學(xué)生拓展延伸,可以取得理想的效果.
1.觀察如下兩圖(圖略),思考并討論以下問題:
(1)這兩個函數(shù)圖像有什么共同特征?
(2)相應(yīng)的兩個函數(shù)值對應(yīng)表是如何體現(xiàn)這些特征的?
可以看到兩個函數(shù)的圖像都關(guān)于y軸對稱.從函數(shù)值對應(yīng)表可以看到,當(dāng)自變量x取一對相反數(shù)時,相應(yīng)的兩個函數(shù)值相同.
2.觀察函數(shù)f(x)=x和f(x)=的.圖像,并完成下面的兩個函數(shù)值對應(yīng)表,然后說出這兩個函數(shù)有什么共同特征.
可以看到兩個函數(shù)的圖像都關(guān)于原點對稱.函數(shù)圖像的這個特征,反映在解析式上就是:當(dāng)自變量x取一對相反數(shù)時,相應(yīng)的函數(shù)值f(x)也是一對相反數(shù),即對任一x∈R都有f(-x)=-f(x).此時,稱函數(shù)y=f(x)為奇函數(shù).
由上面的分析討論引導(dǎo)學(xué)生建立奇函數(shù)、偶函數(shù)的定義.
1.奇、偶函數(shù)的定義.
如果對于函數(shù)f(x)的定義域內(nèi)任意一個x,都有f(-x)=-f(x),那么函數(shù)f(x)就叫做奇函數(shù).如果對于函數(shù)f(x)的定義域內(nèi)任意一個x,都有f(-x)=f(x),那么函數(shù)f(x)就叫做偶函數(shù).
2.提出問題,組織學(xué)生討論.
(1)如果定義在R上的函數(shù)f(x)滿足f(-2)=f(2),那么f(x)是偶函數(shù)嗎?
(2)奇、偶函數(shù)的圖像有什么特征?
(3)奇、偶函數(shù)的定義域有什么特征?
[例題]
1.判斷下列函數(shù)的奇偶性.
注:①規(guī)范解題格式;②對于(5)要注意定義域x∈(-1,1].
2.已知:定義在R上的函數(shù)f(x)是奇函數(shù),當(dāng)x>0時,f(x)=x(1+x),求f(x)的表達(dá)式.
解:(1)任取x0,∴f(-x)=-x(1-x),而f(x)是奇函數(shù),∴f(-x)=-f(x),∴f(x)=x(1-x).
(2)當(dāng)x=0時,f(-0)=-f(0),∴f(0)=-f(0),故f(0)=0.
3.已知:函數(shù)f(x)是偶函數(shù),且在(-∞,0)上是減函數(shù),判斷f(x)在(0,+∞)內(nèi)是增函數(shù),還是減函數(shù),并證明你的結(jié)論.
解:先結(jié)合圖像特征:偶函數(shù)的圖像關(guān)于y軸對稱,猜想f(x)在(0,+∞)內(nèi)是增函數(shù),證明如下:
∴f(x)在(0,+∞)上是增函數(shù).
思考:奇函數(shù)或偶函數(shù)在關(guān)于原點對稱的兩個區(qū)間上的單調(diào)性有何關(guān)系?
[練習(xí)]
1.已知:函數(shù)f(x)是奇函數(shù),在[a,b]上是增函數(shù)(b>a>0),問f(x)在[-b,-a]上的單調(diào)性如何.
4.設(shè)f(x),g(x)分別是R上的奇函數(shù)和偶函數(shù),并且f(x)+g(x)=x(x+1),求f(x),g(x)的解析式.
1.有既是奇函數(shù),又是偶函數(shù)的函數(shù)嗎?若有,有多少個?
2.設(shè)f(x),g(x)分別是R上的奇函數(shù),偶函數(shù),試研究:
(1)F(x)=f(x)·g(x)的奇偶性.
(2)G(x)=|f(x)|+g(x)的奇偶性.
3.已知a∈R,f(x)=a-,試確定a的值,使f(x)是奇函數(shù).
4.一個定義在R上的函數(shù),是否都可以表示為一個奇函數(shù)與一個偶函數(shù)的和的形式?