高一數(shù)學(xué)課件
發(fā)布時間:2023-06-11 高一數(shù)學(xué)課件高一數(shù)學(xué)課件錦集。
俗話說,做什么事都要有計劃和準(zhǔn)備。在幼兒園教師的生活工作中,時常需要提前準(zhǔn)備資料作為參考。資料主要是指生活學(xué)習(xí)工作中需要的材料。資料對我們的學(xué)習(xí)工作發(fā)展有著重要的意義!所以,關(guān)于幼師資料你究竟了解多少呢?小編特別整理來自網(wǎng)絡(luò)的高一數(shù)學(xué)課件錦集,歡迎大家閱讀收藏,分享給身邊的人!
高一數(shù)學(xué)課件【篇1】
本節(jié)課是《普通高中課程標(biāo)準(zhǔn)實驗教科書·數(shù)學(xué)5》(北師大版)第一章數(shù)列第二節(jié)等差數(shù)列第一課時.?dāng)?shù)列是高中數(shù)學(xué)重要內(nèi)容之一,它不僅有著廣泛的實際應(yīng)用,而且起著承前啟后的作用.等差數(shù)列是在學(xué)生學(xué)習(xí)了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項公式和遞推公式的基礎(chǔ)上,對數(shù)列的知識進(jìn)一步深入和拓廣.同時等差數(shù)列也為今后學(xué)習(xí)等比數(shù)列提供了“聯(lián)想”、“類比”的思想方法.
【教學(xué)目標(biāo)】
1. 知識與技能
(1)理解等差數(shù)列的定義,會應(yīng)用定義判斷一個數(shù)列是否是等差數(shù)列:
(2)賬務(wù)等差數(shù)列的通項公式及其推導(dǎo)過程:
(3)會應(yīng)用等差數(shù)列通項公式解決簡單問題。
2.過程與方法
在定義的理解和通項公式的推導(dǎo)、應(yīng)用過程中,培養(yǎng)學(xué)生的觀察、分析、歸納能力和嚴(yán)密的邏輯思維的能力,體驗從特殊到一般,一般到特殊的認(rèn)知規(guī)律,提高熟悉猜想和歸納的能力,滲透函數(shù)與方程的思想。
3.情感、態(tài)度與價值觀
通過教師指導(dǎo)下學(xué)生的自主學(xué)習(xí)、相互交流和探索活動,培養(yǎng)學(xué)生主動探索、用于發(fā)現(xiàn)的求知精神,激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生感受到成功的喜悅。在解決問題的過程中,使學(xué)生養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好習(xí)慣。
【教學(xué)重點】
①等差數(shù)列的概念;②等差數(shù)列的通項公式
【教學(xué)難點】
①理解等差數(shù)列“等差”的特點及通項公式的含義;②等差數(shù)列的通項公式的推導(dǎo)過程.
【學(xué)情分析】
我所教學(xué)的學(xué)生是我校高一(7)班的學(xué)生(平行班學(xué)生),經(jīng)過一年的高中數(shù)學(xué)學(xué)習(xí),大部分學(xué)生知識經(jīng)驗已較為豐富,他們的智力發(fā)展已到了形式運(yùn)演階段,具備了較強(qiáng)的抽象思維能力和演繹推理能力,但也有一部分學(xué)生的基礎(chǔ)較弱,學(xué)習(xí)數(shù)學(xué)的興趣還不是很濃,所以我在授課時注重從具體的生活實例出發(fā),注重引導(dǎo)、啟發(fā)、研究和探討以符合這類學(xué)生的心理發(fā)展特點,從而促進(jìn)思維能力的進(jìn)一步發(fā)展.
【設(shè)計思路】
1.教法
①啟發(fā)引導(dǎo)法:這種方法有利于學(xué)生對知識進(jìn)行主動建構(gòu);有利于突出重點,突破難點;有利于調(diào)動學(xué)生的主動性和積極性,發(fā)揮其創(chuàng)造性.
②分組討論法:有利于學(xué)生進(jìn)行交流,及時發(fā)現(xiàn)問題,解決問題,調(diào)動學(xué)生的積極性.
③講練結(jié)合法:可以及時鞏固所學(xué)內(nèi)容,抓住重點,突破難點.
2.學(xué)法
引導(dǎo)學(xué)生首先從三個現(xiàn)實問題(數(shù)數(shù)問題、水庫水位問題、儲蓄問題)概括出數(shù)組特點并抽象出等差數(shù)列的概念;接著就等差數(shù)列概念的特點,推導(dǎo)出等差數(shù)列的通項公式;可以對各種能力的同學(xué)引導(dǎo)認(rèn)識多元的推導(dǎo)思維方法.
【教學(xué)過程】
一:創(chuàng)設(shè)情境,引入新課
1.從0開始,將5的倍數(shù)按從小到大的順序排列,得到的數(shù)列是什么?
2.水庫管理人員為了保證優(yōu)質(zhì)魚類有良好的生活環(huán)境,用定期放水清庫的辦法清理水庫中的雜魚.如果一個水庫的水位為18,自然放水每天水位降低2.5,最低降至5.那么從開始放水算起,到可以進(jìn)行清理工作的那天,水庫每天的水位(單位:)組成一個什么數(shù)列?
3.我國現(xiàn)行儲蓄制度規(guī)定銀行支付存款利息的方式為單利,即不把利息加入本息計算下一期的利息.按照單利計算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10 000元錢,年利率是0.72%,那么按照單利,5年內(nèi)各年末的本利和(單位:元)組成一個什么數(shù)列?
教師:以上三個問題中的數(shù)蘊(yùn)涵著三列數(shù).
學(xué)生:
1:0,5,10,15,20,25,….
2:18,15.5,13,10.5,8,5.5.
3:10072,10144,10216,10288,10360.
(設(shè)置意圖:從實例引入,實質(zhì)是給出了等差數(shù)列的現(xiàn)實背景,目的是讓學(xué)生感受到等差數(shù)列是現(xiàn)實生活中大量存在的數(shù)學(xué)模型.通過分析,由特殊到一般,激發(fā)學(xué)生學(xué)習(xí)探究知識的自主性,培養(yǎng)學(xué)生的歸納能力.
二:觀察歸納,形成定義
①0,5,10,15,20,25,….
②18,15.5,13,10.5,8,5.5.
③10072,10144,10216,10288,10360.
思考1上述數(shù)列有什么共同特點?
思考2根據(jù)上數(shù)列的共同特點,你能給出等差數(shù)列的一般定義嗎?
思考3你能將上述的文字語言轉(zhuǎn)換成數(shù)學(xué)符號語言嗎?
教師:引導(dǎo)學(xué)生思考這三列數(shù)具有的共同特征,然后讓學(xué)生抓住數(shù)列的特征,歸納得出等差數(shù)列概念.
學(xué)生:分組討論,可能會有不同的答案:前數(shù)和后數(shù)的差符合一定規(guī)律;這些數(shù)都是按照一定順序排列的…只要合理教師就要給予肯定.
教師引導(dǎo)歸納出:等差數(shù)列的定義;另外,教師引導(dǎo)學(xué)生從數(shù)學(xué)符號角度理解等差數(shù)列的定義.
(設(shè)計意圖:通過對一定數(shù)量感性材料的觀察、分析,提煉出感性材料的本質(zhì)屬性;使學(xué)生體會到等差數(shù)列的規(guī)律和共同特點;一開始抓住:“從第二項起,每一項與它的前一項的差為同一常數(shù)”,落實對等差數(shù)列概念的準(zhǔn)確表達(dá).)
三:舉一反三,鞏固定義
1.判定下列數(shù)列是否為等差數(shù)列?若是,指出公差d.
(1)1,1,1,1,1;
(2)1,0,1,0,1;
(3)2,1,0,-1,-2;
(4)4,7,10,13,16.
教師出示題目,學(xué)生思考回答.教師訂正并強(qiáng)調(diào)求公差應(yīng)注意的問題.
注意:公差d是每一項(第2項起)與它的前一項的差,防止把被減數(shù)與減數(shù)弄顛倒,而且公差可以是正數(shù),負(fù)數(shù),也可以為0 .
(設(shè)計意圖:強(qiáng)化學(xué)生對等差數(shù)列“等差”特征的理解和應(yīng)用).
2思考4:設(shè)數(shù)列{an}的通項公式為an=3n+1,該數(shù)列是等差數(shù)列嗎?為什么?
(設(shè)計意圖:強(qiáng)化等差數(shù)列的證明定義法)
四:利用定義,導(dǎo)出通項
1.已知等差數(shù)列:8,5,2,…,求第200項?
2.已知一個等差數(shù)列{an}的首項是a1,公差是d,如何求出它的任意項an呢?
教師出示問題,放手讓學(xué)生探究,然后選擇列式具有代表性的上去板演或投影展示.根據(jù)學(xué)生在課堂上的具體情況進(jìn)行具體評價、引導(dǎo),總結(jié)推導(dǎo)方法,體會歸納思想以及累加求通項的方法;讓學(xué)生初步嘗試處理數(shù)列問題的常用方法.
(設(shè)計意圖:引導(dǎo)學(xué)生觀察、歸納、猜想,培養(yǎng)學(xué)生合理的推理能力.學(xué)生在分組合作探究過程中,可能會找到多種不同的解決辦法,教師要逐一點評,并及時肯定、贊揚(yáng)學(xué)生善于動腦、勇于創(chuàng)新的品質(zhì),激發(fā)學(xué)生的創(chuàng)造意識.鼓勵學(xué)生自主解答,培養(yǎng)學(xué)生運(yùn)算能力)
五:應(yīng)用通項,解決問題
1判斷100是不是等差數(shù)列2, 9,16,…的項?如果是,是第幾項?
2在等差數(shù)列{an}中,已知a5=10,a12=31,求a1,d和an.
3求等差數(shù)列 3,7,11,…的第4項和第10項
教師:給出問題,讓學(xué)生自己操練,教師巡視學(xué)生答題情況.
學(xué)生:教師叫學(xué)生代表總結(jié)此類題型的解題思路,教師補(bǔ)充:已知等差數(shù)列的首項和公差就可以求出其通項公式
(設(shè)計意圖:主要是熟悉公式,使學(xué)生從中體會公式與方程之間的聯(lián)系.初步認(rèn)識“基本量法”求解等差數(shù)列問題.)
六:反饋練習(xí):教材13頁練習(xí)1
七:歸納總結(jié):
1.一個定義:
等差數(shù)列的定義及定義表達(dá)式
2.一個公式:
等差數(shù)列的通項公式
3.二個應(yīng)用:
定義和通項公式的應(yīng)用
教師:讓學(xué)生思考整理,找?guī)讉€代表發(fā)言,最后教師給出補(bǔ)充
(設(shè)計意圖:引導(dǎo)學(xué)生去聯(lián)想本節(jié)課所涉及到的各個方面,溝通它們之間的聯(lián)系,使學(xué)生能在新的高度上去重新認(rèn)識和掌握基本概念,并靈活運(yùn)用基本概念.)
【設(shè)計反思】
本設(shè)計從生活中的數(shù)列模型導(dǎo)入,有助于發(fā)揮學(xué)生學(xué)習(xí)的主動性,增強(qiáng)學(xué)生學(xué)習(xí)數(shù)列的興趣.在探索的過程中,學(xué)生通過分析、觀察,歸納出等差數(shù)列定義,然后由定義導(dǎo)出通項公式,強(qiáng)化了由具體到抽象,由特殊到一般的思維過程,有助于提高學(xué)生分析問題和解決問題的能力.本節(jié)課教學(xué)采用啟發(fā)方法,以教師提出問題、學(xué)生探討解決問題為途徑,以相互補(bǔ)充展開教學(xué),總結(jié)科學(xué)合理的知識體系,形成師生之間的良性互動,提高課堂教學(xué)效率.
高一數(shù)學(xué)課件【篇2】
我們把形如a+bi(a,b均為實數(shù))的數(shù)稱為復(fù)數(shù),其中a稱為實部,b稱為虛部,i稱為虛數(shù)單位。當(dāng)虛部等于零時,這個復(fù)數(shù)可以視為實數(shù);當(dāng)z的虛部不等于零時,實部等于零時,常稱z為純虛數(shù)。復(fù)數(shù)域是實數(shù)域的代數(shù)閉包,也即任何復(fù)系數(shù)多項式在復(fù)數(shù)域中總有根。
虛數(shù)是與任何事物沒有聯(lián)系的,是絕對的,所以符合的表達(dá)式為:
加法法則:(a+bi)+(c+di)=(a+c)+(b+d)i;
減法法則:(a+bi)-(c+di)=(a-c)+(b-d)i;
乘法法則:(a+bi)·(c+di)=(ac-bd)+(bc+ad)i;
除法法則:(a+bi)/(c+di)=[(ac+bd)/(c2+d2)]+[(bc-ad)/(c2+d2)]i.
例如:[(a+bi)+(c+di)]-[(a+c)+(b+d)i]=0,最終結(jié)果還是0,也就在數(shù)字中沒有復(fù)數(shù)的存在。[(a+bi)+(c+di)]-[(a+c)+(b+d)i]=z是一個函數(shù)。
復(fù)數(shù)z=a+bi被復(fù)平面上的點z(a,b)確定。這種形式使復(fù)數(shù)的問題可以借助圖形來研究。也可反過來用復(fù)數(shù)的理論解決一些幾何問題。
復(fù)數(shù)z=a+bi用一個以原點O(0,0)為起點,點Z(a,b)為終點的向量OZ表示。這種形式使復(fù)數(shù)四則運(yùn)算得到恰當(dāng)?shù)膸缀谓忉尅?/p>
學(xué)生對教師所講的內(nèi)容的理解,還沒能達(dá)到教師所要求的層次。因此,每天在做作業(yè)之前,一定要把課本的有關(guān)內(nèi)容和當(dāng)天的課堂筆記先看一看。能否堅持如此,常常是好學(xué)生與差學(xué)生的區(qū)別。尤其練習(xí)題不太配套時,作業(yè)中往往沒有老師剛剛講過的題目類型,因此不能對比消化。如果自己又不注意對此落實,天長日久,就會造成極大損失。
要把課本,筆記,區(qū)單元測驗試卷,校周末測驗試卷,都從頭到尾閱讀一遍。要一邊讀,一邊做標(biāo)記,標(biāo)明哪些是過一會兒要摘錄的。要養(yǎng)成一個習(xí)慣,在讀材料時隨時做標(biāo)記,告訴自己下次再讀這份材料時的閱讀重點。長期保持這個習(xí)慣,學(xué)生就能由博反約,把厚書讀成薄書。積累起自己的獨特的,也就是最適合自己進(jìn)行復(fù)習(xí)的材料。這樣積累起來的資料才有活力,才能用的上。
要注意積累復(fù)習(xí)資料。把課堂筆記,練習(xí),區(qū)單元測驗,各種試卷,都分門別類按時間順序整理好。每讀一次,就在上面標(biāo)記出自己下次閱讀時的重點內(nèi)容。這樣,復(fù)習(xí)資料才能越讀越精,一目了然。
高一數(shù)學(xué)課件【篇3】
課題:
《直線與平面垂直的性質(zhì)》
課時:
11
學(xué)習(xí)目標(biāo):
探究線面垂直的性質(zhì)定理,培養(yǎng)學(xué)生的空間想象能力;
掌握性質(zhì)定理的應(yīng)用,提高邏輯推理能力。
重點 難點:
線面垂直的性質(zhì)定理及其應(yīng)用
學(xué)習(xí)過程:
復(fù)習(xí)鞏固:直線與平面垂直的判定定理是什么?
學(xué)習(xí)新知:
1、注意觀察右面兩個圖,在長方體ABCD-A’B’C’D”中,棱AA’、BB’、CC’、DD’都與平面ABCD垂直,它們之間具有什么什么關(guān)系?
2、右圖中,已知直線a,b和平面α,如果a⊥α,b⊥α那么直線a,b是否平行呢?
直線與平面垂直的性質(zhì)定理:
一般地,我們得到直線與平面垂直的性質(zhì)定理
定理:(文字語言) 垂直于同一平面的兩條直線平行。
(符號語言)
a⊥α, b⊥α? a∥b
O (圖形語言)如圖: 判定兩條直線平行的方法很多,直線與平面垂直的定理告訴我們,可以由兩條直線與一個平面垂直判定兩條直線平行。直線與平面垂直的性質(zhì)定理揭示了“平行”與“垂直”之間的內(nèi)在聯(lián)系。
3、直線與平面垂直的性質(zhì)的應(yīng)用
例4、設(shè)直線a,b分別在正方體ABCD-A’B’C’D”中兩個不同的平面內(nèi),欲使a∥b,則a,b應(yīng)滿足什么條件?
解:a,b滿足下面條件中的任何一個,都能使a∥b,
(1)a,b同垂直于正方體一個面;
(2)a,b分別在正方體兩個相對的面內(nèi)且共面;
(3)a,b平行于同一條棱;
(4)如圖,E,F(xiàn),G,H分別為B’C’,CC’,AA’,AD的中點,EF所在的直線為a,GH所在直線為b,等等。
思考:你還能找出其他一些條件嗎?
練習(xí)p42 1, 2
作業(yè):P43
高一數(shù)學(xué)課件【篇4】
一、教材分析:集合概念及其基本理論,稱為集合論,是近、現(xiàn)代數(shù)學(xué)的一個重要的基礎(chǔ),一方面,許多重要的數(shù)學(xué)分支,都建立在集合理論的基礎(chǔ)上。另一方面,集合論及其所反映的數(shù)學(xué)思想,在越來越廣泛的領(lǐng)域種得到應(yīng)用。
二、目標(biāo)分析:
教學(xué)重點。難點
重點:集合的含義與表示方法。難點:表示法的恰當(dāng)選擇。
教學(xué)目標(biāo)
1、知識與技能
(1)通過實例,了解集合的含義,體會元素與集合的屬于關(guān)系;
(2)知道常用數(shù)集及其專用記號;
(3)了解集合中元素的確定性。互異性。無序性;
(4)會用集合語言表示有關(guān)數(shù)學(xué)對象;
2、過程與方法
(1)讓學(xué)生經(jīng)歷從集合實例中抽象概括出集合共同特征的過程,感知集合的含義。
(2)讓學(xué)生歸納整理本節(jié)所學(xué)知識。
3、情感。態(tài)度與價值觀
使學(xué)生感受到學(xué)習(xí)集合的必要性,增強(qiáng)學(xué)習(xí)的積極性。
三、教法分析
1、教學(xué)方法:學(xué)生通過閱讀教材,自主學(xué)習(xí)。思考。交流。討論和概括,從而更好地完成本節(jié)課的教學(xué)目標(biāo)。2、教學(xué)手段:在教學(xué)中使用投影儀來輔助教學(xué)。
四、過程分析
(一)創(chuàng)設(shè)情景,揭示課題
1、教師首先提出問題:(1)介紹自己的家庭、原來就讀的學(xué)校、現(xiàn)在的班級。
(2)問題:像“家庭”、“學(xué)?!?、“班級”等,有什么共同特征?
引導(dǎo)學(xué)生互相交流。與此同時,教師對學(xué)生的活動給予評價。
2、活動:(1)列舉生活中的集合的例子;(2)分析、概括各實例的共同特征
由此引出這節(jié)要學(xué)的內(nèi)容。
設(shè)計意圖:既激發(fā)了學(xué)生濃厚的學(xué)習(xí)興趣,又為新知作好鋪墊
(二)研探新知,建構(gòu)概念
1、教師利用多媒體設(shè)備向?qū)W生投影出下面7個實例:
(1)1—20以內(nèi)的所有質(zhì)數(shù);
(2)我國古代的四大發(fā)明;
(3)所有的安理會常任理事國;
(4)所有的正方形;
(5)海南省在20xx年9月之前建成的所有立交橋;
(6)到一個角的兩邊距離相等的所有的點;
(7)國興中學(xué)20xx年9月入學(xué)的高一學(xué)生的全體。
2、教師組織學(xué)生分組討論:這7個實例的共同特征是什么?
3、每個小組選出——位同學(xué)發(fā)表本組的討論結(jié)果,在此基礎(chǔ)上,師生共同概括出7個實例的特征,并給出集合的含義。一般地,指定的某些對象的全體稱為集合(簡稱為集)。集合中的每個對象叫作這個集合的元素。
4、教師指出:集合常用大寫字母A,B,C,D,?表示,元素常用小寫字母a,b,c,d?表示。
設(shè)計意圖:通過實例讓學(xué)生感受集合的概念,激發(fā)學(xué)習(xí)的興趣,培養(yǎng)學(xué)生樂于求索的精神
(三)質(zhì)疑答辯,發(fā)展思維
1、教師引導(dǎo)學(xué)生閱讀教材中的相關(guān)內(nèi)容,思考:集合中元素有什么特點?并注意個別輔導(dǎo),解答學(xué)生疑難。使學(xué)生明確集合元素的三大特性,即:確定性?;ギ愋院蜔o序性。只要構(gòu)成兩個集合的元素是一樣的,我們就稱這兩個集合相等。
2、教師組織引導(dǎo)學(xué)生思考以下問題:
判斷以下元素的全體是否組成集合,并說明理由:
(1)大于3小于11的偶數(shù);(2)我國的小河流。讓學(xué)生充分發(fā)表自己的建解。
3、讓學(xué)生自己舉出一些能夠構(gòu)成集合的例子以及不能構(gòu)成集合的例子,并說明理由。教師對學(xué)生的學(xué)習(xí)活動給予及時的評價。
4、教師提出問題,讓學(xué)生思考
b是(1)如果用A表示高—(3)班全體學(xué)生組成的集合,用a表示高一(3)班的一位同學(xué),
高一(4)班的一位同學(xué),那么a,b與集合A分別有什么關(guān)系?由此引導(dǎo)學(xué)生得出元素與集合的關(guān)系有兩種:屬于和不屬于。
如果a是集合A的元素,就說a屬于集合A,記作a?A。
如果a不是集合A的元素,就說a不屬于集合A,記作a?A。
(2)如果用A表示“所有的安理會常任理事國”組成的集合,則中國。日本與集合A的關(guān)系分別是什么?請用數(shù)學(xué)符號分別表示。
(3)讓學(xué)生完成教材第6頁練習(xí)第1題。
5、教師引導(dǎo)學(xué)生回憶數(shù)集擴(kuò)充過程,然后閱讀教材中的相交內(nèi)容,寫出常用數(shù)集的記號。并讓學(xué)生完成習(xí)題1。1A組第1題。
6、教師引導(dǎo)學(xué)生閱讀教材中的相關(guān)內(nèi)容,并思考。討論下列問題:
(1)要表示一個集合共有幾種方式?
(2)試比較自然語言。列舉法和描述法在表示集合時,各自的特點?適用的對象是什么?
(3)如何根據(jù)問題選擇適當(dāng)?shù)募媳硎痉ǎ?/p>
使學(xué)生弄清楚三種表示方式的優(yōu)缺點和體會它們存在的必要性和適用對象。
設(shè)計意圖:明確集合元素的三大特性,使學(xué)生弄清楚三種表示方式的優(yōu)缺點,從而突破難點。
(四)鞏固深化,反饋矯正
教師投影學(xué)習(xí):
(1)用自然語言描述集合{1,3,5,7,9};(2)用例舉法表示集合A?{x?N|1?x?8}
(3)試選擇適當(dāng)?shù)姆椒ū硎鞠铝屑希航滩牡?頁練習(xí)第2題。
設(shè)計意圖:使學(xué)生及時鞏固所學(xué)新知,體會三種表示方式存在的必要性和適用對象
(五)歸納小結(jié),布置作業(yè)
小結(jié):在師生互動中,讓學(xué)生了解或體會下例問題:
1、本節(jié)課我們學(xué)習(xí)了哪些知識內(nèi)容?
2、你認(rèn)為學(xué)習(xí)集合有什么意義?
3、選擇集合的表示法時應(yīng)注意些什么?
設(shè)計意圖:通過回顧,對概念的發(fā)生與發(fā)展過程有清晰的認(rèn)識,回顧集合元素的三大特性及集合的三種表示方式。
作業(yè):1、課后書面作業(yè):第13頁習(xí)題1.1A組第4題。
2、元素與集合的關(guān)系有多少種?如何表示?類似地集合與集合間的關(guān)系又有多少種
呢?如何表示?請同學(xué)們通過預(yù)習(xí)教材。
五\板書分析
高一數(shù)學(xué)課件【篇5】
學(xué)習(xí)目標(biāo):
探究線面垂直的性質(zhì)定理,培養(yǎng)學(xué)生的空間想象能力;
掌握性質(zhì)定理的應(yīng)用,提高邏輯推理能力。
學(xué)習(xí)新知:
1、注意觀察右面兩個圖,在長方體ABCD-A’B’C’D”中,棱AA’、BB’、CC’、DD’都與平面ABCD垂直,它們之間具有什么什么關(guān)系?
2、右圖中,已知直線a,b和平面α,如果a⊥α,b⊥α那么直線a,b是否平行呢?
直線與平面垂直的性質(zhì)定理:
定理:(文字語言) 垂直于同一平面的兩條直線平行。
O (圖形語言)如圖: 判定兩條直線平行的方法很多,直線與平面垂直的定理告訴我們,可以由兩條直線與一個平面垂直判定兩條直線平行。直線與平面垂直的性質(zhì)定理揭示了“平行”與“垂直”之間的內(nèi)在聯(lián)系。
例4、設(shè)直線a,b分別在正方體ABCD-A’B’C’D”中兩個不同的平面內(nèi),欲使a∥b,則a,b應(yīng)滿足什么條件?
解:a,b滿足下面條件中的任何一個,都能使a∥b,
(1)a,b同垂直于正方體一個面;
(2)a,b分別在正方體兩個相對的面內(nèi)且共面;
(3)a,b平行于同一條棱;
(4)如圖,E,F(xiàn),G,H分別為B’C’,CC’,AA’,AD的中點,EF所在的直線為a,GH所在直線為b,等等。
高一數(shù)學(xué)課件【篇6】
一、教材分析
函數(shù)的單調(diào)性是函數(shù)的重要性質(zhì).從知識的網(wǎng)絡(luò)結(jié)構(gòu)上看,函數(shù)的單調(diào)性既是函數(shù)概念的延續(xù)和拓展,又是后續(xù)研究指數(shù)函數(shù)、對數(shù)函數(shù)、三角函數(shù)的單調(diào)性等內(nèi)容的基礎(chǔ),在研究各種具體函數(shù)的性質(zhì)和應(yīng)用、解決各種問題中都有著廣泛的應(yīng)用.函數(shù)單調(diào)性概念的建立過程中蘊(yùn)涵諸多數(shù)學(xué)思想方法,對于進(jìn)一步探索、研究函數(shù)的其他性質(zhì)有很強(qiáng)的啟發(fā)與示范作用.
根據(jù)函數(shù)單調(diào)性在整個教材內(nèi)容中的地位與作用,本節(jié)課教學(xué)應(yīng)實現(xiàn)如下教學(xué)目標(biāo):
知識與技能使學(xué)生理解函數(shù)單調(diào)性的概念,初步掌握判別函數(shù)單調(diào)性的方法;
過程與方法引導(dǎo)學(xué)生通過觀察、歸納、抽象、概括,自主建構(gòu)單調(diào)增函數(shù)、單調(diào)減函數(shù)等概念;能運(yùn)用函數(shù)單調(diào)性概念解決簡單的問題;使學(xué)生領(lǐng)會數(shù)形結(jié)合的數(shù)學(xué)思想方法,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題、解決問題的能力。
情感態(tài)度與價值觀在函數(shù)單調(diào)性的學(xué)習(xí)過程中,使學(xué)生體驗數(shù)學(xué)的科學(xué)價值和應(yīng)用價值,培養(yǎng)學(xué)生善于觀察、勇于探索的良好習(xí)慣和嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度。
根據(jù)上述教學(xué)目標(biāo),本節(jié)課的教學(xué)重點是函數(shù)單調(diào)性的概念形成和初步運(yùn)用.雖然高一學(xué)生已經(jīng)有一定的抽象思維能力,但函數(shù)單調(diào)性概念對他們來說還是比較抽象的。因此,本節(jié)課的學(xué)習(xí)難點是函數(shù)單調(diào)性的概念形成。
二、教法學(xué)法
為了實現(xiàn)本節(jié)課的教學(xué)目標(biāo),在教法上我采取了
1、通過學(xué)生熟悉的實際生活問題引入課題,為概念學(xué)習(xí)創(chuàng)設(shè)情境,拉近數(shù)學(xué)與現(xiàn)實的距離,激發(fā)學(xué)生求知欲,調(diào)動學(xué)生主體參與的積極性。
2、在形成概念的過程中,緊扣概念中的關(guān)鍵語句,通過學(xué)生的主體參與,正確地形成概念。
3、在鼓勵學(xué)生主體參與的同時,不可忽視教師的主導(dǎo)作用,要教會學(xué)生清晰的思維、嚴(yán)謹(jǐn)?shù)耐评?,并順利地完成書面表達(dá)。
在學(xué)法上我重視了:
1、讓學(xué)生利用圖形直觀啟迪思維,并通過正、反例的構(gòu)造,來完成從感性認(rèn)識到理性思維的質(zhì)的飛躍。
2、讓學(xué)生從問題中質(zhì)疑、嘗試、歸納、總結(jié)、運(yùn)用,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、研究問題和分析解決問題的能力。
三、教學(xué)過程
函數(shù)單調(diào)性的概念產(chǎn)生和形成是本節(jié)課的難點,為了突破這一難點,在教學(xué)設(shè)計上采用了下列四個環(huán)節(jié)。
(一)創(chuàng)設(shè)情境,提出問題
(問題情境)(播放中央電視臺天氣預(yù)報的音樂)。如圖為某地區(qū)20xx年元旦這一天24小時內(nèi)的氣溫變化圖,觀察這張氣溫變化圖:
[教師活動]引導(dǎo)學(xué)生觀察圖象,提出問題:
問題1:說出氣溫在哪些時段內(nèi)是逐步升高的或下降的?
問題2:怎樣用數(shù)學(xué)語言刻畫上述時段內(nèi)“隨著時間的增大氣溫逐漸升高”這一特征?
[設(shè)計意圖]問題是數(shù)學(xué)的心臟,問題是學(xué)生思維的開始,問題是學(xué)生興趣的開始。這里,通過兩個問題,引發(fā)學(xué)生的進(jìn)一步學(xué)習(xí)的好奇心。
(二)探究發(fā)現(xiàn)建構(gòu)概念
[學(xué)生活動]對于問題1,學(xué)生容易給出答案。問題2對學(xué)生來說較為抽象,不易回答。
[教師活動]為了引導(dǎo)學(xué)生解決問題2,先讓學(xué)生觀察圖象,通過具體情形,例如,“t1=8時,f(t1)=1,t2=10時,f(t2)=4”這一情形進(jìn)行描述.引導(dǎo)學(xué)生回答:對于自變量8
在學(xué)生對于單調(diào)增函數(shù)的特征有一定直觀認(rèn)識時,進(jìn)一步提出:
問題3:對于任意的t1、t2∈[4,16]時,當(dāng)t1(t1)[學(xué)生活動]通過觀察圖象、進(jìn)行實驗(計算機(jī))、正反對比,發(fā)現(xiàn)數(shù)量關(guān)系,由具體到抽象,由模糊到清晰逐步歸納、概括、抽象出單調(diào)增函數(shù)概念的本質(zhì)屬性,并嘗試用符號語言進(jìn)行初步的表述。[教師活動]為了獲得單調(diào)增函數(shù)概念,對于不同學(xué)生的表述進(jìn)行分析、歸類,引導(dǎo)學(xué)生得出關(guān)鍵詞“區(qū)間內(nèi)”、“任意”、“當(dāng)時,都有”。告訴他們“把滿足這些條件的函數(shù)稱之為單調(diào)增函數(shù)”,之后由他們集體給出單調(diào)增函數(shù)概念的數(shù)學(xué)表述.提出:問題4:類比單調(diào)增函數(shù)概念,你能給出單調(diào)減函數(shù)的概念嗎?最后完成單調(diào)性和單調(diào)區(qū)間概念的整體表述。[設(shè)計意圖]數(shù)學(xué)概念的形成來自解決實際問題和數(shù)學(xué)自身發(fā)展的需要。但概念的高度抽象,造成了難懂、難教和難學(xué),這就需要讓學(xué)生置身于符合自身實際的學(xué)習(xí)活動中去,從自己的經(jīng)驗和已有的知識基礎(chǔ)出發(fā),經(jīng)歷“數(shù)學(xué)化”、“再創(chuàng)造”的活動過程。剛升入高一的學(xué)生已經(jīng)具備了一定的幾何形象思維能力,但抽象思維能力不強(qiáng)。從日常的描述性語言概念升華到用數(shù)學(xué)符號語言精確刻畫概念是本節(jié)課的難點。(三)自我嘗試運(yùn)用概念1.為了理解函數(shù)單調(diào)性的概念,及時地進(jìn)行運(yùn)用是十分必要的。[教師活動]問題5:(1)你能找出氣溫圖中的單調(diào)區(qū)間嗎?(2)你能說出你學(xué)過的函數(shù)的單調(diào)區(qū)間嗎?請舉例說明。[學(xué)生活動]對于(1),學(xué)生容易看出:氣溫圖中分別有兩個單調(diào)減區(qū)間和一個單調(diào)增區(qū)間.對于(2),學(xué)生容易舉出具體函數(shù)如:f(x)=—2x+2,f(x)=x2+2x—3,f(x)=1/x,并畫出函數(shù)的草圖,根據(jù)函數(shù)的圖象說出函數(shù)的單調(diào)區(qū)間。[教師活動]利用實物投影儀,投影出學(xué)生畫出的草圖和標(biāo)出的單調(diào)區(qū)間,并指出學(xué)生回答問題時可能出現(xiàn)的錯誤,如:在敘述函數(shù)的單調(diào)區(qū)間時寫成并集。[設(shè)計意圖]在學(xué)生已有認(rèn)知結(jié)構(gòu)的基礎(chǔ)上提出新問題,使學(xué)生明了,過去所研究的函數(shù)的相關(guān)特征,就是現(xiàn)在所學(xué)的函數(shù)的單調(diào)性,從而加深對函數(shù)單調(diào)性概念的理解。2.對于給定圖象的函數(shù),借助于圖象,我們可以直觀地判定函數(shù)的單調(diào)性,也能找到單調(diào)區(qū)間.而對于一般的函數(shù),我們怎樣去判定函數(shù)的單調(diào)性呢?[教師活動]問題6:證明在區(qū)間(0,+∞)上是單調(diào)減函數(shù)。[學(xué)生活動]學(xué)生相互討論,嘗試自主進(jìn)行函數(shù)單調(diào)性的證明,可能會出現(xiàn)不知如何比較f(x1)與f(x2)的大小、不會正確表述、變形不到位或根本不會變形等困難。[教師活動]教師深入學(xué)生中,與學(xué)生交流,了解學(xué)生思考問題的進(jìn)展過程,投影學(xué)生的證明過程,糾正出現(xiàn)的錯誤,規(guī)范書寫的格式。[學(xué)生活動]學(xué)生自我歸納證明函數(shù)單調(diào)性的一般方法和操作流程:取值作差變形定號判斷。[設(shè)計意圖]有效的數(shù)學(xué)學(xué)習(xí)過程,不能單純的模仿與記憶,數(shù)學(xué)思想的領(lǐng)悟和學(xué)習(xí)過程更是如此.利用學(xué)生自己提出的問題,讓學(xué)生在解題過程中親身經(jīng)歷和實踐體驗,師生互動學(xué)習(xí),生生合作交流,共同探究。(四)回顧反思深化概念[教師活動]給出一組題:1、定義在R上的單調(diào)函數(shù)f(x)滿足f(2)>f(1),那么函數(shù)f(x)是R上的單調(diào)增函數(shù)還是單調(diào)減函數(shù)?2、若定義在R上的單調(diào)減函數(shù)f(x)滿足f(1+a)[學(xué)生活動]學(xué)生互相討論,探求問題的解答和問題的解決過程,并通過問題,歸納總結(jié)本節(jié)課的內(nèi)容和方法。[設(shè)計意圖]通過學(xué)生的主體參與,使學(xué)生深切體會到本節(jié)課的主要內(nèi)容和思想方法,從而實現(xiàn)對函數(shù)單調(diào)性認(rèn)識的再次深化。[教師活動]作業(yè)布置:(1)閱讀課本P34-35例2(2)書面作業(yè):必做:教材P431、7、11選做:二次函數(shù)y=x2+bx+c在[0,+∞)是增函數(shù),滿足條件的實數(shù)的值唯一嗎?探究:函數(shù)y=x在定義域內(nèi)是增函數(shù),函數(shù)有兩個單調(diào)減區(qū)間,由這兩個基本函數(shù)構(gòu)成的函數(shù)的單調(diào)性如何?請證明你得到的結(jié)論。[設(shè)計意圖]通過兩方面的作業(yè),使學(xué)生養(yǎng)成先看書,后做作業(yè)的習(xí)慣?;诤瘮?shù)單調(diào)性內(nèi)容的特點及學(xué)生實際,對課后書面作業(yè)實施分層設(shè)置,安排基本練習(xí)題、鞏固理解題和深化探究題三層。學(xué)生完成作業(yè)的形式為必做、選做和探究三種,使學(xué)生在完成必修教材基本學(xué)習(xí)任務(wù)的同時,拓展自主發(fā)展的空間,讓每一個學(xué)生都得到符合自身實踐的感悟,使不同層次的學(xué)生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學(xué)生飽滿的學(xué)習(xí)興趣,促進(jìn)學(xué)生自主發(fā)展、合作探究的學(xué)習(xí)氛圍的形成。四、教學(xué)評價學(xué)生學(xué)習(xí)的結(jié)果評價當(dāng)然重要,但是更重要的是學(xué)生學(xué)習(xí)的過程評價。教師應(yīng)當(dāng)高度重視學(xué)生學(xué)習(xí)過程中的參與度、自信心、團(tuán)隊精神、合作意識、獨立思考習(xí)慣的養(yǎng)成、數(shù)學(xué)發(fā)現(xiàn)的能力,以及學(xué)習(xí)的興趣和成就感。學(xué)生熟悉的問題情境可以激發(fā)學(xué)生的學(xué)習(xí)興趣,問題串的設(shè)計可以讓更多的學(xué)生主動參與,師生對話可以實現(xiàn)師生合作,適度的研討可以促進(jìn)生生交流,以及團(tuán)隊精神,知識的生成和問題的解決可以讓學(xué)生感受到成功的喜悅,縝密的思考可以培養(yǎng)學(xué)生獨立思考的習(xí)慣。讓學(xué)生在教師評價、學(xué)生評價以及自我評價的過程中體驗知識的積累、探索能力的長進(jìn)和思維品質(zhì)的提高,為學(xué)生的可持續(xù)發(fā)展打下基礎(chǔ)。
高一數(shù)學(xué)課件【篇7】
一、本節(jié)內(nèi)容在教材中的地位與作用:
《函數(shù)的單調(diào)性》系人教版高中數(shù)學(xué)必修一的內(nèi)容,該內(nèi)容包括函數(shù)的單調(diào)性的定義與判斷及其證明。在初中學(xué)習(xí)函數(shù)時,借助圖像的直觀性研究了一些函數(shù)的增減性.這節(jié)內(nèi)容是初中有關(guān)內(nèi)容的深化、延伸和提高.這節(jié)通過對具體函數(shù)圖像的歸納和抽象,概括出函數(shù)在某個區(qū)間上是增函數(shù)或減函數(shù)的準(zhǔn)確含義,明確指出函數(shù)的增減性是相對于某個區(qū)間來說的.教材中判斷函數(shù)的增減性,既有從圖像上進(jìn)行觀察的直觀方法,又有根據(jù)其定義進(jìn)行邏輯推理的嚴(yán)格方法,最后將兩種方法統(tǒng)一起來,形成根據(jù)觀察圖像得出猜想結(jié)論,進(jìn)而用推理證明猜想的體系.函數(shù)的單調(diào)性是函數(shù)眾多性質(zhì)中的重要性質(zhì)之一,函數(shù)的單調(diào)性一節(jié)中的知識是前一節(jié)內(nèi)容函數(shù)的概念和圖像知識的延續(xù),它和后面的函數(shù)奇偶性,合稱為函數(shù)的簡單性質(zhì),是今后研究指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)及其他函數(shù)單調(diào)性的理論基礎(chǔ);在解決函數(shù)值域、定義域、不等式、比較兩數(shù)大小等具體問題中均需用到函數(shù)的單調(diào)性;同時在這一節(jié)中利用函數(shù)圖象來研究函數(shù)性質(zhì)的數(shù)形結(jié)合思想將貫穿于我們整個高中數(shù)學(xué)教學(xué)。
二、學(xué)情、教法分析:
按現(xiàn)行新教材結(jié)構(gòu)體系,學(xué)生只學(xué)過一次函數(shù)、二次函數(shù)、反比例函數(shù),所以對函數(shù)的單調(diào)性研究也只能限于這幾種函數(shù)。依據(jù)現(xiàn)有認(rèn)知結(jié)構(gòu),學(xué)生只能根據(jù)函數(shù)的圖象觀察出“隨著自變量的增大,函數(shù)值增大”的變化趨勢,而不能用符號語言進(jìn)行嚴(yán)密的代數(shù)證明,只能依據(jù)形的直觀性進(jìn)行感性判斷而不能進(jìn)行“思辯”的理性認(rèn)識。所以在教學(xué)中要找準(zhǔn)學(xué)生學(xué)習(xí)思維的“最近發(fā)展區(qū)”進(jìn)行有意義的建構(gòu)教學(xué)。在教學(xué)過程中,要注意學(xué)生第一次接觸代數(shù)形式的證明,為使學(xué)生能迅速掌握代數(shù)證明的格式,要注意讓學(xué)生在內(nèi)容上緊扣定義貫穿整個學(xué)習(xí)過程,在形式上要從有意識的模仿逐漸過渡到獨立的證明。
三、教學(xué)目標(biāo)與教學(xué)重、難點的制定:
依據(jù)課程標(biāo)準(zhǔn)的具體要求以及基于教材內(nèi)容的具體分析,制定本節(jié)課的教學(xué)目標(biāo)為:
1.通過函數(shù)單調(diào)性的學(xué)習(xí),讓學(xué)生通過自主探究活動,體會數(shù)學(xué)概念的形成過程的真諦,學(xué)會運(yùn)用函數(shù)圖像理解和研究函數(shù)的性質(zhì)。
2.理解并掌握函數(shù)的單調(diào)性及其幾何意義,掌握用定義證明函數(shù)的單調(diào)性的步驟,會求函數(shù)的單調(diào)區(qū)間,提高應(yīng)用知識解決問題的能力。
3.能夠用函數(shù)的性質(zhì)解決生活中簡單的實際問題,使學(xué)生感受到學(xué)習(xí)單調(diào)性的必要性與重要性,增強(qiáng)學(xué)生學(xué)習(xí)函數(shù)的緊迫感,激發(fā)其積極性。
在本節(jié)課的教學(xué)中以函數(shù)的單調(diào)性的概念為線,它始終貫穿于教師的整個課堂教學(xué)過程和學(xué)生的學(xué)習(xí)過程;利用函數(shù)的單調(diào)性的定義證明簡單函數(shù)的單調(diào)性是對函數(shù)單調(diào)性概念的深層理解,且“取值、作差與變形、判斷、結(jié)論”過程學(xué)生不易掌握。所以對教學(xué)的重點、難點確定如下:
教學(xué)重點:函數(shù)的單調(diào)性的判斷與證明;
教學(xué)難點:增、減函數(shù)形式化定義的形成及利用函數(shù)單調(diào)性的定義證明簡單函數(shù)的單調(diào)性。
四、教材內(nèi)容簡析:
本節(jié)主要內(nèi)容如下:
(1)單調(diào)性的相關(guān)定義:一般地,設(shè)函數(shù)的定義域為I,區(qū)間AI:如果對于區(qū)間A內(nèi)的任意兩個值,當(dāng)時都有,那么就說在區(qū)間A上是增加(減少)的。此時,A是單調(diào)遞增(遞減)區(qū)間。
注:關(guān)鍵詞:“區(qū)間AI:”、“任意”、“都”。區(qū)間AI表明判斷函數(shù)單調(diào)性首先判斷函數(shù)的定義域,“任意”表明不可以用兩個特定的值來確定函數(shù)是增函數(shù)還是減函數(shù),但是可以用來否定函數(shù)是增函數(shù)或者否定函數(shù)是減函數(shù),“都”表示單調(diào)區(qū)間中的每一個值無一例外。
如果函數(shù)在定義域的某個子集上是增加或減少的,那么就稱這個函數(shù)在這個子集上具有單調(diào)性。如果函數(shù)在定義域是增加或減少的,那么就分別稱這個函數(shù)為增函數(shù)或減函數(shù),統(tǒng)稱為單調(diào)函數(shù)。
(2)單調(diào)性的判斷與證明:
①單調(diào)性的判斷:圖像法、定義法;(注:兩個單調(diào)區(qū)間的“并”不一定是單調(diào)區(qū)間。)
②單調(diào)性的證明步驟歸結(jié)為五個步驟:取值、作差與變形、判斷、結(jié)論。
高一數(shù)學(xué)課件【篇8】
棱柱的定義:有兩個面互相平行,其余各面都是四邊形,并且每兩個四邊形的公共邊都互相平行,這些面圍成的幾何體叫做棱柱。
棱錐的定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,這些面圍成的幾何體叫做棱錐
(2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠(yuǎn)棱錐高的比的平方
正棱錐的定義:如果一個棱錐底面是正多邊形,并且頂點在底面內(nèi)的射影是底面的中心,這樣的棱錐叫做正棱錐。
正棱錐的性質(zhì):
(1)各側(cè)棱交于一點且相等,各側(cè)面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。
a、相鄰兩側(cè)棱互相垂直的正三棱錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。
b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的射影為底面三角形的垂心。
高一數(shù)學(xué)課件【篇9】
尊敬的各位評委、各位老師大家好!我說課的題目是《函數(shù)的單調(diào)性》,我將從四個方面來闡述我對這節(jié)課的設(shè)計。
一、教材分析
函數(shù)的單調(diào)性是函數(shù)的重要性質(zhì)。從知識的網(wǎng)絡(luò)結(jié)構(gòu)上看,函數(shù)的單調(diào)性既是函數(shù)概念的延續(xù)和拓展,又是后續(xù)研究指數(shù)函數(shù)、對數(shù)函數(shù)、三角函數(shù)的單調(diào)性等內(nèi)容的基礎(chǔ),在研究各種具體函數(shù)的性質(zhì)和應(yīng)用、解決各種問題中都有著廣泛的應(yīng)用。函數(shù)單調(diào)性概念的建立過程中蘊(yùn)涵諸多數(shù)學(xué)思想方法,對于進(jìn)一步探索、研究函數(shù)的其他性質(zhì)有很強(qiáng)的啟發(fā)與示范作用。
根據(jù)函數(shù)單調(diào)性在整個教材內(nèi)容中的地位與作用,本節(jié)課教學(xué)應(yīng)實現(xiàn)如下教學(xué)目標(biāo):
知識與技能使學(xué)生理解函數(shù)單調(diào)性的概念,初步掌握判別函數(shù)單調(diào)性的方法;
過程與方法引導(dǎo)學(xué)生通過觀察、歸納、抽象、概括,自主建構(gòu)單調(diào)增函數(shù)、單調(diào)減函數(shù)等概念;能運(yùn)用函數(shù)單調(diào)性概念解決簡單的問題;使學(xué)生領(lǐng)會數(shù)形結(jié)合的數(shù)學(xué)思想方法,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題、解決問題的能力。
情感態(tài)度與價值觀在函數(shù)單調(diào)性的學(xué)習(xí)過程中,使學(xué)生體驗數(shù)學(xué)的科學(xué)價值和應(yīng)用價值,培養(yǎng)學(xué)生善于觀察、勇于探索的良好習(xí)慣和嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度。
根據(jù)上述教學(xué)目標(biāo),本節(jié)課的教學(xué)重點是函數(shù)單調(diào)性的概念形成和初步運(yùn)用。雖然高一學(xué)生已經(jīng)有一定的抽象思維能力,但函數(shù)單調(diào)性概念對他們來說還是比較抽象的。因此,本節(jié)課的學(xué)習(xí)難點是函數(shù)單調(diào)性的概念形成。
二、教法學(xué)法
為了實現(xiàn)本節(jié)課的教學(xué)目標(biāo),在教法上我采取了:
1、通過學(xué)生熟悉的實際生活問題引入課題,為概念學(xué)習(xí)創(chuàng)設(shè)情境,拉近數(shù)學(xué)與現(xiàn)實的距離,激發(fā)學(xué)生求知欲,調(diào)動學(xué)生主體參與的積極性。
2、在形成概念的過程中,緊扣概念中的關(guān)鍵語句,通過學(xué)生的主體參與,正確地形成概念。
3、在鼓勵學(xué)生主體參與的同時,不可忽視教師的主導(dǎo)作用,要教會學(xué)生清晰的思維、嚴(yán)謹(jǐn)?shù)耐评?,并順利地完成書面表達(dá)。
在學(xué)法上我重視了:
1、讓學(xué)生利用圖形直觀啟迪思維,并通過正、反例的構(gòu)造,來完成從感性認(rèn)識到理性思維的質(zhì)的飛躍。
2、讓學(xué)生從問題中質(zhì)疑、嘗試、歸納、總結(jié)、運(yùn)用,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、研究問題和分析解決問題的能力。
三、教學(xué)過程
函數(shù)單調(diào)性的概念產(chǎn)生和形成是本節(jié)課的難點,為了突破這一難點,在教學(xué)設(shè)計上采用了下列四個環(huán)節(jié)。
(一)創(chuàng)設(shè)情境,提出問題
(問題情境)(播放中央電視臺天氣預(yù)報的音樂)。如圖為某地區(qū)20xx年元旦這一天24小時內(nèi)的氣溫變化圖,觀察這張氣溫變化圖:
高一數(shù)學(xué)課件【篇10】
各位領(lǐng)導(dǎo)、各位老師:
大家好!
今天我說課的題目是《兩角差的余弦公式》。我計劃從教材背景、教學(xué)目標(biāo)、教學(xué)方法、教學(xué)過程、教學(xué)評價等方面來談?wù)勎覍Ρ竟?jié)課的理解。
背景分析
1、教材所處的地位和作用:
《兩角差的余弦公式》是新課標(biāo)人教版數(shù)學(xué)必修四第三章第一課時的教學(xué)內(nèi)容,是本模塊第一章《三角函數(shù)》和第二章《平面向量》相關(guān)知識的延續(xù)和拓展。其中心任務(wù)是通過已學(xué)知識,探索建立兩角差的余弦公式。它不僅是前面已學(xué)的誘導(dǎo)公式的推廣,也是后面其它和(差)角公式推導(dǎo)的基礎(chǔ)和核心,具有承前啟后的作用,是本章的重點內(nèi)容之一。
2、重點,難點以及確定的依據(jù):
對本節(jié)課來說,學(xué)生最大的困惑在于如何得到公式.所以,
本節(jié)課的教學(xué)重點是:兩角差的余弦公式的探究和應(yīng)用;
教學(xué)難點是:兩角差的余弦公式的由來及證明;
引導(dǎo)學(xué)生通過主動參與,獨立探索。
教學(xué)目標(biāo)設(shè)計
(1)知識與技能:
本節(jié)課的知識技能目標(biāo)定位在公式的向量法證明和應(yīng)用上;學(xué)會運(yùn)用分類討論思想完善證明;學(xué)會正用、逆用、變用公式;學(xué)會運(yùn)用整體思想,抓住公式的本質(zhì).在新舊知識的沖撞過程中,讓學(xué)生自主地對知識進(jìn)行重組、構(gòu)建,形成屬于自己的知識結(jié)構(gòu)體系.
(2)過程與方法:
創(chuàng)設(shè)問題情景,調(diào)動學(xué)生已有的認(rèn)知結(jié)構(gòu),激發(fā)學(xué)生的問題意識,展開提出問題、分析問題、解決問題的學(xué)習(xí)活動,讓學(xué)生體會從“特殊”到“一般”的探究過程;在探究過程中體會化歸、數(shù)形結(jié)合等數(shù)學(xué)思想;在公式的證明過程中,培養(yǎng)學(xué)生反思的好習(xí)慣;在公式的理解記憶過程中,讓學(xué)生發(fā)現(xiàn)數(shù)學(xué)中的簡潔、對稱美;在公式的運(yùn)用過程中,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)乃季S習(xí)慣和自我糾錯能力.
(3)情感、態(tài)度與價值觀:
體驗科學(xué)探索的過程,鼓勵學(xué)生大膽質(zhì)疑、大膽猜想,培養(yǎng)學(xué)生的“問題意識”,使學(xué)生感受科學(xué)探索的樂趣,激勵勇氣,培養(yǎng)創(chuàng)新精神和良好的團(tuán)隊合作意識. 通過對猜想的驗證,對公式證明的完善,培養(yǎng)學(xué)生實事求是的科學(xué)態(tài)度和科學(xué)精神.
教法設(shè)計
1、學(xué)情分析:
學(xué)生剛剛學(xué)習(xí)了同角三角函數(shù)的變換及平面向量的知識,對用舉反例推翻猜想、運(yùn)用單位圓、用向量解決三角問題已經(jīng)有了一定的基礎(chǔ),但還遠(yuǎn)未達(dá)到綜合運(yùn)用這些方法自主探究和證明的水平.
教學(xué)手段:
(1)從知識的認(rèn)知程序上看,老師看問題從整體到局部,而學(xué)生卻是從局部到整體。本節(jié)課嘗試將“帶著知識走向?qū)W生”的接受式教學(xué)模式轉(zhuǎn)變?yōu)椤皫е鴮W(xué)生走向知識”的探究式教學(xué)模式,充分尊重學(xué)生的主體地位.
(2)本節(jié)課的教法采用了“一個主題兩種教學(xué)”的設(shè)計模式.一個主題:公式探究與應(yīng)用,兩種教學(xué):顯形教學(xué)(知識能力教學(xué))、隱性教學(xué)(情商培養(yǎng)),實踐兩種教學(xué)相互促進(jìn)的人性化教學(xué)理念.
(3)在課堂上營造民主、開放、平等的教學(xué)氛圍,注重教學(xué)評價的多元性,將簡單的結(jié)果評價上升為對過程的評價;將一味的知識評價拓展為能力評價,突出學(xué)生的主體性,實現(xiàn)顯形教學(xué)與隱性教學(xué)的雙重評價,為全面發(fā)展學(xué)生打下基礎(chǔ).
(4)利用幾何畫板,通過計算機(jī)技術(shù),給學(xué)生提供一種驗證猜想合理性的途徑. (教學(xué)媒體設(shè)計)
課堂結(jié)構(gòu)設(shè)計:
引入課題,提出猜想,實驗探究,嚴(yán)謹(jǐn)證明,例題訓(xùn)練,課堂小結(jié)
教學(xué)過程設(shè)計
1、引入課題:
例:如圖所示,一個斜坡的高為6m,斜坡的水平長度為8m,已知作用在物體上的力F與水平方向的夾角為60°,且大小為10N ,在力F的作用下物體沿斜坡運(yùn)動了3m,求力F作用在物體上的功W.
解: W =
= 30.
提問:1、解決問題需要求什么?
2、你能找到哪些與有關(guān)的條件?
3、能否利用這些條件求出?如果能,提出你的猜想.
4、怎樣檢驗這些猜想是否正確?
【設(shè)計意圖】生活實例引入,體現(xiàn)數(shù)學(xué)與實際生活的聯(lián)系,也與物理(功的定義)、哲學(xué)(透過現(xiàn)象看本質(zhì))等相關(guān)學(xué)科相聯(lián)系,增強(qiáng)學(xué)生的應(yīng)用意識,激發(fā)學(xué)生的學(xué)習(xí)熱情,同時也讓學(xué)生體會數(shù)學(xué)知識的產(chǎn)生、發(fā)展過程.
2、提出猜想:
從特殊情況去猜測公式的結(jié)構(gòu)形式.
令
令
分析:可見,我們的公式的形式應(yīng)該與均有關(guān)系?他們之間存在怎樣的代數(shù)關(guān)系呢?請同學(xué)們根據(jù)下表中數(shù)據(jù),相互交流討論,提出你的猜想.
用具體值檢驗猜想的合理性.
令則=
三角函數(shù)
三角函數(shù)值
猜想:
【設(shè)計意圖】鼓勵學(xué)生發(fā)揮想象力,大膽猜測,然后再去驗證其合理性,增強(qiáng)學(xué)生探索問題、挑戰(zhàn)困難的勇氣.
3、實驗探究:
【設(shè)計意圖】讓學(xué)生用幾何畫板進(jìn)行數(shù)學(xué)實驗, 激起學(xué)生的好奇心和探究欲望, 使學(xué)生體會到數(shù)學(xué)的系統(tǒng)演繹性和實驗歸納性的兩個側(cè)面.
4、嚴(yán)謹(jǐn)證明:
(利用向量)
前一章我們剛剛學(xué)習(xí)完向量,并用向量知識解決了相關(guān)的幾何問題,這里,我們能否用向量知識來推導(dǎo)兩角差的余弦公式呢?我們來仔細(xì)觀察猜想的結(jié)構(gòu),我們在什么地方見到過類似結(jié)構(gòu)?在向量部分,求角的余弦有什么方法嗎?
(學(xué)生:向量的數(shù)量積!)
證明:在平面直角坐標(biāo)系xOy內(nèi)作單位圓O,以O(shè)x為始邊作角,它們終邊與單位圓O的交點分別為A、B,則:
=, =
=
∴= (0≤≤)
思考:1、作為兩向量的夾角,有沒有限制條件?
2、如果不在[0,]這個區(qū)間內(nèi),我們的結(jié)論還會成立嗎?怎樣給出證明?(引導(dǎo)學(xué)生找到與夾角之間的關(guān)系)
【設(shè)計意圖】讓學(xué)生經(jīng)歷用向量知識解出一個數(shù)學(xué)問題的過程,體會向量方法在數(shù)學(xué)探究過程中的簡潔性。
思考:1、作為兩向量的夾角,有沒有限制條件?
2、如果不在[0,]這個區(qū)間內(nèi),我們的結(jié)論還會成立嗎?怎樣給出證明?(引導(dǎo)學(xué)生找到與夾角之間的關(guān)系)
推廣完善:令為、的夾角,
則
無論哪種情況,都有
小結(jié):兩角差的余弦公式:
(其中為任意角,簡記為)
思考:請同學(xué)們仔細(xì)觀察一下公式的結(jié)構(gòu),說說公式的結(jié)構(gòu)有什么特點?應(yīng)怎樣記憶?(對學(xué)生的回答給予及時肯定)
【設(shè)計意圖】引導(dǎo)學(xué)生關(guān)注兩個向量的夾角θ與α-β的聯(lián)系與區(qū)別,并通過觀察和討論,增強(qiáng)學(xué)生用數(shù)形結(jié)合、分類討論的方法解決問題的意識,感受數(shù)學(xué)思維的嚴(yán)謹(jǐn)性.
(介紹單位圓的三角函數(shù)線法)
除了以上的證明方法,是否還有其它證法呢?
我們發(fā)現(xiàn),這里涉及的是三角函數(shù),是這個角的余弦問題,那我們還能不能考慮在單位圓里用三角函數(shù)線來推導(dǎo)呢?
請同學(xué)們課后自己在單位圓中畫出、,并考慮如何用角的正弦線、余弦線來表示的余弦線?
這個問題作為課后思考題,請同學(xué)們課下相互討論,共同探索。
【設(shè)計意圖】根據(jù)教學(xué)實際,對教材進(jìn)行適當(dāng)安排,把單位圓三角函數(shù)線證法留作課后學(xué)生思考,為學(xué)生的課后探討留有空間。
5、例題訓(xùn)練:
1、解決引例中的問題.
2、P127練習(xí):已知,求.
(運(yùn)用公式時應(yīng)根據(jù)角的范圍,正確確定兩角正、余弦值的范圍)
公式的逆用:.
4、公式活用:.
【設(shè)計意圖】例1讓學(xué)生運(yùn)用所學(xué)解決實際問題;例2利用變式突破學(xué)生在運(yùn)用公式過程中的易錯點;例3對逆用公式解題加深認(rèn)識;例4活用公式,加深學(xué)生對公式中兩角形式變化的認(rèn)識,強(qiáng)化整體思想。
6:課堂小結(jié):
公式探索的一般步驟;公式的結(jié)構(gòu)和功能;公式的運(yùn)用應(yīng)注意的問題。
7、作業(yè):
P127 練習(xí)1、2、3;
.
【設(shè)計意圖】讓學(xué)生通過自己小結(jié),反思學(xué)習(xí)過程,加深對公式的推導(dǎo)和應(yīng)用過程的理解,促進(jìn)知識的內(nèi)化;然后用作業(yè)鞏固本節(jié)課所學(xué)知識。
(附:板書設(shè)計)
§3.1.1 兩角差的余弦公式
一、公式
二、證明
引例:
例2:
例3:
4:
小結(jié):
教學(xué)評價分析
診斷性評價:
1.按常規(guī),學(xué)生很可能想到先探究兩角和的正弦公式,怎樣想到先研究兩角差的余弦公式是一個難點(但非重點),教學(xué)時可以直接提出研究兩角差的余弦公式。但后面補(bǔ)充老教材的證明方法,讓學(xué)生明白和與差內(nèi)在的聯(lián)系性與統(tǒng)一性,努力讓學(xué)習(xí)過程自然。
2.盡管教材在前面的習(xí)題中,已經(jīng)為用向量法證明兩角差的余弦公式做了鋪墊,多數(shù)學(xué)生仍難以想到.教師需要引導(dǎo)學(xué)生,聯(lián)想到向量的數(shù)量積公式和單位圓上點的坐標(biāo)特點,努力使數(shù)學(xué)思維顯得自然、合理。
3.用向量的數(shù)量積公式證明兩角差的余弦公式時,學(xué)生容易犯思維不嚴(yán)謹(jǐn)?shù)腻e誤,教學(xué)時需要引導(dǎo)學(xué)生搞清楚兩角差與相應(yīng)向量的夾角的聯(lián)系與區(qū)別。
預(yù)期效果:
1、讓學(xué)生在掌握兩角差的余弦公式探究方法的基礎(chǔ)上,能夠自我總結(jié)形成公式探究的一般方法。
2、激發(fā)學(xué)生的探究欲望,能夠獨立或合作提出推導(dǎo)其它三角恒等式的方案,形成對三角恒等變換的本質(zhì)認(rèn)識,加深對靈活運(yùn)用公式的理解。
3、培養(yǎng)學(xué)生的“問題意識”,在探索的過程中學(xué)會將“知識問題化”,大膽、合理地提出猜測,通過證明、完善,最終達(dá)到將“問題知識化”的目的.
高一數(shù)學(xué)課件【篇11】
(1)指數(shù)函數(shù)的定義域為所有實數(shù)的集合,這里的前提是a大于0,對于a不大于0的情況,則必然使得函數(shù)的定義域不存在連續(xù)的區(qū)間,因此我們不予考慮。
(2)指數(shù)函數(shù)的值域為大于0的實數(shù)集合。
(3)函數(shù)圖形都是下凹的。
(4)a大于1,則指數(shù)函數(shù)單調(diào)遞增;a小于1大于0,則為單調(diào)遞減的。
(5)可以看到一個顯然的規(guī)律,就是當(dāng)a從0趨向于無窮大的過程中(當(dāng)然不能等于0),函數(shù)的曲線從分別接近于Y軸與X軸的正半軸的單調(diào)遞減函數(shù)的位置,趨向分別接近于Y軸的正半軸與X軸的負(fù)半軸的單調(diào)遞增函數(shù)的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。
(6)函數(shù)總是在某一個方向上無限趨向于X軸,永不相交。
(7)函數(shù)總是通過(0,1)這點。
(1)如果對于函數(shù)定義域內(nèi)的任意一個x,都有f(-x)=-f(x),那么函數(shù)f(x)就叫做奇函數(shù)。
(2)如果對于函數(shù)定義域內(nèi)的任意一個x,都有f(-x)=f(x),那么函數(shù)f(x)就叫做偶函數(shù)。
(3)如果對于函數(shù)定義域內(nèi)的任意一個x,f(-x)=-f(x)與f(-x)=f(x)同時成立,那么函數(shù)f(x)既是奇函數(shù)又是偶函數(shù),稱為既奇又偶函數(shù)。
(4)如果對于函數(shù)定義域內(nèi)的任意一個x,f(-x)=-f(x)與f(-x)=f(x)都不能成立,那么函數(shù)f(x)既不是奇函數(shù)又不是偶函數(shù),稱為非奇非偶函數(shù)。
《考試說明》和《考綱》是每位考生必須熟悉的最權(quán)威最準(zhǔn)確的高考信息,通過研究應(yīng)明確“考什么”、“考多難”、“怎樣考”這三個問題。
命題通常注意試題背景,強(qiáng)調(diào)數(shù)學(xué)思想,注重數(shù)學(xué)應(yīng)用;試題強(qiáng)調(diào)問題性、啟發(fā)性,突出基礎(chǔ)性;重視通性通法,淡化特殊技巧,凸顯數(shù)學(xué)的問題思考;強(qiáng)化主干知識;關(guān)注知識點的銜接,考察創(chuàng)新意識。
《考綱》明確指出“創(chuàng)新意識是理性思維的高層次表現(xiàn)”。因此試題都比較新穎活潑。所以復(fù)習(xí)中你就要加強(qiáng)對新題型的練習(xí),揭示問題的本質(zhì),創(chuàng)造性地解決問題。
高考數(shù)學(xué)試題一直注重對思維方法的考查,數(shù)學(xué)思維和方法是數(shù)學(xué)知識在更高層次上的抽象和概括。知識是思維能力的載體,因此通過對知識的考察達(dá)到考察數(shù)學(xué)思維的目的。你需要建立各部分內(nèi)容的知識網(wǎng)絡(luò);全面、準(zhǔn)確地把握概念,在理解的基礎(chǔ)上加強(qiáng)記憶;加強(qiáng)對易錯、易混知識的梳理;要多角度、多方位地去理解問題的實質(zhì);體會數(shù)學(xué)思想和解題的方法。
參考書上例題不能看一下就過去了,因為看時往往覺得什么都懂,其實自己并沒有理解透徹。所以,在看例題時,把解答蓋住,自己去做,做完或做不出時再去看,這時要想一想,自己做的與解答哪里不同,哪里沒想到,該注意什么,哪一種方法更好,還有沒有另外的解法。經(jīng)過上面的訓(xùn)練,自己的思維空間擴(kuò)展了,看問題也全面了。如果把題目的來源搞清了,在題后加上幾個批注,說明此題的.“題眼”及巧妙之處,收益將更大。
數(shù)學(xué)能力的提高離不開做題,“熟能生巧”這個簡單的道理大家都懂。但做題不是搞題海戰(zhàn)術(shù),要通過一題聯(lián)想到多題。你需要著重研究解題的思維過程,弄清基本數(shù)學(xué)知識和基本數(shù)學(xué)思想在解題中的意義和作用,研究運(yùn)用不同的思維方法解決同一數(shù)學(xué)問題的多條途徑,在分析解決問題的過程中既構(gòu)建知識的橫向聯(lián)系又養(yǎng)成多角度思考問題的習(xí)慣。
與其一節(jié)課抓緊時間大汗淋淋地做二、三十道考查思路重復(fù)的題,不如深入透徹地掌握一道典型題。例如深入理解一個概念的多種內(nèi)涵,對一個典型題,盡力做到從多條思路用多種方法處理,即一題多解;對具有共性的問題要努力摸索規(guī)律,即多題一解;不斷改變題目的條件,從各個側(cè)面去檢驗自己的知識,即一題多變。習(xí)題的價值不在于做對、做會,而在于你明白了這道題想考你什么。
Yjs21.coM更多幼師資料延伸讀
高一數(shù)學(xué)課件
作為一名老師,就有可能用到教案,通過教案準(zhǔn)備可以更好地根據(jù)具體情況對教學(xué)進(jìn)程做適當(dāng)?shù)谋匾恼{(diào)整。那么什么樣的教案才是好的呢?下面是小編整理的高一數(shù)學(xué)教案,僅供參考,希望能夠幫助到大家。
高一數(shù)學(xué)課件 篇1
教學(xué)目標(biāo):
進(jìn)一步理解指數(shù)函數(shù)及其性質(zhì),能運(yùn)用指數(shù)函數(shù)模型,解決實際問題。
教學(xué)重點:
用指數(shù)函數(shù)模型解決實際問題。
教學(xué)難點:
指數(shù)函數(shù)模型的建構(gòu)。
教學(xué)過程:
一、情境創(chuàng)設(shè)
1.某工廠今年的年產(chǎn)值為a萬元,為了增加產(chǎn)值,今年增加了新產(chǎn)品的研發(fā),預(yù)計從明年起,年產(chǎn)值每年遞增15%,則明年的產(chǎn)值為萬元,后年的產(chǎn)值為萬元.若設(shè)x年后實現(xiàn)產(chǎn)值翻兩番,則得方程。
二、數(shù)學(xué)建構(gòu)
指數(shù)函數(shù)是常見的數(shù)學(xué)模型,也是重要的數(shù)學(xué)模型,常見于工農(nóng)業(yè)生產(chǎn),環(huán)境治理以及投資理財?shù)冗f增的常見模型為=(1+p%)x(p>0);遞減的常見模型則為=(1-p%)x(p>0)。
三、數(shù)學(xué)應(yīng)用
例1某種放射性物質(zhì)不斷變化為其他,每經(jīng)過一年,這種物質(zhì)剩留的質(zhì)量是原來的84%,寫出這種物質(zhì)的剩留量關(guān)于時間的函數(shù)關(guān)系式。
例2某醫(yī)藥研究所開發(fā)一種新藥,據(jù)檢測:如果成人按規(guī)定的劑量服用,服藥后每毫升血液中的含藥量為(微克),與服藥后的時間t(小時)之間近似滿足如圖曲線,其中OA是線段,曲線ABC是函數(shù)=at的圖象。試根據(jù)圖象,求出函數(shù)=f(t)的解析式。
例3某位公民按定期三年,年利率為2.70%的方式把5000元存入銀行.問三年后這位公民所得利息是多少元?
例4某種儲蓄按復(fù)利計算利息,若本金為a元,每期利率為r,設(shè)存期是x,本利和(本金加上利息)為元。
(1)寫出本利和隨存期x變化的函數(shù)關(guān)系式;
(2)如果存入本金1000元,每期利率為2.25%,試計算5期后的本利和。
(復(fù)利是把前一期的利息和本金加在一起作本金,再計算下一期利息的一種計算利息方法)
小結(jié):銀行存款往往采用單利計算方式,而分期付款、按揭則采用復(fù)利計算.這是因為在存款上,為了減少儲戶的重復(fù)操作給銀行帶來的工作壓力,同時也是為了提高儲戶的長期存款的積極性,往往定期現(xiàn)年的利息比再次存取定期一年的收益要高;而在分期付款的過程中,由于每次存入的現(xiàn)金存期不一樣,故需要采用復(fù)利計算方式.比如“本金為a元,每期還b元,每期利率為r”,第一期還款時本息和應(yīng)為a(1+p%),還款后余額為a(1+p%)-b,第二次還款時本息為(a(1+p%)-b)(1+p%),再還款后余額為(a(1+p%)-b)(1+p%)-b=a(1+p%)2-b(1+p%)-b,……,第n次還款后余額為a(1+p%)n-b(1+p%)n1-b(1+p%)n2-……-b.這就是復(fù)利計算方式。
例52000~2002年,我國國內(nèi)生產(chǎn)總值年平均增長7.8%左右.按照這個增長速度,畫出從2000年開始我國年國內(nèi)生產(chǎn)總值隨時間變化的圖象,并通過圖象觀察到2010年我國年國內(nèi)生產(chǎn)總值約為2000年的多少倍(結(jié)果取整數(shù))。
高一數(shù)學(xué)課件 篇2
教學(xué)目標(biāo):
①掌握對數(shù)函數(shù)的性質(zhì)。
②應(yīng)用對數(shù)函數(shù)的性質(zhì)可以解決:對數(shù)的大小比較,求復(fù)合函數(shù)的定義域、值 域及單調(diào)性。
③ 注重函數(shù)思想、等價轉(zhuǎn)化、分類討論等思想的滲透,提高解題能力。
教學(xué)重點與難點:對數(shù)函數(shù)的性質(zhì)的應(yīng)用。
教學(xué)過程設(shè)計:
⒈復(fù)習(xí)提問:對數(shù)函數(shù)的概念及性質(zhì)。
⒉開始正課
1 比較數(shù)的大小
例 1 比較下列各組數(shù)的大小。
⑴loga5.1 ,loga5.9 (a>0,a≠1)
⑵log0.50.6 ,logЛ0.5 ,lnЛ
師:請同學(xué)們觀察一下⑴中這兩個對數(shù)有何特征?
生:這兩個對數(shù)底相等。
師:那么對于兩個底相等的對數(shù)如何比大???
生:可構(gòu)造一個以a為底的對數(shù)函數(shù),用對數(shù)函數(shù)的單調(diào)性比大小。
師:對,請敘述一下這道題的解題過程。
生:對數(shù)函數(shù)的單調(diào)性取決于底的大小:當(dāng)0
調(diào)遞減,所以loga5.1>loga5.9 ;當(dāng)a>1時,函數(shù)y=logax單調(diào)遞
增,所以loga5.1
板書:
解:Ⅰ)當(dāng)0
∵5.1loga5.9
Ⅱ)當(dāng)a>1時,函數(shù)y=logax在(0,+∞)上是增函數(shù),∵5.1
師:請同學(xué)們觀察一下⑵中這三個對數(shù)有何特征?
生:這三個對數(shù)底、真數(shù)都不相等。
師:那么對于這三個對數(shù)如何比大???
生:找“中間量”, log0.50.6>0,lnЛ>0,logЛ0.51,
log0.50.6
板書:略。
師:比較對數(shù)值的大小常用方法:
①構(gòu)造對數(shù)函數(shù),直接利用對數(shù)函
數(shù) 的單調(diào)性比大小
②借用“中間量”間接比大小
③利用對數(shù)
函數(shù)圖象的位置關(guān)系來比大小。
2 函數(shù)的定義域, 值 域及單調(diào)性。
例 2 ⑴求函數(shù)y=的定義域。
⑵解不等式log0.2(x2+2x-3)>log0.2(3x+3)
師:如何來求⑴中函數(shù)的定義域?(提示:求函數(shù)的定義域,就是要使函數(shù)有意義。若函數(shù)中含有分母,分母不為零;有偶次根式,被開方式大于或等于零;若函數(shù)中有對數(shù)的形式,則真數(shù)大于零,如果函數(shù)中同時出現(xiàn)以上幾種情況,就要全部考慮進(jìn)去,求它們共同作用的結(jié)果。)
生:分母2x-1≠0且偶次根式的被開方式log0.8x-1≥0,且真數(shù)x>0。
板書:
解:∵ 2x-1≠0 x≠0.5
log0.8x-1≥0 , x≤0.8
x>0 x>0
∴x(0,0.5)∪(0.5,0.8〕
師:接下來我們一起來解這個不等式。
分析:要解這個不等式,首先要使這個不等式有意義,即真數(shù)大于零,再根據(jù)對數(shù)函數(shù)的單調(diào)性求解。
師:請你寫一下這道題的解題過程。
生:
解: x2+2x-3>0 x1
(3x+3)>0 , x>-1
x2+2x-3
不等式的解為:1
例 3 求下列函數(shù)的值域和單調(diào)區(qū)間。
⑴y=log0.5(x- x2)
⑵y=loga(x2+2x-3)(a>0,a≠1)
師:求例3中函數(shù)的的值域和單調(diào)區(qū)間要用及復(fù)合函數(shù)的思想方法。
下面請同學(xué)們來解⑴。
生:此函數(shù)可看作是由y= log0.5u, u= x- x2復(fù)合而成。
板書:
解:⑴∵u= x- x2>0, ∴0
u= x- x2=-(x-0.5)2+0.25, ∴0
∴y= log0.5u≥log0.50.25=2
∴y≥2
x x(0,0.5] x[0.5,1)
u= x- x2
y= log0.5u
y=log0.5(x- x2)
函數(shù)y=log0.5(x- x2)的單調(diào)遞減區(qū)間(0,0.5],單調(diào)遞 增區(qū)間[0.5,1)
注:研究任何函數(shù)的.性質(zhì)時,都應(yīng)該首先保證這個函數(shù)有意義,否則
函數(shù)都不存在,性質(zhì)就無從談起。
師:在⑴的基礎(chǔ)上,我們一起來解
⑵。請同學(xué)們觀察一下⑴與⑵有什
么區(qū)別?
生:
⑴的底數(shù)是常值
⑵的底數(shù)是字母。
師:那么⑵如何來解?
生:只要對a進(jìn)行分類討論,做法與⑴類似。
板書:略。
⒊小結(jié)
這堂課主要講解如何應(yīng)用對數(shù)函數(shù)的性質(zhì)解決一些問題,希望能
通過這堂課使同學(xué)們對等價轉(zhuǎn)化、分類討論等思想加以應(yīng)用,提高解題能力。
⒋作業(yè)
⑴解不等式
①lg(x2-3x-4)≥lg(2x+10);
②loga(x2-x)≥loga(x+1),(a為常數(shù))
⑵已知函數(shù)y=loga(x2-2x),(a>0,a≠1)
①求它的單調(diào)區(qū)間;
②當(dāng)0
⑶已知函數(shù)y=loga (a>0, b>0, 且 a≠1)
①求它的定義域;
②討論它的奇偶性;
③討論它的單調(diào)性。
⑷已知函數(shù)y=loga(ax-1) (a>0,a≠1)
①求它的定義域;
②當(dāng)x為何值時,函數(shù)值大于1;
③討論它的
單調(diào)性。
5、課堂教學(xué)設(shè)計說明
這節(jié)課是安排為習(xí)題課,主要利用對數(shù)函數(shù)的性質(zhì)解決一些問題,整個一堂課分兩個部分:一 。比較數(shù)的大小,想通過這一部分的練習(xí),培養(yǎng)同學(xué)們構(gòu)造函數(shù)的思想和分類討論、數(shù)形結(jié)合的思想。二。函數(shù)的定義域, 值 域及單調(diào)性,想通過這一部分的練習(xí),能使同學(xué)們重視求函數(shù)的定義域。因為學(xué)生在求函數(shù)的值域和單調(diào)區(qū)間時,往往不考慮函數(shù)的定義域,并且這種錯誤很頑固,不易糾正。因此,力求學(xué)生做到想法正確,步驟清晰。為了調(diào)動學(xué)生的積極性,突出學(xué)生是課堂的主體,便把例題分了層次,由易到難,力求做到每題都能由學(xué)生獨立完成。但是,每一道題的解題過程,老師都應(yīng)該給以板書,這樣既讓學(xué)生有了獲取新知識的快樂,又不必為了解題格式的不熟悉而煩惱。每一題講完后,由教師簡明扼要地小結(jié),以使好學(xué)生掌握地更完善,較差的學(xué)生也能夠跟上。
高一數(shù)學(xué)課件 篇3
教學(xué)目標(biāo):
使學(xué)生理解函數(shù)的概念,明確決定函數(shù)的三個要素,學(xué)會求某些函數(shù)的定義域,掌握判定兩個函數(shù)是否相同的方法;使學(xué)生理解靜與動的辯證關(guān)系.
教學(xué)重點:
函數(shù)的概念,函數(shù)定義域的求法.
教學(xué)難點:
函數(shù)概念的理解.
教學(xué)過程:
Ⅰ.課題導(dǎo)入
[師]在初中,我們已經(jīng)學(xué)習(xí)了函數(shù)的概念,請同學(xué)們回憶一下,它是怎樣表述的?
(幾位學(xué)生試著表述,之后,教師將學(xué)生的回答梳理,再表述或者啟示學(xué)生將表述補(bǔ)充完整再條理表述).
設(shè)在一個變化的過程中有兩個變量x和y,如果對于x的每一個值,y都有惟一的值與它對應(yīng),那么就說y是x的函數(shù),x叫做自變量.
[師]我們學(xué)習(xí)了函數(shù)的概念,并且具體研究了正比例函數(shù),反比例函數(shù),一次函數(shù),二次函數(shù),請同學(xué)們思考下面兩個問題:
問題一:y=1(xR)是函數(shù)嗎?
問題二:y=x與y=x2x 是同一個函數(shù)嗎?
(學(xué)生思考,很難回答)
[師]顯然,僅用上述函數(shù)概念很難回答這些問題,因此,需要從新的高度來認(rèn)識函數(shù)概念(板書課題).
Ⅱ.講授新課
[師]下面我們先看兩個非空集合A、B的元素之間的一些對應(yīng)關(guān)系的例子.
在(1)中,對應(yīng)關(guān)系是乘2,即對于集合A中的每一個數(shù)n,集合B中都有一個數(shù)2n和它對應(yīng).
在(2)中,對應(yīng)關(guān)系是求平方,即對于集合A中的每一個數(shù)m,集合B中都有一個平方數(shù)m2和它對應(yīng).
在(3)中,對應(yīng)關(guān)系是求倒數(shù),即對于集合A中的每一個數(shù)x,集合B中都有一個數(shù) 1x 和它對應(yīng).
請同學(xué)們觀察3個對應(yīng),它們分別是怎樣形式的對應(yīng)呢?
[生]一對一、二對一、一對一.
[師]這3個對應(yīng)的共同特點是什么呢?
[生甲]對于集合A中的任意一個數(shù),按照某種對應(yīng)關(guān)系,集合B中都有惟一的數(shù)和它對應(yīng).
[師]生甲回答的很好,不但找到了3個對應(yīng)的共同特點,還特別強(qiáng)調(diào)了對應(yīng)關(guān)系,事實上,一個集合中的數(shù)與另一集合中的數(shù)的對應(yīng)是按照一定的關(guān)系對應(yīng)的,這是不能忽略的. 實際上,函數(shù)就是從自變量x的集合到函數(shù)值y的集合的一種對應(yīng)關(guān)系.
現(xiàn)在我們把函數(shù)的概念進(jìn)一步敘述如下:(板書)
設(shè)A、B是非空的數(shù)集,如果按照某個確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有惟一確定的數(shù)f(x)和它對應(yīng),那么就稱f︰AB為從集合A到集合B的一個函數(shù).
記作:y=f(x),xA
其中x叫自變量,x的取值范圍A叫做函數(shù)的定義域,與x的值相對應(yīng)的y(或f(x))值叫做函數(shù)值,函數(shù)值的集合{y|y=f(x),xA}叫函數(shù)的值域.
一次函數(shù)f(x)=ax+b(a0)的定義域是R,值域也是R.對于R中的任意一個數(shù)x,在R中都有一個數(shù)f(x)=ax+b(a0)和它對應(yīng).
反比例函數(shù)f(x)=kx (k0)的定義域是A={x|x0},值域是B={f(x)|f(x)0},對于A中的任意一個實數(shù)x,在B中都有一個實數(shù)f(x)= kx (k0)和它對應(yīng).
二次函數(shù)f(x)=ax2+bx+c(a0)的定義域是R,值域是當(dāng)a0時B={f(x)|f(x)4ac-b24a };當(dāng)a0時,B={f(x)|f(x)4ac-b24a },它使得R中的任意一個數(shù)x與B中的數(shù)f(x)=ax2+bx+c(a0)對應(yīng).
函數(shù)概念用集合、對應(yīng)的語言敘述后,我們就很容易回答前面所提出的兩個問題.
y=1(xR)是函數(shù),因為對于實數(shù)集R中的任何一個數(shù)x,按照對應(yīng)關(guān)系函數(shù)值是1,在R中y都有惟一確定的值1與它對應(yīng),所以說y是x的函數(shù).
Y=x與y=x2x 不是同一個函數(shù),因為盡管它們的對應(yīng)關(guān)系一樣,但y=x的定義域是R,而y=x2x 的定義域是{x|x0}. 所以y=x與y=x2x 不是同一個函數(shù).
[師]理解函數(shù)的定義,我們應(yīng)該注意些什么呢?
(教師提出問題,啟發(fā)、引導(dǎo)學(xué)生思考、討論,并和學(xué)生一起歸納、總結(jié))
注意:①函數(shù)是非空數(shù)集到非空數(shù)集上的一種對應(yīng).
②符號f:AB表示A到B的一個函數(shù),它有三個要素;定義域、值域、對應(yīng)關(guān)系,三者缺一不可.
③集合A中數(shù)的任意性,集合B中數(shù)的惟一性.
④f表示對應(yīng)關(guān)系,在不同的函數(shù)中,f的具體含義不一樣.
⑤f(x)是一個符號,絕對不能理解為f與x的乘積.
[師]在研究函數(shù)時,除用符號f(x)表示函數(shù)外,還常用g(x) 、F(x)、G(x)等符號來表示
Ⅲ.例題分析
[例1]求下列函數(shù)的定義域.
(1)f(x)=1x-2 (2)f(x)=3x+2 (3)f(x)=x+1 +12-x
分析:函數(shù)的定義域通常由問題的實際背景確定.如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域.那么函數(shù)的定義域就是指能使這個式子有意義的實數(shù)x的集合.
解:(1)x-20,即x2時,1x-2 有意義
這個函數(shù)的定義域是{x|x2}
(2)3x+20,即x-23 時3x+2 有意義
函數(shù)y=3x+2 的定義域是[-23 ,+)
(3) x+10 x2
這個函數(shù)的定義域是{x|x{x|x2}=[-1,2)(2,+).
注意:函數(shù)的定義域可用三種方法表示:不等式、集合、區(qū)間.
從上例可以看出,當(dāng)確定用解析式y(tǒng)=f(x)表示的函數(shù)的定義域時,常有以下幾種情況:
(1)如果f(x)是整式,那么函數(shù)的定義域是實數(shù)集R;
(2)如果f(x)是分式,那么函數(shù)的定義域是使分母不等于零的實數(shù)的集合;
(3)如果f(x)是偶次根式,那么函數(shù)的定義域是使根號內(nèi)的式子不小于零的實數(shù)的集合;
(4)如果f(x)是由幾個部分的數(shù)學(xué)式子構(gòu)成的,那么函數(shù)的定義域是使各部分式子都有意義的實數(shù)的集合(即使每個部分有意義的實數(shù)的集合的交集);
(5)如果f(x)是由實際問題列出的,那么函數(shù)的定義域是使解析式本身有意義且符合實際意義的實數(shù)的集合.
例如:一矩形的寬為x m,長是寬的2倍,其面積為y=2x2,此函數(shù)定義域為x0而不是全體實數(shù).
由以上分析可知:函數(shù)的定義域由數(shù)學(xué)式子本身的意義和問題的實際意義決定.
[師]自變量x在定義域中任取一個確定的值a時,對應(yīng)的函數(shù)值用符號f(a)來表示.例如,函數(shù)f(x)=x2+3x+1,當(dāng)x=2時的函數(shù)值是f(2)=22+32+1=11
注意:f(a)是常量,f(x)是變量 ,f(a)是函數(shù)f(x)中當(dāng)自變量x=a時的函數(shù)值.
下面我們來看求函數(shù)式的值應(yīng)該怎樣進(jìn)行呢?
[生甲]求函數(shù)式的值,嚴(yán)格地說是求函數(shù)式中自變量x為某一確定的值時函數(shù)式的值,因此,求函數(shù)式的值,只要把函數(shù)式中的x換為相應(yīng)確定的數(shù)(或字母,或式子)進(jìn)行計算即可.
[師]回答正確,不過要準(zhǔn)確地求出函數(shù)式的值,計算時萬萬不可粗心大意噢!
[生乙]判定兩個函數(shù)是否相同,就看其定義域或?qū)?yīng)關(guān)系是否完全一致,完全一致時,這兩個函數(shù)就相同;不完全一致時,這兩個函數(shù)就不同.
[師]生乙的回答完整嗎?
[生]完整!(課本上就是如生乙所述那樣寫的).
[師]大家說,判定兩個函數(shù)是否相同的依據(jù)是什么?
[生]函數(shù)的定義.
[師]函數(shù)的定義有三個要素:定義域、值域、對應(yīng)關(guān)系,我們判定兩個函數(shù)是否相同為什么只看兩個要素:定義域和對應(yīng)關(guān)系,而不看值域呢?
(學(xué)生竊竊私語:是啊,函數(shù)的三個要素不是缺一不可嗎?怎不看值域呢?)
(無人回答)
[師]同學(xué)們預(yù)習(xí)時還是欠仔細(xì),欠思考!我們做事情,看問題都要多問幾個為什么!函數(shù)的值域是由什么決定的,不就是由函數(shù)的定義域與對應(yīng)關(guān)系決定的嗎!關(guān)注了函數(shù)的定義域與對應(yīng)關(guān)系,三者就全看了!
(生恍然大悟,我們怎么就沒想到呢?)
[例2]求下列函數(shù)的值域
(1)y=1-2x (xR) (2)y=|x|-1 x{-2,-1,0,1,2}
(3)y=x2+4x+3 (-31)
分析:求函數(shù)的值域應(yīng)確定相應(yīng)的定義域后再根據(jù)函數(shù)的具體形式及運(yùn)算確定其值域.
對于(1)(2)可用直接法根據(jù)它們的定義域及對應(yīng)法則得到(1)(2)的值域.
對于(3)可借助數(shù)形結(jié)合思想利用它們的圖象得到值域,即圖象法.
解:(1)yR
(2)y{1,0,-1}
(3)畫出y=x2+4x+3(-31)的圖象,如圖所示,
當(dāng)x[-3,1]時,得y[-1,8]
Ⅳ.課堂練習(xí)
課本P24練習(xí)17.
Ⅴ.課時小結(jié)
本節(jié)課我們學(xué)習(xí)了函數(shù)的定義(包括定義域、值域的概念)、區(qū)間的概念及求函數(shù)定義域的方法.學(xué)習(xí)函數(shù)定義應(yīng)注意的問題及求定義域時的各種情形應(yīng)該予以重視.(本小結(jié)的內(nèi)容可由學(xué)生自己來歸納)
Ⅵ.課后作業(yè)
課本P28,習(xí)題1、2. 文 章來
高一數(shù)學(xué)課件 篇4
高一數(shù)學(xué)函數(shù)知識點歸納
1、函數(shù):設(shè)A、B為非空集合,如果按照某個特定的對應(yīng)關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應(yīng),那么就稱f:A→B為從集合A到集合B的一個函數(shù),寫作y=f(x),x∈A,其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域,與x相對應(yīng)的y的值叫做函數(shù)值,函數(shù)值的集合B={f(x)∣x∈A }叫做函數(shù)的值域。
2、函數(shù)定義域的解題思路:
⑴若x處于分母位置,則分母x不能為0。
⑵偶次方根的被開方數(shù)不小于0。
⑶對數(shù)式的真數(shù)必須大于0。
⑷指數(shù)對數(shù)式的底,不得為1,且必須大于0。
⑸指數(shù)為0時,底數(shù)不得為0。
⑹如果函數(shù)是由一些基本函數(shù)通過四則運(yùn)算結(jié)合而成的,那么,它的定義域是各個部分都有意義的x值組成的集合。
⑺實際問題中的函數(shù)的.定義域還要保證實際問題有意義。
3、相同函數(shù)
⑴表達(dá)式相同:與表示自變量和函數(shù)值的字母無關(guān)。
⑵定義域一致,對應(yīng)法則一致。
4、函數(shù)值域的求法
⑴觀察法:適用于初等函數(shù)及一些簡單的由初等函數(shù)通過四則運(yùn)算得到的函數(shù)。
⑵圖像法:適用于易于畫出函數(shù)圖像的函數(shù)已經(jīng)分段函數(shù)。
⑶配方法:主要用于二次函數(shù),配方成y=(x-a)2+b的形式。
⑷代換法:主要用于由已知值域的函數(shù)推測未知函數(shù)的值域。
5、函數(shù)圖像的變換
⑴平移變換:在x軸上的變換在x上就行加減,在y軸上的變換在y上進(jìn)行加減。
⑵伸縮變換:在x前加上系數(shù)。
⑶對稱變換:高中階段不作要求。
6、映射:設(shè)A、B是兩個非空集合,如果按某一個確定的對應(yīng)法則f,使對于A中的任意儀的元素x,在集合B中都有唯一的確定的y與之對應(yīng),那么就稱對應(yīng)f:A→B為從集合A到集合B的映射。
⑴集合A中的每一個元素,在集合B中都有象,并且象是唯一的。
⑵集合A中的不同元素,在集合B中對應(yīng)的象可以是同一個。
⑶不要求集合B中的每一個元素在集合A中都有原象。
7、分段函數(shù)
⑴在定義域的不同部分上有不同的解析式表達(dá)式。
⑵各部分自變量和函數(shù)值的取值范圍不同。
⑶分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集。
8、復(fù)合函數(shù):如果(u∈M),u=g(x) (x∈A),則,y=f[g(x)]=F(x) (x∈A),稱為f、g的復(fù)合函數(shù)。
高一數(shù)學(xué)函數(shù)的性質(zhì)
1、函數(shù)的局部性質(zhì)——單調(diào)性
設(shè)函數(shù)y=f(x)的定義域為I,如果對應(yīng)定義域I內(nèi)的某個區(qū)間D內(nèi)的任意兩個變量x1、x2,當(dāng)x1
⑴函數(shù)區(qū)間單調(diào)性的判斷思路
ⅰ在給出區(qū)間內(nèi)任取x1、x2,則x1、x2∈D,且x1
ⅱ做差值f(x1)-f(x2),并進(jìn)行變形和配方,變?yōu)橐子谂袛嗾?fù)的形式。
ⅲ判斷變形后的表達(dá)式f(x1)-f(x2)的符號,指出單調(diào)性。
⑵復(fù)合函數(shù)的單調(diào)性
復(fù)合函數(shù)y=f[g(x)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律為“同增異減”;多個函數(shù)的復(fù)合函數(shù),根據(jù)原則“減偶則增,減奇則減”。
⑶注意事項
函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間,不能把單調(diào)性相同的區(qū)間和在一起寫成并集,如果函數(shù)在區(qū)間A和B上都遞增,則表示為f(x)的單調(diào)遞增區(qū)間為A和B,不能表示為A∪B。
2、函數(shù)的整體性質(zhì)——奇偶性
對于函數(shù)f(x)定義域內(nèi)的任意一個x,都有f(x) =f(-x),則f(x)就為偶函數(shù);
對于函數(shù)f(x)定義域內(nèi)的任意一個x,都有f(x) =-f(x),則f(x)就為奇函數(shù)。
⑴奇函數(shù)和偶函數(shù)的性質(zhì)
ⅰ無論函數(shù)是奇函數(shù)還是偶函數(shù),只要函數(shù)具有奇偶性,該函數(shù)的定義域一定關(guān)于原點對稱。
ⅱ奇函數(shù)的圖像關(guān)于原點對稱,偶函數(shù)的圖像關(guān)于y軸對稱。
⑵函數(shù)奇偶性判斷思路
ⅰ先確定函數(shù)的定義域是否關(guān)于原點對稱,若不關(guān)于原點對稱,則為非奇非偶函數(shù)。
ⅱ確定f(x)和f(-x)的關(guān)系:
若f(x) -f(-x)=0,或f(x) /f(-x)=1,則函數(shù)為偶函數(shù);
若f(x)+f(-x)=0,或f(x)/ f(-x)=-1,則函數(shù)為奇函數(shù)。
3、函數(shù)的最值問題
⑴對于二次函數(shù),利用配方法,將函數(shù)化為y=(x-a)2+b的形式,得出函數(shù)的最大值或最小值。
⑵對于易于畫出函數(shù)圖像的函數(shù),畫出圖像,從圖像中觀察最值。
⑶關(guān)于二次函數(shù)在閉區(qū)間的最值問題
ⅰ判斷二次函數(shù)的頂點是否在所求區(qū)間內(nèi),若在區(qū)間內(nèi),則接ⅱ,若不在區(qū)間內(nèi),則接ⅲ。
ⅱ若二次函數(shù)的頂點在所求區(qū)間內(nèi),則在二次函數(shù)y=ax2+bx+c中,a>0時,頂點為最小值,a0時的最大值或a
ⅲ若二次函數(shù)的頂點不在所求區(qū)間內(nèi),則判斷函數(shù)在該區(qū)間的單調(diào)性
若函數(shù)在[a,b]上遞增,則最小值為f(a),最大值為f(b);
若函數(shù)在[a,b]上遞減,則最小值為f(b),最大值為f(a)。
高一數(shù)學(xué)課件 篇5
教學(xué)目標(biāo)
1。使學(xué)生掌握的概念,圖象和性質(zhì)。
(1)能根據(jù)定義判斷形如什么樣的函數(shù)是,了解對底數(shù)的限制條件的合理性,明確的定義域。
(2)能在基本性質(zhì)的指導(dǎo)下,用列表描點法畫出的圖象,能從數(shù)形兩方面認(rèn)識的性質(zhì)。
(3)能利用的性質(zhì)比較某些冪形數(shù)的大小,會利用的圖象畫出形如的圖象。
2。通過對的概念圖象性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析歸納的能力,進(jìn)一步體會數(shù)形結(jié)合的思想方法。
3。通過對的研究,讓學(xué)生認(rèn)識到數(shù)學(xué)的應(yīng)用價值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。使學(xué)生善于從現(xiàn)實生活中數(shù)學(xué)的發(fā)現(xiàn)問題,解決問題。
教學(xué)建議
教材分析
(1)是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進(jìn)行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應(yīng)用,也是今后學(xué)習(xí)對數(shù)函數(shù)的基礎(chǔ),同時在生活及生產(chǎn)實際中有著廣泛的應(yīng)用,所以應(yīng)重點研究。
(2)本節(jié)的教學(xué)重點是在理解定義的基礎(chǔ)上掌握的圖象和性質(zhì)。難點是對底數(shù)在和時,函數(shù)值變化情況的區(qū)分。
(3)是學(xué)生完全陌生的一類函數(shù),對于這樣的函數(shù)應(yīng)怎樣進(jìn)行較為系統(tǒng)的理論研究是學(xué)生面臨的重要問題,所以從的研究過程中得到相應(yīng)的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學(xué)中要特別讓學(xué)生去體會研究的方法,以便能將其遷移到其他函數(shù)的研究。
教法建議
(1)關(guān)于的定義按照課本上說法它是一種形式定義即解析式的特征必須是的樣子,不能有一點差異,諸如,等都不是。
(2)對底數(shù)的限制條件的理解與認(rèn)識也是認(rèn)識的重要內(nèi)容。如果有可能盡量讓學(xué)生自己去研究對底數(shù),指數(shù)都有什么限制要求,教師再給予補(bǔ)充或用具體例子加以說明,因為對這個條件的認(rèn)識不僅關(guān)系到對的認(rèn)識及性質(zhì)的分類討論,還關(guān)系到后面學(xué)習(xí)對數(shù)函數(shù)中底數(shù)的認(rèn)識,所以一定要真正了解它的由來。
關(guān)于圖象的繪制,雖然是用列表描點法,但在具體教學(xué)中應(yīng)避免描點前的盲目列表計算,也應(yīng)避免盲目的連點成線,要把表列在關(guān)鍵之處,要把點連在恰當(dāng)之處,所以應(yīng)在列表描點前先把函數(shù)的性質(zhì)作一些簡單的討論,取得對要畫圖象的存在范圍,大致特征,變化趨勢的大概認(rèn)識后,以此為指導(dǎo)再列表計算,描點得圖象。
教學(xué)設(shè)計示例
課題
教學(xué)目標(biāo)
1。理解的定義,初步掌握的圖象,性質(zhì)及其簡單應(yīng)用。
2。通過的圖象和性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析,歸納的能力,進(jìn)一步體會數(shù)形結(jié)合的思想方法。
3。通過對的研究,使學(xué)生能把握函數(shù)研究的基本方法,激發(fā)學(xué)生的學(xué)習(xí)興趣。
教學(xué)重點和難點
重點是理解的定義,把握圖象和性質(zhì)。
難點是認(rèn)識底數(shù)對函數(shù)值影響的認(rèn)識。
教學(xué)用具
投影儀
教學(xué)方法
啟發(fā)討論研究式
教學(xué)過程
一。引入新課
我們前面學(xué)習(xí)了指數(shù)運(yùn)算,在此基礎(chǔ)上,今天我們要來研究一類新的常見函數(shù)———————。
1.6。(板書)
這類函數(shù)之所以重點介紹的原因就是它是實際生活中的一種需要。比如我們看下面的問題:
問題1:某種細(xì)胞分裂時,由1個分裂成2個,2個分裂成4個,……一個這樣的細(xì)胞分裂次后,得到的細(xì)胞分裂的個數(shù)與之間,構(gòu)成一個函數(shù)關(guān)系,能寫出與之間的函數(shù)關(guān)系式嗎?
由學(xué)生回答:與之間的關(guān)系式,可以表示為。
問題2:有一根1米長的`繩子,第一次剪去繩長一半,第二次再剪去剩余繩子的一半,……剪了次后繩子剩余的長度為米,試寫出與之間的函數(shù)關(guān)系。
由學(xué)生回答:。
在以上兩個實例中我們可以看到這兩個函數(shù)與我們前面研究的函數(shù)有所區(qū)別,從形式上冪的"形式,且自變量均在指數(shù)的位置上,那么就把形如這樣的函數(shù)稱為。
一。的概念(板書)
1。定義:形如的函數(shù)稱為。(板書)
教師在給出定義之后再對定義作幾點說明。
2。幾點說明(板書)
(1)關(guān)于對的規(guī)定:
教師首先提出問題:為什么要規(guī)定底數(shù)大于0且不等于1呢?(若學(xué)生感到有困難,可將問題分解為若會有什么問題?如,此時,等在實數(shù)范圍內(nèi)相應(yīng)的函數(shù)值不存在。
若對于都無意義,若則無論取何值,它總是1,對它沒有研究的必要。為了避免上述各種情況的發(fā)生,所以規(guī)定且。
(2)關(guān)于的定義域(板書)
教師引導(dǎo)學(xué)生回顧指數(shù)范圍,發(fā)現(xiàn)指數(shù)可以取有理數(shù)。此時教師可指出,其實當(dāng)指數(shù)為無理數(shù)時,也是一個確定的實數(shù),對于無理指數(shù)冪,學(xué)過的有理指數(shù)冪的性質(zhì)和運(yùn)算法則它都適用,所以將指數(shù)范圍擴(kuò)充為實數(shù)范圍,所以的定義域為。擴(kuò)充的另一個原因是因為使她它更具代表更有應(yīng)用價值。
(3)關(guān)于是否是的判斷(板書)
剛才分別認(rèn)識了中底數(shù),指數(shù)的要求,下面我們從整體的角度來認(rèn)識一下,根據(jù)定義我們知道什么樣的函數(shù)是,請看下面函數(shù)是否是。
高一數(shù)學(xué)課件 篇6
一、指導(dǎo)思想:
使學(xué)生在九年義務(wù)教育數(shù)學(xué)課程的基礎(chǔ)上,進(jìn)一步提高作為未來公民所必要的數(shù)學(xué)素養(yǎng),以滿足個人發(fā)展與社會進(jìn)步的需要。具體目標(biāo)如下。
1。獲得必要的數(shù)學(xué)基礎(chǔ)知識和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,體會其中所蘊(yùn)涵的數(shù)學(xué)思想和方法,以及它們在后續(xù)學(xué)習(xí)中的作用。通過不同形式的自主學(xué)習(xí)、探究活動,體驗數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程。
2。提高空間想像、抽象概括、推理論證、運(yùn)算求解、數(shù)據(jù)處理等基本能力。
3。提高數(shù)學(xué)地提出、分析和解決問題(包括簡單的實際問題)的能力,數(shù)學(xué)表達(dá)和交流的能力,發(fā)展獨立獲取數(shù)學(xué)知識的能力。
4。發(fā)展數(shù)學(xué)應(yīng)用意識和創(chuàng)新意識,力求對現(xiàn)實世界中蘊(yùn)涵的一些數(shù)學(xué)模式進(jìn)行思考和作出判斷。
5。提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的信心,形成鍥而不舍的`鉆研精神和科學(xué)態(tài)度。
6。具有一定的數(shù)學(xué)視野,逐步認(rèn)識數(shù)學(xué)的科學(xué)價值、應(yīng)用價值和文化價值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會數(shù)學(xué)的美學(xué)意義,從而進(jìn)一步樹立辯證唯物主義和歷史唯物主義世界觀。
二、教材特點:
我們所使用的教材是人教版《普通高中課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)(a版)》,它在堅持我國數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認(rèn)真處理繼承,借簽,發(fā)展,創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性,時代性,典型性和可接受性等到,具有如下特點:
1。親和力:以生動活潑的呈現(xiàn)方式,激發(fā)興趣和美感,引發(fā)學(xué)習(xí)激情。
2。問題性:以恰時恰點的問題引導(dǎo)數(shù)學(xué)活動,培養(yǎng)問題意識,孕育創(chuàng)新精神。
3??茖W(xué)性與思想性:通過不同數(shù)學(xué)內(nèi)容的聯(lián)系與啟發(fā),強(qiáng)調(diào)類比,推廣,特殊化,化歸等思想方法的運(yùn)用,學(xué)習(xí)數(shù)學(xué)地思考問題的方式,提高數(shù)學(xué)思維能力,培育理性精神。
4。時代性與應(yīng)用性:以具有時代性和現(xiàn)實感的素材創(chuàng)設(shè)情境,加強(qiáng)數(shù)學(xué)活動,發(fā)展應(yīng)用意識。
三、教法分析:
1。選取與內(nèi)容密切相關(guān)的,典型的,豐富的和學(xué)生熟悉的素材,用生動活潑的語言,創(chuàng)設(shè)能夠體現(xiàn)數(shù)學(xué)的概念和結(jié)論,數(shù)學(xué)的思想和方法,以及數(shù)學(xué)應(yīng)用的學(xué)習(xí)情境,使學(xué)生產(chǎn)生對數(shù)學(xué)的親切感,引發(fā)學(xué)生看個究竟的沖動,以達(dá)到培養(yǎng)其興趣的目的。
2。通過觀察,思考,探究等欄目,引發(fā)學(xué)生的思考和探索活動,切實改進(jìn)學(xué)生的學(xué)習(xí)方式。
3。在教學(xué)中強(qiáng)調(diào)類比,推廣,特殊化,化歸等數(shù)學(xué)思想方法,盡可能養(yǎng)成其邏輯思維的習(xí)慣。
四、學(xué)情分析:
1、基本情況:12班共人,男生人,女生人;本班相對而言,數(shù)學(xué)尖子約人,中上等生約人,中等生約人,中下生約人,后進(jìn)生約人。
14班共人,男生人,女生人;本班相對而言,數(shù)學(xué)尖子約人,中上等生約人,中等生約人,中下生約人,后進(jìn)生約人。
2、兩個班均屬普高班,學(xué)習(xí)情況良好,但學(xué)生自覺性差,自我控制能力弱,因此在教學(xué)中需時時提醒學(xué)生,培養(yǎng)其自覺性。班級存在的最大問題是計算能力太差,學(xué)生不喜歡去算題,嫌麻煩,只注重思路,因此在以后的教學(xué)中,重點在于培養(yǎng)學(xué)生的計算能力,同時要進(jìn)一步提高其思維能力。同時,由于初中課改的原因,高中教材與初中教材銜接力度不夠,需在新授時適機(jī)補(bǔ)充一些內(nèi)容。因此時間上可能仍然吃緊。同時,其底子薄弱,因此在教學(xué)時只能注重基礎(chǔ)再基礎(chǔ),爭取每一堂課落實一個知識點,掌握一個知識點。
五、教學(xué)措施:
1、激發(fā)學(xué)生的學(xué)習(xí)興趣。由數(shù)學(xué)活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和進(jìn)步。
2、注意從實例出發(fā),從感性提高到理性;注意運(yùn)用對比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識;注意從已有的知識出發(fā),啟發(fā)學(xué)生思考。
3、加強(qiáng)培養(yǎng)學(xué)生的邏輯思維能力就解決實際問題的能力,以及培養(yǎng)提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問題的習(xí)慣,進(jìn)行辨證唯物主義教育。
4、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強(qiáng)復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的能力。
5、自始至終貫徹教學(xué)四環(huán)節(jié),針對不同的教材內(nèi)容選擇不同教法。
6、重視數(shù)學(xué)應(yīng)用意識及應(yīng)用能力的培養(yǎng)。
高一數(shù)學(xué)課件 篇7
本節(jié)知識包括函數(shù)的單調(diào)性、函數(shù)的奇偶性、函數(shù)的周期性、函數(shù)的最值、函數(shù)的對稱性和函數(shù)的圖象等知識點。函數(shù)的單調(diào)性、函數(shù)的奇偶性、函數(shù)的周期性、函數(shù)的最值、函數(shù)的對稱性是學(xué)習(xí)函數(shù)的圖象的基礎(chǔ),函數(shù)的圖象是它們的綜合。所以理解了前面的幾個知識點,函數(shù)的圖象就迎刃而解了。
一、函數(shù)的單調(diào)性
1、函數(shù)單調(diào)性的定義
2、函數(shù)單調(diào)性的判斷和證明:
(1)定義法
(2)復(fù)合函數(shù)分析法
(3)導(dǎo)數(shù)證明法
(4)圖象法
二、函數(shù)的奇偶性和周期性
1、函數(shù)的`奇偶性和周期性的定義
2、函數(shù)的奇偶性的判定和證明方法
3、函數(shù)的周期性的判定方法
三、函數(shù)的圖象
1、函數(shù)圖象的作法
(1)描點法
(2)圖象變換法
2、圖象變換包括圖象:平移變換、伸縮變換、對稱變換、翻折變換。
常見考法
本節(jié)是段考和高考必不可少的考查內(nèi)容,是段考和高考考查的重點和難點。選擇題、填空題和解答題都有,并且題目難度較大。在解答題中,它可以和高中數(shù)學(xué)的每一章聯(lián)合考查,多屬于拔高題。多考查函數(shù)的單調(diào)性、最值和圖象等。
誤區(qū)提醒
1、求函數(shù)的單調(diào)區(qū)間,必須先求函數(shù)的定義域,即遵循“函數(shù)問題定義域優(yōu)先的原則”。
2、單調(diào)區(qū)間必須用區(qū)間來表示,不能用集合或不等式,單調(diào)區(qū)間一般寫成開區(qū)間,不必考慮端點問題。
3、在多個單調(diào)區(qū)間之間不能用“或”和“ ”連接,只能用逗號隔開。
4、判斷函數(shù)的奇偶性,首先必須考慮函數(shù)的定義域,如果函數(shù)的定義域不關(guān)于原點對稱,則函數(shù)一定是非奇非偶函數(shù)。
5、作函數(shù)的圖象,一般是首先化簡解析式,然后確定用描點法或圖象變換法作函數(shù)的圖象。
高一數(shù)學(xué)課件 篇8
我本節(jié)課說課的內(nèi)容是高中數(shù)學(xué)第一冊第二章第六節(jié)“指數(shù)函數(shù)”的第一課時——指數(shù)函數(shù)的定義,圖像及性質(zhì)。我將嘗試運(yùn)用新課標(biāo)的理念指導(dǎo)本節(jié)課的教學(xué)。新課標(biāo)指出,學(xué)生是教學(xué)的主體,教師的教要應(yīng)本著從學(xué)生的認(rèn)知規(guī)律出發(fā),以學(xué)生活動為主線,在原有知識的基礎(chǔ)上,建構(gòu)新的知識體系。我將以此為基礎(chǔ)從教材分析,教學(xué)目標(biāo)分析,教法學(xué)法分析和教學(xué)過程分析這幾個方面加以說明。
一、教材分析
1、教材的地位和作用:函數(shù)是高中數(shù)學(xué)學(xué)習(xí)的重點和難點,函數(shù)的貫穿于整個高中數(shù)學(xué)之中。本節(jié)課是學(xué)生在已掌握了函數(shù)的一般性質(zhì)和簡單的指數(shù)運(yùn)算的基礎(chǔ)上,進(jìn)一步研究指數(shù)函數(shù),以及指數(shù)函數(shù)的圖像與性質(zhì),同時也為今后研究對數(shù)函數(shù)以及等比數(shù)列的性質(zhì)打下堅實的基礎(chǔ)。因此,本節(jié)課的內(nèi)容十分重要,它對知識起到了承上啟下的作用。
2、教學(xué)的重點和難點:根據(jù)這一節(jié)課的內(nèi)容特點以及學(xué)生的實際情況,我將本節(jié)課教學(xué)重點定為指數(shù)函數(shù)的圖像、性質(zhì)及其運(yùn)用,本節(jié)課的難點是指數(shù)函數(shù)圖像和性質(zhì)的發(fā)現(xiàn)過程,及指數(shù)函數(shù)圖像與底的關(guān)系。
二、教學(xué)目標(biāo)分析
基于對教材的理解和分析,我制定了以下的教學(xué)目標(biāo):
1、知識目標(biāo)(直接性目標(biāo)):理解指數(shù)函數(shù)的定義,掌握指數(shù)函數(shù)的圖像、性質(zhì)及其簡單應(yīng)用。
2、能力目標(biāo)(發(fā)展性目標(biāo)):通過教學(xué)培養(yǎng)學(xué)生觀察、分析、歸納等思維能力,體會數(shù)形結(jié)合和分類討論,增強(qiáng)學(xué)生識圖用圖的'能力。
3、情感目標(biāo)(可持續(xù)性目標(biāo)):通過學(xué)習(xí),使學(xué)生學(xué)會認(rèn)識事物的特殊性與一般性之間的關(guān)系,培養(yǎng)學(xué)生勇于提問,善于探索的思維品質(zhì)。
三、教法學(xué)法分析
1、教學(xué)策略:首先從實際問題出發(fā),激發(fā)學(xué)生的學(xué)習(xí)興趣。第二步,學(xué)生歸納指數(shù)的圖像和性質(zhì)。第三步,典型例題分析,加深學(xué)生對指數(shù)函數(shù)的理解。
2、教學(xué):貫徹引導(dǎo)發(fā)現(xiàn)式教學(xué)原則,在教學(xué)中既注重知識的直觀素材和背景材料,又要激活相關(guān)知識和引導(dǎo)學(xué)生思考、探究、創(chuàng)設(shè)有趣的問題。
3、教法分析:根據(jù)教學(xué)內(nèi)容和學(xué)生的狀況,本節(jié)課我采用引導(dǎo)發(fā)現(xiàn)式的教學(xué)方法并充分利用多媒體輔助教學(xué)。
高一數(shù)學(xué)課件 篇9
一、教材分析
函數(shù)作為初等數(shù)學(xué)的核心內(nèi)容,貫穿于整個初等數(shù)學(xué)體系之中。函數(shù)這一章在高中數(shù)學(xué)中,起著承上啟下的作用,它是對初中函數(shù)概念的承接與深化。在初中,只停留在具體的幾個簡單類型的函數(shù)上,把函數(shù)看成變量之間的依賴關(guān)系,而高中階段不僅把函數(shù)看成變量之間的依賴關(guān)系,更是從“變量說”到“對應(yīng)說”,這是對函數(shù)本質(zhì)特征的進(jìn)一步認(rèn)識,也是學(xué)生認(rèn)識上的一次飛躍。這一章內(nèi)容滲透了函數(shù)的思想,集合的思想以及數(shù)學(xué)建模的思想等內(nèi)容,這些內(nèi)容的學(xué)習(xí),無疑對學(xué)生今后的學(xué)習(xí)起著深刻的影響。
本節(jié)《函數(shù)的概念》是函數(shù)這一章的起始課。概念是數(shù)學(xué)的基礎(chǔ),只有對概念做到深刻理解,才能正確靈活地加以應(yīng)用。本課從集合間的對應(yīng)來描繪函數(shù)概念,起到了上承集合,下引函數(shù)的作用。也為進(jìn)一步學(xué)習(xí)函數(shù)這一章的其它內(nèi)容提供了方法和依據(jù)。
二、重難點分析
二、重難點的確定
根據(jù)對上述對教材的分析及新課程標(biāo)準(zhǔn)的要求,確定函數(shù)的概念既是本節(jié)課的重點,也應(yīng)該是本章的難點。
三、學(xué)情分析
1、有利因素:一方面學(xué)生在初中已經(jīng)學(xué)習(xí)了變量觀點下的函數(shù)定義,并具體研究了幾類最簡單的函數(shù),對函數(shù)已經(jīng)有了一定的感性認(rèn)識;另一方面在本書第一章學(xué)生已經(jīng)學(xué)習(xí)了集合的概念,這為學(xué)習(xí)函數(shù)的現(xiàn)代定義打下了基礎(chǔ)。
2、不利因素:函數(shù)在初中雖已講過,不過較為膚淺,本課主要是從兩個集合間對應(yīng)來描繪函數(shù)概念,是一個抽象過程,要求學(xué)生的抽象、分析、概括的能力比較高,學(xué)生學(xué)起來有一定的難度。
四、目標(biāo)分析
1、理解函數(shù)的概念,會用函數(shù)的定義判斷函數(shù),會求一些最基本的函數(shù)的定義域、值域。
2、通過對實際問題分析、抽象與概括,培養(yǎng)學(xué)生抽象、概括、歸納知識以及邏輯思維、建模等方面的能力。
3、通過對函數(shù)概念形成的探究過程,培養(yǎng)學(xué)生發(fā)現(xiàn)問題,探索問題,不斷超越的創(chuàng)新品質(zhì)。
五、教法學(xué)法
本節(jié)課的教學(xué)以學(xué)生為主體、教師是數(shù)學(xué)課堂活動的組織者、引導(dǎo)者和參與者,我一方面精心設(shè)計問題情景,引導(dǎo)學(xué)生主動探索。另一方面,依據(jù)本節(jié)為概念學(xué)習(xí)的特點,以問題的提出、問題的解決為主線,始終在學(xué)生知識的“最近發(fā)展區(qū)”設(shè)置問題,倡導(dǎo)學(xué)生主動參與,通過不斷探究、發(fā)現(xiàn),在師生互動、生生互動中,讓學(xué)習(xí)過程成為學(xué)生心靈愉悅的主動認(rèn)知過程。
學(xué)法方面,學(xué)生通過對新舊兩種函數(shù)定義的對比,在集合論的觀點下初步建構(gòu)出函數(shù)的概念。在理解函數(shù)概念的基礎(chǔ)上,建構(gòu)出函數(shù)的定義域、值域的概念,并初步掌握它們的求法。
六、教學(xué)過程
(一)創(chuàng)設(shè)情景,引入新課
情景1:提供一張表格,把上次運(yùn)動會得分前10的情況填入表格,我報名次,學(xué)生提供分?jǐn)?shù)。
名次
1
2
3
4
5
6
7
8
9
10
得分
情景2:汽車的行駛速度為時過早80千米/小時,汽車行駛的距離y與行駛時間x之間的關(guān)系式為:y=80x
情景3:某市一天24小時內(nèi)的氣溫變化圖:(圖略)
提問(1):這三個例子中都涉及到了幾個變化的量?(兩個)
提問(2):當(dāng)其中一個變量取值確定后,另一個變量將如何?(它的值也隨之唯一確定)
提問(3):這樣的關(guān)系在初中稱之為什么?(函數(shù))引出課題
[設(shè)計意圖]在創(chuàng)設(shè)本課開頭情境1、2的時候,我并沒有運(yùn)用書中的前兩個例子。第一個例子我改成提供給學(xué)生一張運(yùn)動會成績統(tǒng)計單。是為了創(chuàng)設(shè)和學(xué)生或者生活相近的情境,從而引起學(xué)生的興趣,調(diào)節(jié)課堂氣氛,引人入勝,第二個例子我改成一道簡單的速度與時間問題,是因為學(xué)生對重力加速度的問題還不是很熟悉。同時這兩個例子并沒有改變課本用三個實例分別代表三種表示函數(shù)方法的意圖。
這樣學(xué)生可以從熟悉的情景引入,提高學(xué)生的參與程度。符合學(xué)生的認(rèn)知特點。
(二)探索新知,形成概念
1、引導(dǎo)分析,探求特征
思考:如何用集合的語言來闡述上述三個問題的共同特征?
[設(shè)計意圖]并不急著讓學(xué)生回答此問,為引導(dǎo)學(xué)生改變思路,換個角度思考問題,進(jìn)入本節(jié)課的重點。這里也是教師作為教學(xué)的引導(dǎo)者的體現(xiàn),及時對學(xué)生進(jìn)行指引。
提問(4):觀察上述三問題,它們分別涉及到了哪些集合?(每個問題都涉及到了兩個集合,具體略)
[設(shè)計意圖]引導(dǎo)學(xué)生觀察,培養(yǎng)觀察問題,分析問題的能力。
提問(5):兩個集合的元素之間具有怎樣的關(guān)系?(對應(yīng))
及時給出單值對應(yīng)的定義,并嘗試用輸入值,輸出值的概念來表達(dá)這種對應(yīng)。
2、抽象歸納,引出概念
提問(6):現(xiàn)在你能從集合角度說說這三個問題的共同點嗎?
[設(shè)計意圖]學(xué)生相互討論,并回答,引出函數(shù)的概念。訓(xùn)練學(xué)生的歸納能力。
板書:函數(shù)的概念
上述一系列問題,始終在學(xué)生知識的“最近發(fā)展區(qū)”,倡導(dǎo)學(xué)生主動參與,通過不斷探究、發(fā)現(xiàn),在師生互動,生生互動中,在學(xué)生心情愉悅的氛圍中,突破本節(jié)課的重點。
3、探求定義,提出注意
提問(7):你覺得這個定義中應(yīng)注意哪些問題?
[設(shè)計意圖]剖析概念,使學(xué)生抓住概念的本質(zhì),便于理解記憶。
2、例題剖析,強(qiáng)化概念
例1、判斷下列對應(yīng)是否為函數(shù):
(1)
(2)
[設(shè)計意圖]通過例1的教學(xué),使學(xué)生體會單值對應(yīng)關(guān)系在刻畫函數(shù)概念中的核心作用。
例2、(1);
(2)y=x-1;
(3);
(4)
[設(shè)計意圖]首先對求函數(shù)的定義域進(jìn)行方法引導(dǎo),偶次方根必需注意的地方,其次,通過(2)(3)兩道題,強(qiáng)調(diào)只有對應(yīng)法則與定義域相同的兩個函數(shù),才是相同的函數(shù)。而與函數(shù)用什么字母表示無關(guān),進(jìn)一步理解函數(shù)符號的本質(zhì)內(nèi)涵。
例3、試求下列函數(shù)的定義域與值域:
(1)
(2)
[設(shè)計意圖]讓學(xué)體會理解函數(shù)的三要素。
4、鞏固練習(xí),運(yùn)用概念
書本練習(xí)P24:1,2,3,4
5、課堂小結(jié),提升思想
引導(dǎo)學(xué)生進(jìn)行回顧,使學(xué)生對本節(jié)課有一個整體把握,將對學(xué)生形成的知識系統(tǒng)產(chǎn)生積極的影響。
七、教學(xué)評價
1、我通過對一系列問題情景的設(shè)計,讓學(xué)生在問題解決的過程中體驗成功的樂趣,實現(xiàn)對本課重難點的突破。
2、為使課堂形式更加豐富,也可將某些問題改成判斷題。
3、在學(xué)生分析、歸納、建構(gòu)概念的過程中,可能會出現(xiàn)理解的偏差,教師應(yīng)給予恰當(dāng)?shù)氖崂?/p>
4。本節(jié)課的起始,可以借助于多媒體技術(shù),為學(xué)生創(chuàng)設(shè)更理想的教學(xué)情景。
高一數(shù)學(xué)課件 篇10
教材分析:函數(shù)是描述客觀世界變化規(guī)律的重要數(shù)學(xué)模型.高中階段不僅把函數(shù)看成變量之間的依賴關(guān)系,同時還用集合與對應(yīng)的語言刻畫函數(shù),高中階段更注重函數(shù)模型化的思想.
教學(xué)目的:
(1)通過豐富實例,進(jìn)一步體會函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對應(yīng)的語言來刻畫函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;
(2)了解構(gòu)成函數(shù)的要素;
(3)會求一些簡單函數(shù)的定義域和值域;
(4)能夠正確使用“區(qū)間”的符號表示某些函數(shù)的定義域;
教學(xué)重點:理解函數(shù)的模型化思想,用合與對應(yīng)的語言來刻畫函數(shù);
教學(xué)難點:符號“y=f(x)”的含義,函數(shù)定義域和值域的區(qū)間表示;
教學(xué)過程:
一、引入課題
1.復(fù)習(xí)初中所學(xué)函數(shù)的概念,強(qiáng)調(diào)函數(shù)的模型化思想;
2.閱讀課本引例,體會函數(shù)是描述客觀事物變化規(guī)律的數(shù)學(xué)模型的思想:
(1)炮彈的射高與時間的變化關(guān)系問題;
(2)南極臭氧空洞面積與時間的變化關(guān)系問題;
(3)“八五”計劃以來我國城鎮(zhèn)居民的恩格爾系數(shù)與時間的變化關(guān)系問題
備用實例:
我國xxxx年4月份非典疫情統(tǒng)計:
日期222324252627282930
新增確診病例數(shù)1061058910311312698152101
3.引導(dǎo)學(xué)生應(yīng)用集合與對應(yīng)的語言描述各個實例中兩個變量間的依賴關(guān)系;
4.根據(jù)初中所學(xué)函數(shù)的概念,判斷各個實例中的兩個變量間的關(guān)系是否是函數(shù)關(guān)系.
二、新課教學(xué)
(一)函數(shù)的有關(guān)概念
1.函數(shù)的概念:
設(shè)A、B是非空的數(shù)集,如果按照某個確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應(yīng),那么就稱f:A→B為從集合A到集合B的一個函數(shù)(function).
記作:y=f(x),x∈A.
其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域(domain);與x的值相對應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域(range).
注意:
○1“y=f(x)”是函數(shù)符號,可以用任意的字母表示,如“y=g(x)”;
○2函數(shù)符號“y=f(x)”中的f(x)表示與x對應(yīng)的函數(shù)值,一個數(shù),而不是f乘x.
2.構(gòu)成函數(shù)的三要素:
定義域、對應(yīng)關(guān)系和值域
3.區(qū)間的概念
(1)區(qū)間的`分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間;
(2)無窮區(qū)間;
(3)區(qū)間的數(shù)軸表示.
4.一次函數(shù)、二次函數(shù)、反比例函數(shù)的定義域和值域討論
(由學(xué)生完成,師生共同分析講評)
(二)典型例題
1.求函數(shù)定義域
課本P20例1
解:(略)
說明:
○1函數(shù)的定義域通常由問題的實際背景確定,如果課前三個實例;
○2如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域,則函數(shù)的定義域即是指能使這個式子有意義的實數(shù)的集合;
○3函數(shù)的定義域、值域要寫成集合或區(qū)間的形式.
鞏固練習(xí):課本P22第1題
2.判斷兩個函數(shù)是否為同一函數(shù)
課本P21例2
解:(略)
說明:
○1構(gòu)成函數(shù)三個要素是定義域、對應(yīng)關(guān)系和值域.由于值域是由定義域和對應(yīng)關(guān)系決定的,所以,如果兩個函數(shù)的定義域和對應(yīng)關(guān)系完全一致,即稱這兩個函數(shù)相等(或為同一函數(shù))
○2兩個函數(shù)相等當(dāng)且僅當(dāng)它們的定義域和對應(yīng)關(guān)系完全一致,而與表示自變量和函數(shù)值的字母無關(guān)。
鞏固練習(xí):
○1課本P22第2題
○2判斷下列函數(shù)f(x)與g(x)是否表示同一個函數(shù),說明理由?
(1)f(x)=(x-1)0;g(x)=1
(2)f(x)=x;g(x)=
(3)f(x)=x2;f(x)=(x+1)2
(4)f(x)=|x|;g(x)=
(三)課堂練習(xí)
求下列函數(shù)的定義域
(1)
(2)
(3)
(4)
(5)
(6)
三、歸納小結(jié),強(qiáng)化思想
從具體實例引入了函數(shù)的的概念,用集合與對應(yīng)的語言描述了函數(shù)的定義及其相關(guān)概念,介紹了求函數(shù)定義域和判斷同一函數(shù)的典型題目,引入了區(qū)間的概念來表示集合。
四、作業(yè)布置
課本P28習(xí)題1.2(A組)第1—7題(B組)第1題
高中數(shù)學(xué)必修一課件(集錦5篇)
教案課件是老師日常工作中不可或缺的組成部分,因此老師們需要認(rèn)真地制作和使用教案課件。好的教案應(yīng)該充分考慮到學(xué)生的身心健康,從而達(dá)到教學(xué)效果的最大化。如果您想要編寫出優(yōu)秀的教案課件,應(yīng)該如何下手呢?以下是關(guān)于“高中數(shù)學(xué)必修一課件”的相關(guān)內(nèi)容,希望對您有所幫助,記得收藏本頁面以方便查看。
高中數(shù)學(xué)必修一課件【篇1】
一、概述
教材內(nèi)容:等比數(shù)列的概念和通項公式的推導(dǎo)及簡單應(yīng)用 教材難點:靈活應(yīng)用等比數(shù)列及通項公式解決一般問題 教材重點:等比數(shù)列的概念和通項公式
二、教學(xué)目標(biāo)分析
1. 知識目標(biāo)
1)
2) 掌握等比數(shù)列的定義 理解等比數(shù)列的通項公式及其推導(dǎo)
2.能力目標(biāo)
1)學(xué)會通過實例歸納概念
2)通過學(xué)習(xí)等比數(shù)列的通項公式及其推導(dǎo)學(xué)會歸納假設(shè)
3)提高數(shù)學(xué)建模的能力
3、情感目標(biāo):
1)充分感受數(shù)列是反映現(xiàn)實生活的模型
2)體會數(shù)學(xué)是來源于現(xiàn)實生活并應(yīng)用于現(xiàn)實生活
3)數(shù)學(xué)是豐富多彩的而不是枯燥無味的
三、教學(xué)對象及學(xué)習(xí)需要分析
1、 教學(xué)對象分析:
1)高中生已經(jīng)有一定的學(xué)習(xí)能力,對各方面的知識有一定的基礎(chǔ),理解能力較強(qiáng)。并掌握了函數(shù)及個別特殊函數(shù)的性質(zhì)及圖像,如指數(shù)函數(shù)。之前也剛學(xué)習(xí)了等差數(shù)列,在學(xué)習(xí)這一章節(jié)時可聯(lián)系以前所學(xué)的進(jìn)行引導(dǎo)教學(xué)。
2)對歸納假設(shè)較弱,應(yīng)加強(qiáng)這方面教學(xué)
2、學(xué)習(xí)需要分析:
四. 教學(xué)策略選擇與設(shè)計
1.課前復(fù)習(xí)
1)復(fù)習(xí)等差數(shù)列的概念及通向公式
2)復(fù)習(xí)指數(shù)函數(shù)及其圖像和性質(zhì)
2.情景導(dǎo)入
高中數(shù)學(xué)必修一課件【篇2】
高中數(shù)學(xué)必修一教案學(xué)案
1.1集合的含義及其表示(1)
【教學(xué)目標(biāo)】
1.初步理解集合的概念,知道常用數(shù)集的概念及其記法.
2.理解集合的三個特征,能判斷集合與元素之間的關(guān)系,正確使用符號.
3.能根據(jù)集合中元素的特點,使用適當(dāng)?shù)姆椒ê蜏?zhǔn)確的語言將其表示出來,并從中體會到用數(shù)學(xué)抽象符號刻畫客觀事物的優(yōu)越性.
【考綱要求】
1.知道常用數(shù)集的概念及其記法.
2.理解集合的三個特征,能判斷集合與元素之間的關(guān)系,正確使用符號.
【課前導(dǎo)學(xué)】
1.集合的含義:構(gòu)成一個集合.
(1)集合中的元素及其表示:.
(2)集合中的元素的特性:.
(3)元素與集合的關(guān)系:
(i)如果a是集合A的元素,就記作__________讀作“___________________”;
(ii)如果a不是集合A的元素,就記作______或______讀作“_______________”.
【思考】構(gòu)成集合的元素是不是只能是數(shù)或點?
【答】
2.常用數(shù)集及其記法:
一般地,自然數(shù)集記作____________,正整數(shù)集記作__________或___________,
整數(shù)集記作________,有理數(shù)記作_______,實數(shù)集記作________.
3.集合的分類:
按它的元素個數(shù)多少來分:
(1)________________________叫做有限集;
(2)________________________叫做無限集;
(3)_______________叫做空集,記為_____________
4.集合的表示方法:
(1)________________________叫做列舉法;
(2)________________________叫做描述法.
(3)_______________叫做文氏圖
【例題講解】
例1、下列每組對象能否構(gòu)成一個集合?
(1)高一年級所有高個子的學(xué)生;(2)平面上到原點的距離等于2的點的全體;
(3)所有正三角形的全體;(4)方程的實數(shù)解;(5)不等式的所有實數(shù)解.
例2、用適當(dāng)?shù)姆椒ū硎鞠铝屑?/p>
①由所有大于10且小于20的整數(shù)組成的集合記作;
②直線上點的集合記作;
③不等式的解組成的集合記作;
④方程組的解組成的集合記作;
⑤第一象限的點組成的集合記作;
⑥坐標(biāo)軸上的點的集合記作.
例3、已知集合,若中至多只有一個元素,求實數(shù)的取值范圍.
【課堂檢測】
1.下列對象組成的集體:①不超過45的正整數(shù);②鮮艷的顏色;③中國的大城市;④絕對值最小的實數(shù);⑤高一(2)班中考500分以上的學(xué)生,其中為集合的是____________
2.已知2a∈A,a2-a∈A,若A含2個元素,則下列說法中正確的是
①a取全體實數(shù);②a取除去0以外的所有實數(shù);
③a取除去3以外的所有實數(shù);④a取除去0和3以外的所有實數(shù)
3.已知集合,則滿足條件的實數(shù)x組成的集合
【教學(xué)反思】
§1.1集合的含義及其表示(2)
【教學(xué)目標(biāo)】
1.進(jìn)一步加深對集合的概念理解;
2.認(rèn)真理解集合中元素的特性;
3.熟練掌握集合的表示方法,逐漸培養(yǎng)使用數(shù)學(xué)符號的規(guī)范性.
【考綱要求】
3.知道常用數(shù)集的概念及其記法.
4.理解集合的三個特征,能判斷集合與元素之間的關(guān)系,正確使用符號.
【課前導(dǎo)學(xué)】
1.集合,則集合中的元素有個.
2.若集合為無限集,則
高中數(shù)學(xué)必修一課件【篇3】
教學(xué)目標(biāo)
1.掌握等比數(shù)列前項和公式,并能運(yùn)用公式解決簡單的問題.
(1)理解公式的推導(dǎo)過程,體會轉(zhuǎn)化的思想;
(2)用方程的思想認(rèn)識等比數(shù)列前項和公式,利用公式知三求一;與通項公式結(jié)合知三求二;
2.通過公式的靈活運(yùn)用,進(jìn)一步滲透方程的思想、分類討論的思想、等價轉(zhuǎn)化的思想.
3.通過公式推導(dǎo)的教學(xué),對學(xué)生進(jìn)行思維的嚴(yán)謹(jǐn)性的訓(xùn)練,培養(yǎng)他們實事求是的科學(xué)態(tài)度.
教學(xué)建議
教材分析
(1)知識結(jié)構(gòu)
先用錯位相減法推出等比數(shù)列前項和公式,而后運(yùn)用公式解決一些問題,并將通項公式與前項和公式結(jié)合解決問題,還要用錯位相減法求一些數(shù)列的前項和.
(2)重點、難點分析
教學(xué)重點、難點是等比數(shù)列前項和公式的推導(dǎo)與應(yīng)用.公式的推導(dǎo)中蘊(yùn)含了豐富的數(shù)學(xué)思想、方法(如分類討論思想,錯位相減法等),這些思想方法在其他數(shù)列求和問題中多有涉及,所以對等比數(shù)列前項和公式的要求,不單是要記住公式,更重要的是掌握推導(dǎo)公式的方法.等比數(shù)列前項和公式是分情況討論的,在運(yùn)用中要特別注意和兩種情況.
教學(xué)建議
(1)本節(jié)內(nèi)容分為兩課時,一節(jié)為等比數(shù)列前項和公式的推導(dǎo)與應(yīng)用,一節(jié)為通項公式與前項和公式的綜合運(yùn)用,另外應(yīng)補(bǔ)充一節(jié)數(shù)列求和問題.
(2)等比數(shù)列前項和公式的推導(dǎo)是重點內(nèi)容,引導(dǎo)學(xué)生觀察實例,發(fā)現(xiàn)規(guī)律,歸納總結(jié),證明結(jié)論.
(3)等比數(shù)列前項和公式的推導(dǎo)的其他方法可以給出,提高學(xué)生學(xué)習(xí)的興趣.
(4)編擬例題時要全面,不要忽略的情況.
(5)通項公式與前項和公式的綜合運(yùn)用涉及五個量,已知其中三個量可求另兩個量,但解指數(shù)方程難度大.
(6)補(bǔ)充可以化為等差數(shù)列、等比數(shù)列的數(shù)列求和問題.
教學(xué)設(shè)計示例
課題:等比數(shù)列前項和的公式
教學(xué)目標(biāo)
(1)通過教學(xué)使學(xué)生掌握等比數(shù)列前項和公式的推導(dǎo)過程,并能初步運(yùn)用這一方法求一些數(shù)列的前項和.
(2)通過公式的推導(dǎo)過程,培養(yǎng)學(xué)生猜想、分析、綜合能力,提高學(xué)生的數(shù)學(xué)素質(zhì).
(3)通過教學(xué)進(jìn)一步滲透從特殊到一般,再從一般到特殊的辯證觀點,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度.
教學(xué)重點,難點
教學(xué)重點是公式的推導(dǎo)及運(yùn)用,難點是公式推導(dǎo)的思路.
教學(xué)用具
幻燈片,課件,電腦.
教學(xué)方法
引導(dǎo)發(fā)現(xiàn)法.
教學(xué)過程
一、新課引入:
(問題見教材第129頁)提出問題:(幻燈片)
二、新課講解:
記,式中有64項,后項與前項的比為公比2,當(dāng)每一項都乘以2后,中間有62項是對應(yīng)相等的,作差可以相互抵消.
(板書)即,①
,②
②-①得即.
由此對于一般的等比數(shù)列,其前項和,如何化簡?
(板書)等比數(shù)列前項和公式
仿照公比為2的等比數(shù)列求和方法,等式兩邊應(yīng)同乘以等比數(shù)列的公比,即
(板書)③兩端同乘以,得
④,
③-④得⑤,(提問學(xué)生如何處理,適時提醒學(xué)生注意的取值)
當(dāng)時,由③可得(不必導(dǎo)出④,但當(dāng)時設(shè)想不到)
當(dāng)時,由⑤得.
于是
反思推導(dǎo)求和公式的方法——錯位相減法,可以求形如的數(shù)列的和,其中為等差數(shù)列,為等比數(shù)列.
(板書)例題:求和:.
設(shè),其中為等差數(shù)列,為等比數(shù)列,公比為,利用錯位相減法求和.
解:,
兩端同乘以,得,
兩式相減得
于是.
說明:錯位相減法實際上是把一個數(shù)列求和問題轉(zhuǎn)化為等比數(shù)列求和的問題.
公式其它應(yīng)用問題注意對公比的分類討論即可.
三、小結(jié):
1.等比數(shù)列前項和公式推導(dǎo)中蘊(yùn)含的思想方法以及公式的應(yīng)用;
2.用錯位相減法求一些數(shù)列的前項和.
四、作業(yè):略
高中數(shù)學(xué)必修一課件【篇4】
本章的中心內(nèi)容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落實在解三角形的應(yīng)用上。通過本章學(xué)習(xí),學(xué)生應(yīng)當(dāng)達(dá)到以下學(xué)習(xí)目標(biāo):
(1)通過對任意三角形邊長和角度關(guān)系的探索,掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題。
(2)能夠熟練運(yùn)用正弦定理、余弦定理等知識和方法解決一些與測量和幾何計算有關(guān)的生活實際問題。
數(shù)學(xué)思想方法的教學(xué)是中學(xué)數(shù)學(xué)教學(xué)中的重要組成部分,有利于學(xué)生加深數(shù)學(xué)知識的理解和掌握。
本章重視與內(nèi)容密切相關(guān)的數(shù)學(xué)思想方法的教學(xué),并且在提出問題、思考解決問題的策略等方面對學(xué)生進(jìn)行具體示范、引導(dǎo)。本章的兩個主要數(shù)學(xué)結(jié)論是正弦定理和余弦定理,它們都是關(guān)于三角形的邊角關(guān)系的結(jié)論。在初中,學(xué)生已經(jīng)學(xué)習(xí)了相關(guān)邊角關(guān)系的定性的知識,就是“在任意三角形中有大邊對大角,小邊對小角”,“如果已知兩個三角形的兩條對應(yīng)邊及其所夾的角相等,那么這兩個三角形全”等。
教科書在引入正弦定理內(nèi)容時,讓學(xué)生從已有的幾何知識出發(fā),提出探究性問題:“在任意三角形中有大邊對大角,小邊對小角的邊角關(guān)系.我們是否能得到這個邊、角的關(guān)系準(zhǔn)確量化的表示呢?”,在引入余弦定理內(nèi)容時,提出探究性問題“如果已知三角形的兩條邊及其所夾的角,根據(jù)三角形全等的判定方法,這個三角形是大小、形狀完全確定的三角形.我們?nèi)匀粡牧炕慕嵌葋硌芯窟@個問題,也就是研究如何從已知的兩邊和它們的夾角計算出三角形的另一邊和兩個角的問題?!痹O(shè)置這些問題,都是為了加強(qiáng)數(shù)學(xué)思想方法的教學(xué)。
加強(qiáng)與前后各章教學(xué)內(nèi)容的聯(lián)系,注意復(fù)習(xí)和應(yīng)用已學(xué)內(nèi)容,并為后續(xù)章節(jié)教學(xué)內(nèi)容做好準(zhǔn)備,能使整套教科書成為一個有機(jī)整體,提高教學(xué)效益,并有利于學(xué)生對于數(shù)學(xué)知識的學(xué)習(xí)和鞏固。
本章內(nèi)容處理三角形中的邊角關(guān)系,與初中學(xué)習(xí)的三角形的邊與角的基本關(guān)系,已知三角形的邊和角相等判定三角形全等的知識有著密切聯(lián)系。教科書在引入正弦定理內(nèi)容時,讓學(xué)生從已有的幾何知識出發(fā),提出探究性問題“在任意三角形中有大邊對大角,小邊對小角的邊角關(guān)系.我們是否能得到這個邊、角的關(guān)系準(zhǔn)確量化的表示呢?”,在引入余弦定理內(nèi)容時,提出探究性問題“如果已知三角形的兩條邊及其所夾的角,根據(jù)三角形全等的判定方法,這個三角形是大小、形狀完全確定的三角形.我們?nèi)匀粡牧炕慕嵌葋硌芯窟@個問題,也就是研究如何從已知的兩邊和它們的夾角計算出三角形的另一邊和兩個角的`問題?!边@樣,從聯(lián)系的觀點,從新的角度看過去的問題,使學(xué)生對于過去的知識有了新的認(rèn)識,同時使新知識建立在已有知識的堅實基礎(chǔ)上,形成良好的知識結(jié)構(gòu)。
《課程標(biāo)準(zhǔn)》和教科書把“解三角形”這部分內(nèi)容安排在數(shù)學(xué)五的第一部分內(nèi)容,
位置相對靠后,在此內(nèi)容之前學(xué)生已經(jīng)學(xué)習(xí)了三角函數(shù)、平面向量、直線和圓的方程等與本章知識聯(lián)系密切的內(nèi)容,這使這部分內(nèi)容的處理有了比較多的工具,某些內(nèi)容可以處理得更加簡潔。比如對于余弦定理的證明,常用的方法是借助于三角的方法,需要對于三角形進(jìn)行討論,方法不夠簡潔,教科書則用了向量的方法,發(fā)揮了向量方法在解決問題中的威力。
在證明了余弦定理及其推論以后,教科書從余弦定理與勾股定理的比較中,提出了一個思考問題“勾股定理指出了直角三角形中三邊平方之間的關(guān)系,余弦定理則指出了一般三角形中三邊平方之間的關(guān)系,如何看這兩個定理之間的關(guān)系?”,并進(jìn)而指出,“從余弦定理以及余弦函數(shù)的性質(zhì)可知,如果一個三角形兩邊的平方和等于第三邊的平方,那么第三邊所對的角是直角;如果小于第三邊的平方,那么第三邊所對的角是鈍角;如果大于第三邊的平方,那么第三邊所對的角是銳角.從上可知,余弦定理是勾股定理的推廣.”
學(xué)數(shù)學(xué)的最終目的是應(yīng)用數(shù)學(xué),而如今比較突出的兩個問題是,學(xué)生應(yīng)用數(shù)學(xué)的意識不強(qiáng),創(chuàng)造能力較弱。學(xué)生往往不能把實際問題抽象成數(shù)學(xué)問題,不能把所學(xué)的數(shù)學(xué)知識應(yīng)用到實際問題中去,對所學(xué)數(shù)學(xué)知識的實際背景了解不多,雖然學(xué)生機(jī)械地模仿一些常見數(shù)學(xué)問題解法的能力較強(qiáng),但當(dāng)面臨一種新的問題時卻辦法不多,對于諸如觀察、分析、歸納、類比、抽象、概括、猜想等發(fā)現(xiàn)問題、解決問題的科學(xué)思維方法了解不夠。針對這些實際情況,本章重視從實際問題出發(fā),引入數(shù)學(xué)課題,最后把數(shù)學(xué)知識應(yīng)用于實際問題。
1.要在本章的教學(xué)中,應(yīng)該根據(jù)教學(xué)實際,啟發(fā)學(xué)生不斷提出問題,研究問題。在對于正弦定理和余弦定理的證明的探究過程中,應(yīng)該因勢利導(dǎo),根據(jù)具體教學(xué)過程中學(xué)生思考問題的方向來啟發(fā)學(xué)生得到自己對于定理的證明。如對于正弦定理,可以啟發(fā)得到有應(yīng)用向量方法的證明,對于余弦定理則可以啟發(fā)得到三角方法和解析的方法。在應(yīng)用兩個定理解決有關(guān)的解三角形和測量問題的過程中,一個問題也常常有多種不同的解決方案,應(yīng)該鼓勵學(xué)生提出自己的解決辦法,并對于不同的方法進(jìn)行必要的分析和比較。對于一些常見的測量問題甚至可以鼓勵學(xué)生設(shè)計應(yīng)用的程序,得到在實際中可以直接應(yīng)用的算法。
2.適當(dāng)安排一些實習(xí)作業(yè),目的是讓學(xué)生進(jìn)一步鞏固所學(xué)的知識,提高學(xué)生分析問題的解決實際問題的能力、動手操作的能力以及用數(shù)學(xué)語言表達(dá)實習(xí)過程和實習(xí)結(jié)果能力,增強(qiáng)學(xué)生應(yīng)用數(shù)學(xué)的意識和數(shù)學(xué)實踐能力。教師要注意對于學(xué)生實習(xí)作業(yè)的指導(dǎo),包括對于實際測量問題的選擇,及時糾正實際操作中的錯誤,解決測量中出現(xiàn)的一些問題。
高中數(shù)學(xué)必修一課件【篇5】
人教版高中數(shù)學(xué)必修二 直線與圓的方程的應(yīng)用 教案 人教版高中數(shù)學(xué)必修二 圓與圓的位置關(guān)系教案 人教版高中數(shù)學(xué)必修二 直線與圓的位置關(guān)系教案 人教版高中數(shù)學(xué)必修二 圓的一般方程教案 高一數(shù)學(xué) 圓的標(biāo)準(zhǔn)方程教案 數(shù)學(xué)必修二 兩條直線的位置關(guān)系D點到直線的距離公式教案 直線與直線之間的位置關(guān)系-兩點間距離 教案 人教版高中數(shù)學(xué)必修二 兩直線的交點坐標(biāo) 教案.doc 人教版高中數(shù)學(xué)必修二 直線的一般式方程 教案 人教版高中數(shù)學(xué)必修二 直線的兩點式方程教案.doc 高一數(shù)學(xué)3.2.1 直線的點斜式方程教案.doc 高一數(shù)學(xué)3.1.2兩條直線的平行與垂直 教案.doc 人教版高中數(shù)學(xué)必修二 直線的傾斜角和斜率教案 人教版高中數(shù)學(xué)必修二直線與平面垂直的性質(zhì) 教案 人教版高中數(shù)學(xué)必修二平面與平面垂直的判定教案 人教版高中數(shù)學(xué)必修二 直線與平面垂直的判定教案 人教版高中數(shù)學(xué)必修二 直線與平面、平面與平面平行的'性質(zhì)教案 高一數(shù)學(xué)平面與平面平行的判定教案 人教版高中數(shù)學(xué)必修二 直線與平面平行的判定 教案 空間中直線與平面、平面與平面之間的位置關(guān)系 教案 數(shù)學(xué)必修二 空間中直線與直線之間的位置關(guān)系 教案 高中數(shù)學(xué)必修二平面教案 人教版高中數(shù)學(xué)必修二 球的體積和表面積教案 高中數(shù)學(xué)必修2 柱體、錐體、臺體的表面積與體積教案 人教版高中數(shù)學(xué)必修2 空間幾何體的直觀圖教案 人教 高中數(shù)學(xué)必修2 空間幾何體的三視圖
數(shù)一數(shù)課件(集錦九篇)
欄目小編花費(fèi)了大量的時間為您編輯出這篇“數(shù)一數(shù)課件”的文章。為了促進(jìn)學(xué)生掌握上課知識點,老師需要提前準(zhǔn)備教案,老師在寫教案課件時還需要花點心思去寫。?學(xué)生反應(yīng)的改變可以幫助教師更好地掌握課堂進(jìn)度。希望這篇文章能夠為大家解決一些問題和困惑歡迎借鑒和分享!
數(shù)一數(shù)課件 篇1
教學(xué)目標(biāo):
1、初步經(jīng)歷從場景圖中抽象出數(shù)的過程,初步認(rèn)識按順序數(shù)數(shù)的方法;
2、初步經(jīng)歷運(yùn)用點子圖表示物體個數(shù)的過程,初步建立數(shù)感和一一對應(yīng)的思想;
3、初步學(xué)會用數(shù)學(xué)的眼光觀察現(xiàn)實事物,滲透應(yīng)用意識;
4、在他人的幫助下,初步體會數(shù)學(xué)的意義與樂趣。
教學(xué)重、難點:
初步經(jīng)歷從場景圖中抽象出數(shù)再用點子圖表示數(shù)的過程,初步認(rèn)識按順序數(shù)數(shù)的方式。
教具準(zhǔn)備:多媒體課件等
教學(xué)過程:
創(chuàng)設(shè)情境 興趣的產(chǎn)生
談話:小朋友們都愛玩,你們最想到哪兒去玩呢?這節(jié)課老師要帶我們班小朋友到兒童樂園。(學(xué)生閉上眼后再睜開雙眼的同時,課件出示兒童樂園情境圖)
[愛玩是孩子的天性,尤其是剛剛升入一年級的學(xué)生對于第一節(jié)數(shù)學(xué)課,以兒童樂園游玩作引子,充分調(diào)動他們的學(xué)習(xí)興趣,從上課開始便能全心投入,進(jìn)入一個最佳學(xué)習(xí)狀態(tài)]。
自主探索 興趣的維持
1、初步感知
(1)提問:在兒童樂園,你看見了什么?
分小組交流后集體交流
(2)描述:燦爛的陽光下,綠樹成蔭,鮮花怒放,鳥兒歡快的歌唱,蝴蝶快樂的`飛舞,小朋友們玩得多開心呀,他們有在騎木馬,有的在蕩秋千,有的在坐小飛機(jī),有的在滑滑梯。
[情感是課堂教學(xué)的催化劑,聲情并茂的語言渲染,能激起學(xué)生的情感共鳴,深切體驗教師的可親,課堂的可愛]。
2、數(shù)數(shù)交流
(1)提問:兒童樂園里有好多東西,你能數(shù)出它們各有多少個嗎?
(2)學(xué)生先自己數(shù)一數(shù),再數(shù)給同桌聽。
(3)選幾名學(xué)生做向?qū)В瑤ьI(lǐng)其余小朋友按順序數(shù)數(shù)。
3、總結(jié)方法
(1)展開討論:怎樣數(shù)數(shù)才能又對又快?
分小組討論后集體交流
(
4、搶答練習(xí)
(
(2)自己看圖說圖意如:3架木馬……
5、點子圖表示數(shù)
我們可以用一些最簡單的符號表示物體個數(shù),你想用什么表示?我們就用點子圖表示好嗎?
怎樣表示秋千的個數(shù)?為什么?怎樣表示木馬、飛機(jī)的個數(shù)?你還有什么想法?(讓學(xué)生充分地說)
探索:什么物體的個數(shù)用7個點子表示?8個點子表示的是什么?怎樣表示氣球的個數(shù)?10個點子表示什么?
三、寓教于樂 興趣的體驗
過渡:小朋友,美麗的校園就是我們的樂園,讓我們一起到兒童樂園中去玩吧?。◣ьI(lǐng)學(xué)生走出課堂,走進(jìn)校園)
找找數(shù)娃娃
美麗的校園藏著許多數(shù)娃娃,你愿意找到它們嗎?
找到后與好朋友(包括老師)交流。
練練點子表示數(shù)
(課前創(chuàng)設(shè)好特定場景)
10只小碗。
[童話般的美麗場景,學(xué)生喜愛的童話人物,學(xué)得生動,練得有味]。
四、總結(jié)提升 興趣的延伸
談話:數(shù)學(xué)與我們的生活緊緊相連,每一個數(shù)學(xué)王國的成員都正眨著智慧的眼睛看著我們,你們想與它們交朋友嗎?你打算今后怎樣做?學(xué)生自由談?wù)摗?/p>
[第一節(jié)數(shù)學(xué)課,學(xué)習(xí)目的教育很有必要。用交朋友作比喻教育學(xué)生愛學(xué)數(shù)學(xué),愿學(xué)數(shù)學(xué),想學(xué)數(shù)學(xué)。達(dá)到延伸學(xué)生學(xué)習(xí)的數(shù)學(xué)的興趣的目的。]
數(shù)一數(shù)課件 篇2
教學(xué)重點、難點:
初步經(jīng)歷從場景圖中抽象出數(shù)再用點子圖表示數(shù)的過程,初步認(rèn)識按順序數(shù)數(shù)的方法。
1.?初步經(jīng)歷從場景圖中抽象出數(shù)的過程,初步認(rèn)識按順序數(shù)數(shù)的方法。
2.?初步經(jīng)歷運(yùn)用點子圖表示物體個數(shù)的過程,初步建立數(shù)感和一一對應(yīng)的思想。
3.?初步學(xué)會用數(shù)學(xué)的眼光觀察現(xiàn)實事物,滲透應(yīng)用意識。
4.?在他人的幫助下,初步體會學(xué)習(xí)數(shù)學(xué)的意義與樂趣。
談話:小朋友喜歡玩嗎?你們最希望到哪兒去玩呢?悄悄地告訴你的同桌。老師猜,小朋友一定非常希望到兒童樂園去玩吧。(多媒體課件出示兒童樂園情境圖)
(2)小組交流后集體交流。
(3)描述:燦爛的陽光下,綠樹成陰,鮮花怒放,鳥兒歡快地唱著歌,花蝴蝶歡樂地飛舞著,小朋友們自由自在地在兒童樂園里盡情游玩著,他們有的在騎木馬,有的在蕩秋千,有的在坐小飛機(jī),有的在滑滑梯???他們笑得多開心呀!學(xué)完今天的新本領(lǐng),咱們也到兒童樂園去玩,好嗎?
2、?主題圖數(shù)數(shù)。
(1)提問:圖上畫了滑梯、秋千、木馬等東西,還畫了人、鳥、花等,你能數(shù)出每一種有多少個嗎?
(2)學(xué)生先自己數(shù)一數(shù),再數(shù)給同桌聽。
(3)集體交流,教師引導(dǎo)學(xué)生按順序數(shù),并指出在數(shù)較多的物體時,可以數(shù)一個輕輕地劃掉一個,防止遺漏。
如果有學(xué)生數(shù)的角度與書上不同,只要合理教師也應(yīng)該加以肯定。如有學(xué)生說:“有2個小朋友在蕩秋千”,“有2個小朋友在騎木馬”等等。
3、?結(jié)方法。
小組討論后再集體交流。
(2)小結(jié):數(shù)數(shù)時,要一個一個按順序數(shù),可以從左往右或從右往左數(shù),也可以從上往下或從下往上數(shù),這樣就不會多數(shù)或少數(shù)了;如果數(shù)的是畫在書上的圖,可以用筆點著數(shù),或者數(shù)一個用筆作一個記號,這樣數(shù)就又對又快了!最后數(shù)到幾,就說明一共有幾個物體。
4、按順序搶答。
(1)根據(jù)圖意找用1、2、3……10表示的東西有哪些?比一比誰說得好!(多媒體課件同步演示,從主題圖中逐個抽取出10幅片段圖)
(2)自己看著10幅圖說圖意。
5、用點子圖表示個數(shù)。
(1)?提問:我們可以用一些簡單的符號表示物體個數(shù),你想用哪些符號表示?
(2)討論:我們就先用點子來表示吧!有1個滑梯就用1個點子表示。(出示點子圖)怎樣表示秋千的個數(shù)?為什么?(出示點子圖)怎樣表示木馬、小飛機(jī)、蝴蝶、小鳥、氣球的個數(shù)?(出示點子圖)
(3)探索:圖中什么物體的個數(shù)可以用7個點子來表示?8個點子呢?怎樣表示氣球的個數(shù)?(自己在書上畫好)10個點子表示什么?
看一看,在我們的教室里你還想數(shù)哪些物體呢?
1、?看圖畫點。
兩個蘑菇圖????6根黃瓜圖???紅花9朵實物圖????黃花4朵實物圖
2、?在表示3的圖下畫“√”。
(?????)????????????(????)?????????????????????(?????)
3、?連線。
四、找數(shù)活動。
(1)找一找我們自己身上和小朋友身上藏著多少個數(shù)?(找到后與好朋友交流)
過渡:不但在我們身邊藏著很多很多數(shù),其他地方也到處充滿著數(shù)學(xué)。
2、△△△△▲△△△▲△
談話:數(shù)學(xué)與我們的生活緊緊相連,它在我們的生活中有著非常重要的作用。希望我們每一個小朋友都能從現(xiàn)在起認(rèn)真學(xué)習(xí)數(shù)學(xué),與數(shù)學(xué)交朋友,長大后為祖國作貢獻(xiàn)。
數(shù)一數(shù)課件 篇3
教學(xué)目標(biāo):
1、通過數(shù)數(shù)活動,初步了解學(xué)生的數(shù)數(shù)情況,使學(xué)生初步學(xué)會數(shù)數(shù)的方法。
2、幫助學(xué)生了解學(xué)校,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,滲透思想品德教育。
教學(xué)準(zhǔn)備:開學(xué)主題圖
教學(xué)過程:
一、導(dǎo)入:
小朋友們,你們已經(jīng)是小學(xué)生了。從今天開始,我們要在學(xué)校里學(xué)習(xí)很多有用的知識。這節(jié)課是數(shù)學(xué)課,我們要學(xué)習(xí)數(shù)學(xué)知識。
小朋友,你們喜歡數(shù)學(xué)嗎?為什么呀?
(指名學(xué)生回答)同學(xué)們說得都很對!數(shù)學(xué)知識非常有用,科學(xué)家為什么能把火箭、衛(wèi)星送上天空等等,這些都需要用數(shù)學(xué)知識。所以,無論做什么工作都離不開數(shù)學(xué),我們要好好學(xué)習(xí),學(xué)好數(shù)學(xué),掌握本領(lǐng),長大了更好地建設(shè)祖國。從今天起同學(xué)們可以比一比,看誰學(xué)得最努力,看誰把數(shù)學(xué)學(xué)得最好。
今天我們就來學(xué)習(xí)第一課:數(shù)一數(shù)(板書課題)
二、新課
1、出示彩色掛圖,教學(xué)數(shù)數(shù)。
(大家一起來看這幅圖里都畫了些什么?
(2)小組學(xué)習(xí):先讓學(xué)生觀察,在小組內(nèi)和小朋友們說一說。
(。然后讓同桌再互相說。
3.?dāng)U展訓(xùn)練:
(1)關(guān)于方位的認(rèn)識:提問學(xué)生,某某前面一列有幾個同學(xué)?后面一列有幾個同學(xué)?左邊一行有幾位同學(xué)?右邊一行有幾位同學(xué)?告訴你的同桌,你的左邊一行有幾個同學(xué)?右邊一行有幾個同學(xué)?前面一列有多少的同學(xué)?后面一列有多少個同學(xué)?
(2)動腦動手:
a、你喜歡畫什么,就在右面的空格里畫什么,要畫得和左邊同樣多.
b、練習(xí)二、三題。
小結(jié):數(shù)學(xué)課有趣嗎?你們喜歡上數(shù)學(xué)課嗎?今天的數(shù)學(xué)課,同學(xué)們表現(xiàn)得很踴躍、很認(rèn)真。希望同學(xué)們以后也能像今天這樣認(rèn)真的學(xué)習(xí)數(shù)學(xué)知識。
三、課外觀察作業(yè)
1、數(shù)一數(shù)在家里或在其他地方看到的東西,并記錄下來,和同學(xué)們交流。
5個正方形。
教學(xué)反思:
雖說昨天是孩子們上課的第一天,但是因為城瀾小學(xué)和饒村小學(xué)六年級并入中心,許多工作要到村小去處理,我的數(shù)學(xué)課被擠掉了,于是,今天才開始上第一堂課。
在很多人看來,這是一節(jié)非常簡單的課,大部分孩子們在幼兒園的時候都已經(jīng)會數(shù)數(shù)了,難不倒他們。的確,大部分孩子都沒什么問題,當(dāng)然也有一小部分的孩子會因為粗心而導(dǎo)致錯誤。
為了避免上學(xué)年出現(xiàn)的情況:上課時,想盡量拓展孩子的思維,在你還能找到數(shù)量是X的物品嗎?這一環(huán)節(jié)中耗費(fèi)了不少時間,結(jié)果課堂作業(yè)都沒有時間去完成。課前我好好思考了一下,該如何緊湊利用這些時間,最后決定如下:
補(bǔ)充:老師,我還知道我們班有個女生和個男生。調(diào)皮蛋牛世龍馬上補(bǔ)充道:我們教室有椅子。又有孩子說道。雖然這和數(shù)一數(shù)沒有直接的關(guān)系,但是他們用到了數(shù)學(xué)知識一一對應(yīng)。課堂上完成相應(yīng)的任務(wù)是我們的職責(zé),但是我們決不能為了完成任務(wù)而教,應(yīng)該為了拓展孩子的思維而教。
,也出現(xiàn)了本子交了,可是里面的作業(yè)都沒有完成的現(xiàn)象。作業(yè)批改出來后,42人中居然有12人出現(xiàn)了差錯,還是有點意外。雖然都是小錯誤,但是他們還是錯了,其中也有我的原因留給學(xué)生做的時間不夠充分。這畢竟是孩子們的第一次作業(yè),好多孩子不是不會做,而是不知道怎么去做。雖然黑板上板演了,但是個別孩子始終是不明白題目的意思是什么。
雖然連續(xù)二年教一年級,但是一些細(xì)節(jié)還是會疏忽。作為一年級的老師,始終需要多一個心眼,無論什么時候。
數(shù)一數(shù)課件 篇4
學(xué)科:數(shù)學(xué)授課年級:二年設(shè)計人:仲彥
章節(jié)名稱
北師大版小學(xué)數(shù)學(xué)第四冊第四單元
課題
數(shù)一數(shù)
計劃學(xué)時
1
教學(xué)目標(biāo)
知識目標(biāo)
體會生活中有大數(shù),感受學(xué)習(xí)大數(shù)的必要性,激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣。
能力目標(biāo)
在數(shù)學(xué)活動中對大數(shù)有具體感受,發(fā)展數(shù)感。
情感目標(biāo)
通過數(shù)一數(shù)活動,認(rèn)識新的記數(shù)單位千萬,并了解單位之間的關(guān)系。
教學(xué)重點
認(rèn)識新的記數(shù)單位千萬,并了解單位之間的關(guān)系。
教學(xué)難點
萬以內(nèi)數(shù)位順序
媒體內(nèi)容與形式
多媒體
教學(xué)過程
教學(xué)環(huán)節(jié)
教師活動
學(xué)生活動
時間
導(dǎo)入
一、復(fù)習(xí)
1、數(shù)數(shù)100以內(nèi)的數(shù)(可5個5個,10個10個地數(shù))
2、復(fù)習(xí)計數(shù)單位,并說說幾個計數(shù)單位之間的關(guān)系。
今天我們就來學(xué)習(xí)生活中的大數(shù)
3
探究
活動一:生活中的大數(shù)
1、欣賞書中的四幅圖片,并讀出圖中的說明
2、找一找生活中的大數(shù)
活動二:數(shù)一數(shù)
1、出示一個由一千個小正方體組成的大正方體
2、數(shù)一數(shù):有多少個?思考:怎么數(shù)?
3、在小組內(nèi)分工合作:用學(xué)具操作
4、建立一千個小正方體的模型,認(rèn)識千
想象:一千名學(xué)生集合是什么
3、在小組內(nèi)說一說
4、匯報評議
5、以一千個小正方體為單位,出示圖片,一千一千的數(shù),10個一千是一萬。
6、感受一千、一萬有多大
a)出示10本同樣厚的書,讓學(xué)生感受一千頁書有多厚。
b)出示升旗圖,結(jié)合本校實際
10
鞏固與拓展
樣?象這樣的10所有多少人?萬人體育場有多大?
活動四:填一填
1、獨立填寫新的記數(shù)單位
2、全班齊讀后,說一說,怎么記?
活動五:涂一涂
用紅色涂出二百三十八個小方格
要求:大家一眼能看出是二百三十八個小方格。
活動三:說一說
1、在小組內(nèi)說一說:對一千、一萬的感受
2、匯報,評議
20
總結(jié)
談收獲
2
板書設(shè)計
1000讀作:一千,10000讀作:一萬;10個一千是一萬
教后反思
數(shù)一數(shù)課件 篇5
教學(xué)內(nèi)容:教科書第2-3 頁的內(nèi)容
教學(xué)目標(biāo):
1.讓學(xué)生初步接觸1~10各數(shù),經(jīng)歷簡單的數(shù)數(shù)過程,并在數(shù)1~10的過程中了解學(xué)生數(shù)數(shù)的能力。
2.能正確數(shù)出圖中的物體個數(shù)。
3.激發(fā)學(xué)生的學(xué)習(xí)興趣,初步培養(yǎng)學(xué)生的觀察能力和學(xué)習(xí)數(shù)學(xué)的意識。
教學(xué)重點:通過數(shù)一數(shù),讓學(xué)生經(jīng)歷簡單的數(shù)數(shù)過程。
教學(xué)難點:從具體實物過度到抽象的點子圖。
教具準(zhǔn)備:主題圖、光盤
教學(xué)過程:
一、聯(lián)系實際,引入課題。
1、師:誰能告訴老師,今天來了多少小朋友?你認(rèn)識幾位小朋友?
2、你想和誰坐?你喜歡坐在第幾排?
3、在日常生活中我們經(jīng)常要用到數(shù)。
二、創(chuàng)設(shè)情境,感受位置。
課件出示:(暑假里,小朋友們?nèi)和瘶穲@玩,有的滑梯,有的蕩秋千……,玩得可高興啦?。┛戳藞D,你想到了什么?能說說嗎?
三、數(shù)一數(shù),說一說。
1、兒童樂園里有幾個小朋友?誰還想數(shù)數(shù)其它物體?
2、大家打開書,各自數(shù)一數(shù),可以數(shù)給老師聽,也可以數(shù)給小伙伴聽。
3、你能告訴大家你是怎么數(shù)的嗎?
四、看10幅小圖,依次數(shù)一數(shù)。
1、滑梯旁有個什么?誰知道這個小圓點表示什么意思?
2、按小圖的順序在大圖里找一找,同學(xué)之間可以互相地數(shù),防止重復(fù)數(shù),比一比誰說得好?。ǘ嗝襟w課件同步演示,從主題圖中逐個抽取出10幅片段圖)
3、出示第7幅小圖。
問:方框里是一個什么符號?放在這里表示什么意思?有誰能告訴老師,方框里該畫什么?
4、小組討論第8幅小圖。
5、比較第9幅圖與第7、8幅圖,這里的問號表示什么呢?(合作、交流)
6、出示第10幅小圖。
方框里應(yīng)該畫什么?請你找出10位小朋友站上來,看看是幾個男生,幾個女生?
五、鞏固深化、寓教于樂
1、門票游戲。
說明:只要完成每人門票上的題目,就能進(jìn)入兒童樂園了。
門票上的題目:用點子圖表示物體的個數(shù)。
1個小天使、2個南瓜博士、3個茄子老師、4個豌豆、5個蘑菇老師、6個小蘿卜、7個小蕃茄、8枝鉛筆、9個蘋果、10只香蕉。
2、找數(shù)活動。
(1)找一找我們自己身上和小朋友身上藏著多少個數(shù)?(找到后與好朋友交流)
(2)找一找我們學(xué)校里藏著多少個數(shù)?(找到后與好朋友交流)
六、總結(jié)提升、激發(fā)學(xué)習(xí)責(zé)任感
談話:數(shù)學(xué)與我們的生活緊緊相連,它在我們的生活中有著非常重要的作用。希望我們每個小朋友都能從現(xiàn)在起認(rèn)真學(xué)習(xí)數(shù)學(xué),與數(shù)學(xué)交朋友。
今天的數(shù)學(xué)課上我們做了些什么,知道了什么?怎么知道各種東西的個數(shù)?通過學(xué)生交流,總結(jié)這就是學(xué)數(shù)學(xué)。
“看”和“數(shù)”是學(xué)習(xí)的方法,不僅今天使用,而且今后更要主動地運(yùn)用。
數(shù)一數(shù)課件 篇6
課題:數(shù)一數(shù)
教學(xué)內(nèi)容:人教版義務(wù)教育課程標(biāo)準(zhǔn)試驗教科書數(shù)學(xué)一年級上25頁。
教學(xué)目標(biāo):
1.通過數(shù)數(shù)活動,初步了解學(xué)生的數(shù)數(shù)情況,使學(xué)生初步學(xué)會數(shù)數(shù)的方法。
2.培養(yǎng)學(xué)生用數(shù)學(xué)的眼光觀察生活的觀察習(xí)慣。
3.培養(yǎng)學(xué)生有序觀察,分類計數(shù)的良好思維習(xí)慣。
4.初步培養(yǎng)學(xué)生用較完整的數(shù)學(xué)語言回答問題的良好習(xí)慣。
5.幫助學(xué)生了解學(xué)校生活,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,滲透思想品德教育。
教學(xué)重、難點:按一定的順序數(shù)數(shù)
教學(xué)過程:
一、自由數(shù)數(shù),了解學(xué)生的數(shù)數(shù)基礎(chǔ)。
教師提出要求:小朋友們,你們會從1數(shù)到10嗎?數(shù)數(shù)看。
同學(xué)互相唱數(shù),請幾位同學(xué)數(shù)給大家聽。
二、看圖數(shù)數(shù)。
1.看圖講故事,激發(fā)觀察興趣。
教師:今天是上學(xué)的第一天,全國的小朋友們都在這一天到學(xué)校上學(xué)來了。你們看,我們課本上是一所美麗的鄉(xiāng)村小學(xué),這所學(xué)校的小朋友們也高高興興地上學(xué)來了,大家看看畫面上都有什么?
學(xué)生自由觀察,點名發(fā)言。
提出要求:請小朋友們按一定的順序觀察圖,可按從左到右,或從上到下的順序也可按從近到遠(yuǎn)的順序觀察圖,說說你看到了什么,每種東西的數(shù)量是多少?
請個別能干的小朋友先說,要求:說大聲,說清楚,說完整,給全班小朋友做榜樣,再同桌互說。同桌互說時,要求:男同學(xué)先說,女同學(xué)聽,然后再交換,女同學(xué)說,男同學(xué)聽,說的同學(xué)要說小聲些,讓同桌同學(xué)聽清楚但不影響其他同學(xué),同樣要說清楚,說完整,聽的同學(xué)要不插嘴,認(rèn)真聽。
教師及時巡視,糾錯。
2.?dāng)?shù)圖中的數(shù)量。
教師在學(xué)生隨意數(shù)的基礎(chǔ)上,引導(dǎo)學(xué)生按數(shù)目從小到達(dá)的順序數(shù)出圖中的事物個數(shù)。
(1)數(shù)數(shù)量是1的事物。
提出問題:圖中有什么東西的數(shù)量是1個?
生:1面紅旗;1棟樓房
教師小結(jié)提升:紅旗,樓房,老師他們是不同的事物,但他們的數(shù)量都是1,都可以用數(shù)字1來表示他們的數(shù)量。
板書:1
(2)數(shù)數(shù)量2的事物。
提出問題:圖中有什么東西的數(shù)量是2個?
生:兩個單杠,兩間農(nóng)舍
(3)數(shù)數(shù)量3的事物。
學(xué)生數(shù)出數(shù)量是3的事物時,教師提問:你是怎么知道他的數(shù)量的?
強(qiáng)調(diào):當(dāng)東西的數(shù)量較多,用眼睛數(shù)不清楚時,要用手點數(shù)。
(4)數(shù)其它數(shù)量的事物。
同桌輪流數(shù)出4---10數(shù)量的事物。
全班交流匯報。
(5)學(xué)生認(rèn)讀1---10各數(shù)。
3.?dāng)?shù)生活中事物的個數(shù)。
三.小結(jié)。
小朋友今天通過有順序的觀察圖,正確的數(shù)出了很多事物的數(shù)量,放學(xué)后,還可以數(shù)數(shù)在家里或其他地方看到的東西的數(shù)量。
數(shù)一數(shù)課件 篇7
一、學(xué)生學(xué)習(xí)情況分析
本級學(xué)生87人,上個學(xué)期期末考試平均分為86分,優(yōu)分率35%,及格率為97.5%。從上個學(xué)期的情況來看,學(xué)生經(jīng)過一個學(xué)年的學(xué)習(xí),了解掌握了加法的意義以及100以內(nèi)的加法及其應(yīng)用。除了兩位同學(xué)要基礎(chǔ)比較薄弱,對數(shù)學(xué)的加法的意義以及100以內(nèi)的加法及其應(yīng)用理解力不夠,要特別輔導(dǎo);其余的基本都掌握的較好。本單元的學(xué)習(xí)重點:1、從具體的情境中抽象出乘法算式的過程,體會乘法的意義。2、從生活情景中發(fā)現(xiàn)并提出可以用乘法解決的問題,初步感受乘法與生活的密切聯(lián)系。從本個學(xué)期上課情況看,95%的學(xué)生對于這個單元的知識都有一定的認(rèn)識;另外,我班的學(xué)生情感極易受環(huán)境氣氛感染,因此,可以借助多媒體進(jìn)行情境創(chuàng)設(shè)以助想象、理解和體會。
二、單元教學(xué)目標(biāo)
1、通過數(shù)一數(shù)等活動,初步感受乘法與生活的密切聯(lián)系,結(jié)合具體情景理解乘法的意義,初步體會乘法和加法之間的聯(lián)系與區(qū)別。
2、從生活情景中發(fā)現(xiàn)并提出可以用乘法解決的問題,初步形成從數(shù)學(xué)的角度觀察周圍事物的意識,初步學(xué)會解決簡單的乘法問題。
3、能根據(jù)具體情境列出乘法算式,能根據(jù)加法算式列出乘法算式,知道乘法算式中各部分的名稱。
三、單元學(xué)習(xí)內(nèi)容的前后聯(lián)系
四、教學(xué)重點、難點
一、重點:
1、從具體的情境中抽象出乘法算式的過程,體會乘法的意義。
2、從生活情景中發(fā)現(xiàn)并提出可以用乘法解決的問題,初步感受乘法與生活的密切聯(lián)系。
二、難點:
理解乘法的意義并能解決實際問題。
五、單元評價要點
1、讓學(xué)生在具體情境中,根據(jù)乘法的意義列出乘法算式,體會乘法算式與加法算式之間的聯(lián)系和區(qū)別。
2、結(jié)合具體的情境說一說給出的乘法算式表示的意義。
3、讓學(xué)生用學(xué)具表示乘法算式的意義。
4、會根據(jù)相同加數(shù)連加的加法算式寫出乘法算式。
5、讓學(xué)生找出生活中可以用乘法解決的問題,并能正確列出乘法算式,再通過加法得出結(jié)果,解決這些問題。
六、各小節(jié)教學(xué)目標(biāo)及課時安排
本單元計劃課時數(shù):6節(jié)
教學(xué)內(nèi)容
教學(xué)目標(biāo)
計劃
課時
授課
日期
備注
數(shù)一數(shù)
1、結(jié)合數(shù)數(shù)的具體情境,經(jīng)歷相同加數(shù)連家算式的抽象過程,感受這種運(yùn)算與日常生活的聯(lián)系,體會學(xué)習(xí)乘法的必要性。
2、會用兩種不同的方法數(shù)方陣排列的物體的個數(shù),并列出相應(yīng)加法算式。
3、體會加法的局限性,知道用乘法算式表示相同加數(shù)連加比較簡單。
1
9、4
兒童樂園
1、結(jié)合兒童樂園這一現(xiàn)實的生活情境,逐步發(fā)展發(fā)現(xiàn)問題、提出問題和解決問題的意識和能力。
2、結(jié)合解決問題,經(jīng)歷把相同加數(shù)的連加算式抽象為乘法算式的過程,初步體會乘法運(yùn)算的意義,體會乘法與生活的密切聯(lián)系。
3、會把相同加數(shù)的連加算式改寫成為乘法算式,知道它各部分的名稱、讀法,并應(yīng)用加法計算簡單的乘法算式結(jié)果。
2
9、5
9、6
有幾塊積木
1、通過計算積木的塊數(shù),初步用乘法解決問題,加深對乘法意義的理解。
2、會用兩種不同的方法數(shù)排列的物體的個數(shù),列出同一個乘法算式。
3、在數(shù)的過程中,進(jìn)一步體會加法和乘法之間的聯(lián)系。
1
9、7
動物聚會
1、結(jié)合具體情境,發(fā)展提出問題與應(yīng)用數(shù)學(xué)的意識。
2、會運(yùn)用乘法解決生活中的簡單的實際問題,在解決乘法問題的過程中進(jìn)一步體會乘法運(yùn)算的意義,體會乘法與生活的密切聯(lián)系。
2
9、8
9、11
單元測試
測試情況
反饋
合計
6
數(shù)一數(shù)課件 篇8
教學(xué)內(nèi)容:P28~29
教學(xué)目標(biāo):
1、通過撥一撥擺一擺估一估比一比等活動,對大數(shù)有具體的感受,發(fā)展數(shù)感。
2、通過一系列教學(xué)活動,認(rèn)識新的計數(shù)單位千、萬。
教學(xué)準(zhǔn)備:
教師:10本書,正方體模型
學(xué)生:水彩筆
教學(xué)過程:
一、復(fù)習(xí)
1、一百一百地數(shù),到1千(順數(shù)或倒數(shù))
2、10個100是一千,10個一千是一萬
二、新授
1、說一說
(1)一本書是100頁,10本這樣的書是幾頁?
(2)一所學(xué)校一千人,10所這樣的學(xué)校有多少人?
2、填一填
完成書本P28的練習(xí)
3、說一說
(1)學(xué)生指導(dǎo)讀題,理解題意。
(2)學(xué)生思考,并回答問題
(3)學(xué)生獨立完成,并集體訂正
(4)學(xué)生同桌合作完成
4、涂一涂
學(xué)生活動,教師巡視
三、小結(jié)
今天這節(jié)課我們學(xué)習(xí)了什么內(nèi)容?
數(shù)一數(shù)課件 篇9
目標(biāo):
1.教幼兒學(xué)習(xí)不受物體排列形式的影響,正確判斷7以內(nèi)數(shù)的多少。
2.要求幼兒聽清老師的問題,并在集體面前大聲地回答。
準(zhǔn)備:
教具貼絨藍(lán)色大圓片5個,紅色圓片從大到小6個,桔黃色小圓片7個(圖一),貼絨數(shù)字5、6、7,實物卡(圖二~八)。
學(xué)具第一、二組:3排點圖卡(圖九)若干張,數(shù)字印章,印泥,幼兒用書畫面25;第三組:看標(biāo)記貼圖形紙卡,糨糊,各種圖形紙片;第四組:填空格圖卡,點子印章;第五組:添、去點作業(yè)紙,鉛筆;第六組:印比6、6少的點子紙,印章。
過程:
1.集體活動。
(1)逐一出示圖二~八,"請小朋友仔細(xì)看,說說卡片上有幾個什么?"
(2)正確判斷7以內(nèi)數(shù)量。
出示圖一,"黑板上有什么?""哪種顏色的圓片最多?哪種顏色圓片最少?你是怎么知道的?為什么我看時覺得紅圓片最多,橘黃圓片最少?誰能想個辦法,換一種排法讓我們一看就清楚,誰的數(shù)目最多,誰的數(shù)目最少。"啟發(fā)幼兒將每種顏色片片排成一行,"現(xiàn)在看看誰最多、誰最少?""你是從哪里看出來的。""引導(dǎo)幼兒將三排圓片一一對應(yīng)比較)請小朋友說說每一排有幾個圓片,誰來給每排圓片送數(shù)字朋友。
(3)小結(jié)。
"要想知道誰多誰少,不能看物體大、小,也不能看排隊長、短。而是要數(shù)一數(shù)每排有幾個,才能比出誰多誰少。"
2.小組活動。
一、二組,給最多的點子印數(shù)字。三組,看標(biāo)記貼圖形。
四組,按序填空格。五組,添、去點子。
六組,印比6、7少的點子。
教師重點指導(dǎo)第一、二組的活動小組。
3.活動評價。
表揚(yáng)能邊操作邊講述的幼兒,并提醒幼兒將游戲材料整理好。
它山之石可以攻玉,以上就是一米范文范文為大家整理的2篇《中班數(shù)學(xué)教案:數(shù)一數(shù),畫一畫》,希望可以啟發(fā)您的一些寫作思路。
高一函數(shù)課件
這篇“高一函數(shù)課件”是幼兒教師教育網(wǎng)小編精心制作的,希望您能夠喜歡它,并從中獲得幫助。教案和課件是每位教師為上課準(zhǔn)備的必要材料,但它們并非隨隨便便就能寫好。只有寫好教案,才能打造出完整的課堂教學(xué)。
高一函數(shù)課件【篇1】
一、說教材
(一)地位與重要性
函數(shù)的最值是《高中數(shù)學(xué)》一年級第一學(xué)期的內(nèi)容,是函數(shù)基本性質(zhì)的重要部分。在實際問題的解決過程中,建立了變量間的函數(shù)關(guān)系后,求最值培養(yǎng)了學(xué)生運(yùn)用基礎(chǔ)理論研究具體問題的能力,這也是學(xué)習(xí)數(shù)學(xué)的目的之一。函數(shù)最值的教學(xué)在培養(yǎng)學(xué)生數(shù)形結(jié)合、化歸的數(shù)學(xué)思想同時也可以使學(xué)生養(yǎng)成嚴(yán)謹(jǐn)思維的學(xué)習(xí)習(xí)慣。函數(shù)的思想是一種重要的數(shù)學(xué)思想,它體現(xiàn)了運(yùn)動變化和對立統(tǒng)一的觀點,本節(jié)課對初高中知識的銜接起到了承上啟下的作用。函數(shù)的最值問題與不等式、方程、參數(shù)范圍的探求及解析幾何等知識綜合在一起往往能編擬綜合性較強(qiáng)的新型題目,可以綜合考查學(xué)生應(yīng)用函數(shù)知識分析解決問題的能力,從而成為高考的高檔解答題,是高考測試的熱點之一。
(二)教學(xué)目標(biāo)
知識與能力目標(biāo):掌握求二次函數(shù)最值的常用方法——配方法,培養(yǎng)學(xué)生數(shù)形結(jié)合、化歸的數(shù)學(xué)思想和運(yùn)用基礎(chǔ)理論研究解決具體問題的能力。
情感目標(biāo):經(jīng)歷和體驗數(shù)學(xué)活動的過程以及數(shù)學(xué)在現(xiàn)實生活中的作用,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)知識的積極性,樹立學(xué)好數(shù)學(xué)的信心。
過程目標(biāo):通過課堂學(xué)習(xí)活動培養(yǎng)學(xué)生相互間的合作交流,且在相互交流的過程中養(yǎng)成學(xué)生表述、抽象、總結(jié)的思維習(xí)慣,進(jìn)而獲得成功的體驗。
科研目標(biāo):在教師指導(dǎo)下學(xué)生經(jīng)歷和體驗探究過程的方法。
(三)教學(xué)重難點
重點:配方法、數(shù)形結(jié)合求二次函數(shù)的最值。
難點:二次函數(shù)在閉區(qū)間上的最值。
二、說教法與學(xué)法
在初中學(xué)生已經(jīng)學(xué)習(xí)過二次函數(shù)的知識,根據(jù)本節(jié)課的內(nèi)容和學(xué)生的實際水平,本節(jié)課主要采用探究式教學(xué)法和講練結(jié)合法進(jìn)行教學(xué)。教學(xué)過程也是一個學(xué)生主動建構(gòu)的過程,教師不能無視學(xué)生已有的經(jīng)驗,企圖從外部將新知識強(qiáng)行裝入學(xué)生的頭腦,而是要把學(xué)生現(xiàn)有的知識經(jīng)驗作為新知識的生長點,引導(dǎo)學(xué)生從原有的知識經(jīng)驗中“生長”及發(fā)現(xiàn)新的知識經(jīng)驗。在本堂課學(xué)習(xí)中,學(xué)生發(fā)揮主體作用,主動地思考探究求解最值的最優(yōu)策略,并歸納出自己的解題方法,將知識主動納入已建構(gòu)好的知識體系,真正做到“學(xué)會學(xué)習(xí)”。
三、說教學(xué)過程
(一)課題引入
環(huán)節(jié)
教學(xué)過程
設(shè)計說明
課題講解
例:動物園要建造一面靠墻的2間面積相同的長方形熊貓居室,如果可供建造圍墻的材料長是30米,那么寬為多少米時才能使所建造的熊貓居室面積最大?熊貓居室的最大面積是多少平方米?
學(xué)生通過此例感受到在實際問題中需要解決函數(shù)的最值問題,從而引發(fā)學(xué)習(xí)本節(jié)內(nèi)容的興趣。
教學(xué)手段:用PPT展示題目
教師引導(dǎo)學(xué)生討論解答,并個別答疑、點撥,收集學(xué)生的解法,挑出若干答案在實物投影儀上進(jìn)行展示,并進(jìn)行點評。
學(xué)生的解法主要為函數(shù)最值法和利用基本不等式求最值,由學(xué)生評價兩種方法,為閉區(qū)間上二次函數(shù)的最值教學(xué)打下伏筆
教學(xué)手段:實物投影儀
(二)新知教學(xué)
環(huán)節(jié)
教學(xué)過程
設(shè)計說明
課題講解
一、函數(shù)最大值和最小值的概念
通過引例最值的求解,引導(dǎo)學(xué)生闡述函數(shù)最大值和最小值的概念。
學(xué)生口述師板書。
一般地,設(shè)函數(shù)在處的函數(shù)值是.如果對于定義域內(nèi)任意,不等式都成立,那么叫做函數(shù)的最小值,記作;如果對于定義域內(nèi)任意,不等式都成立,那么叫做函數(shù)的最大值記作。
二、例題講練
例1、求二次函數(shù)的最大值或者最小值:
師生共同完成一例,高一學(xué)生要養(yǎng)成規(guī)范的書寫格式和習(xí)慣,其余題目請學(xué)生板演。
學(xué)生根據(jù)已有的能力和經(jīng)驗,動手得出答案,教師點評。提醒注意當(dāng)取何值時,函數(shù)取到最值。
培養(yǎng)學(xué)生闡述、分析、理解概念的能力,引入最大值概念的過程是遵循由已知去認(rèn)識未知的認(rèn)識規(guī)律進(jìn)行設(shè)計的,現(xiàn)代教育心理學(xué)的研究認(rèn)為,有效的概念教學(xué)是建立在學(xué)生已有知識結(jié)構(gòu)的基礎(chǔ)上的,因此教師在設(shè)計教學(xué)的過程中必須注意在學(xué)生已有知識結(jié)構(gòu)中尋找新概念的固著點,引導(dǎo)學(xué)生通過同化或順應(yīng),掌握新概念,進(jìn)而完善知識結(jié)構(gòu)。讓學(xué)生從求實際問題的最大值入手,由熟悉的二次函數(shù)圖象的頂點所具有的特點出發(fā),得到求二次函數(shù)最大值(最小值)的方法。
突出學(xué)生的主體地位,發(fā)揮教師的主導(dǎo)作用,培養(yǎng)思維的嚴(yán)謹(jǐn)性以及轉(zhuǎn)化能力,通過區(qū)間的變化讓學(xué)生充分感受到二次函數(shù)的最值的求解要討論對稱軸與所給區(qū)間的關(guān)系。
教學(xué)方式:講練結(jié)合
例2、在的條件下,求函數(shù)的最大值和最小值。
教師引導(dǎo)學(xué)生逐步深入思考:
1、定義域與函數(shù)最值是什么關(guān)系?
2、轉(zhuǎn)化后要研究的函數(shù)是什么?
教學(xué)方式:學(xué)生自主探究
高一函數(shù)課件【篇2】
一考綱要求。
1.利用計算工具,比較指數(shù)函數(shù)、對數(shù)函數(shù)以及冪函數(shù)增長差異;結(jié)合實例體會直線上升、指數(shù)爆炸、對數(shù)增長等不同函數(shù)類型增長的含義。
2.搜集一些社會生活中普遍使用的函數(shù)模型(指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)、分段函數(shù)等)的實例,了解函數(shù)模型的廣泛應(yīng)用。
二.高考趨勢。
函數(shù)知識應(yīng)用十分廣泛,利用函數(shù)知識解應(yīng)用問題是數(shù)學(xué)應(yīng)用題的主要類型之一,也是高考考查的重點內(nèi)容。
三.要點回顧
解應(yīng)用題,首先應(yīng)通過審題,分析原型結(jié)構(gòu),深刻認(rèn)識問題的實際背景,確定主要矛盾,提出必要的假設(shè),將應(yīng)用問題轉(zhuǎn)化為數(shù)學(xué)問題求解;然后,經(jīng)過檢驗,求出應(yīng)用問題的解。其解題步驟如下:1.審題2.建模(列數(shù)學(xué)關(guān)系式)3.合理求解純數(shù)學(xué)問題。4.解釋并回答實際問題。
四.基礎(chǔ)訓(xùn)練。
1.在一定的范圍內(nèi),某種產(chǎn)品的購買量噸與單價元之間滿足一次函數(shù)關(guān)系,如果購買1000噸,每噸為800元,購買2000噸,每噸700元,那么客戶購買400噸,單價應(yīng)該是
2.根據(jù)市場調(diào)查,某商品在最近10天內(nèi)的價格與時間滿足關(guān)系銷售量與時間滿足關(guān)系則這種商品的日銷售額的值為.
3.某分公司經(jīng)銷某種品牌產(chǎn)品,每件產(chǎn)品的成本為3元,并且每件產(chǎn)品需向公司交元的管理費(fèi),預(yù)計當(dāng)每件產(chǎn)品的售價為元(9時,一年的銷售量為萬件。則分公司一年的利潤L元與每件產(chǎn)品的售價的函數(shù)關(guān)系式為.
4.有一批材料可以建成200的圍墻,如果用此材料在一邊靠墻的地方圍成一塊矩形場地,中間用同樣的材料隔成三個面積相等的矩形(如圖所示),則圍成矩形場地面積為(圍墻厚度不計)。
5.某建筑商場國慶期間搞促銷活動,規(guī)定:顧客購物總金額不超過800元,不享受任何折扣,如果顧客購物總金額超過800元,則超過800元部分享受一定的折扣優(yōu)惠,按右表折扣分別累計計算。
可以享受折扣優(yōu)惠金額折扣率不超過500元的部分5%超過500元的部分10%某人在此商場購物總金額為元,可以獲得的折扣金額為元,則關(guān)于的解析式為;若元,則此人購物總金額為元。
6.在邊長為4的正方形ABCD的邊上有一點p沿著折線BCDA,由B點(起點)向A點(終點)移動,設(shè)p點移動的路程為,的面積與點p移動的路程間的函數(shù)關(guān)系式為
五.例題精講。
例1.某村計劃建造一個室內(nèi)面積為800的矩形蔬菜溫室,在溫室內(nèi),沿左、右兩側(cè)與后側(cè)內(nèi)墻各保留1寬的通道,沿前側(cè)內(nèi)墻保留3寬的空地,當(dāng)矩形溫室的邊長各為多少時,蔬菜的種植面積?種植面積是多少?
例2.某租賃公司擁有汽車100輛,當(dāng)每輛車的月租金為3000元時,可全部租出當(dāng)每輛車的月租金每增加50元時,未租出車將增加一輛,租出的車每輛每月需要維護(hù)費(fèi)150元,未租出的車每輛每月需要維護(hù)費(fèi)50元,兩者都由租賃公司支付。
1當(dāng)每輛車的月租金定為3600元時,能租出多少輛車?
2當(dāng)每輛車的月租金定為多少元時,公司的月收益?月收益是多少?
例3.某城市現(xiàn)有人口100萬人,如果每年自然增長率為1.2﹪,試解答下面問題
1寫出城市人口總數(shù)(萬人)與年份(年)的函數(shù)關(guān)系式
2計算xx以后該城市人口總數(shù)(精確到0.1萬人)
3計算大約多少年以后該城市人口將達(dá)到120萬人(精確到1年)
六.鞏固練習(xí):.
1.鐵路機(jī)車運(yùn)行1小時所需的成本由兩部分組成:固定部分元,變動部分(元)與運(yùn)行速度(千米/小時)的平方成正比,比例系數(shù)為,如果機(jī)車勻速從甲站開往乙站,甲,乙兩站間的距離為500千米,則機(jī)車從甲站運(yùn)行到乙站的總成本與機(jī)車的速度之間的函數(shù)關(guān)系為
2.某公司有60萬元資金,計劃投資甲,乙兩個項目,按要求,對項目甲的投資不小于對項目乙投資的倍,且對每個項目的投資不少于5萬元,對項目甲投資1萬元可獲得0.4萬元的利潤,對項目乙投資1萬元可獲得0.6萬元的利潤,該公司正確規(guī)劃后,在這兩個項目上共可獲得的利潤為
3.將進(jìn)貨單價為80元的商品按90元一個出售時,能賣出400個,已知該商品每個上漲1元,其銷售量就減少20個,為獲得利潤,售價應(yīng)定為
4.某地每年消耗木材約20萬立方米,沒立方米木料價格為240元,為了減少木材消耗,決定按木料價格的%征收木材稅,這樣每年木材消耗量減少萬立方米,為了既減少木材消耗又保證稅金收入每年不少于90萬元,則的取值范圍為
5.已知鐳經(jīng)過100年剩留原來質(zhì)量的95.76%,設(shè)質(zhì)量為1的鐳經(jīng)過年后的剩留質(zhì)量為,則與之間的函數(shù)關(guān)系為
6.某公司一年共購買某種貨物400噸,每次購買噸,運(yùn)費(fèi)為4萬元/噸,一年總儲存費(fèi)用4萬元,要使一年的總運(yùn)費(fèi)與總儲存費(fèi)用之和最小,則=
7.用總長為14.8的鋼條做一個長方體容器的框架,如果所做容器有一邊比另一邊長0.5,則它的容積為
8.某工廠生產(chǎn)某種產(chǎn)品,已知該產(chǎn)品的月生產(chǎn)量(噸)與每噸產(chǎn)品的價格(元/噸)之間的關(guān)系式為:,且生產(chǎn)噸的成本為(元),問該產(chǎn)品每月生產(chǎn)噸才能使利潤達(dá)到,利潤是萬元
9.有甲,乙兩種產(chǎn)品經(jīng)營銷售這兩種商品所獲得的利潤依次是和(萬元)它們與投入的資金(萬元)的關(guān)系,有經(jīng)驗公式,。今有3萬元資金投入經(jīng)營甲、乙兩種商品,為了獲得利潤,對甲、乙兩種商品的資金投入分別應(yīng)是多少?最多能獲得多大的利潤?
高一函數(shù)課件【篇3】
教學(xué)目標(biāo):
掌握二倍角的正弦、余弦、正切公式,能用上述公式進(jìn)行簡單的求值、化簡、恒等證明;引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)學(xué)規(guī)律,讓學(xué)生體會化歸這一基本數(shù)學(xué)思想在發(fā)現(xiàn)中所起的作用,培養(yǎng)學(xué)生的創(chuàng)新意識.
教學(xué)重點:
二倍角公式的推導(dǎo)及簡單應(yīng)用.
教學(xué)難點:
理解倍角公式,用單角的三角函數(shù)表示二倍角的三角函數(shù).
教學(xué)過程:
Ⅰ.課題導(dǎo)入
前一段時間,我們共同探討了和角公式、差角公式,今天,我們繼續(xù)探討一下二倍角公式.我們知道,和角公式與差角公式是可以互相化歸的.當(dāng)兩角相等時,兩角之和便為此角的二倍,那么是否可把和角公式化歸為二倍角公式呢?請同學(xué)們試推.
先回憶和角公式
sin(α+β)=sinαcosβ+cosαsinβ
當(dāng)α=β時,sin(α+β)=sin2α=2sinαcosα
即:sin2α=2sinαcosα(S2α)
cos(α+β)=cosαcosβ-sinαsinβ
當(dāng)α=β時cos(α+β)=cos2α=cos2α-sin2α
即:cos2α=cos2α-sin2α(C2α)
tan(α+β)=tanα+tanβ1-tanαtanβ
當(dāng)α=β時,tan2α=2tanα1-tan2α
Ⅱ.講授新課
同學(xué)們推證所得結(jié)果是否與此結(jié)果相同呢?其中由于sin2α+cos2α=1,公式C2α還可以變形為:cos2α=2cos2α-1或:cos2α=1-2sin2α
同學(xué)們是否也考慮到了呢?
另外運(yùn)用這些公式要注意如下幾點:
(1)公式S2α、C2α中,角α可以是任意角;但公式T2α只有當(dāng)α≠π2+kπ及α≠π4+kπ2(k∈Z)時才成立,否則不成立(因為當(dāng)α=π2+kπ,k∈Z時,tanα的值不存在;當(dāng)α=π4+kπ2,k∈Z時tan2α的值不存在).
當(dāng)α=π2+kπ(k∈Z)時,雖然tanα的值不存在,但tan2α的值是存在的,這時求tan2α的值可利用誘導(dǎo)公式:
即:tan2α=tan2(π2+kπ)=tan(π+2kπ)=tanπ=0
(2)在一般情況下,sin2α≠2sinα
例如:sinπ3=32≠2sinπ6=1;只有在一些特殊的情況下,才有可能成立
高一函數(shù)課件【篇4】
1.2解三角形應(yīng)用舉例第二課時
一、教學(xué)目標(biāo)
1、能夠運(yùn)用正弦定理、余弦定理等知識和方法解決一些有關(guān)底部不可到達(dá)的物體高度測量的問題
2、鞏固深化解三角形實際問題的一般方法,養(yǎng)成良好的研究、探索習(xí)慣。
3、進(jìn)一步培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)、應(yīng)用數(shù)學(xué)的意識及觀察、歸納、類比、概括的能力
二、教學(xué)重點、難點
重點:結(jié)合實際測量工具,解決生活中的測量高度問題
難點:能觀察較復(fù)雜的圖形,從中找到解決問題的關(guān)鍵條件
三、教學(xué)過程
Ⅰ.課題導(dǎo)入
提問:現(xiàn)實生活中,人們是怎樣測量底部不可到達(dá)的建筑物高度呢?又怎樣在水平飛行的飛機(jī)上測量飛機(jī)下方山頂?shù)暮0胃叨饶??今天我們就來共同探討這方面的問題
Ⅱ.講授新課
[范例講解]
例1、AB是底部B不可到達(dá)的一個建筑物,A為建筑物的最高點,設(shè)計一種測量建筑物高度AB的方法。
分析:求AB長的關(guān)鍵是先求AE,在ACE中,如能求出C點到建筑物頂部A的距離CA,再測出由C點觀察A的仰角,就可以計算出AE的長。
解:選擇一條水平基線HG,使H、G、B三點在同一條直線上。由在H、G兩點用測角儀器測得A的仰角分別是、,CD=a,測角儀器的高是h,那么,在ACD中,根據(jù)正弦定理可得
AC=AB=AE+h=AC+h=+h
例2、如圖,在山頂鐵塔上B處測得地面上一點A的俯角=54,在塔底C處測得A處的俯角=50。已知鐵塔BC部分的高為27.3m,求出山高CD(精確到1m)
師:根據(jù)已知條件,大家能設(shè)計出解題方案嗎?
若在ABD中求CD,則關(guān)鍵需要求出哪條邊呢?
生:需求出BD邊。
師:那如何求BD邊呢?
生:可首先求出AB邊,再根據(jù)BAD=求得。
解:在ABC中,BCA=90+,ABC=90-,
BAC=-,BAD=.根據(jù)正弦定理,=
所以AB==在RtABD中,得BD=ABsinBAD=
將測量數(shù)據(jù)代入上式,得BD==≈177(m)
CD=BD-BC≈177-27.3=150(m)
答:山的高度約為150米.
思考:有沒有別的解法呢?若在ACD中求CD,可先求出AC。思考如何求出AC?
例3、如圖,一輛汽車在一條水平的公路上向正東行駛,到A處時測得公路南側(cè)遠(yuǎn)處一山頂D在東偏南15的方向上,行駛5km后到達(dá)B處,測得此山頂在東偏南25的方向上,仰角為8,求此山的高度CD.
思考1:欲求出CD,大家思考在哪個三角形中研究比較適合呢?(在BCD中)
思考2:在BCD中,已知BD或BC都可求出CD,根據(jù)條件,易計算出哪條邊的長?(BC邊)
解:在ABC中,A=15,C=25-15=10,根據(jù)正弦定理,
=,BC=≈7.4524(km)CD=BCtanDBC≈BCtan8≈1047(m)
答:山的高度約為1047米
Ⅲ.課堂練習(xí):課本第17頁練習(xí)第1、2、3題
Ⅳ.課時小結(jié)
利用正弦定理和余弦定理來解題時,要學(xué)會審題及根據(jù)題意畫方位圖,要懂得從所給的背景資料中進(jìn)行加工、抽取主要因素,進(jìn)行適當(dāng)?shù)暮喕?/p>
Ⅴ.課后作業(yè)
作業(yè):《習(xí)案》作業(yè)五
高一數(shù)學(xué)教案:《函數(shù)》教學(xué)設(shè)計高一數(shù)學(xué)教案:《函數(shù)》教學(xué)設(shè)計
教學(xué)目標(biāo)
1.理解函數(shù)的概念,了解函數(shù)的三種表示法,會求函數(shù)的定義域.
(1)了解函數(shù)是特殊的映射,是非空數(shù)集A到非空數(shù)集B的映射.能理解函數(shù)是由定義域,值域,對應(yīng)法則三要素構(gòu)成的整體.
(2)能正確認(rèn)識和使用函數(shù)的三種表示法:解析法,列表法,和圖象法.了解每種方法的優(yōu)點.
(3)能正確使用“區(qū)間”及相關(guān)符號,能正確求解各類函數(shù)的定義域.
2.通過函數(shù)概念的學(xué)習(xí),使學(xué)生在符號表示,運(yùn)算等方面的能力有所提高.
學(xué)過什么函數(shù)?
(要求學(xué)生盡量用自己的話描述初中函數(shù)的定義,并試舉出各類學(xué)過的函數(shù)例子)
學(xué)生舉出如等,待學(xué)生說完定義后教師打出投影片,給出定義之后教師也舉一個例子,問學(xué)生.
提問1.是函數(shù)嗎?
(由學(xué)生討論,發(fā)表各自的意見,有的認(rèn)為它不是函數(shù),理由是沒有兩個變量,也有的認(rèn)為是函數(shù),理由是可以可做.)
教師由此指出我們爭論的焦點,其實就是函數(shù)定義的不完善的地方,這也正是我們今天研究函數(shù)定義的必要性,新的定義將在與原定義不相違背的基礎(chǔ)上從更高的觀點,將它完善與深化.
二、新課
現(xiàn)在請同學(xué)們打開書翻到第50頁,從這開始閱讀有關(guān)的內(nèi)容,再回答我的問題.(約2-3分鐘或開始提問)
提問2.新的函數(shù)的定義是什么?能否用最簡單的語言來概括一下.
學(xué)生的回答往往是把書上的定義念一遍,教師可以板書的形式寫出定義,但還要引導(dǎo)形式發(fā)現(xiàn)定義的本質(zhì).
(板書)2.2函數(shù)
一、函數(shù)的概念
高一函數(shù)課件【篇5】
高一數(shù)學(xué)指數(shù)函數(shù)教案:教學(xué)目標(biāo)
1.使學(xué)生掌握指數(shù)函數(shù)的概念,圖象和性質(zhì).
(1)能根據(jù)定義判斷形如什么樣的函數(shù)是指數(shù)函數(shù),了解對底數(shù)的限制條件的合理性,明確指數(shù)函數(shù)的定義域.
(2)能在基本性質(zhì)的指導(dǎo)下,用列表描點法畫出指數(shù)函數(shù)的圖象,能從數(shù)形兩方面認(rèn)識指數(shù)函數(shù)的性質(zhì).
(3)能利用指數(shù)函數(shù)的性質(zhì)比較某些冪形數(shù)的大小,會利用指數(shù)函數(shù)的圖象畫出形如
的圖象.
2.通過對指數(shù)函數(shù)的概念圖象性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析歸納的能力,進(jìn)一步體會數(shù)形結(jié)合的思想方法.
3.通過對指數(shù)函數(shù)的研究,讓學(xué)生認(rèn)識到數(shù)學(xué)的應(yīng)用價值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.使學(xué)生善于從現(xiàn)實生活中數(shù)學(xué)的發(fā)現(xiàn)問題,解決問題.
高一數(shù)學(xué)指數(shù)函數(shù)教案:教學(xué)建議
高一數(shù)學(xué)指數(shù)函數(shù)教案:教材分析
(1)指數(shù)函數(shù)是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進(jìn)行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應(yīng)用,也是今后學(xué)習(xí)對數(shù)函數(shù)的基礎(chǔ),同時在生活及生產(chǎn)實際中有著廣泛的應(yīng)用,所以指數(shù)函數(shù)應(yīng)重點研究.
(2)本節(jié)的教學(xué)重點是在理解指數(shù)函數(shù)定義的基礎(chǔ)上掌握指數(shù)函數(shù)的圖象和性質(zhì).難點是對底數(shù)
在
和
時,函數(shù)值變化情況的區(qū)分.
(3)指數(shù)函數(shù)是學(xué)生完全陌生的一類函數(shù),對于這樣的函數(shù)應(yīng)怎樣進(jìn)行較為系統(tǒng)的理論研究是學(xué)生面臨的重要問題,所以從指數(shù)函數(shù)的研究過程中得到相應(yīng)的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學(xué)中要特別讓學(xué)生去體會研究的方法,以便能將其遷移到其他函數(shù)的研究.
高一數(shù)學(xué)指數(shù)函數(shù)教案:教法建議
(1)關(guān)于指數(shù)函數(shù)的定義按照課本上說法它是一種形式定義即解析式的特征必須是
的樣子,不能有一點差異,諸如
,
等都不是指數(shù)函數(shù).
(2)對底數(shù)
的限制條件的理解與認(rèn)識也是認(rèn)識指數(shù)函數(shù)的重要內(nèi)容.如果有可能盡量讓學(xué)生自己去研究對底數(shù),指數(shù)都有什么限制要求,教師再給予補(bǔ)充或用具體例子加以說明,因為對這個條件的認(rèn)識不僅關(guān)系到對指數(shù)函數(shù)的認(rèn)識及性質(zhì)的分類討論,還關(guān)系到后面學(xué)習(xí)對數(shù)函數(shù)中底數(shù)的認(rèn)識,所以一定要真正了解它的由來.
關(guān)于指數(shù)函數(shù)圖象的繪制,雖然是用列表描點法,但在具體教學(xué)中應(yīng)避免描點前的盲目列表計算,也應(yīng)避免盲目的連點成線,要把表列在關(guān)鍵之處,要把點連在恰當(dāng)之處,所以應(yīng)在列表描點前先把函數(shù)的性質(zhì)作一些簡單的討論,取得對要畫圖象的存在范圍,大致特征,變化趨勢的大概認(rèn)識后,以此為指導(dǎo)再列表計算,描點得圖象.
高一函數(shù)課件【篇6】
說教學(xué)目標(biāo)
熟練地掌握二次函數(shù)的最值及其求法。
說教學(xué)重點
二次函數(shù)的的最值及其求法。
說教學(xué)難點
二次函數(shù)的最值及其求法。
說教學(xué)過程
一、引入
二次函數(shù)的最值:
二、例題分析:
例1:求二次函數(shù)的最大值以及取得最大值時的值。
變題1:
變題2:求函數(shù)的最大值。
變題3:求函數(shù)的最大值。
例2:已知的最大值為3,最小值為2,求的取值范圍。
例3:若,是二次方程的兩個實數(shù)根,求的最小值。
三、隨堂練習(xí):
1、若函數(shù)在上有最小值,最大值2,若,則=________,=________。
2、已知,是關(guān)于的一元二次方程的兩實數(shù)根,則的最小值是()
A、0 B、1 C、-1 D、2
3、求函數(shù)在區(qū)間上的最大值。
四、回顧小結(jié)
本節(jié)課了以下內(nèi)容:
1、二次函數(shù)的的最值及其求法。
課后作業(yè)
班級:()班姓名__________
一、基礎(chǔ)題:
1、函數(shù)
A、有最大值6 B、有最小值6 C、有最大值10 D、有最大值2
2、函數(shù)的最大值是4,且當(dāng)=2時,=5,則=______,=_______。
二、提高題:
3、試求關(guān)于的函數(shù)在上的最大值,高三。
4、已知函數(shù)當(dāng)時,取最大值為2,求實數(shù)的值。
5、已知是方程的兩實根,求的最大值和最小值。
三、題:
已知函數(shù),其中,求該函數(shù)的最大值與最小值,并求出函數(shù)取最大值和最小值時所對應(yīng)的自變量的值。
高一函數(shù)課件【篇7】
一、學(xué)習(xí)目標(biāo)與自我評估
1掌握利用單位圓的幾何方法作函數(shù)的圖象
2結(jié)合的圖象及函數(shù)周期性的定義了解三角函數(shù)的周期性,及最小正周期
3會用代數(shù)方法求等函數(shù)的周期
4理解周期性的幾何意義
二、學(xué)習(xí)重點與難點
“周期函數(shù)的概念”,周期的求解。
三、學(xué)法指導(dǎo)
1、是周期函數(shù)是指對定義域中所有都有
,即應(yīng)是恒等式。
2、周期函數(shù)一定會有周期,但不一定存在最小正周期。
四、學(xué)習(xí)活動與意義建構(gòu)
五、重點與難點探究
例1、若鐘擺的高度與時間之間的函數(shù)關(guān)系如圖所示
(1)求該函數(shù)的周期;
(2)求時鐘擺的高度。
例2、求下列函數(shù)的周期。
(1)(2)
總結(jié):(1)函數(shù)(其中均為常數(shù),且
的周期T=。
(2)函數(shù)(其中均為常數(shù),且
的周期T=。
例3、求證:的周期為。
例4、(1)研究和函數(shù)的圖象,分析其周期性。
(2)求證:的周期為(其中均為常數(shù),
且
總結(jié):函數(shù)(其中均為常數(shù),且
的周期T=。
例5、(1)求的周期。
(2)已知滿足,求證:是周期函數(shù)
課后思考:能否利用單位圓作函數(shù)的圖象。
六、作業(yè):
七、自主體驗與運(yùn)用
1、函數(shù)的周期為()
A、B、C、D、
2、函數(shù)的最小正周期是()
A、B、C、D、
3、函數(shù)的最小正周期是()
A、B、C、D、
4、函數(shù)的周期是()
A、B、C、D、
5、設(shè)是定義域為R,最小正周期為的函數(shù),
若,則的值等于()
A、1B、C、0D、
6、函數(shù)的最小正周期是,則
7、已知函數(shù)的最小正周期不大于2,則正整數(shù)
的最小值是
8、求函數(shù)的最小正周期為T,且,則正整數(shù)
的值是
9、已知函數(shù)是周期為6的奇函數(shù),且則
10、若函數(shù),則
11、用周期的定義分析的周期。
12、已知函數(shù),如果使的周期在內(nèi),求
正整數(shù)的值
13、一機(jī)械振動中,某質(zhì)子離開平衡位置的位移與時間之間的
函數(shù)關(guān)系如圖所示:
(1)求該函數(shù)的周期;
(2)求時,該質(zhì)點離開平衡位置的位移。
14、已知是定義在R上的函數(shù),且對任意有
成立,
(1)證明:是周期函數(shù);
(2)若求的值。
高一函數(shù)課件【篇8】
函數(shù)思想在解題中的應(yīng)用主要表現(xiàn)在兩個方面:一是借助有關(guān)初等函數(shù)的性質(zhì),解有關(guān)求值、解(證)不等式、解方程以及討論參數(shù)的取值范圍等問題:二是在問題的研究中,通過建立函數(shù)關(guān)系式或構(gòu)造中間函數(shù),把所研究的問題轉(zhuǎn)化為討論函數(shù)的有關(guān)性質(zhì),達(dá)到化難為易,化繁為簡的目的。函數(shù)與方程的思想是中學(xué)數(shù)學(xué)的基本思想,也是歷年高考的重點。
1.函數(shù)的思想,是用運(yùn)動和變化的觀點,分析和研究數(shù)學(xué)中的數(shù)量關(guān)系,建立函數(shù)關(guān)系或構(gòu)造函數(shù),運(yùn)用函數(shù)的圖像和性質(zhì)去分析問題、轉(zhuǎn)化問題,從而使問題獲得解決。
2.方程的思想,就是分析數(shù)學(xué)問題中變量間的等量關(guān)系,建立方程或方程組,或者構(gòu)造方程,通過解方程或方程組,或者運(yùn)用方程的性質(zhì)去分析、轉(zhuǎn)化問題,使問題獲得解決。方程思想是動中求靜,研究運(yùn)動中的等量關(guān)系;
3.函數(shù)方程思想的幾種重要形式
(1)函數(shù)和方程是密切相關(guān)的,對于函數(shù)y=f(x),當(dāng)y=0時,就轉(zhuǎn)化為方程f(x)=0,也可以把函數(shù)式y(tǒng)=f(x)看做二元方程y-f(x)=0。
(2)函數(shù)與不等式也可以相互轉(zhuǎn)化,對于函數(shù)y=f(x),當(dāng)y>0時,就轉(zhuǎn)化為不等式f(x)>0,借助于函數(shù)圖像與性質(zhì)解決有關(guān)問題,而研究函數(shù)的性質(zhì),也離不開解不等式;
(3)數(shù)列的通項或前n項和是自變量為正整數(shù)的函數(shù),用函數(shù)的觀點處理數(shù)列問題十分重要;
(4)函數(shù)f(x)=(1+x)^n(n∈N*)與二項式定理是密切相關(guān)的,利用這個函數(shù)用賦值法和比較系數(shù)法可以解決很多二項式定理的問題;
(5)解析幾何中的許多問題,例如直線和二次曲線的位置關(guān)系問題,需要通過解二元方程組才能解決,涉及到二次方程與二次函數(shù)的有關(guān)理論;
(6)立體幾何中有關(guān)線段、角、面積、體積的計算,經(jīng)常需要運(yùn)用布列方程或建立函數(shù)表達(dá)式的方法加以解決。
高一函數(shù)課件【篇9】
(一)通過具體函數(shù),讓學(xué)生經(jīng)歷奇函數(shù)、偶函數(shù)定義的討論,體驗數(shù)學(xué)概念的建立過程,培養(yǎng)其抽象概括能力.
(二)理解、掌握函數(shù)奇偶性的定義,奇函數(shù)和偶函數(shù)圖像的特征,并能初步應(yīng)用定義判斷一些簡單函數(shù)的奇偶性.
(三)在經(jīng)歷概念形成的過程中,培養(yǎng)學(xué)生歸納、抽象概括能力,體驗數(shù)學(xué)既是抽象的又是具體的.
這節(jié)內(nèi)容學(xué)生在初中雖沒學(xué)過,但已經(jīng)學(xué)習(xí)過具有奇偶性的具體的函數(shù):正比例函數(shù)y=kx,反比例函數(shù),(k≠0),二次函數(shù)y=ax■,(a≠0),故可在此基礎(chǔ)上,引入奇、偶函數(shù)的概念,便于學(xué)生理解.在引入概念時始終結(jié)合具體函數(shù)的圖像,增強(qiáng)直觀性,這樣更符合學(xué)生的認(rèn)知規(guī)律,同時為闡述奇、偶函數(shù)的幾何特征埋下了伏筆.對于概念可從代數(shù)特征與幾何特征兩個角度去分析,讓學(xué)生理解:奇函數(shù)、偶函數(shù)的定義域是關(guān)于原點對稱的非空數(shù)集;對于有定義域奇函數(shù)y=f(x),一定有f(0)=0;既是奇函數(shù),又是偶函數(shù)的函數(shù)有f(x)=0,x∈R.在此基礎(chǔ)上,讓學(xué)生了解:奇函數(shù)、偶函數(shù)的矛盾概念——非奇非偶函數(shù).關(guān)于單調(diào)性與奇偶性關(guān)系,引導(dǎo)學(xué)生拓展延伸,可以取得理想的效果.
1.觀察如下兩圖(圖略),思考并討論以下問題:
(1)這兩個函數(shù)圖像有什么共同特征?
(2)相應(yīng)的兩個函數(shù)值對應(yīng)表是如何體現(xiàn)這些特征的?
可以看到兩個函數(shù)的圖像都關(guān)于y軸對稱.從函數(shù)值對應(yīng)表可以看到,當(dāng)自變量x取一對相反數(shù)時,相應(yīng)的兩個函數(shù)值相同.
2.觀察函數(shù)f(x)=x和f(x)=的.圖像,并完成下面的兩個函數(shù)值對應(yīng)表,然后說出這兩個函數(shù)有什么共同特征.
可以看到兩個函數(shù)的圖像都關(guān)于原點對稱.函數(shù)圖像的這個特征,反映在解析式上就是:當(dāng)自變量x取一對相反數(shù)時,相應(yīng)的函數(shù)值f(x)也是一對相反數(shù),即對任一x∈R都有f(-x)=-f(x).此時,稱函數(shù)y=f(x)為奇函數(shù).
由上面的分析討論引導(dǎo)學(xué)生建立奇函數(shù)、偶函數(shù)的定義.
1.奇、偶函數(shù)的定義.
如果對于函數(shù)f(x)的定義域內(nèi)任意一個x,都有f(-x)=-f(x),那么函數(shù)f(x)就叫做奇函數(shù).如果對于函數(shù)f(x)的定義域內(nèi)任意一個x,都有f(-x)=f(x),那么函數(shù)f(x)就叫做偶函數(shù).
2.提出問題,組織學(xué)生討論.
(1)如果定義在R上的函數(shù)f(x)滿足f(-2)=f(2),那么f(x)是偶函數(shù)嗎?
(2)奇、偶函數(shù)的圖像有什么特征?
(3)奇、偶函數(shù)的定義域有什么特征?
[例題]
1.判斷下列函數(shù)的奇偶性.
注:①規(guī)范解題格式;②對于(5)要注意定義域x∈(-1,1].
2.已知:定義在R上的函數(shù)f(x)是奇函數(shù),當(dāng)x>0時,f(x)=x(1+x),求f(x)的表達(dá)式.
解:(1)任取x0,∴f(-x)=-x(1-x),而f(x)是奇函數(shù),∴f(-x)=-f(x),∴f(x)=x(1-x).
(2)當(dāng)x=0時,f(-0)=-f(0),∴f(0)=-f(0),故f(0)=0.
3.已知:函數(shù)f(x)是偶函數(shù),且在(-∞,0)上是減函數(shù),判斷f(x)在(0,+∞)內(nèi)是增函數(shù),還是減函數(shù),并證明你的結(jié)論.
解:先結(jié)合圖像特征:偶函數(shù)的圖像關(guān)于y軸對稱,猜想f(x)在(0,+∞)內(nèi)是增函數(shù),證明如下:
∴f(x)在(0,+∞)上是增函數(shù).
思考:奇函數(shù)或偶函數(shù)在關(guān)于原點對稱的兩個區(qū)間上的單調(diào)性有何關(guān)系?
[練習(xí)]
1.已知:函數(shù)f(x)是奇函數(shù),在[a,b]上是增函數(shù)(b>a>0),問f(x)在[-b,-a]上的單調(diào)性如何.
4.設(shè)f(x),g(x)分別是R上的奇函數(shù)和偶函數(shù),并且f(x)+g(x)=x(x+1),求f(x),g(x)的解析式.
1.有既是奇函數(shù),又是偶函數(shù)的函數(shù)嗎?若有,有多少個?
2.設(shè)f(x),g(x)分別是R上的奇函數(shù),偶函數(shù),試研究:
(1)F(x)=f(x)·g(x)的奇偶性.
(2)G(x)=|f(x)|+g(x)的奇偶性.
3.已知a∈R,f(x)=a-,試確定a的值,使f(x)是奇函數(shù).
4.一個定義在R上的函數(shù),是否都可以表示為一個奇函數(shù)與一個偶函數(shù)的和的形式?
高一函數(shù)課件【篇10】
初中數(shù)學(xué)知識少、淺、難度容易、知識面笮。高中數(shù)學(xué)知識廣泛,將對初中的數(shù)學(xué)知識推廣和引伸,也是對初中數(shù)學(xué)知識的完善。如:初中學(xué)習(xí)的角的概念只是“0—1800”范圍內(nèi)的,但實際當(dāng)中也有7200和“—300”等角,為此,高中將把角的概念推廣到任意角,可表示包括正、負(fù)在內(nèi)的所有大小角。又如:高中要學(xué)習(xí)《立體幾何》,將在三維空間中求一些幾何實體的體積和表面積;還將學(xué)習(xí)“排列組合”知識,以便解決排隊方法種數(shù)等問題。如:①三個人排成一行,有幾種排隊方法,( =6種);②四人進(jìn)行乒乓球雙打比賽,有幾種比賽場次?(答: =3種)高中將學(xué)習(xí)統(tǒng)計這些排列的數(shù)學(xué)方法。初中中對一個負(fù)數(shù)開平方無意義,但在高中規(guī)定了i2=-1,就使-1的平方根為±i.即可把數(shù)的概念進(jìn)行推廣,使數(shù)的概念擴(kuò)大到復(fù)數(shù)范圍等。這些知識同學(xué)們在以后的學(xué)習(xí)中將逐漸學(xué)習(xí)到。
(1)初中課堂教學(xué)量小、知識簡單,通過教師課堂教慢的速度,爭取讓全面同學(xué)理解知識點和解題方法,課后老師布置作業(yè),然后通過大量的課堂內(nèi)、外練習(xí)、課外指導(dǎo)達(dá)到對知識的反反復(fù)復(fù)理解,直到學(xué)生掌握。而高中數(shù)學(xué)的學(xué)習(xí)隨著課程開設(shè)多(有九們課學(xué)生同時學(xué)習(xí)),每天至少上六節(jié)課,自習(xí)時間三節(jié)課,這樣各科學(xué)習(xí)時間將大大減少,而教師布置課外題量相對初中減少,這樣集中數(shù)學(xué)學(xué)習(xí)的時間相對比初中少,數(shù)學(xué)教師將相初中那樣監(jiān)督每個學(xué)生的作業(yè)和課外練習(xí),就能達(dá)到相初中那樣把知識讓每個學(xué)生掌握后再進(jìn)行新課。
初中學(xué)生自學(xué)那能力低,大凡考試中所用的解題方法和數(shù)學(xué)思想,在初中教師基本上已反復(fù)訓(xùn)練,老師把學(xué)生要學(xué)生自己高度深刻理解的問題,都集中表現(xiàn)在他的耐心的講解和大量的訓(xùn)練中,而且學(xué)生的聽課只需要熟記結(jié)論就可以做題(不全是),學(xué)生不需自學(xué)。但高中的知識面廣,知識要全部要教師訓(xùn)練完高考中的習(xí)題類型是不可能的,只有通過較少的、較典型的一兩道例題講解去融會貫通這一類型習(xí)題,如果不自學(xué)、不靠大量的閱讀理解,將會使學(xué)生失去一類型習(xí)題的解法。另外,科學(xué)在不斷的發(fā)展,考試在不斷的改革,高考也隨著全面的改革不斷的深入,數(shù)學(xué)題型的開發(fā)在不斷的多樣化,近年來提出了應(yīng)用型題、探索型題和開放型題,只有靠學(xué)生的自學(xué)去深刻理解和創(chuàng)新才能適應(yīng)現(xiàn)代科學(xué)的發(fā)展。
其實,自學(xué)能力的提高也是一個人生活的需要,他從一個方面也代表了一個人的素養(yǎng),人的一生只有18---24年時間是有導(dǎo)師的學(xué)習(xí),其后半生,最精彩的人生是人在一生學(xué)習(xí),靠的自學(xué)最終達(dá)到了自強(qiáng)。
初中學(xué)生模仿做題,他們模仿老師思維推理教多,而高中模仿做題、思維學(xué)生有,但隨著知識的難度大和知識面廣泛,學(xué)生不能全部模仿,即就是學(xué)生全部模仿訓(xùn)練做題,也不能開拓學(xué)生自我思維能力,學(xué)生的數(shù)學(xué)成績也只能是一般程度?,F(xiàn)在高考數(shù)學(xué)考察,旨在考察學(xué)生能力,避免學(xué)生高分低能,避免定勢思維,提倡創(chuàng)新思維和培養(yǎng)學(xué)生的創(chuàng)造能力培養(yǎng)。初中學(xué)生大量地模仿使學(xué)生帶來了不利的思維定勢,對高中學(xué)生帶來了保守的、僵化的思想,封閉了學(xué)生的豐富反對創(chuàng)造精神。如學(xué)生在解決:比較a與2a的大小時要不就錯、要不就答不全面。大多數(shù)學(xué)生不會分類討論。
初中數(shù)學(xué)中,題目、已知和結(jié)論用常數(shù)給出的較多,一般地,答案是常數(shù)和定量。學(xué)生在分析問題時,大多是按定量來分析問題,這樣的思維和問題的解決過程,只能片面地、局限地解決問題,在高中數(shù)學(xué)學(xué)習(xí)中我們將會大量地、廣泛地應(yīng)用代數(shù)的可變性去探索問題的普遍性和特殊性。如:求解一元二次方程時我們采用對方程ax2+bx+c=0 (a≠0)的求解,討論它是否有根和有根時的所有根的情形,使學(xué)生很快的掌握了對所有一元二次方程的解法。另外,在高中學(xué)習(xí)中我們還會通過對變量的分析,探索出分析、解決問題的思路和解題所用的數(shù)學(xué)思想。
初中學(xué)生由于學(xué)習(xí)數(shù)學(xué)知識的范圍小,知識層次低,知識面笮,對實際問題的思維受到了局限,就幾何來說,我們都接觸的是現(xiàn)實生活中三維空間,但初中只學(xué)了平面幾何,那么就不能對三維空間進(jìn)行嚴(yán)格的邏輯思維和判斷。代數(shù)中數(shù)的范圍只限定在實數(shù)中思維,就不能深刻的解決方程根的類型等。高中數(shù)學(xué)知識的多元化和廣泛性,將會使學(xué)生全面、細(xì)致、深刻、嚴(yán)密的分析和解決問題。也將培養(yǎng)學(xué)生高素質(zhì)思維。提高學(xué)生的思維遞進(jìn)性。
高一函數(shù)課件【篇11】
同一只封建宗法制度的黑手,伸出了兩條繩索,捆住了婦女的脖子,朝著相反的方向緊勒,要把勞動婦女置于死地而后快。祥林嫂當(dāng)時就處在這種極端悲慘的境地中:
族權(quán)迫使她寡而再嫁,夫權(quán)又視此為奇恥大辱,使她忍辱含冤,永遠(yuǎn)生活在恥辱之中。祥林嫂以后的悲劇,都是由此而引起的。
那么,祥林嫂是如何對待新迫害的呢?
3.高潮:
①祥林嫂為什么又一次來到魯四老爺家?
②有人認(rèn)為,喪夫失子有偶然性,這種看法對不對?
喪夫失子似乎有偶然性,然而隱藏在偶然性背后的,是那起決定作用的必然性。祥林嫂的丈夫死于舊社會中蔓延著的傳染病傷寒,阿毛死于祥林嫂的貧困、勞碌。(若不是忙著打柴摘茶養(yǎng)蠶,能讓年僅兩三歲的孩子去剝豆嗎?)因此,實質(zhì)上,是罪惡的政權(quán)奪走了祥林嫂的丈夫和兒子的生命,使她陷于嫁而再寡的境地。作者開始把批判的筆觸由封建夫權(quán)、族權(quán)擴(kuò)展到封建政權(quán)。
按照封建宗法觀念,婦女出嫁從夫,夫死從子,一旦喪夫失子,則連在家庭中生存的權(quán)利都被剝奪了。因此,大伯來收屋使祥林嫂走投無路,只好再一次來到魯家。她到魯家后,又遭受了更大的打擊。
③在魯四老爺,人們對待祥林嫂這個嫁而再寡的不幸女人態(tài)度如何?
A.魯四老爺?shù)膽B(tài)度:
魯四老爺站在頑固維護(hù)封建宗法制度的立場上,從精神上殘酷地虐殺她。他暗暗地告誡四嬸的那段話,就是置祥林嫂于死地而又不露一絲血痕的軟刀子。(通過四嬸先后喊出三句你放著罷,殺人不見血地葬送了祥林嫂的性命。)
B.人們的態(tài)度:
人們叫她的聲調(diào)和先前很不同。
魯迅用他那犀利的筆鋒,從廣闊的領(lǐng)域里揭示了封建社會黑暗的程度。
人們對祥林嫂的態(tài)度,使她感到痛苦與迷惑。她不時地向人們訴說著自己不幸的遭遇,她的精神卻慘遭蹂躪。而柳媽的說鬼又給祥林嫂新的打擊。
C.柳媽說鬼:
④祥林嫂是如何對待這如此沉重的打擊的?其結(jié)果如何?
為了爭得做人的權(quán)利,為了求得一線生存的希望,她在竭盡全力地反抗著:
她背著沉重的精神包袱,整日勞碌著,以便積夠十二元鷹洋,用捐門檻的方法去擺脫人們在陽世、陰世間給她設(shè)下的罪名,她忍受著咬嚙人心的嘲笑和侮辱,在無邊的寂寞和悲哀中,默默干了一年,這是何等堅韌的反抗精神啊!
而反抗的結(jié)果,出乎柳媽、祥林嫂的預(yù)想,這血淋淋的事實深刻地說明了:祥林嫂是無法贖罪的,祥林嫂陷入了求生不得,欲死不能的境地。
4.結(jié)局:
當(dāng)祥林嫂被折磨得像木偶人,喪失了當(dāng)牛做馬的條件后,魯四老爺就一腳把她踢出門外,使她終于成了只有那眼珠間或一輪,還可以表示她是一個活物的僵尸。即使這樣,她在臨死前,還向我提出了三個問題:
A.一個人死了之后,究竟有沒有魂靈的?
B.那么,也就有地獄了?
C.那么,死掉的一家的人,都能見面的?
這是對魂靈的有無表示疑惑。
她希望人死后有靈魂,因為她想看見自己的兒子;她害怕人死后有靈魂,因為她害怕在陰間被鋸成兩半。這種疑惑是她對自己命運(yùn)的疑惑,但也正是這種疑惑,這種無法解脫的矛盾,使她在臨死前受到了極大的精神折磨,最后,悲慘地死去。
從祥林嫂一生的悲慘遭遇中,可以清楚地看到,封建的宗法制度正是用政權(quán)、族權(quán)、神權(quán)、夫權(quán)這四條繩索把祥林嫂活活地勒死的。
祥林嫂一生的悲慘遭遇,正是舊中國千百萬勞動婦女悲慘遭遇的真實寫照。作者正是通過塑造祥林嫂這一典型人物,對吃人的封建制度和封建禮教進(jìn)行深刻的揭露和有力地抨擊的。
小結(jié):
祥林嫂是生活在舊中國的一個被踐踏、被愚弄、被迫害、被鄙視的勤勞、善良、質(zhì)樸、頑強(qiáng)的勞動婦女的典型形象。
總之,祥林嫂的悲劇是一個社會悲劇,造成這一悲劇的根源是封建禮教對中國勞動婦女的摧殘和封建思想對當(dāng)時中國社會的根深蒂固的統(tǒng)治。
第三課時
本課時重點分析魯四老爺、我和柳媽的形象。
一、檢查作業(yè):
二、分析魯四老爺:
魯四老爺是當(dāng)時農(nóng)村中地主階級的代表人物,是資產(chǎn)階級民主革命時期地主階級知識分子的典型形象。他政治上迂腐、保守,頑固地維護(hù)舊有的封建制度,反對一切改革與革命。他思想上反動,尊崇理學(xué)和孔孟之道。自覺維護(hù)封建制度和封建禮教。他是造成祥林嫂悲劇的一個重要人物。
1.作者是通過什么手法來刻畫這個人物的呢?
①間接描寫:
通過魯四老爺?shù)臅筷愒O(shè)的描寫,點明了魯四老爺?shù)纳矸郑ǖ刂麟A級、封建理學(xué)的衛(wèi)道士),揭露了他的丑惡本質(zhì),從而揭示出他成為殺害祥林嫂的劊子手的深刻的階級根源和思想根源。
②直接描寫:
A.行動描寫:
這表現(xiàn)在祥林嫂被搶走的兩件事上:
當(dāng)婆婆一邊搶人一邊來領(lǐng)工錢時,魯四老爺把祥林嫂一文還沒有的工錢全交給了婆婆。
與此相對照的是對被壓迫的寡婦祥林嫂的冷酷無情。
祥林嫂曾那樣辛勤地為魯家勞動過,可當(dāng)她遭到惡運(yùn)時,魯家卻無動于衷,連祥林嫂走沒走、怎么走的,都毫不過問,只是到了正午,四嬸肚子餓了,這才想起了祥林嫂淘米時拿走米和淘籮,于是傾巢出動分頭尋淘籮;連平時擺派頭、端架子的魯四老爺都踱出門外,直到河邊,等看見米和淘籮平平正正的放在岸上,旁邊還有一株菜時,這才放心。這場虛驚,入木三分地揭露了:在封建統(tǒng)治者的眼里,一個勞動婦女的命運(yùn)都不如一個淘籮、一點米、一株菜,魯四老爺冷酷殘忍的嘴臉躍然紙上。
B.語言描寫:
在祥林嫂的問題上,魯四老爺一共開過六次口,說了百十來個字,卻就把他反動、頑固、虛偽自私、陰險狠毒的性格特征,把他殺害祥林嫂的罪行,揭露得淋漓盡致。
a.祥林嫂被搶前:
b.祥林嫂被搶時:
c.當(dāng)他為尋淘籮,踱到河邊時:
d.緊接著,午飯之后,衛(wèi)婆子又來時:
e.對四嬸的暗暗告誡:
f.祥林嫂死后:
作為這六次開口背景的是魯四老爺虛偽寒暄后的大罵其新黨,它恰恰深刻地揭示了那六次開口的根源。
三、分析我這一形象:
小說中的我是一個具有進(jìn)步思想的小資產(chǎn)階級知識分子的形象。我有反封建的思想傾向,憎惡魯四老爺,同情祥林嫂。對祥林嫂提出的魂靈的有無的問題,之所以作了含糊的回答,有其善良的一面;同時也反映了我的軟弱和無能。
在小說的結(jié)構(gòu)上,我又起著線索的作用。祥林嫂一生的悲慘遭遇都是通過我的所見所聞來展現(xiàn)的。我是事件的見證人。
四、分析柳媽:
問:有人認(rèn)為柳媽是幫助魯四老爺殺害祥林嫂的兇手。你是怎樣來看待這一問題呢?
明確:柳媽和祥林嫂一樣都是舊社會的受害者。雖然她臉上已經(jīng)打皺,眼睛已經(jīng)干枯,可是在年節(jié)時還要給地主去幫工,可見,她也是一個受壓迫的勞動婦女。但是,由于她受封建迷信思想和封建禮教的毒害很深,相信天堂、地獄之類邪說和餓死事小,失節(jié)事大的理學(xué)信條,所以她對祥林嫂改嫁時頭上留下的傷疤,采取奚落的態(tài)度。至于她講陰司故事給祥林嫂聽,也完全出于善意,主觀愿望還是想為祥林嫂尋求贖罪的辦法,救她跳出苦海,并非要置祥林嫂于死地,只是結(jié)果適得其反。
她的主觀愿望和客觀效果的矛盾說明柳媽是以剝削階級統(tǒng)治人民的思想──封建禮教和封建迷信思想為指導(dǎo),來尋求解救祥林嫂的藥方的,這不但不會產(chǎn)生療效的效果,反而給自己的姐妹造成了難以支持的精神重壓,把祥林嫂推向更恐怖的深淵之中。
高一函數(shù)課件【篇12】
1.2解三角形應(yīng)用舉例第四課時
一、教學(xué)目標(biāo)
1、能夠運(yùn)用正弦定理、余弦定理等知識和方法進(jìn)一步解決有關(guān)三角形的問題,掌握三角形的面積公式的簡單推導(dǎo)和應(yīng)用
2、本節(jié)課補(bǔ)充了三角形新的面積公式,巧妙設(shè)疑,引導(dǎo)學(xué)生證明,同時總結(jié)出該公式的特點,循序漸進(jìn)地具體運(yùn)用于相關(guān)的題型。另外本節(jié)課的證明題體現(xiàn)了前面所學(xué)知識的生動運(yùn)用,教師要放手讓學(xué)生摸索,使學(xué)生在具體的論證中靈活把握正弦定理和余弦定理的特點,能不拘一格,一題多解。只要學(xué)生自行掌握了兩定理的特點,就能很快開闊思維,有利地進(jìn)一步突破難點。
3、讓學(xué)生進(jìn)一步鞏固所學(xué)的知識,加深對所學(xué)定理的理解,提高創(chuàng)新能力;進(jìn)一步培養(yǎng)學(xué)生研究和發(fā)現(xiàn)能力,讓學(xué)生在探究中體驗愉悅的成功體驗
二、教學(xué)重點、難點
重點:推導(dǎo)三角形的面積公式并解決簡單的相關(guān)題目
難點:利用正弦定理、余弦定理來求證簡單的證明題
三、教學(xué)過程
Ⅰ.課題導(dǎo)入
[創(chuàng)設(shè)情境]
師:以前我們就已經(jīng)接觸過了三角形的面積公式,今天我們來學(xué)習(xí)它的另一個表達(dá)公式。在
ABC中,邊BC、CA、AB上的高分別記為h、h、h,那么它們?nèi)绾斡靡阎吅徒潜硎荆?/p>
生:h=bsinC=csinBh=csinA=asinCh=asinB=bsinaA
師:根據(jù)以前學(xué)過的三角形面積公式S=ah,應(yīng)用以上求出的高的公式如h=bsinC代入,可以推導(dǎo)出下面的三角形面積公式,S=absinC,大家能推出其它的幾個公式嗎?
生:同理可得,S=bcsinA,S=acsinB
Ⅱ.講授新課
[范例講解]
例1、在ABC中,根據(jù)下列條件,求三角形的面積S(精確到0.1cm)
(1)已知a=14cm,c=24cm,B=150;
(2)已知B=60,C=45,b=4cm;
(3)已知三邊的長分別為a=3cm,b=4cm,c=6cm
分析:這是一道在不同已知條件下求三角形的面積的問題,與解三角形問題有密切的關(guān)系,我們可以應(yīng)用解三角形面積的知識,觀察已知什么,尚缺什么?求出需要的元素,就可以求出三角形的面積。
解:略
例2、如圖,在某市進(jìn)行城市環(huán)境建設(shè)中,要把一個三角形的區(qū)域改造成室內(nèi)公園,經(jīng)過測量得到這個三角形區(qū)域的三條邊長分別為68m,88m,127m,這個區(qū)域的面積是多少?(精確到0.1cm)?
思考:你能把這一實際問題化歸為一道數(shù)學(xué)題目嗎?
本題可轉(zhuǎn)化為已知三角形的三邊,求角的問題,再利用三角形的面積公式求解。
解:設(shè)a=68m,b=88m,c=127m,根據(jù)余弦定理的推論,
cosB==≈0.7532
sinB=0.6578應(yīng)用S=acsinB
S≈681270.6578≈2840.38(m)
答:這個區(qū)域的面積是2840.38m。
變式練習(xí)1:已知在ABC中,B=30,b=6,c=6,求a及ABC的面積S
提示:解有關(guān)已知兩邊和其中一邊對角的問題,注重分情況討論解的個數(shù)。
答案:a=6,S=9;a=12,S=18
例3、在ABC中,求證:
(1)
(2)++=2(bccosA+cacosB+abcosC)
分析:這是一道關(guān)于三角形邊角關(guān)系恒等式的證明問題,觀察式子左右兩邊的特點,用正弦定理來證明
證明:(1)根據(jù)正弦定理,可設(shè)
===k顯然k0,所以
左邊===右邊
(2)根據(jù)余弦定理的推論,
右邊=2(bc+ca+ab)
=(b+c-a)+(c+a-b)+(a+b-c)=a+b+c=左邊
變式練習(xí)2:判斷滿足sinC=條件的三角形形狀
提示:利用正弦定理或余弦定理,“化邊為角”或“化角為邊”(解略)直角三角形
Ⅲ.課堂練習(xí)課本第18頁練習(xí)第1、2、3題
Ⅳ.課時小結(jié)
利用正弦定理或余弦定理將已知條件轉(zhuǎn)化為只含邊的式子或只含角的三角函數(shù)式,然后化簡并考察邊或角的關(guān)系,從而確定三角形的形狀。特別是有些條件既可用正弦定理也可用余弦定理甚至可以兩者混用。
Ⅴ.課后作業(yè)
《習(xí)案》作業(yè)七