八年級數(shù)學上冊《勾股定理的應用》教學設計教案反思
發(fā)布時間:2022-03-03 八年級上冊數(shù)學教案小學 三年級數(shù)學教學設計 三年級數(shù)學教學設計案例現(xiàn)在向您介紹幼兒園教案《八年級數(shù)學上冊《勾股定理的應用》教學設計教案反思》
《八年級數(shù)學上冊《勾股定理的應用》教學設計教案反思》這是一篇八年級上冊數(shù)學教案,使用多媒體進行教學,使知識顯得形象直觀,充分發(fā)揮現(xiàn)代技術作用。
八年級數(shù)學上冊《勾股定理的應用》教學設計
【學習目標】
能運用勾股定理及直角三角形的判別條件解決簡單的實際問題.
【學習重點】
勾股定理及直角三角形的判別條件的運用.
【學習重點】
直角三角形模型的建立.
【學習過程】
一.課前復習
勾股定理及勾股定理逆定理的區(qū)別
二.新課學習
探究點一:螞蟻沿圓柱側面爬行的最短路徑問題
1.3如圖,有一個圓柱,它的高等于12cm,底面圓的周長是18cm.在圓柱下底面的A點有一只螞蟻,它想吃到上底面上與A點相對的B點處的食物,沿圓柱側面爬行的最短路程是多少?
思考:
1.利用學具,嘗試從A點到B點沿圓柱側面畫出幾條線路,你認為
這樣的線路有幾條?可分為幾類?
2.將右圖的圓柱側面剪開展開成一個長方形,B點在什么位置?從
A點到B點的最短路線是什么?你是如何畫的?
1.33.螞蟻從A點出發(fā),想吃到B點上的食物,它沿圓柱側面爬行的最短路程是多少?你是如何解答這個問題的?畫出圖形,寫出解答過程。
4.你是如何將這個實際問題轉化為數(shù)學問題的?
小結:
你是如何解決圓柱體側面上兩點之間的最短距離問題的?
探究點二:利用勾股定理逆定理如何判斷兩線垂直?
1.31.31.3李叔叔想要檢測雕塑底座正面的AD邊和BC邊是否分別垂直底邊AB,
但他隨身只帶了卷尺。(參看P13頁雕塑圖1-13)
(1)你能替他想辦法完成任務嗎?
1.31.3(2)李叔叔量得AD的長是30cm,AB的長是40cm,
BD長是50cm.AD邊垂直于AB邊嗎?你是如何解決這個問題的?
(3)小明隨身只有一個長度為20cm的刻度尺,他能有辦法檢驗AD邊是否垂直于AB邊嗎?BC邊與AB邊呢?
小結:通過本道例題的探索,判斷兩線垂直,你學會了什么方法?
探究點三:利用勾股定理的方程思想在實際問題中的應用
例圖1-14是一個滑梯示意圖,若將滑道AC水平放置,則剛好與AB一樣長.已知滑梯的高度CE=3m,CD=1m,試求滑道AC的長.
1.3
思考:
1.求滑道AC的長的問題可以轉化為什么數(shù)學問題?
2.你是如何解決這個問題的?寫出解答過程。
小結:
方程思想是勾股定理中的重要思想,勾股定理反應的直角三角形三邊的關系正是構建方程的基礎.
四.課堂小結:本節(jié)課你學到了什么?
三.新知應用
1.如圖,臺階A處的螞蟻要爬到B處搬運食物,它怎么走最近?并求出最近距離.
1.3
2.如圖,在水池的正中央有一根蘆葦,池底長10尺,它高出水而1尺,如果把這根蘆葦拉向水池一邊,它的頂端恰好到達池邊的水面則這根蘆葦?shù)拈L度是()
1.3
五.作業(yè)布置:習題1.41,3,4題
【反思】
一、教師我的體會:
勾股定理的應用教學反思范文
①、我根據(jù)學生實際情況認真?zhèn)湔n這節(jié)課,書本總共兩個例題,且兩個例題都很難,如果一節(jié)課就講這兩題難題,那一方面學生的學習效率會比較低,另一方面會使學生畏難情緒增加。所以,我簡化教材,使教材易于操作,讓學生易于學習,有利于學生學習新知識、接受新知識,降低學習難度。
把教材讀薄,
②、除了備教材外,還備學生。從教案及授課過程也可以看出,充分考慮到了學生的年齡特點:對新事物有好奇心,但對新知識的鉆研熱情又不夠高,這樣,造成教學難度較大,為了改變這一狀況,在處理教材時,把某些數(shù)學語言轉換成通俗文字來表達,把難度大的運用能力降低為難度稍細的理解能力,讓學生樂于面對奧妙而又有一定深度的數(shù)學,樂于學習數(shù)學。
③、新課選用的例子、練習,都是經(jīng)過精心挑選的,運用性強,貼近生活,與生活實際緊密聯(lián)系,既達到學習、鞏固新知識的目的,同時,又充分展現(xiàn)出數(shù)學教學的重大特征:數(shù)學源于生活實際,又服務于生活實際。勾股定理源于生活,但同時它又能極大的為生活服務。
④、使用多媒體進行教學,使知識顯得形象直觀,充分發(fā)揮現(xiàn)代技術作用。
二、學生體會:
課前,我們也去查閱了一些資料,關于勾股定理的證明以及有關的一些應用,通過這節(jié)課,真真發(fā)現(xiàn)勾股定理真真來源于生活,我們的幾何圖形和幾何計算對于勾股定理來說非常廣泛,而且以后更要用好它。對于勾股定理都應用時,我覺得關鍵是找到相關的三角形,并且分清直角邊或斜邊,靈活機智地進行計算和一些推理。另外與同學間在數(shù)學課上有自主學習的機會,有相互之間的討論、爭辯等協(xié)作的機會,在合作學習的過程中共同提高我覺得都是難得的機會。鍛煉了能力,提高了思維品質,并且勾股定理的應用中我覺得圖形很美,古代的數(shù)學家已經(jīng)有了很好的研究并作出了很大的'貢獻,現(xiàn)代的藝術家們也在各方面用到很多,同時在課堂中漸漸地培養(yǎng)了我們的數(shù)學興趣和一定的思維能力。
不過課堂上老師在最后一題的畫圖中能放一放,讓我們有時間去思考怎么畫,那會更好些,自然思維也得到了發(fā)展。課上老師鼓勵我們嘗試不完善的甚至錯誤的意見,大膽發(fā)表自己的見解,體現(xiàn)了我們是學習的主人。數(shù)學課堂里充滿了智慧。
yJS21.com更多精選幼兒園教案閱讀
八年級數(shù)學上冊14.2勾股定理的應用教學設計華東師大版反思
現(xiàn)在向您介紹幼兒園教案《八年級數(shù)學上冊14.2勾股定理的應用教學設計華東師大版反思》
《八年級數(shù)學上冊14.2勾股定理的應用教學設計華東師大版反思》這是一篇八年級上冊數(shù)學教案,本節(jié)課是人教版數(shù)學八年級下冊第十七章第一節(jié)第二課時的內(nèi)容,是學生在學習了三角形的有關知識,了解了直角三角形的概念,掌握了直角三角形的性質和一個三角形是直角三角形的條件的基礎上學習勾股定理,加深對勾股定理的理解,提高學生對數(shù)形結合的應用與理解。
八年級數(shù)學上冊14.2勾股定理的應用教學設計華東師大版
14.2勾股定理的應用(2)
教學目標:
1.會用勾股定理解決較綜合的問題.
2.樹立數(shù)形結合的思想.
教學重點
勾股定理的綜合應用.
教學難點
勾股定理的綜合應用.
教學過程
一、課前預習
1.等腰三角形底邊上的高為8,周長為32,則該等腰三角形面積為_______.
解:設底邊長為2x,則腰長為16-x,有(16-x)2=82+x2,x=6,
∴S=×2x×8=48.
2.如圖,正方形網(wǎng)格中的每個小正方形邊長都是1,每個小格的頂點叫格點,以格點為頂點分別按下列要求畫三角形:
(1)使三角形的三邊長分別為3.、(在圖甲中畫一個即可);
(2)使三角形為鈍角三角形且面積為4(在圖乙中畫一個即可).
二、合作探究
問題探究1:邊長為無理數(shù)
例1:如圖,在3×3的正方形網(wǎng)格中,每個小正方形的邊長都為1,請在給定網(wǎng)格中按下列要求畫出圖形:
(1)畫出所有從點A出發(fā),另一端點在格點(即小正方形的頂點)上,且長度為的線段;
(2)畫出所有的以(1)中所畫線段為腰的等腰三角形.
教師分析只需利用勾股定理看哪一個矩形的對角線滿足要求.
解:(1)如下圖中,AB.AC.AE.AD的長度均為.
(2)如下圖中△ABC.△ABE.△ABD.△ACE.△ACD.△AED就是所要畫的等腰三角形.
問題探究2:不規(guī)則圖形面積的求法
例2:如圖,已知CD=6m,AD=8m,∠ADC=90°,BC=24m,AB=26m.求圖中陰影部分的面積.
解:在Rt△ADC中,
AC=AD+CD=6+8=100(勾股定理),
∴AC=10m.
∵AC+BC=10+24=676=AB,
∴△ACB為直角三角形(如果三角形的三邊長A.B.c有關系:a+b=c,那么這個三角形是直角三角形),
∴S陰影部分=S△ACB-S△ACD
=×10×24-×6×8=96(m).
三、課堂鞏固
(1)四年一度的國際數(shù)學家大會于2002年8月20日在北京召開.大會會標如圖甲,它是由四個相同的直角三角形與中間的小正方形拼成的一個大正方形.若大正方形的面積為13,每個直角三角形兩直角邊的和是5,求中間小正方形的面積;
(2)現(xiàn)有一張長為6.5cm,寬為2cm的紙片,如圖乙,請你將它分割成6塊,再拼合成一個正方形.
解:(1)設較長直角邊為b,較短直角邊為a,則小正方形的邊長為:a-b.
而斜邊即為大正方形邊長,且其平方為13,即a2+b2=13①,
由a+b=5,兩邊平方,得a2+b2+2ab=25.
將①代入,得2ab=12.
所以(b-a)2=b2+a2-2ab=13-12=1.
即小正方形面積為1;
(2)由(2)題中矩形面積為6.5×2=13與(1)題正方形面積相等,仿照甲圖可得,算出其中a=2,b=3,如圖.
四、課堂小結
1.我們學習了什么?
2.還有什么疑惑嗎?
五、課后作業(yè)
習題
14.2勾股定理的應用(1)
教學目標
1.知識目標
(1)了解勾股定理的作用是“在直角三角形中已知兩邊求第三邊”;而勾股逆定理的作用是由“三角形邊的關系得出三角形是直角三角形”.
(2)掌握勾股定理及其逆定理,運用勾股定理進行簡單的長度計算.
2.過程性目標
(1)讓學生親自經(jīng)歷卷折圓柱.
(2)讓學生在親自經(jīng)歷卷折圓柱中認識到圓柱的側面展開圖是一個長方形(矩形).
(3)讓學生通過觀察、實驗、歸納等手段,培養(yǎng)其將“實際問題轉化為應用勾股定理解直角三角形的數(shù)學問題”的能力.
教學重點、難點
教學重點:勾股定理的應用.
教學難點:將實際問題轉化為“應用勾股定理及其逆定理解直角三角形的數(shù)學問題”.
原因分析:
1.例1中學生因為其空間想象能力有限,很難想到螞蟻爬行的路徑是什么,為此通過制作圓柱模型解決難題.
2.例2中學生難找到要計算的具體線段.通過多媒體演示來啟發(fā)學生的思維.
教學突破點:突出重點的教學策略:
通過回憶復習、例題、小結等,突出重點“勾股定理及其逆定理的應用”,
教學過程
教學過程設計意圖
復
習
部
分
復習練習,引出課題
例1:在Rt△ABC中,兩條直角邊分別為3,4,求斜邊c的值?
【答案】c=5.
例2:在Rt△ABC中,一直角邊分別為5,斜邊為13,求另一直角邊的長是多少?
【答案】另一直角邊的長是12.通過簡單計算題的練習,幫助學生回顧勾股定理,加深定理的記憶理解,為新課作好準備
小結:在上面兩個小題中,我們應用了勾股定理:
在Rt△ABC中,若∠C=90°,則c2=a2+b2.加深定理的記憶理解,突出定理的作用.
新
課
講
解
勾股定理能解決直角三角形的許多問題,因此在現(xiàn)實生活和數(shù)學中有著廣泛的應用.
例3:如圖,一圓柱體的底面周長為20cm,高AB為4cm,BC是上底面的直徑.一只螞蟻從點A出發(fā),沿著圓柱的側面爬行到點C,試求出爬行的最短路程.
【解析】螞蟻實際上是在圓柱的半個側面內(nèi)爬行.大家用一張白紙卷折圓柱成圓柱形狀,標出A.B.C.D各點,然后打開,螞蟻在圓柱上爬行的距離,與在平面紙上的距離一樣.AC之間的最短距離是什么?根據(jù)是什么?(學生回答)
根據(jù)“兩點之間,線段最短”,所求的最短路程就是側面展開圖矩形ABCD對角線AC之長.我們可以利用勾股定理計算出AC的長.
解:如圖,在Rt△ABC中,BC=底面周長的一半=10cm,
∴AC==
=≈10.77(cm)(勾股定理).
答:最短路程約為10.77cm.
例4:一輛裝滿貨物的卡車,其外形高2.5米,寬1.6米,要開進廠門形狀如圖的某工廠,問這輛卡車能否通過該工廠的廠門?
【解析】由于廠門寬度足夠,所以卡車能否通過,只要看當卡車位于廠門正中間時其高度是否小于CH.如圖所示,點D在離廠門中線0.8米處,且CD⊥AB,與地面交于H.
解:在Rt△OCD中,由勾股定理得
CD===0.6米,
CH=0.6+2.3=2.9(米)>2.5(米).
因此高度上有0.4米的余量,所以卡車能通過廠門.
通過動手作模型,培養(yǎng)學生的動手、動腦能力,解決“學生空間想像能力有限,想不到螞蟻爬行的路徑”的難題,從而突破難點.
由學生回答“AC之間的最短距離及根據(jù)”,有利于幫助學生找準新舊知識的連接點,喚起與形成新知識相關的舊知識,從而使學生的原認知結構對新知識的學習具有某種“召喚力”
再次提問,突出勾股定理的作用,加深記憶.
利用多媒體設備演示卡車通過廠門正中間時的過程(在幾何畫板上畫出廠門的形狀,用移動的矩形表示卡車,矩形的高低可調),讓學生通過觀察,找到需要計算的線段CH、CD及CD所在的直角三角形OCD,將實際問題轉化為應用勾股定理解直角三角形的數(shù)學問題.
小
結本節(jié)課我們學習了應用勾股定理來解決實際問題.在實際當中,長度計算是一個基本問題,而長度計算中應用最多、最基本的就是解直角三角形,利用勾股定理已知兩邊求第三邊,我們要掌握好這一有力工具.
課堂練習練習
1.如圖,從電桿離地面5米處向地面拉一條7米長的鋼纜,求地面鋼纜固定點A到電桿底部B的距離.
【答案】
2.現(xiàn)準備將一塊形為直角三角形的綠地擴大,使其仍為直角三角形,兩直角邊同時擴大到原來的兩倍,問斜邊擴大到原來的多少倍?
【答案】2
(四)作業(yè):習題
(五)策略分析
為防止以上錯誤的出現(xiàn),除了講清楚定理,還應該強調:
1.定理中基本公式中的項都是平方項;
2.計算直角邊時需要將基本公式移項變形,按平方差計算.
3.最后求邊長時,需要進行開平方運算.
【反思】
本節(jié)課是人教版數(shù)學八年級下冊第十七章第一節(jié)第二課時的內(nèi)容,是學生在學習了三角形的有關知識,了解了直角三角形的概念,掌握了直角三角形的性質和一個三角形是直角三角形的條件的基礎上學習勾股定理,加深對勾股定理的理解,提高學生對數(shù)形結合的應用與理解。本節(jié)第一課時安排了對勾股定理的觀察、計算、猜想、證明及簡單應用的過程;第二課時是通過例題分析與講解,讓學生感受勾股定理在實際生活中的應用,通過從實際問題中抽象出直角三角形這一模型,強化轉化思想,培養(yǎng)學生解決問題的意識和應用能力。
針對本班學生的特點,學生知識水平、學習能力的差距,本節(jié)課安排了如下幾個環(huán)節(jié):
一、復習引入
對上節(jié)課勾股定理內(nèi)容進行回顧,強調易錯點。由于學生的注意力集中時間較短,學生知識水平低,引入內(nèi)容簡短明了,花費時間短。
二、例題講解,鞏固練習,總結數(shù)學思想方法
活動一:用對媒體展示搬運工搬木板的問題,讓學生以小組交流合作,如何將木板運進門內(nèi)?需要知道們的寬、高,還是其他的條件?學生展示交流結果,之后教師引導學生書寫板書。整個活動以學生為主體,教師及時的引導和強調。
活動二:解決例二梯子滑落的問題。學生自主討論解決問題,書寫過程,之后投影學生書寫過程,教師與學生一起合作修改解題過程。
活動三:學生討論總結如何將實際生活中的問題轉化為數(shù)學問題,然后利用勾股定理解決問題。利用勾股定理的前提是什么?如何作輔助線構造這一前提條件?在數(shù)學活動中發(fā)展了學生的探究意識和合作交流的習慣;體會勾股定理的應用價值,讓學生體會到數(shù)學來源于生活,又應用到生活中去,在學習的過程中體會獲得成功的喜悅,提高了學生學習數(shù)學的興趣和信心。
二、鞏固練習,熟練新知
通過測量旗桿活動,發(fā)展學生的探究意識,培養(yǎng)學生動手操作的能力,增加學生應用數(shù)學知識解決實際問題的經(jīng)驗和感受。
在教學設計的實施中,也存在著一些問題:
1.由于本班學生能力的差距,本想著通過學生幫帶活動,使學困生充分參與課堂,但在學生合作交流是由于學習能力強的學生,對問題的分析解決所用時間短,而在整個環(huán)節(jié)設計中轉接的快,未給學困生充分的時間,導致部分學生未能真正的參與到課堂中來。
2.課堂上質疑追問要起到好處,不要增加學生展示的難度,影響展示進程出現(xiàn)中斷或偏離主題的現(xiàn)象。
3.對學生課堂展示的評價方式應體現(xiàn)生評生,師評生,及評價的針對性和及時性。
北師大版數(shù)學八年級上冊1.3勾股定理的應用1優(yōu)秀教案反思
現(xiàn)在向您介紹幼兒園教案《北師大版數(shù)學八年級上冊1.3勾股定理的應用1優(yōu)秀教案反思》
《北師大版數(shù)學八年級上冊1.3勾股定理的應用1優(yōu)秀教案反思》這是一篇八年級上冊數(shù)學教案,本節(jié)課是學生在學習了三直角三角形的性質、直角三角形勾股定理逆定理的基礎上開展的,更進一步加深學生勾股定理的理解,提高學生對數(shù)形結合的應用與理解。
1.3勾股定理的應用
1.能熟練運用勾股定理求最短距離;(難點)
2.能運用勾股定理及其逆定理解決簡單的實際問題.(重點)
一、情境導入
一個門框的寬為1.5m,高為2m,如圖所示,一塊長3m,寬2.2m的薄木板能否從門框內(nèi)通過?為什么?
二、合作探究
探究點一:求幾何體表面上兩點之間的最短距離
【類型一】長方體上的最短線段
如圖①,長方體的高為3cm,底面是正方形,邊長為2cm,現(xiàn)有繩子從D出發(fā),沿長方體表面到達B′點,問繩子最短是多少厘米?
解析:可把繩子經(jīng)過的面展開在同一平面內(nèi),有兩種情況,分別計算并比較,得到的最短距離即為所求.
解:如圖②,在Rt△DD′B′中,由勾股定理得B′D2=32+42=25;
如圖③,在Rt△DC′B′中,由勾股定理得B′D2=22+52=29.
因為29>25,所以第一種情況繩子最短,最短為5cm.
方法總結:此類題可通過側面展開圖,將要求解的問題放在直角三角形中,問題便迎刃而解.
【類型二】圓柱上的最短線段
為籌備迎接新生晚會,同學們設計了一個圓筒形燈罩,底色漆成白色,然后纏繞紅色油紙,如圖①.已知圓筒的高為108cm,其橫截面周長為36cm,如果在表面均勻纏繞油紙4圈,應裁剪多長的油紙?
解析:將圓筒側面展開成平面圖形,利用平面上兩點之間線段最短求解,構造直角三角形,利用勾股定理來解決.
解:如圖②,在Rt△ABC中,因為AC=36cm,BC=108÷4=27(cm).由勾股定理,得AB2=AC2+BC2=362+272=2025=452,所以AB=45cm,所以整個油紙的長為45×4=180(cm).
方法總結:解決這類問題的關鍵就是轉化,即把曲面轉化為平面,曲線轉化成直線,構造直角三角形,利用勾股定理求出未知線段長.
探究點二:利用勾股定理解決實際問題
如圖,在一次夏令營活動中,小明從營地A出發(fā),沿北偏東53°方向走了400m到達點B,然后再沿北偏西37°方向走了300m到達目的地C.求A、C兩點之間的距離.
解析:把實際問題中的角度轉化為圖形中的角度,找到直角三角形,利用勾股定理求解.
解:如圖,過點B作BE∥AD.∴∠DAB=∠ABE=53°.∵37°+∠CBA+∠ABE=180°,∴∠CBA=90°,∴AC2=BC2+AB2=3002+4002=5002,∴AC=500m,即A、C兩點間的距離為500m.
方法總結:此類問題解題的關鍵是將實際問題轉化為數(shù)學問題;在數(shù)學模型(直角三角形)中,應用勾股定理或勾股定理的逆定理解題.
三、板書設計
通過觀察圖形,探索圖形間的關系,培養(yǎng)學生的空間觀念.在將實際問題抽象成數(shù)學問題的過程中,提高分析問題、解決問題的能力及滲透數(shù)學建模的思想.在利用勾股定理解決實際問題的過程中,感受數(shù)學學習的魅力.
【反思】
本節(jié)課是學生在學習了三直角三角形的性質、直角三角形勾股定理逆定理的基礎上開展的,更進一步加深學生勾股定理的理解,提高學生對數(shù)形結合的應用與理解。本節(jié)課首先安排了對圓柱形中的最短距離的觀察猜想,由學生討論如何實現(xiàn)圓柱中的最短距離,要把立體圖形展開成為平面圖形,平面圖形中,有結論:兩點之間,線段最短。在進一步由學生質疑,一定這樣的方法得到的是最短距離嗎?有沒有其他的路徑,進而討論圓柱中的特殊情況,當圓柱是扁平的圓柱時,得到的最短距離還是把圓柱側面展開構造的長方形的斜邊長嗎?最后由教師補充總結,當圓柱時細長的圓柱時,最短距離是把圓柱側面展開構造的長方形的斜邊長;當圓柱時扁平的圓柱時,最短距離是圓柱的高加圓柱的底面直徑,至于這個圓柱到底是細長的還是扁平的,要具體問題具體分析。
當學生具備這樣的理論基礎,在圓柱的基礎上討論長方體的最短距離時,就事半功倍了,用類比思想,得到長方體中的最短距離,因為展開方式不同,所以分類討論,最短距離分三種情況:1.最短距離2=(長+寬)2+高2;
2.最短距離2=(長+高)2+寬2;
3.最短距離2=(寬+高)2+長2,從三種情況中找到最小的就是最短距離;進而總結利用勾股定理求最短距離的步驟:
1.將立體圖形展開;展開時注意:只需要展開包含相關點的面,可能會存在多種展開方式
2.確定相關點的位置;
3.連接相關點,構造直角三角形;
4.利用勾股定理求解。
通過總結如何將立體圖形中的最短路線轉換成平面圖形中的最短路線,讓學生體會到數(shù)學來源于生活又應用的生活,在學習的過程中體會獲得成功的喜悅,提高獲得提高學生學習數(shù)學的興趣和信心,但課堂上質疑追問要恰到好處,不要增加學生展示的難度,影響展示進程出現(xiàn)中斷或偏離主題的現(xiàn)象。
勾股定理教案通用
小編為大家呈上收集和整理的勾股定理教案,相信您在本文中有所收獲。教案課件是老師教學工作的起始環(huán)節(jié),也是上好課的先決條件,因此教案課件可能就需要每天都去寫。老師在上課時要以教案課件為依據(jù)。
勾股定理教案(篇1)
一、勾股定理是我國古數(shù)學的一項偉大成就.勾股定理為我們提供了直角三角形的三邊間的數(shù)量關系,它的逆定理為我們提供了判斷三角形是否屬于直角三角形的依據(jù),也是判定兩條直線是否互相垂直的一個重要方法,這些成果被廣泛應用于數(shù)學和實際生活的各個方面.教材在編寫時注意培養(yǎng)學生的動手操作能力和分析問題的能力,通過實際分析,使學生獲得較為直觀的印象,通過聯(lián)系和比較,了解勾股定理在實際生活中的廣泛應用. 據(jù)此,制定教學目標如下:
1.知識和方法目標:通過對一些典型題目的思考,練習,能正確熟練地進行勾股定理有關計算,深入對勾股定理的理解. 2.過程與方法目標:通過對一些題目的探討,以達到掌握知識的目的.
3.情感與態(tài)度目標:感受數(shù)學在生活中的應用,感受數(shù)學定理的美.
教學重點:勾股定理的應用. 教學難點:勾股定理的正確使用.
教學關鍵:在現(xiàn)實情境中捕抓直角三角形,確定好直角三角形之后,再應用勾股定理.
二.說教法和學法
1.以自學輔導為主,充分發(fā)揮教師的主導作用,運用各種手段激發(fā)學習欲望和興趣,組織學生活動,讓學生主動參與學習全過程.
2.切實體現(xiàn)學生的主體地位,讓學生通過觀察,分析,討論,操作,歸納理解定理,提高學生動手操作能力,以及分析問題和解決問題的能力.
3.通過演示實物,引導學生觀察,操作,分析,證明,使學生獲得新知的成功感受,從而激發(fā)學生鉆研新知的欲望.
三、教學程序本節(jié)內(nèi)容的教學主要體現(xiàn)在學生的動手,動腦方面,根據(jù)學生的認知規(guī)律和學習心理,教學程序設置如下: 回顧問:勾股定理的內(nèi)容是什么? 勾股定理揭示了直角三角形三邊之間的關系,今天我們來學習這個定理在實際生活中的應用.
勾股定理教案(篇2)
尊敬的各位領導,各位老師:
大家好!今天我說課的內(nèi)容是初中八年級數(shù)學人教版教材第十八章第一節(jié)《勾股定理》(第一課時),下面我分五部分來匯報我這節(jié)課的教學設計,這就是"教材分析"、"學情分析"、"教法選擇"、"學法指導"、"教學過程"。
一、教材分析
(一) 教材地位和作用
勾股定理是幾何中的重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關系,將幾何圖形與數(shù)字聯(lián)系起來。它在數(shù)學的發(fā)展中起過重要的作用,在生產(chǎn)生活中有著廣泛的應用。而且它在其它自然學科中也常常用到。因此,這節(jié)課有著舉足輕重的地位。
(二)教學目標
根據(jù)新課程標準的要求和本課的特點,結合學生的實際情況,我確定了本課的教學目標:
1、知識與技能方面
了解勾股定理的文化背景,經(jīng)歷探索勾股定理的過程,掌握直角三角形三邊之間的數(shù)量關系, 并能簡單應用。
2、過程與方法方面
經(jīng)歷探索及驗證勾股定理的過程,了解利用拼圖驗證勾股定理的方法,能感受到數(shù)學思考過程的條理性,發(fā)展數(shù)學的說理和簡單的推理的意識,和語言表達的能力,并體會數(shù)形結合和特殊到一般的思想方法。
3、情感態(tài)度與價值觀方面
(1)通過了解勾股定理的歷史,激發(fā)學生熱愛祖國,熱愛祖國悠久文化的思想,激勵學生發(fā)奮學習。
(2) 通過研究一系列富有探 究性的問題,培養(yǎng)學生與他人交流、合作的意識和品質。
(三)教學重點難點
教學重點:掌握勾股定理,并能用它來解決一些簡單的問題。
教學難點:勾股定理的證明。
二、學情分析
我們班日常經(jīng)常使用多媒體輔助教學。經(jīng)過一年多的幾何學習,學生對幾何圖形的觀察,幾何圖形的分析能力已初步形成。部分學生解題思維能力比較高,能夠正確 歸納所學知識,通過學習小組討論交流,能夠形成解決問題的思路。 現(xiàn)在的學生已經(jīng)厭倦教師單獨的說教方式,希望教師設計便于他們進行觀察的.幾何環(huán)境,給他們自己探索、發(fā)表自己見解和表現(xiàn)自己才華的機會;更希望教師滿足他 們的創(chuàng)造愿望。
三、教法選擇
根據(jù)本節(jié)課的教學目標、教學內(nèi)容以及學生的認知特點,結合我校的“當堂達標”教學模式,我在教法上采用引導發(fā)現(xiàn)法為主,并以分析法、討論法相結合。設計" 觀察——討論—歸納"的教學方法,意在幫助學生通過自己動手實驗和直觀情景觀察,從實踐中獲取知識,并通過討論來深化對知識的理解。本節(jié)課采用了多媒體輔 助教學,能夠直觀、生動的反應圖形,增加課堂的容量,同時有利于突出重點、分散難點,增強教學形象性,更好的提高課堂效率。
四、學法指導:
為了充分體現(xiàn)《新課標》的要求,培養(yǎng)學生的觀察分析能力,邏輯思維能力,積累豐富的數(shù)學學習經(jīng)驗,這節(jié)課主要采用觀察分析,自主探索與合作交流的學習方 法,使學生積極參與教學過程。在教學過程中展開思維,培養(yǎng)學生提出問題、分析問題、解決問題的能力,進一步體會觀察、類比、分析、從特殊到一般等數(shù)學思 想。借此培養(yǎng)學生動手、動腦、動口的能力,使學生真正成為學習的主人。
五、教學過程
根據(jù)《新課標》中"要引導學生投入到探索與交流的學習活動中"的教學要求,本節(jié)課的教學過程我是這樣設計的:
(一)創(chuàng)設情境,引入新課
一個設計合理的情境引入可以說在一定程度上決定著學生能否帶著興趣積極投入到本節(jié)課的學習中。為了體現(xiàn)數(shù)學源于生活,數(shù)學是從人的需要中產(chǎn)生的,學習數(shù)學的目的是為了用數(shù)學解決實際問題。我設計了以下題目:
星期日老師帶領全班同學去某山風景區(qū)游玩,同學們看到山勢險峻,查看景區(qū)示意圖得知:這座山主峰高約為900米,如圖:為了方便游人,此景區(qū)從主峰A處向地面B處架了一條纜車線路,已知山底端C處與地面B處相距1200米,
∠ACB=90° ,你能用所學知識算出纜車路線AB長應為多少?
答案是不能的。然后教師指出,通過這節(jié)課的學習,問題將迎刃而解。
設計意圖:以趣味性題目引入。從而設置懸念,激發(fā)學生的學習興趣。 教師引導學生把實際問題轉化為數(shù)學問題,這其中滲透了一種數(shù)學思想,對于學生也是一種挑戰(zhàn),能激發(fā)學生探究的欲望,自然引出下面的環(huán)節(jié)。
緊接著出示本節(jié)課的學習目標:
1、了解勾股定理的文化背景,體驗勾股定理的探索過程。
2、掌握勾股定理的內(nèi)容,并會簡單應用。
(二)勾股定理的探索
1、猜想結論
(1)探究一:等腰直角三角形三邊關系。
由課本64頁畢達哥拉斯的故事,探究等腰直角三角形三邊關系。結合課件中格點圖形的面積,學生自主探究,通過計算、討論、總結,得出結論:等腰直角三角形的斜邊的平方等于兩直角邊的平方和。
在此過程中,給學生充分的時間、觀察、比較、交流,最后通過活動讓學生用語言概括總結。
提問:等腰直角三角形有這樣的性質,其他的直角三角形也有這樣的性質嗎?
(2、)探究二:一般的直角三角形三邊關系。
在課件中的格點圖形中,利用面積,再次探究直角三角形的三邊關系。學生自主探究,通過計算、討論、總結,得出結論:在直角三角形中,兩直角邊的平方和等于斜邊的平方。
設 計意圖:組織學生進行討論,在此基礎上教師引導學生從三邊的平方有何大小關系入手進行觀察。教師在多媒體課件上直觀地演示。通過學生自己探索、討論,由學 生自己得出結論。這樣,讓學生參與定理的再發(fā)現(xiàn)過程,他們通過自己觀察、計算所得出的定理,在心理產(chǎn)生自豪感,從而增強學生的學習數(shù)學的自信心。
2、證明猜想
目前世界上證明該勾股定理的方法有很多種,而我國古代數(shù)學家利用拼接、割補圖形,計算面積的思路提供了很多種證明方法,下面我們通過古人趙爽的方法進行證 明。學生分組活動,根據(jù)圖形的面積進行計算,推導出勾股定理的一般形式:a + b = c。即直角三角形兩直角邊的平方和等于斜邊的平方、
設計意圖:通過利用多媒體課件的演示,更直觀、形象的向學生介紹用拼接、割補圖形,計算面積的證明方法,使學生認識到證明的必要性、結論的確定性,感受到前人的偉大和智慧。
3、簡要介紹勾股定理命名的由來
我國是最早了解勾股定理的國家之一。早在三千多年前,周朝數(shù)學家商高就提出,將一根直尺折成一個直角,如果勾等于三,股等于四,那么弦就等于五,即 “勾三、股四、弦五”,它被記載于我國古代著名的數(shù)學著作《周髀算經(jīng)》中、我國稱這個結論為"勾股定理",西方畢達哥拉斯于公元前五世紀發(fā)現(xiàn)了勾股定理, 但他比商高晚出生五百多年。
設計意圖:對比以上事實對學生進行愛國主義教育,激勵他們奮發(fā)向上。
(三)勾股定理的應用
1、利用勾股定理,解決引入中的問題。體會數(shù)學在實際生活中的應用。
2、教學例1:課本66頁探究1
師生討論、分析: 木板的寬2、2米大于1米,所以橫著不能從門框內(nèi)通過.
木板的寬2、2米大于2米,所以豎著不能從門框內(nèi)通過.
因為對角線AC的長度最大,所以只能試試斜著 能否通過.
從而將實際問題轉化為數(shù)學問題.
提示:
(1)在圖中構造出一個直角三角形。(連接AC)
(2)知道直角△ABC的那條邊?
(3)知道直角三角形兩條邊長求第三邊用什么方法呢?
設計意圖:此題是將實際為題轉化為數(shù)學問題,從中抽象出Rt△ABC,并求出斜邊A C的長。本例意在滲透實際問題和勾股定理的知識聯(lián)系。通過系列問題的設置和解決,旨在降低難度,分散難點,使難點予以突破,讓學生掌握勾股定理在具體問題中的應用,使學生獲得新知,體驗成功,從而增加學習興趣。
(四)、課堂練習 習題18、1 1、5。 學生板演,師生點評。
設計意圖:通過練習使學生加深對勾股定理的理解,讓學生比較練習題和例題中條件的異同,進一步讓學生理解勾股定理的運用。
(五)課堂小結
對學生提問:"通過這節(jié)課的學習有什么收獲?"
學生同桌間暢談自己的學習感受和體會,并請個別學生發(fā)言。
設計意圖:讓學生自己小結,活躍了氣氛,做到全員參與,理清了知識脈絡,強化了重點,培養(yǎng)了學生口頭表達能力。
(六)達標訓練與反饋
設計意圖:必做題較為簡單,要求全體學生完成;選作題有一點的難度,基礎較好的學生能夠完成,體現(xiàn)分層教學。
以上內(nèi)容,我僅從"說教材","說學情"、"說教法"、"說學法"、"說教學過程"五個方面來說明這堂課"教什么"和"怎么教",也闡述了"為什么這樣 教",讓學生人人參與,注重對學生活動的評價, 探索過程中,會為學生創(chuàng)設一個和諧、寬松的情境。希望得到各位專家領導的指導與指正,謝謝!
勾股定理教案(篇3)
尊敬的各位考官:
大家好,我是X號考生,今天我說課的題目是《勾股定理的逆定理》。
新課標指出:數(shù)學課程要面向全體學生,適應學生個性發(fā)展的需要,使得人人都能獲得良好的數(shù)學教育,不同的人在數(shù)學上都能得到不同的發(fā)展。今天我將貫徹這一理念從教材分析、學情分析、教學過程等幾個方面展開我的說課。
一、說教材
首先來談一談我對教材的理解。
本節(jié)課選自人教版初中數(shù)學八年級下冊第十七章第二節(jié)《勾股定理的逆定理》,它是在學生掌握勾股定理及一般三角形性質的基礎上進行教學的。應用前面學習的勾股定理及三角形全等證明逆定理是本節(jié)課的關鍵步驟,同時本節(jié)課又豐富了三角形的性質,是后面幾何問題的基礎理論性知識。
二、說學情
接下來談談學生的實際情況。本階段的學生已經(jīng)掌握了一定的基礎知識,處于由幾何內(nèi)容的初級向高級行進的過程。他們的幾何思維正在逐步形成和發(fā)展,對幾何題目具有一定的分析、想象、概括能力,具有對未知事物的新鮮感和探求欲。同時也要注意到學生能力的不成熟,教學中鼓勵與引導并重。
三、說教學目標
根據(jù)以上對教材的分析以及對學情的把握,我制定了如下教學目標:
(一)知識與技能
理解并掌握勾股定理的逆定理,會應用定理判定直角三角形;理解勾股定理與勾股定理逆定理的區(qū)別與聯(lián)系;理解原命題和逆命題的概念,知道二者的關系及二者真假性的關系。
(二)過程與方法
經(jīng)歷得出猜想、推理證明的過程,提升自主探究、分析問題、解決問題的能力。
(三)情感、態(tài)度與價值觀
體會事物之間的聯(lián)系,感受幾何的魅力。
四、說教學重難點
在教學目標的實現(xiàn)過程中,教學重點是勾股定理的逆定理及其證明,教學難點是勾股定理的逆定理的證明。
五、說教法學法
為了突破重點,解決難點,順利達成教學目標,教學中我將主要采用小組討論、自主探究的教學方法,輔以適量的教師講解和引導,把課堂還給學生。
六、說教學過程
下面我將重點談談我對教學過程的設計。
(一)導入新課
課堂伊始,我采用復習舊知與創(chuàng)設情境相結合的導入方式。首先我會帶領學生復習勾股定理并明確其題設和結論,為后面提出逆命題、逆定理做鋪墊。接著提問學生如何畫直角三角形,學生很容易想到用三角尺或量角器。此時我會要求學生不能用繩子以外的工具,借助學生的困惑,給出古埃及人利用等長的3、4、5個繩結間距畫直角三角形的情境。以古埃及人所用方法中蘊含何道理為切入點引出課題。
通過這樣的導入方式,能夠帶領學生回顧上節(jié)課的內(nèi)容,為本節(jié)課奠定好基礎,同時用情境激發(fā)學生的好奇心和求知欲,更好地展開教學。
(二)講解新知
接下來是最重要的新授環(huán)節(jié)。
請學生思考3,4,5之間的關系,結合勾股定理的學習經(jīng)驗明確
出示數(shù)據(jù)2.5cm,6cm,6.5cm,請學生計算驗證數(shù)據(jù)滿足上述平方和關系,并畫出相應邊長的三角形檢驗是否為直角三角形。
學生活動:同桌兩人一組,將三邊換成其他滿足上述平方和關系的數(shù)據(jù),如4cm,7.5cm,8.5cm,畫出相應邊長的三角形檢驗是否為直角三角形。
在得到肯定結論后,引導學生基于以上例子大膽猜想得出命題。
勾股定理教案(篇4)
教材中直接給出“趙爽弦圖”的證法對學生的思維是一種禁錮,教師創(chuàng)新使用教材,利用拼圖活動解放學生的大腦,讓學生發(fā)揮自己的聰明才智證明勾股定理。這是教學的難點也是重點,教師應給學生充分的自主探索的時間與空間,讓學生的思維在相互討論中碰撞、在相互學習中完善。教師深入到學生中間,觀察學生探究方法接受學生的質疑,對于不同的拼圖方案給予肯定。從而體現(xiàn)出“學生是學習的主體,教師是組織者、引領者與合作者”這一教學理念。學生會發(fā)現(xiàn)兩種證明方案。
方案1為趙爽弦圖,學生講解論證過程,再現(xiàn)古代數(shù)學家的探索方法。方案2為學生自己探索的結果,論證之巧較方案1有異曲同工之妙。整個探索過程,讓學生經(jīng)歷由表面到本質,由合情推理到演繹推理的發(fā)掘過程,體會數(shù)學的嚴謹性。對比“古”、“今”兩種證法,讓學生體會“吹盡黃沙始到金”的喜悅,感受到“青出于藍而勝于藍”的自豪感。板書勾股定理,進而給出字母表示,培養(yǎng)學生的符號意識。
教師對“勾、股、弦”的含義以及古今中外對勾股定理的研究做一個介紹,使學生感受數(shù)學文化,培養(yǎng)民族自豪感和愛國主義精神。利用勾股樹動態(tài)演示,讓學生欣賞數(shù)學的精巧、優(yōu)美。
勾股定理教案(篇5)
尊敬的各位評委、老師,大家好!
我說課的題目是華師版八年級上冊第十四章第一節(jié)第一課時《勾股定理》。
教材分析:
如果說數(shù)學思想是解決數(shù)學問題的一首經(jīng)典老歌,那么本節(jié)課蘊含的由特殊到一般的思想、數(shù)學建模的思想、轉化的思想就是歌中最為活躍的音符!本節(jié)的內(nèi)容是在學習了二次根式之后的教學,是在學生已經(jīng)掌握了直角三角形的有關性質的基礎上進行的后繼學習,是中學數(shù)學幾個重要定理之一。它揭示了直角三角形三條邊之間的數(shù)量關系,是解直角三角形的主要根據(jù)之一,是解決四邊形、圓等知識的靈魂,在實際生活中有著極其廣泛的應用。
勾股定理的發(fā)現(xiàn)、驗證和應用蘊含著豐富的文化價值,在理論上占有重要地位,因此本節(jié)在教材中起著承前啟后的橋梁作用。
新課標下的數(shù)學教學不僅是知識的教學,更應注重能力的培養(yǎng)及情感的教育,因此,根據(jù)本節(jié)在教學中的地位和作用,結合初二學生不愛表現(xiàn)、好靜不好動的特點,我確定本節(jié)教學目標如下:
1、探索并利用拼圖證明勾股定理。
2、利用勾股定理解決簡單的數(shù)學問題。
3、感受數(shù)學文化,體會解決問題方法的多樣性和數(shù)形結合的思想。
本著課標的要求,在吃透教材的基礎上,我確定本節(jié)的教學重點、難點、關鍵如下:
勾股定理的證明和簡單應用是本節(jié)的重點,用拼圖的方法證明勾股定理是難點,而解決難點的關鍵是充分利用圖形面積的各種表示方法構造恒等式。
為了講清重點、突破難點、抓住關鍵,使學生達到預定目標,我對教法和學法分析如下:
教法分析:
新課程標準強調要從學生已有的經(jīng)驗出發(fā),最大限度的激發(fā)學生學習積極性,新課程下的數(shù)學教師更應是學生學習活動的組織者、引導者、合作者,因此,鑒于教材的重點和初二學生的認知水平,我以學生充分預習為前提,以學生的動手操作、講解為中心,讓學生親歷親為,體會做數(shù)學的過程,激發(fā)學生的探索興趣,使課堂活躍起來,提高課堂效率。運用觀察法、歸納法、引導發(fā)現(xiàn)法、討論法等多種教學方法相結合的形式,讓學生充分展示預習成果,體驗成功的快樂,為終身學習和發(fā)展打下堅實的基礎。為了增大課堂容量、給學生創(chuàng)設高效的數(shù)學課堂,給學生提供足夠從事數(shù)學活動的時間,以導學案的形式、運用多媒體輔助教學。
學法分析:
學法是學生再生知識的法寶,為了把學生學習過程當作認知事物的過程來解決,教學中我首先引導學生先動手操作,再合作交流,培養(yǎng)學生良好的學習品質和與人合作的能力;接下來,我讓學生獨立思考,點撥學生用特殊到一般的思想大膽償試,水到渠成的突出勾股定理的探索這一重點,然后通過學生展示成果讓學生抓住用不同的方式拼出圖形,從而用不同的方式表示圖形面積建立恒等式這一關健,以自己拼圖操作、講解展示預習成果突破定理證明這一難點,指導學生嚴謹、合理的書寫格式,培養(yǎng)學生的邏輯思維能力和語言表達能力。
為了充分調動學生的學習積極性,創(chuàng)設優(yōu)化高效的數(shù)學課堂,我以導學案的方式循序見進的設計教學流程。
以學生必讀課本48—52頁,選讀課本55、56頁的課前預習為前提,共分四個環(huán)節(jié)來進行教學
1、勾股定理的探究:讓學生歷經(jīng)量一量、算一算、想一想的由特殊到一般的數(shù)學思想引導好學生課前預習,再以檢查預習成果的形式為新知的探究作好鋪墊。
2、勾股定理的證明:以學生拼圖展示、講解預習成果的形式完成對定理的證明。
3、勾股定理的應用:以課堂練習、學生個性補充和老師適當?shù)膫€性化追加的形式實現(xiàn)對定理的靈活應用。
4、學后反思:以學生小結的形式引導學生從知識、情感兩方面實現(xiàn)對本節(jié)內(nèi)容的鞏固與升華。
說創(chuàng)新點:
為了給學生營造一個和諧、民主、平等而高效的數(shù)學課堂,我以新課程標準的基本理念和總體目標為指導思想,面向全體學生,選擇適當?shù)钠瘘c和方法,充分發(fā)揮學生的主體地位與教師主導作用相統(tǒng)一的原則。教學中注重學生的動手操作能力的培養(yǎng),化繁為簡,化抽象為直觀。例如我以展示預習成果為主線,以學生動手操作、講解等直觀方式代替老師畫圖、剪圖、講評費時費力的方式,既讓每個學生都能積極的參與進來,培養(yǎng)學生的語言表達能力、邏輯推理能力,又達到了直觀高效的效果。
教學中我注重人文環(huán)境的創(chuàng)設,使數(shù)學課堂充滿親切、民主的氣氛,例如整節(jié)課我以學生的操作、展示、講解、個性補充為主,拉近了數(shù)學與學生的距離,激發(fā)了學生的學習興趣;為了使不同的學生得到不同的發(fā)展,人人學有價值的數(shù)學,在教學中我創(chuàng)造性的使用教材,在不改變例題的本意為前提,創(chuàng)設身邊暖房工程為情境,體現(xiàn)數(shù)學的生活化;以一題多變、中考題改編等形式進行練習題的層層深入,體現(xiàn)數(shù)學的變化美。
以學生個性補充的形式促進課堂新的生成,最大限度的培養(yǎng)學生創(chuàng)新思維,使不同的人在數(shù)學上有不同的發(fā)展。本節(jié)課既做到了課程的開放,為充分發(fā)揮學生聰明智慧和創(chuàng)造性的思維提供了空間,又創(chuàng)設了具有獨特教學風格的作文式數(shù)學課堂。而多媒體教學的引入更為學生提供了廣闊的思考空間和時間;同時,我注重對學生進行數(shù)學文化的薰陶和數(shù)學思想的滲透,注重美育、德育與教育的三統(tǒng)一,如小結時由“勾股樹”到“智慧樹”的希望寄語。
勾股定理教案(篇6)
一、教材分析
勾股定理是學生在已經(jīng)掌握了直角三角形的有關性質的基礎上進行學習的,它是直角三角形的一條非常重要的性質,是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數(shù)量關系,它可以解決直角三角形中的計算問題,是解直角三角形的主要根據(jù)之一,在實際生活中用途很大。教材在編寫時注意培養(yǎng)學生的動手操作能力和分析問題的能力,通過實際分析、拼圖等活動,使學生獲得較為直觀的印象;通過聯(lián)系和比較,理解勾股定理,以利于正確的進行運用。
據(jù)此,制定教學目標如下:
1、理解并掌握勾股定理及其證明。
2、能夠靈活地運用勾股定理及其計算。
3、培養(yǎng)學生觀察、比較、分析、推理的能力。
4、通過介紹中國古代勾股方面的成就,激發(fā)學生熱愛祖國與熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感和鉆研精神。
教學重點:勾股定理的證明和應用。
教學難點:勾股定理的證明。
二、教法和學法
教法和學法是體現(xiàn)在整個教學過程中的,本課的教法和學法體現(xiàn)如下特點:
1、以自學輔導為主,充分發(fā)揮教師的主導作用,運用各種手段激發(fā)學生學習欲望和興趣,組織學生活動,讓學生主動參與學習全過程。
2、切實體現(xiàn)學生的主體地位,讓學生通過觀察、分析、討論、操作、歸納,理解定理,提高學生動手操作能力,以及分析問題和解決問題的能力。
3、通過演示實物,引導學生觀察、操作、分析、證明,使學生得到獲得新知的成功感受,從而激發(fā)學生鉆研新知的欲望。
三、教學程序
本節(jié)內(nèi)容的教學主要體現(xiàn)在學生動手、動腦方面,根據(jù)學生的認知規(guī)律和學習心理,教學程序設計如下:
(一)創(chuàng)設情境 以古引新
1、由故事引入,3000多年前有個叫商高的人對周公說,把一根直尺折成直角,兩端連接得到一個直角三角形,如果勾是3,股是4,那么弦等于5。這樣引起學生學習興趣,激發(fā)學生求知欲。
2、是不是所有的直角三角形都有這個性質呢?教師要善于激疑,使學生進入樂學狀態(tài)。
3、板書課題,出示學習目標。
(二)初步感知 理解教材
教師指導學生自學教材,通過自學感悟理解新知,體現(xiàn)了學生的自主學習意識,鍛煉學生主動探究知識,養(yǎng)成良好的自學習慣。
(三)質疑解難 討論歸納
1、教師設疑或學生提疑。如:怎樣證明勾股定理?學生通過自學,中等以上的學生基本掌握,這時能激發(fā)學生的表現(xiàn)欲。
2、教師引導學生按照要求進行拼圖,觀察并分析;
(1)這兩個圖形有什么特點?
(2)你能寫出這兩個圖形的面積嗎?
(3)如何運用勾股定理?是否還有其他形式?
這時教師組織學生分組討論,調動全體學生的積極性,達到人人參與的效果,接著全班交流。先有某一組代表發(fā)言,說明本組對問題的理解程度,其他各組作評價和補充。教師及時進行富有啟發(fā)性的點撥,最后,教師學生共同歸納,形成一致意見,最終解決疑難。
(四)鞏固練習 強化提高
1、出示練習,學生分組解答,并由學生總結解題規(guī)律。課堂教學中動靜結合,以免引起學生的疲勞。
2、出示例1學生試解,教師學生共同評價,以加深對例題的理解與運用。針對例題再次出現(xiàn)鞏固練習,進一步提高學生運用知識的能力,對練習中出現(xiàn)的情況可采取互評、互議的形式,在互評互議中出現(xiàn)的具有代表性的問題,教師可以采取全班討論的形式予以解決,以此突出教學重點。
(五)歸納總結 練習反饋
引導學生對知識要點進行總結,梳理學習思路。分發(fā)自我反饋練習,學生獨立完成。
本課意在創(chuàng)設愉悅和諧的樂學氣氛,優(yōu)化教學手段,借助電教手段提高課堂教學效率,建立平等、民主、和諧的教師學生關系。加強教師學生間的合作,營造一種學生敢想、感說、感問的課堂氣氛,讓全體學生都能生動活潑、積極主動地教學活動,在學習中創(chuàng)新精神和實踐能力得到培養(yǎng)。
勾股定理教案(篇7)
一、 教材分析
(一)教材地位
這節(jié)課是九年制義務教育初級中學教材北師大版七年級第二章第一節(jié)《探索勾股定理》第一課時,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關系。它在數(shù)學的發(fā)展中起過重要的作用,在現(xiàn)時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎上對直角三角形有進一步的認識和理解。
(二)教學目標
知識與能力:掌握勾股定理,并能運用勾股定理解決一些簡單實際問題.
過程與方法:經(jīng)歷探索及驗證勾股定理的過程,了解利用拼圖驗證勾股定理的方法,發(fā)展學生的合情推理意識、主動探究的習慣,感受數(shù)形結合和從特殊到一般的思想.
情感態(tài)度與價值觀: 激發(fā)學生愛國熱情,讓學生體驗自己努力得到結論的成就感,體驗數(shù)學充滿探索和創(chuàng)造,體驗數(shù)學的美感,從而了解數(shù)學,喜歡數(shù)學.
(三)教學重點:經(jīng)歷探索及驗證勾股定理的過程,并能用它來解決一些簡單的實際問題。
教學難點:用面積法(拼圖法)發(fā)現(xiàn)勾股定理。
突出重點、突破難點的辦法:發(fā)揮學生的主體作用,通過學生動手實驗,讓學生在實驗中探索、在探索中領悟、在領悟中理解.
二、教法與學法分析:
學情分析:七年級學生已經(jīng)具備一定的觀察、歸納、猜想和推理的能力.他們在小學已學習了一些幾何圖形的面積計算方法(包括割補、拼接),但運用面積法和割補思想來解決問題的意識和能力還不夠.另外,學生普遍學習積極性較高,課堂活動參與較主動,但合作交流的能力還有待加強.
教法分析:結合七年級學生和本節(jié)教材的特點,在教學中采用“問題情境----建立模型----解釋應用---拓展鞏固”的模式, 選擇引導探索法。把教學過程轉化為學生親身觀察,大膽猜想,自主探究,合作交流,歸納總結的過程。
學法分析:在教師的組織引導下,學生采用自主探究合作交流的研討式學習方式,使學生真正成為學習的主人.
三、 教學過程設計1.創(chuàng)設情境,提出問題 2.實驗操作,模型構建 3.回歸生活,應用新知
4.知識拓展,鞏固深化5.感悟收獲,布置作業(yè)
(一)創(chuàng)設情境提出問題
(1)圖片欣賞 勾股定理數(shù)形圖 1955年希臘發(fā)行 美麗的勾股樹 2002年國際數(shù)學 的一枚紀念郵票 大會會標 設計意圖:通過圖形欣賞,感受數(shù)學美,感受勾股定理的文化價值.
(2) 某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊員能否進入三樓滅火?
設計意圖:以實際問題為切入點引入新課,反映了數(shù)學來源于實際生活,產(chǎn)生于人的需要,也體現(xiàn)了知識的發(fā)生過程,解決問題的過程也是一個“數(shù)學化”的過程,從而引出下面的環(huán)節(jié).
二、實驗操作模型構建
1.等腰直角三角形(數(shù)格子)
2.一般直角三角形(割補)
問題一:對于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關系?
設計意圖:這樣做利于學生參與探索,利于培養(yǎng)學生的語言表達能力,體會數(shù)形結合的思想.
問題二:對于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個關系嗎?(割補法是本節(jié)的難點,組織學生合作交流)
設計意圖:不僅有利于突破難點,而且為歸納結論打下基礎,讓學生的分析問題解決問題的能力在無形中得到提高.
通過以上實驗歸納總結勾股定理.
設計意圖:學生通過合作交流,歸納出勾股定理的雛形,培養(yǎng)學生抽象、概括的能力,同時發(fā)揮了學生的主體作用,體驗了從特殊—— 一般的認知規(guī)律.
三.回歸生活應用新知
讓學生解決開頭情景中的問題,前呼后應,增強學生學數(shù)學、用數(shù)學的意識,增加學以致用的樂趣和信心.
四、知識拓展鞏固深化
基礎題,情境題,探索題.
設計意圖:給出一組題目,分三個梯度,由淺入深層層練習,照顧學生的個體差異,關注學生的個性發(fā)展.知識的運用得到升華.
基礎題: 直角三角形的一直角邊長為3,斜邊為5,另一直角邊長為X,你可以根據(jù)條件提出多少個數(shù)學問題?你能解決所提出的問題嗎?
設計意圖:這道題立足于雙基.通過學生自己創(chuàng)設情境 ,鍛煉了發(fā)散思維.
情境題:小明媽媽買了一部29英寸(74厘米)的電視機.小明量了電視機的屏幕后,發(fā)現(xiàn)屏幕只有58厘米長和46厘米寬,他覺得一定是售貨員搞錯了.你同意他的想法嗎?
設計意圖:增加學生的生活常識,也體現(xiàn)了數(shù)學源于生活,并用于生活。
探索題: 做一個長,寬,高分別為50厘米,40厘米,30厘米的木箱,一根長為70厘米的木棒能否放入,為什么?試用今天學過的知識說明。
設計意圖:探索題的難度相對大了些,但教師利用教學模型和學生合作交流的方式,拓展學生的思維、發(fā)展空間想象能力.
五、感悟收獲布置作業(yè):這節(jié)課你的收獲是什么?
作業(yè): 1、課本習題2.1 2、搜集有關勾股定理證明的資料.
板書設計 探索勾股定理
如果直角三角形兩直角邊分別為a,b,斜邊為c,那么
設計說明::1.探索定理采用面積法,為學生創(chuàng)設一個和諧、寬松的情境,讓學生體會數(shù)形結合及從特殊到一般的思想方法.
2.讓學生人人參與,注重對學生活動的評價,一是學生在活動中的投入程度;二是學生在活動中表現(xiàn)出來的思維水平、表達水平.
初中勾股定理教案設計(優(yōu)選八篇)
作為一位優(yōu)秀的人民教師,時常會需要準備好教案,教案有助于學生理解并掌握系統(tǒng)的知識。優(yōu)秀的教案都具備一些什么特點呢?下面是小編為大家整理的初中數(shù)學《勾股定理》教案模板,希望對大家有所幫助。
初中勾股定理教案設計 篇1
一、教案背景概述:
教材分析:勾股定理是直角三角形的重要性質,它把三角形有一個直角的"形"的特點,轉化為三邊之間的"數(shù)"的關系,它是數(shù)形結合的典范。它可以解決許多直角三角形中的計算問題,它是直角三角形特有的性質,是初中數(shù)學教學內(nèi)容重點之一。本節(jié)課的重點是發(fā)現(xiàn)勾股定理,難點是說明勾股定理的正確性。
學生分析:
1、考慮到三角尺學生天天在用,較為熟悉,但真正能仔細研究過三角尺的同學并不多,通過這樣的情景設計,能非常簡單地將學生的注意力引向本節(jié)課的本質。
2、以與勾股定理有關的人文歷史知識為背景展開對直角三角形三邊關系的討論,能激發(fā)學生的學習興趣。
設計理念:本教案以學生手中舞動的三角尺為知識背景展開,以勾股定理在古今中外的發(fā)展史為主線貫穿課堂始終,讓學生對勾股定理的發(fā)展過程有所了解,讓他們感受勾股定理的豐富文化內(nèi)涵,體驗勾股定理的探索和運用過程,激發(fā)學生學習數(shù)學的興趣,特別是通過向學生介紹我國古代在勾股定理研究和運用方面的成就,激發(fā)學生熱愛祖國,熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感和探究創(chuàng)新的精神。
教學目標:
1、經(jīng)歷用面積割、補法探索勾股定理的過程,培養(yǎng)學生主動探究意識,發(fā)展合理推理能力,體現(xiàn)數(shù)形結合思想。
2、經(jīng)歷用多種割、補圖形的方法驗證勾股定理的過程,發(fā)展用數(shù)學的眼光觀察現(xiàn)實世界和有條理地思考能力以及語言表達能力等,感受勾股定理的文化價值。
3、培養(yǎng)學生學習數(shù)學的興趣和愛國熱情。
4、欣賞設計圖形美。
二、教案運行描述:
教學準備階段:
學生準備:正方形網(wǎng)格紙若干,全等的直角三角形紙片若干,彩筆、直角三角尺、鉛筆等。
老師準備:畢達哥拉斯、趙爽、劉徽等證明勾股定理的圖片以及其它有關人物歷史資料等投影圖片。
三、教學流程:
(一)引入
同學們,當你每天手握三角尺繪制自己的宏偉藍圖時,你是否想過:他們的邊有什么關系呢?今天我們來探索這一小秘密。(板書課題:探索直角三角形三邊關系)
(二)實驗探究
1、取方格紙片,在上面先設計任意格點直角三角形,再以它們的每一邊分別向三角形外作正方形,如圖1
設網(wǎng)格正方形的邊長為1,直角三角形的直角邊分別為a、b ,斜邊為c ,觀察并計算每個正方形的面積,以四人小組為單位填寫下表:
(討論難點:以斜邊為邊的正方形的面積找法)
交流后得出一般結論: (用關于a、b、c的式子表示)
(三)探索所得結論的正確性
當直角三角形的直角邊分別為a 、b,斜邊為c時, 是否一定成立?
1、指導學生運用拼圖、或正方形網(wǎng)格紙構造或設計合理分割(或補全)圖形,去探索本結論的正確性:(以四人小組為單位進行)
在學生所創(chuàng)作圖形中選擇有代表性的割、補圖,展示出來交流講解,并引導學生進行說理:
如圖2(用補的方法說明)
師介紹:(出示圖片)畢達哥拉斯,公元前約500年左右,古西臘一位哲學家、數(shù)學家。一天,他應邀到一位朋友家做客,他一進朋友家門就被朋友家的豪華的方形大理石地磚的形狀深深吸引住了,于是他立刻找來尺子和筆又量又畫,他發(fā)現(xiàn)以每塊大理石地磚的相鄰兩直角邊向三角形外作正方形,它們的面積和等于以這塊大理石地磚的對角線為邊向形外作正方形的面積。于是他回到家里立刻對他的這一發(fā)現(xiàn)進行了探究證明……,終獲成功。后來西方人們?yōu)榱思o念他的這一發(fā)現(xiàn),將這一定理命名為"畢達哥拉斯定理"。1952年,希臘政府為了紀念這位偉大的數(shù)學家,特別選用他設計的這種圖形為主圖發(fā)行了一枚紀念郵票。(見課本52頁彩圖2—1,欣賞圖片)
如圖3(用割的方法去探索)
師介紹: (出示圖片) 中國古代數(shù)學家們很早就發(fā)現(xiàn)并運用這個結論。早在公元前2000年左右,大禹治水時期,就曾經(jīng)用過此方法測量土地的`等高差,公元前1100年左右,西周的數(shù)學家商高就曾用"勾三、股四、弦五"測量土地,他們對這一結論的運用至少比古希臘人早500多年。公元200年左右,三國時期吳國數(shù)學家趙爽曾構造此圖驗證了這一結論的正確性。他的這個證明,可謂別具匠心,極富創(chuàng)新意識,他用幾何圖形的割、來證明代數(shù)式之間的相等關系,既嚴密,又直觀,為中國古代以"形"證"數(shù)",形、數(shù)統(tǒng)一的獨特風格樹立了一個典范。他是我國有記載以來第一個證明這一結論的數(shù)學家。我國數(shù)學家們?yōu)榱思o念我國在這方面的數(shù)學成就,將這一結論命名為"勾股定理"。(點題)
20xx年,世界數(shù)學家大會在中國北京召開,當時選用這個圖案作為會場主圖,它標志著我國古代數(shù)學的輝煌成就。(見課本50頁彩圖,欣賞圖片)
如圖4(構造新圖形的方法去探索)
師介紹:(出示圖片)勾股定理是數(shù)學史上的一顆璀璨明珠,它的證明在數(shù)學史上屢創(chuàng)奇跡,從畢達哥拉斯到現(xiàn)在,吸引著世界上無數(shù)的數(shù)學家、物理學家、數(shù)學愛好者對它的探究,甚至政界要人——美國第20任總統(tǒng)加菲爾德,也加入到對它的探索證明中,如圖是他當年設計的證明方法。據(jù)說至今已經(jīng)找到的證明方法有四百多種,且每年還會有所增加。(若有時間可以繼續(xù)出示學生中有價值的圖片進行討論),有興趣的同學課后可以繼續(xù)探索……
四、總結:
本節(jié)課學習的勾股定理用語言敘說為:
五、作業(yè):
1、繼續(xù)收集、整理有關勾股定理的證明方的探索問題并交流。
2、探索勾股定理的運用。
初中勾股定理教案設計 篇2
教學 目標:
(1)理解通分的意義,理解最簡公分母的意義;
(2)掌握分式的通分法則,能熟練掌握通分運算。
教學 重點:
分式通分的理解和掌握。
教學 難點:
分式通分中最簡公分母的確定。
教學 工具:
投影儀
教學 方法:
啟發(fā)式、討論式
教學 過程 :
(一)引入
(1)如何計算:
由此讓學生復習分數(shù)通分的意義、通分的根據(jù)、通分的法則以及最簡公分母的概念。
(2)如何計算:
(3)何計算:
引導學生思考,猜想如何求解?
(二)新課
1、類比分數(shù)的通分得到分式的通分:
把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的 通分 .
注意:通分保證
(1)各分式與原分式相等;
(2)各分式分母相等。
2.通分的`依據(jù):分式的基本性質.
3.通分的關鍵:確定幾個分式的最簡公分母.
通常取各分母的所有因式的最高次冪的積作最簡公分母,這樣的公分母叫做 最簡公分母 .
根據(jù)分式通分和最簡公分母的定義,將分式xx ,xx,xx 通分:
最簡公分母為:xx ,然后根據(jù)分式的基本性質,分別對原來的各分式的分子和分母乘一個適當?shù)恼剑垢鞣质降姆帜付蓟癁閤x。通分如下:
通過本例使學生對于分式的通分大致過程和思路有所了解。讓學生歸納通分的思路過程。
例1 通分:
(1)
分析:讓學生找分式的公分母,可設問“分母的系數(shù)各不相同如何解決?”,依據(jù)分數(shù)的通分找最小公倍數(shù)。
解:∵ 最簡公分母是12xy 2
小結:各分母的系數(shù)都是整數(shù)時,通常取它們的系數(shù)的最小公倍數(shù)作為最簡公分母的系數(shù).
解:∵最簡公分母是10a 2 b 2 c 2
由學生歸納最簡公分母的思路。
分式通分中求最簡公分母概括為:
(1)取各分母系數(shù)的最小公倍數(shù);
(2)凡出現(xiàn)的字母為底的冪的因式都要??;
(3)相同字母的冪的因式取指數(shù)最大的。
取這些因式的積就是最簡公分母。
初中勾股定理教案設計 篇3
教學目標
了解勾股定理的一些證明方法,會簡單應用勾股定理解決問題
過程與方法:
在充分觀察、歸納、猜想的基礎上,探究勾股定理,在探究的過程中,發(fā)展合情推理,體會數(shù)形結合、從特殊到一般等數(shù)學思想。
情感態(tài)度價值觀:
通過對我國古代研究勾股定理的成就介紹,培養(yǎng)學生的民族自豪感。
教學過程
1、創(chuàng)設情境
問題1:國際數(shù)學家大會是最高水平的全球性數(shù)學學科學術會議,被譽為數(shù)學界的“奧運會”。下圖就是大會會徽的圖案。你見過這個圖案嗎?它由哪些我們學習過的基本圖形組成?這個圖案有什么特別的含義?
師生活動:教師引導學生尋找圖形中的直角三角形和正方形等,并引導學生發(fā)現(xiàn)直角三角形的全等關系,指出通過今天的學習,就能理解會徽圖案的含義。
設計意圖:本節(jié)課是本章的起始課,重視引言教學,從國際數(shù)學家大會的會徽說起,設置懸念,引入課題。
2、探究勾股定理
觀看洋蔥數(shù)學中關于勾股定理引入的視頻,讓我們一起走進神奇的數(shù)學世界
問題2:相傳2500多年前,畢達哥拉斯有一次在朋友家作客時,發(fā)現(xiàn)朋友家用轉鋪成的地面圖案反應了直角三角形三邊的某種數(shù)量關系,請你觀察下圖,你從中發(fā)現(xiàn)了什么數(shù)量關系?
師生活動:學生先獨立觀察思考一分鐘后,小組交流合作分析圖形中兩個藍色正方形與橙色正方形有哪些數(shù)量關系,教師參與學生的討論
追問:由這三個正方形的邊長構成的等腰直角三角形三條邊長之間又有怎么樣的關系?
師生活動:教師引導學生發(fā)現(xiàn)正方形的面積等于邊長的平方,歸納出:等腰直角三角形兩條直角邊的平方和等于斜邊的平方。
設計意圖:從最特殊的等腰直角三角形入手,便于學生觀察得到結論
問題3:數(shù)學研究遵循從特殊到一般的數(shù)學思想,既然我們得到了等腰直角三角形三邊的這種特殊的數(shù)量關系,那我們不妨大膽猜測在一般的直角三角形(在下圖的方格紙中,每個方格的面積是1)中,這種特殊的數(shù)量關系也同樣成立。
師生活動:學生獨立思考后小組討論,難點是如何證明求以斜邊為邊長的正方形的面積,可由師生共同總結得出可以通過割、補兩種方法,求出其面積。
初中勾股定理教案設計 篇4
【學習目標】
能運用勾股定理及直角三角形的判別條件解決簡單的實際問題.
【學習重點】
勾股定理及直角三角形的判別條件的運用.
【學習重點】
直角三角形模型的建立.
【學習過程】
一.課前復習
勾股定理及勾股定理逆定理的區(qū)別
二.新課學習
探究點一:螞蟻沿圓柱側面爬行的最短路徑問題
有一個圓柱,它的高等于12cm,底面圓的周長是18cm.在圓柱下底面的A點有一只螞蟻,它想吃到上底面上與A點相對的B點處的食物,沿圓柱側面爬行的最短路程是多少?
思考:
1.利用學具,嘗試從A點到B點沿圓柱側面畫出幾條線路,你認為這樣的線路有幾條?可分為幾類?
2.將右圖的圓柱側面剪開展開成一個長方形,B點在什么位置?從A點到B點的最短路線是什么?你是如何畫的?
3.螞蟻從A點出發(fā),想吃到B點上的食物,它沿圓柱側面爬行的最短路程是多少?你是如何解答這個問題的?畫出圖形,寫出解答過程。
4.你是如何將這個實際問題轉化為數(shù)學問題的?
小結:
你是如何解決圓柱體側面上兩點之間的最短距離問題的?
探究點二:利用勾股定理逆定理如何判斷兩線垂直?
李叔叔想要檢測雕塑底座正面的AD邊和BC邊是否分別垂直底邊AB,但他隨身只帶了卷尺。
(1)你能替他想辦法完成任務嗎?
(2)李叔叔量得AD的長是30cm,AB的長是40cm,BD長是50cm.AD邊垂直于AB邊嗎?你是如何解決這個問題的?
(3)小明隨身只有一個長度為20cm的刻度尺,他能有辦法檢驗AD邊是否垂直于AB邊嗎?BC邊與AB邊呢?
小結:通過本道例題的探索,判斷兩線垂直,你學會了什么方法?
三.課堂小結:本節(jié)課你學到了什么?
【反思】
一、教師我的體會:
①、我根據(jù)學生實際情況認真?zhèn)湔n這節(jié)課,書本總共兩個例題,且兩個例題都很難,如果一節(jié)課就講這兩題難題,那一方面學生的學習效率會比較低,另一方面會使學生畏難情緒增加。所以,我簡化教材,使教材易于操作,讓學生易于學習,有利于學生學習新知識、接受新知識,降低學習難度。
②、除了備教材外,還備學生。從教案及授課過程也可以看出,充分考慮到了學生的年齡特點:對新事物有好奇心,但對新知識的鉆研熱情又不夠高,這樣,造成教學難度較大,為了改變這一狀況,在處理教材時,把某些數(shù)學語言轉換成通俗文字來表達,把難度大的運用能力降低為難度稍細的理解能力,讓學生樂于面對奧妙而又有一定深度的數(shù)學,樂于學習數(shù)學。
③、新課選用的例子、練習,都是經(jīng)過精心挑選的,運用性強,貼近生活,與生活實際緊密聯(lián)系,既達到學習、鞏固新知識的目的,同時,又充分展現(xiàn)出數(shù)學教學的重大特征:數(shù)學源于生活實際,又服務于生活實際。勾股定理源于生活,但同時它又能極大的為生活服務。
④、使用多媒體進行教學,使知識顯得形象直觀,充分發(fā)揮現(xiàn)代技術作用。
二、學生體會:
課前,我們也去查閱了一些資料,關于勾股定理的證明以及有關的一些應用,通過這節(jié)課,真真發(fā)現(xiàn)勾股定理真真來源于生活,我們的幾何圖形和幾何計算對于勾股定理來說非常廣泛,而且以后更要用好它。對于勾股定理都應用時,我覺得關鍵是找到相關的三角形,并且分清直角邊或斜邊,靈活機智地進行計算和一些推理。另外與同學間在數(shù)學課上有自主學習的機會,有相互之間的討論、爭辯等協(xié)作的機會,在合作學習的過程中共同提高我覺得都是難得的機會。鍛煉了能力,提高了思維品質,并且勾股定理的應用中我覺得圖形很美,古代的數(shù)學家已經(jīng)有了很好的研究并作出了很大的貢獻,現(xiàn)代的藝術家們也在各方面用到很多,同時在課堂中漸漸地培養(yǎng)了我們的數(shù)學興趣和一定的思維能力。
不過課堂上老師在最后一題的畫圖中能放一放,讓我們有時間去思考怎么畫,那會更好些,自然思維也得到了發(fā)展。課上老師鼓勵我們嘗試不完善的甚至錯誤的意見,大膽發(fā)表自己的見解,體現(xiàn)了我們是學習的主人。數(shù)學課堂里充滿了智慧。
初中勾股定理教案設計 篇5
[教學分析]
勾股定理是揭示三角形三條邊數(shù)量關系的一條非常重要的性質,也是幾何中最重要的定理之一。它是解直角三角形的主要依據(jù)之一,同時在實際生活中具有廣泛的用途,“數(shù)學源于生活,又用于生活”正是這章書所體現(xiàn)的主要思想。教材在編寫時注意培養(yǎng)學生的動手操作能力和分析問題的能力,通過實際操作,使學生獲得較為直觀的印象;通過聯(lián)系比較、探索、歸納,幫助學生理解勾股定理,以利于進行正確的應用。
本節(jié)教科書從畢達哥拉斯觀察地面發(fā)現(xiàn)勾股定理的傳說談起,讓學生通過觀察計算一些以直角三角形兩條直角邊為邊長的小正方形的面積與以斜邊為邊長的正方形的面積的關系,發(fā)現(xiàn)兩直角邊為邊長的小正方形的面積的和,等于以斜邊為邊長的正方形的面積,從而發(fā)現(xiàn)勾股定理,這時教科書以命題的形式呈現(xiàn)了勾股定理。關于勾股定理的證明方法有很多,教科書正文中介紹了我國古人趙爽的證法。之后,通過三個探究欄目,研究了勾股定理在解決實際問題和解決數(shù)學問題中的應用,使學生對勾股定理的作用有一定的認識。
[教學目標]
一、 知識與技能
1、探索直角三角形三邊關系,掌握勾股定理,發(fā)展幾何思維。
2、應用勾股定理解決簡單的實際問題
3、學會簡單的合情推理與數(shù)學說理
二、 過程與方法
引入兩段中西關于勾股定理的史料,激發(fā)同學們的興趣,引發(fā)同學們的`思考。通過動手操作探索與發(fā)現(xiàn)直角三角形三邊關系,經(jīng)歷小組協(xié)作與討論,進一步發(fā)展合作交流能力和數(shù)學表達能力,并感受勾股定理的應用知識。
三、 情感與態(tài)度目標
通過對勾股定理歷史的了解,感受數(shù)學文化,激發(fā)學習興趣;在探究活動中,學生親自動手對勾股定理進行探索與驗證,培養(yǎng)學生的合作交流意識和探索精神,以及自主學習的能力。
四、 重點與難點
1、探索和證明勾股定理
2、熟練運用勾股定理
[教學過程]
一、創(chuàng)設情景,揭示課題
1、教師展示圖片并介紹第一情景
以中國最早的一部數(shù)學著作——《周髀算經(jīng)》的開頭為引,介紹周公向商高請教數(shù)學知識時的對話,為勾股定理的出現(xiàn)埋下伏筆。
周公問:“竊聞乎大夫善數(shù)也,請問古者包犧立周天歷度.夫天不可階而升,地不可得尺寸而度,請問數(shù)安從出?”商高答:“數(shù)之法出于圓方,圓出于方,方出于矩,矩出九九八十一,故折矩以為勾廣三,股修四,徑隅五。既方其外,半之一矩,環(huán)而共盤.得成三、四、五,兩矩共長二十有五,是謂積矩。故禹之所以治天下者,此數(shù)之所由生也?!?/p>
2、教師展示圖片并介紹第二情景
畢達哥拉斯是古希臘著名的數(shù)學家。相傳在2500年以前,他在朋友家做客時,發(fā)現(xiàn)朋友家用地磚鋪成的地面反映了直角三角形的某種特性。
二、師生協(xié)作,探究問題
1、現(xiàn)在請你也動手數(shù)一下格子,你能有什么發(fā)現(xiàn)嗎?
2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有這樣的特點呢?
3、你能得到什么結論嗎?
三、得出命題
勾股定理:如果直角三角形的兩直角邊長分別為a、b,斜邊長為c,那么,即直角三角形兩直角邊的平方和等于斜邊的平方。解釋: 由于我國古代把直角三角形中較短的直角邊稱為勾,較長的邊稱為股,斜邊稱為弦,所以,把它叫做勾股定理。
四、勾股定理的證明
趙爽弦圖的證法(圖2)
第一種方法:邊長為 的正方形可以看作是由4個直角邊分別為 、 ,斜邊為 的直角三角形圍在外面形成的。因為邊長為 的正方形面積加上4個直角三角形的面積等于外圍正方形的面積,所以可以列出等式 ,化簡得 。
第二種方法:邊長為 的正方形可以看作是由4個直角邊分別為 、 ,斜邊為 的
角三角形拼接形成的(虛線表示),不過中間缺出一個邊長為 的正方形“小洞”。
因為邊長為 的正方形面積等于4個直角三角形的面積加上正方形“小洞”的面積,所以可以列出等式 ,化簡得 。
這種證明方法很簡明,很直觀,它表現(xiàn)了我國古代數(shù)學家趙爽高超的證題思想和對數(shù)學的鉆研精神,是我們中華民族的驕傲。
五、應用舉例,拓展訓練,鞏固反饋。
勾股定理的靈活運用勾股定理在實際的生產(chǎn)生活當中有著廣泛的應用。勾股定理的發(fā)現(xiàn)和使用解決了許多生活中的問題,今天我們就來運用勾股定理解決一些問題,你可以嗎?試一試。
例題:小明媽媽買了一部29英寸(74厘米)的電視機,小明量了電視機的屏幕后,發(fā)現(xiàn)屏幕只有58厘長和46厘米寬,他覺得一定是售貨員搞錯了,你同意他的想法嗎?你能解釋這是為什么嗎?
六、歸納總結1、內(nèi)容總結:探索直角三角形兩直角邊的平方和等于斜邊的平方,利于勾股定理,解決實際問題
2、方法歸納:數(shù)方格看圖找關系,利用面積不變的方法。用直角三角形三邊表示正方形的面積觀察歸納注意畫一個直角三角形表示正方形面積,再次驗證自己的發(fā)現(xiàn)。
七、討論交流
讓學生發(fā)表自己的意見,提出他們模糊不清的概念,給他們一個梳理知識的機會,通過提示性的引導,讓學生對勾股定理的概念豁然開朗,為后面勾股定理的應用打下基礎。
我們班的同學很聰明。大家很快就通過數(shù)格子發(fā)現(xiàn)了勾股定理的規(guī)律。還有什么地方不懂的嗎?跟大家一起來交流一下。請同學們課后在反思天地中都發(fā)表一下自己的學習心得。
初中勾股定理教案設計 篇6
教學目標
1、知識與技能目標:探索并理解直角三角形的三邊之間的數(shù)量關系,通過探究能夠發(fā)現(xiàn)直角三角形中兩個直角邊的平方和等于斜邊的平方和。
2、過程與方法目標:經(jīng)歷用測量和數(shù)格子的辦法探索勾股定理的過程,進一步發(fā)展學生的合情推理能力。
3、情感態(tài)度與價值觀目標:通過本節(jié)課的學習,培養(yǎng)主動探究的習慣,并進一步體會數(shù)學與現(xiàn)實生活的緊密聯(lián)系。
教學重點
了解勾股定理的由來,并能用它來解決一些簡單的問題。
教學難點
勾股定理的探究以及推導過程。
教學過程
一、創(chuàng)設問題情景、導入新課
首先出示:投影1(章前的圖文)并介紹我國古代在勾股定理研究方面的貢獻,結合課本第六頁談一談我國是最早了解勾股定理的國家之一,介紹商高(三千多年前周期的數(shù)學家)在勾股定理方面的貢獻。
出示課件觀察后回答:
1、觀察圖1—2,正方形A中有_______個小方格,即A的面積為______個單位。
正方形B中有_______個小方格,即B的面積為______個單位。
正方形C中有_______個小方格,即C的面積為______個單位。
2、你是怎樣得出上面的結果的?
3、在學生交流回答的基礎上教師進一步設問:圖1—2中,A,B,C面積之間有什么關系?學生交流后得到結論:A+B=C。
二、層層深入、探究新知
1、做一做
出示投影3(書中P3圖1—3)
提問:(1)圖1—3中,A,B,C之間有什么關系?(2)從圖1—2,1—3中你發(fā)現(xiàn)什么?
學生討論、交流后,得出結論:以三角形兩直角邊為邊的正方形的面積和,等于以斜邊為邊的正方形面積。
2、議一議
圖1—2、1—3中,你能用三角形的邊長表示正方形的面積嗎?
(1)你能發(fā)現(xiàn)直角三角形三邊長度之間的關系嗎?在同學交流的基礎上,共同探討得出:直角三角形兩直角邊的平方和等于斜邊的平方。這就是著名的“勾股定理”。也就是說如果直角三角形的兩直角邊為a,b,斜邊為c那么。我國古代稱直角三角形的較短的直角邊為勾,較長的為股,斜邊為弦,這就是勾股定理的由來。
(2)分別以5厘米和12厘米為直角邊做出一個直角三角形,并測量斜邊的長度(學生測量后回答斜邊長為13)請大家想一想(2)中的規(guī)律,對這個三角形仍然成立嗎?
3、想一想
我們常見的電視的尺寸:29英寸(74厘米)的電視機,指的是屏幕的長嗎?還是指的是屏幕的寬?那他指什么呢?能否運用剛才所學的知識,檢驗一下電視劇的尺寸是否合格?
三、鞏固練習。
1、在圖1—1的問題中,折斷之前旗桿有多高?
2、錯例辨析:△ABC的兩邊為3和4,求第三邊
解:由于三角形的兩邊為3、4
所以它的第三邊的c應滿足
=25即:c=5辨析:(1)要用勾股定理解題,首先應具備直角三角形這個必不可少的條件,可本題三角形ABC并未說明它是否是直角三角形,所以用勾股定理就沒有依據(jù)。(2)若告訴△ABC是直角三角形,第三邊C也不一定是滿足,題目中并未交待C是斜邊。
綜上所述這個題目條件不足,第三邊無法求得
四、課堂小結
鼓勵學生自己總結、談談自己本節(jié)課的收獲,以及自己對勾股定理的理解,老師加以糾正和補充。
五、布置作業(yè)
初中勾股定理教案設計 篇7
教學目標
知識與技能:
了解勾股定理的一些證明方法,會簡單應用勾股定理解決問題
過程與方法:
在充分觀察、歸納、猜想的基礎上,探究勾股定理,在探究的過程中,發(fā)展合情推理,體會數(shù)形結合、從特殊到一般等數(shù)學思想。
情感態(tài)度價值觀:
通過對我國古代研究勾股定理的成就介紹,培養(yǎng)學生的民族自豪感。
教學過程
1、創(chuàng)設情境
問題1國際數(shù)學家大會是最高水平的全球性數(shù)學學科學術會議,被譽為數(shù)學界的“奧運會”。2002年在北京召開了第24屆國際數(shù)學家大會。下圖就是大會會徽的圖案。你見過這個圖案嗎?它由哪些我們學習過的基本圖形組成?這個圖案有什么特別的含義?
師生活動:教師引導學生尋找圖形中的直角三角形和正方形等,并引導學生發(fā)現(xiàn)直角三角形的全等關系,指出通過今天的學習,就能理解會徽圖案的含義。
設計意圖:本節(jié)課是本章的起始課,重視引言教學,從國際數(shù)學家大會的會徽說起,設置懸念,引入課題。
2、探究勾股定理
觀看洋蔥數(shù)學中關于勾股定理引入的視頻,讓我們一起走進神奇的數(shù)學世界
問題2相傳2500多年前,畢達哥拉斯有一次在朋友家作客時,發(fā)現(xiàn)朋友家用轉鋪成的地面圖案反應了直角三角形三邊的某種數(shù)量關系,請你觀察下圖,你從中發(fā)現(xiàn)了什么數(shù)量關系?
師生活動:學生先獨立觀察思考一分鐘后,小組交流合作分析圖形中兩個藍色正方形與橙色正方形有哪些數(shù)量關系,教師參與學生的討論
追問:由這三個正方形的邊長構成的等腰直角三角形三條邊長之間又有怎么樣的關系?
師生活動:教師引導學生發(fā)現(xiàn)正方形的面積等于邊長的平方,歸納出:等腰直角三角形兩條直角邊的平方和等于斜邊的平方。
設計意圖:從最特殊的等腰直角三角形入手,便于學生觀察得到結論
問題3:數(shù)學研究遵循從特殊到一般的數(shù)學思想,既然我們得到了等腰直角三角形三邊的這種特殊的數(shù)量關系,那我們不妨大膽猜測在一般的直角三角形(在下圖的方格紙中,每個方格的面積是1)中,這種特殊的數(shù)量關系也同樣成立。
師生活動:學生獨立思考后小組討論,難點是如何證明求以斜邊為邊長的正方形的面積,可由師生共同總結得出可以通過割、補兩種方法,求出其面積。
初中勾股定理教案設計 篇8
教學目標
1、知識與技能目標:探索并理解直角三角形的三邊之間的數(shù)量關系,通過探究能夠發(fā)現(xiàn)直角三角形中兩個直角邊的平方和等于斜邊的平方和。
2、過程與方法目標:經(jīng)歷用測量和數(shù)格子的辦法探索勾股定理的過程,進一步發(fā)展學生的合情推理能力。
3、情感態(tài)度與價值觀目標:通過本節(jié)課的學習,培養(yǎng)主動探究的習慣,并進一步體會數(shù)學與現(xiàn)實生活的緊密聯(lián)系。
教學重點
了解勾股定理的由來,并能用它來解決一些簡單的問題。
教學難點
勾股定理的探究以及推導過程。
教學過程
一、創(chuàng)設問題情景、導入新課
首先出示:投影1(章前的圖文)并介紹我國古代在勾股定理研究方面的貢獻,結合課本第六頁談一談我國是最早了解勾股定理的國家之一,介紹商高(三千多年前周期的數(shù)學家)在勾股定理方面的貢獻。
出示課件觀察后回答:
1、觀察圖1—2,正方形A中有_______個小方格,即A的面積為______個單位。
正方形B中有_______個小方格,即B的面積為______個單位。
正方形C中有_______個小方格,即C的面積為______個單位。
2、你是怎樣得出上面的結果的?
3、在學生交流回答的基礎上教師進一步設問:圖1—2中,A,B,C面積之間有什么關系?學生交流后得到結論:A+B=C。
二、層層深入、探究新知
1、做一做
出示投影3(書中P3圖1—3)
提問:
(1)圖1—3中,A,B,C之間有什么關系?
(2)從圖1—2,1—3中你發(fā)現(xiàn)什么?
學生討論、交流后,得出結論:以三角形兩直角邊為邊的正方形的面積和,等于以斜邊為邊的正方形面積。
2、議一議
圖1—2、1—3中,你能用三角形的邊長表示正方形的面積嗎?
(1)你能發(fā)現(xiàn)直角三角形三邊長度之間的關系嗎?在同學交流的基礎上,共同探討得出:直角三角形兩直角邊的平方和等于斜邊的平方。這就是著名的“勾股定理”。也就是說如果直角三角形的兩直角邊為a,b,斜邊為c那么。我國古代稱直角三角形的較短的直角邊為勾,較長的為股,斜邊為弦,這就是勾股定理的由來。
(2)分別以5厘米和12厘米為直角邊做出一個直角三角形,并測量斜邊的長度(學生測量后回答斜邊長為13)請大家想一想(2)中的規(guī)律,對這個三角形仍然成立嗎?
3、想一想
我們常見的電視的尺寸:29英寸(74厘米)的電視機,指的是屏幕的長嗎?還是指的是屏幕的寬?那他指什么呢?能否運用剛才所學的知識,檢驗一下電視劇的尺寸是否合格?
三、鞏固練習。
1、在圖1—1的問題中,折斷之前旗桿有多高?
2、錯例辨析:三角形的兩邊為3和4,求第三邊
四、課堂小結
鼓勵學生自己總結、談談自己本節(jié)課的收獲,以及自己對勾股定理的理解,老師加以糾正和補充。