一、圓及圓的相關量的定義
1、平面上到定點的距離等于定長的所有點組成的圖形叫做圓。定點稱為圓心,定長稱為半徑。
2、圓上任意兩點間的部分叫做圓弧,簡稱弧。大于半圓的弧稱為優(yōu)弧,小于半圓的弧稱為劣弧。連接圓上任意兩點的線段叫做弦。經過圓心的弦叫做直徑。
3、頂點在圓心上的角叫做圓心角。頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角。
4、過三角形的三個頂點的圓叫做三角形的外接圓,其圓心叫做三角形的外心。和三角形三邊都相切的圓叫做這個三角形的內切圓,其圓心稱為內心。
5、直線與圓有3種位置關系:無公共點為相離;有2個公共點為相交;圓與直線有唯一公共點為相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點。
6、兩圓之間有5種位置關系:無公共點的,一圓在另一圓之外叫外離,在之內叫內含;有唯一公共點的,一圓在另一圓之外叫外切,在之內叫內切;有2個公共點的叫相交。兩圓圓心之間的距離叫做圓心距。
7、在圓上,由2條半徑和一段弧圍成的圖形叫做扇形。圓錐側面展開圖是一個扇形。這個扇形的半徑成為圓錐的母線。
二、有關圓的字母表示方法
圓--⊙;半徑—r;弧--⌒;直徑—d
扇形弧長/圓錐母線—l;周長—C;面積—S三、有關圓的基本性質與定理(27個)
1、點P與圓O的位置關系(設P是一點,則PO是點到圓心的距離):
P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內,PO
2、圓是軸對稱圖形,其對稱軸是任意一條過圓心的直線。圓也是中心對稱圖形,其對稱中心是圓心。
3、垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的弧。逆定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的弧。
4、在同圓或等圓中,如果2個圓心角,2個圓周角,2條弧,2條弦中有一組量相等,那么他們所對應的其余各組量都分別等等。
5、一條弧所對的圓周角等于它所對的圓心角的一半。
6、直徑所對的圓周角是直角。90度的圓周角所對的弦是直徑。
7、不在同一直線上的3個點確定一個圓。
8、一個三角形有唯一確定的外接圓和內切圓。外接圓圓心是三角形各邊垂直平分線的交點,到三角形3個頂點距離相等;內切圓的圓心是三角形各內角平分線的交點,到三角形3邊距離相等。
9、直線AB與圓O的位置關系(設OP⊥AB于P,則PO是AB到圓心的距離):
AB與⊙O相離,PO>r;AB與⊙O相切,PO=r。
10、圓的切線垂直于過切點的直徑;經過直徑的一端,并且垂直于這條直徑的直線,是這個圓的切線。
11、圓與圓的位置關系(設兩圓的半徑分別為R和r,且R≥r,圓心距為P):外離P>R+r;外切P=R+r;相交R-r
三、有關圓的計算公式
1、圓的周長C=2πr=πd
2、圓的面積S=s=πr2
3、扇形弧長l=nπr/180
4、扇形面積S=nπr2/360=rl/2
5、圓錐側面積S=πrl
四、圓的方程
1、圓的標準方程
在平面直角坐標系中,以點O(a,b)為圓心,以r為半徑的圓的標準方程是:
(x-a)^2+(y-b)^2=r^2
2、圓的一般方程
把圓的標準方程展開,移項,合并同類項后,可得圓的一般方程是:
x^2+y^2+Dx+Ey+F=0
和標準方程對比,其實D=-2a,E=-2b,F=a^2+b^2
相關知識:圓的離心率e=0。在圓上任意一點的曲率半徑都是r。
五、圓與直線的位置關系判斷
平面內,直線Ax+By+C=O與圓x^2+y^2+Dx+Ey+F=0的位置關系判斷一般方法是
討論如下2種情況:
(1)由Ax+By+C=O可得y=(-C-Ax)/B,[其中B不等于0],
代入x^2+y^2+Dx+Ey+F=0,即成為一個關于x的一元二次方程f(x)=0。
利用判別式b^2-4ac的符號可確定圓與直線的位置關系如下:
如果b^2-4ac>0,則圓與直線有2交點,即圓與直線相交
如果b^2-4ac=0,則圓與直線有1交點,即圓與直線相切
如果b^2-4ac<0,則圓與直線有0交點,即圓與直線相離
(2)如果B=0即直線為Ax+C=0,即x=-C/A,它平行于y軸(或垂直于x軸)
將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2
令y=b,求出此時的兩個x值x1,x2,并且我們規(guī)定x1
當x=-C/Ax2時,直線與圓相離
當x1
當x=-C/A=x1或x=-C/A=x2時,直線與圓相切
圓的定理:
1、不在同一直線上的三點確定一個圓。
2、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
推論
1、①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,并且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
2、圓的兩條平行弦所夾的弧相等
3、圓是以圓心為對稱中心的中心對稱圖形
4、圓是定點的距離等于定長的點的集合
5、圓的內部可以看作是圓心的距離小于半徑的點的集合
6、圓的外部可以看作是圓心的距離大于半徑的點的集合
7、同圓或等圓的半徑相等
8、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓
9、定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
10、推論:在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等
11、定理:圓的內接四邊形的對角互補,并且任何一個外角都等于它的內對角
12、①直線L和⊙O相交d
②直線L和⊙O相切d=r
③直線L和⊙O相離d>r
13、切線的判定定理:經過半徑的外端并且垂直于這條半徑的直線是圓的切線
14、切線的性質定理:圓的切線垂直于經過切點的半徑
15、推論1經過圓心且垂直于切線的直線必經過切點
16、推論2經過切點且垂直于切線的直線必經過圓心
17、切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角
18、圓的外切四邊形的兩組對邊的和相等外角等于內對角
19、如果兩個圓相切,那么切點一定在連心線上
20、①兩圓外離d>R+r
②兩圓外切d=R+r
③兩圓相交R-rr)
④兩圓內切d=R-r(R>r)
⑤兩圓內含dr)
21、定理:相交兩圓的連心線垂直平分兩圓的公共弦
22、定理:把圓分成n(n≥3):
(1)依次連結各分點所得的多邊形是這個圓的內接正n邊形
(2)經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
23、定理:任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
24、正n邊形的每個內角都等于(n-2)×180°/n
25、定理:正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
26、正n邊形的面積Sn=pnrn/2,p表示正n邊形的周長
27、正三角形面積√3a/4,a表示邊長
28、如果在一個頂點周圍有k個正n邊形的角,這些角的和應為360°
29、弧長計算公式:L=n兀R/180
30、扇形面積公式:S扇形=n兀R^2/360=LR/2
31、內公切線長=d-(R-r)外公切線長=d-(R+r)
32、定理:一條弧所對的圓周角等于它所對的圓心角的一半
33、推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
34、推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
35、弧長公式l=a*r,a是圓心角的弧度數r>0,扇形面積公式s=1/2*l*r
空間兩條直線只有三種位置關系:平行、相交、異面
1、按是否共面可分為兩類:
(1)共面:平行、相交
(2)異面:
異面直線的定義:不同在任何一個平面內的兩條直線或既不平行也不相交。
異面直線判定定理:用平面內一點與平面外一點的直線,與平面內不經過該點的直線是異面直線。
兩異面直線所成的角:范圍為(0°,90°)esp??臻g向量法。
兩異面直線間距離:公垂線段(有且只有一條)esp空間向量法。
2、若從有無公共點的角度看可分為兩類:
(1)有且僅有一個公共點——相交直線;
(2)沒有公共點——平行或異面
直線和平面的位置關系:
直線和平面只有三種位置關系:在平面內、與平面相交、與平面平行。
①直線在平面內——有無數個公共點。
②直線和平面相交——有且只有一個公共點。
直線與平面所成的角:平面的一條斜線和它在這個平面內的射影所成的銳角。
一、直線與方程
(1)直線的傾斜角
定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°
(2)直線的斜率
①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即 。斜率反映直線與軸的傾斜程度。
當 時, ; 當 時, ; 當 時, 不存在。
②過兩點的直線的斜率公式:
注意下面四點:(1)當 時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;
(2)k與P1、P2的順序無關;(3)以后求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;
(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。
(3)直線方程
①點斜式: 直線斜率k,且過點
注意:當直線的斜率為0°時,k=0,直線的方程是y=y1。
當直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標都等于x1,所以它的方程是x=x1。
②斜截式: ,直線斜率為k,直線在y軸上的截距為b
③兩點式: ( )直線兩點 ,
④截矩式:
其中直線 與 軸交于點 ,與 軸交于點 ,即 與 軸、 軸的截距分別為 。
⑤一般式: (A,B不全為0)
注意:各式的適用范圍 特殊的方程如:
平行于x軸的直線: (b為常數); 平行于y軸的直線: (a為常數);
(5)直線系方程:即具有某一共同性質的直線
(一)平行直線系
平行于已知直線 ( 是不全為0的常數)的直線系: (C為常數)
(二)垂直直線系
垂直于已知直線 ( 是不全為0的常數)的直線系: (C為常數)
(三)過定點的直線系
(?。┬甭蕿閗的直線系: ,直線過定點 ;
(ⅱ)過兩條直線 , 的交點的直線系方程為
( 為參數),其中直線 不在直線系中。
(6)兩直線平行與垂直
當 , 時,;
注意:利用斜率判斷直線的平行與垂直時,要注意斜率的存在與否。
(7)兩條直線的`交點
相交
交點坐標即方程組 的一組解。
方程組無解 ; 方程組有無數解 與 重合
(8)兩點間距離公式:設 是平面直角坐標系中的兩個點,
則
(9)點到直線距離公式:一點 到直線 的距離
(10)兩平行直線距離公式
在任一直線上任取一點,再轉化為點到直線的距離進行求解。
二、圓的方程
1、圓的定義:平面內到一定點的距離等于定長的點的集合叫圓,定點為圓心,定長為圓的半徑。
2、圓的方程
(1)標準方程 ,圓心 ,半徑為r;
(2)一般方程
當 時,方程表示圓,此時圓心為 ,半徑為
當 時,表示一個點; 當 時,方程不表示任何圖形。
(3)求圓方程的方法:
一般都采用待定系數法:先設后求。確定一個圓需要三個獨立條件,若利用圓的標準方程,
需求出a,b,r;若利用一般方程,需要求出D,E,F;
另外要注意多利用圓的幾何性質:如弦的中垂線必經過原點,以此來確定圓心的位置。
3、直線與圓的位置關系:
直線與圓的位置關系有相離,相切,相交三種情況:
(1)設直線 ,圓 ,圓心 到l的距離為 ,則有 ; ;
(2)過圓外一點的切線:①k不存在,驗證是否成立②k存在,設點斜式方程,用圓心到該直線距離=半徑,求解k,得到方程
(3)過圓上一點的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0-a)(x-a)+(y0-b)(y-b)= r2
4、圓與圓的位置關系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。
設圓 ,
兩圓的位置關系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。
當 時兩圓外離,此時有公切線四條;
當 時兩圓外切,連心線過切點,有外公切線兩條,內公切線一條;
當 時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;
當 時,兩圓內切,連心線經過切點,只有一條公切線;
當 時,兩圓內含; 當 時,為同心圓。
注意:已知圓上兩點,圓心必在中垂線上;已知兩圓相切,兩圓心與切點共線
圓的輔助線一般為連圓心與切線或者連圓心與弦中點
三、立體幾何初步
1、柱、錐、臺、球的結構特征
(1)棱柱:
幾何特征:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行于底面的截面是與底面全等的多邊形。
(2)棱錐
幾何特征:側面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方。
(3)棱臺:
幾何特征:①上下底面是相似的平行多邊形 ②側面是梯形 ③側棱交于原棱錐的頂點
(4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉,其余三邊旋轉所成
幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形。
(5)圓錐:定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成
幾何特征:①底面是一個圓;②母線交于圓錐的頂點;③側面展開圖是一個扇形。
(6)圓臺:定義:以直角梯形的垂直與底邊的腰為旋轉軸,旋轉一周所成
幾何特征:①上下底面是兩個圓;②側面母線交于原圓錐的頂點;③側面展開圖是一個弓形。
(7)球體:定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體
幾何特征:①球的截面是圓;②球面上任意一點到球心的距離等于半徑。
2、空間幾何體的三視圖
定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側視圖(從左向右)、
俯視圖(從上向下)
注:正視圖反映了物體的高度和長度;俯視圖反映了物體的長度和寬度;側視圖反映了物體的高度和寬度。
3、空間幾何體的直觀圖——斜二測畫法
斜二測畫法特點:①原來與x軸平行的線段仍然與x平行且長度不變;
②原來與y軸平行的線段仍然與y平行,長度為原來的一半。
4、柱體、錐體、臺體的表面積與體積
(1)幾何體的表面積為幾何體各個面的面積的和。
(2)特殊幾何體表面積公式(c為底面周長,h為高, 為斜高,l為母線)
(3)柱體、錐體、臺體的體積公式
(4)球體的表面積和體積公式:V = ; S =
4、空間點、直線、平面的位置關系
公理1:如果一條直線的兩點在一個平面內,那么這條直線是所有的點都在這個平面內。
應用: 判斷直線是否在平面內
用符號語言表示公理1:
公理2:如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線
符號:平面α和β相交,交線是a,記作α∩β=a。
符號語言:
公理2的作用:
①它是判定兩個平面相交的方法。
②它說明兩個平面的交線與兩個平面公共點之間的關系:交線必過公共點。
③它可以判斷點在直線上,即證若干個點共線的重要依據。
公理3:經過不在同一條直線上的三點,有且只有一個平面。
推論:一直線和直線外一點確定一平面;兩相交直線確定一平面;兩平行直線確定一平面。
公理3及其推論作用:
①它是空間內確定平面的依據
②它是證明平面重合的依據
公理4:平行于同一條直線的兩條直線互相平行
空間直線與直線之間的位置關系
① 異面直線定義:不同在任何一個平面內的兩條直線
② 異面直線性質:既不平行,又不相交。
③ 異面直線判定:過平面外一點與平面內一點的直線與平面內不過該店的直線是異面直線
④ 異面直線所成角:作平行,令兩線相交,所得銳角或直角,即所成角。兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說這兩條異面直線互相垂直。
求異面直線所成角步驟:
A、利用定義構造角,可固定一條,平移另一條,或兩條同時平移到某個特殊的位置,頂點選在特殊的位置上。
B、證明作出的角即為所求角
C、利用三角形來求角
(7)等角定理:如果一個角的兩邊和另一個角的兩邊分別平行,那么這兩角相等或互補。
(8)空間直線與平面之間的位置關系
直線在平面內——有無數個公共點.
三種位置關系的符號表示:a α a∩α=A a‖α
(9)平面與平面之間的位置關系:平行——沒有公共點;α‖β
相交——有一條公共直線。α∩β=b
5、空間中的平行問題
(1)直線與平面平行的判定及其性質
線面平行的判定定理:平面外一條直線與此平面內一條直線平行,則該直線與此平面平行。(F236.CoM 活動范文吧)
線線平行 線面平行
線面平行的性質定理:如果一條直線和一個平面平行,經過這條直線的平面和這個平面相交,那么這條直線和交線平行。線面平行 線線平行
(2)平面與平面平行的判定及其性質
兩個平面平行的判定定理
(1)如果一個平面內的兩條相交直線都平行于另一個平面,那么這兩個平面平行
(線面平行→面面平行),
(2)如果在兩個平面內,各有兩組相交直線對應平行,那么這兩個平面平行。
(線線平行→面面平行),
(3)垂直于同一條直線的兩個平面平行,
兩個平面平行的性質定理
(1)如果兩個平面平行,那么某一個平面內的直線與另一個平面平行。(面面平行→線面平行)
(2)如果兩個平行平面都和第三個平面相交,那么它們的交線平行。(面面平行→線線平行)
7、空間中的垂直問題
(1)線線、面面、線面垂直的定義
①兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直。
②線面垂直:如果一條直線和一個平面內的任何一條直線垂直,就說這條直線和這個平面垂直。
③平面和平面垂直:如果兩個平面相交,所成的二面角(從一條直線出發(fā)的兩個半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個平面垂直。
(2)垂直關系的判定和性質定理
①線面垂直判定定理和性質定理
判定定理:如果一條直線和一個平面內的兩條相交直線都垂直,那么這條直線垂直這個平面。
性質定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。
②面面垂直的判定定理和性質定理
判定定理:如果一個平面經過另一個平面的一條垂線,那么這兩個平面互相垂直。
性質定理:如果兩個平面互相垂直,那么在一個平面內垂直于他們的交線的直線垂直于另一個平面。
9、空間角問題
(1)直線與直線所成的角
①兩平行直線所成的角:規(guī)定為 。
②兩條相交直線所成的角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角。
③兩條異面直線所成的角:過空間任意一點O,分別作與兩條異面直線a,b平行的直線 ,形成兩條相交直線,這兩條相交直線所成的不大于直角的角叫做兩條異面直線所成的角。
(2)直線和平面所成的角
①平面的平行線與平面所成的角:規(guī)定為 。
②平面的垂線與平面所成的角:規(guī)定為 。
③平面的斜線與平面所成的角:平面的一條斜線和它在平面內的射影所成的銳角,叫做這條直線和這個平面所成的角。
求斜線與平面所成角的思路類似于求異面直線所成角:“一作,二證,三計算”。
在“作角”時依定義關鍵作射影,由射影定義知關鍵在于斜線上一點到面的垂線,
在解題時,注意挖掘題設中兩個主要信息:
(1)斜線上一點到面的垂線;
(2)過斜線上的一點或過斜線的平面與已知面垂直,由面面垂直性質易得垂線。
(3)二面角和二面角的平面角
①二面角的定義:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個半平面叫做二面角的面。
②二面角的平面角:以二面角的棱上任意一點為頂點,在兩個面內分別作垂直于棱的兩條射線,這兩條射線所成的角叫二面角的平面角。
③直二面角:平面角是直角的二面角叫直二面角。
兩相交平面如果所組成的二面角是直二面角,那么這兩個平面垂直;反過來,如果兩個平面垂直,那么所成的二面角為直二面角
④求二面角的方法
定義法:在棱上選擇有關點,過這個點分別在兩個面內作垂直于棱的射線得到平面角
垂面法:已知二面角內一點到兩個面的垂線時,過兩垂線作平面與兩個面的交線所成的角為二面角的平面角
棱錐
棱錐的定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,這些面圍成的幾何體叫做棱錐
棱錐的的性質:
(1)側棱交于一點。側面都是三角形
(2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠棱錐高的比的平方
正棱錐
正棱錐的定義:如果一個棱錐底面是正多邊形,并且頂點在底面內的射影是底面的中心,這樣的棱錐叫做正棱錐。
正棱錐的性質:
(1)各側棱交于一點且相等,各側面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。
(3)多個特殊的直角三角形
esp:
a、相鄰兩側棱互相垂直的正三棱錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。
b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的射影為底面三角形的垂心。
相關推薦
一般給學生們上課之前,老師就早早地準備好了教案課件,因此就需要老師自己花點時間去寫。教案課件是老師的重要參考,從哪些角度去準備寫自己的教案課件呢?下面由幼兒教師教育網的編輯給大家來分享“高中數學必修二課件”,請將本網頁加入您常用的鏈接列表中!...
宜未雨綢而繆,毋臨竭而掘井。當幼兒園教師的教學任務遇到困難時,往往都需要參考一下我們提前準備參考資料。資料一般指生產、生活中閱讀,學習,參考必需的東西。參考資料有利于我們完成相應的學習工作目標。所以,你是否知曉幼師資料到底是怎樣的形式呢?以下是小編收集整理的“高中生物必修二課件”,供有需要的朋友參考...
筆者不遺余力地制作出了這份令您滿意的“高中數學必修二課件”。每一位教師都需要在上課之前準備一份完整的教案和課件,相信對于編寫教案和課件的要求,教師們并不陌生。完整的教案是教學活動中不可或缺的重要組成部分,此處提供的閱讀材料僅供參考!...
居安思危,思則有備,有備無患。當幼兒園教師的工作遇到難題時,我們經常會用提前準備好的資料進行參考。資料是時代的記錄,它是產生于人類實踐活動。參考資料有助于我們的工作進一步發(fā)展。那么,你知道有哪些常見幼師資料嗎?以下是小編為大家收集的“高中數學必修一課件精品”供你參考,希望能夠幫助到大家。學習目標:1...
教案課件是老師上課中很重要的一個課件,就需要老師用心去設計好教案課件了。教案是完整課堂教學的基礎,應該從什么角度去寫教案課件呢?欄目小編精心挑選后認為“高中數學必修一課件”是最精彩的一篇文章,提供有用建議是我的職責但終究決策權在您!...
最新更新