二次根式教案
發(fā)布時間:2023-11-28 二次根式教案 根式教案二次根式教案十一篇。
教案是教師在上課前需要準備好的教學(xué)材料,每位教師都需要仔細策劃教案。教案和課件的設(shè)計質(zhì)量對教學(xué)效果起著關(guān)鍵作用。如果您對“二次根式教案”感到好奇,請閱讀下面精心準備的資料,需要的同學(xué)請認真閱讀!
二次根式教案【篇1】
一、引入新課:
上節(jié)數(shù)學(xué)課我們學(xué)習(xí)了二次根式的乘法計算,那么該怎樣進行二次根式的除法運算呢?本節(jié)課我們一起學(xué)習(xí)。
二、展示目標(biāo),自主學(xué)習(xí):
自學(xué)指導(dǎo):認真閱讀課本第8頁——10頁內(nèi)容,完成下列任務(wù):
1、先自主完成8頁“探究”,再和同伴交流,你們得到的結(jié)論是: 。嘗試用文字語言表述這個法則 。
2、認真看例4、例5、例6和例7的每一步計算和化簡,有疑問隨即和同伴交流或向老師請教;
3、 最簡二次根式滿足的兩個條件是:
①( )
② ( )
4、仿照例題格式 完成10頁練習(xí)并和同伴互相找毛病。
三、檢測反饋
1、師生共同解決“自學(xué)指導(dǎo)”中的問題。
2、找同學(xué)演板10頁練習(xí)1、2、3
四、課堂小結(jié):
本節(jié)課你有哪些收獲?
(1)二次根式的除法法則是什么?請寫在下面。
(2)在進行二次根式的除法計算和化簡時你有覺得應(yīng)該注意些什么?請告訴大家。
五、布置作業(yè):
作業(yè):課本第10頁 習(xí)題16.2 第2題;第3題的(3)、(4)小題
二次根式教案【篇2】
教學(xué)目標(biāo)
1、使學(xué)生理解最簡二次根式的概念;
2、掌握把二次根式化為最簡二次根式的方法。
教學(xué)重點和難點
重點:化二次根式為最簡二次根式的方法。
難點:最簡二次根式概念的理解。
一、導(dǎo)入新課
計算:
我們再看下面的問題:
簡,得到
從上面例子可以看出,如果把二次根式先進行化簡,會對解決問題帶來方便。
二、新課
答:
1、被開方數(shù)的因數(shù)是整數(shù)或整式;
2、被開方數(shù)中不含能開得盡方的因數(shù)或因式。
滿足上面兩個條件的二次根式叫做最簡二次根式。
例1 試判斷下列各式中哪些是最簡二次根式,哪些不是?為什么?
解
(1)不是最簡二次根式。因為a3=a2·a,而a2可以開方,即被開方數(shù)中有開得盡方的因式。整數(shù)。
(3)是最簡二次根式。因為被開方數(shù)的因式x2+y2開不盡方,而且是整式。
(4)是最簡二次根式。因為被開方數(shù)的因式a-b開不盡方,而且是整式。
(5)是最簡二次根式。因為被開方數(shù)的因式5x開不盡方,而且是整式。
(6)不是最簡二次根式。因為被開方數(shù)中的因數(shù)8=22·2,含有開得盡的因數(shù)22。
指出:從(1),(2),(6)題可以看到如下兩個結(jié)論。
1、在二次根式的被開方數(shù)中,只要含有分數(shù)或小數(shù),就不是最簡二次根式;
2、在二次根式的被開方數(shù)中的每一個因式(或因數(shù)),如果冪的指數(shù)等于或大于2,也不是最簡二次根式。
例2 把下列各式化為最簡二次根式:
分析:把被開方數(shù)分解因式或因數(shù),再利用積的算術(shù)平方根的性質(zhì)
例3 把下列各式化成最簡二次根式:
分析:題(1)的被開方數(shù)是帶分數(shù),應(yīng)把它變成假分數(shù),然后將分母有理化,把原式化成最簡二次根式。
題(2)及題(3)的被開方數(shù)是分式,先應(yīng)用商的算術(shù)平方根的性質(zhì)把原式表示為兩個根式的商的形式,再把分母有理化,把原式化成最簡二次根式。
通過例2、例3,請同學(xué)們總結(jié)出把二次根式化成最簡二次根式的方法。
答:如果被開方數(shù)是分式或分數(shù)(包括小數(shù))先利用商的算術(shù)平方根的性質(zhì),把它寫成分式的形式,然后利用分母有理化化簡。
如果被開方數(shù)是整式或整數(shù),先把它分解因式或分解因數(shù),然后把開得盡方的因式或因數(shù)開出來,從而將式子化簡。
三、課堂練習(xí)
1、在下列各式中,是最簡二次根式的式子為 [ ]的二次根式的式子有_____個。 [ ]
A、2 B、3
C、1 D、0
3、把下列各式化成最簡二次根式:
答案:
1、B
2、B
四、小結(jié)
1、最簡二次根式必須滿足兩個條件:
(1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;
(2)被開方數(shù)中不含能開得盡方的因數(shù)或因式。
2、把一個式子化為最簡二次根式的方法是:
(1)如果被開方數(shù)是整式或整數(shù),先把它分解成因式(或因數(shù))的積的形式,把開得盡方的因式(或因數(shù))移到根號外;
(2)如果被開方數(shù)含有分母,應(yīng)去掉分母的根號。
五、作業(yè)
1、把下列各式化成最簡二次根式:
2、把下列各式化成最簡二次根式:
二次根式教案【篇3】
一、內(nèi)容和內(nèi)容解析
1.內(nèi)容
二次根式的除法法則及其逆用,最簡二次根式的概念。
2.內(nèi)容解析
二次根式除法法則及商的算術(shù)平方根的探究,最簡二次根式的提出,為二次根式的運算指明了方向,學(xué)習(xí)了除法法則后,就有比較豐富的運算法則和公式依據(jù),將一個二次根式化成最簡二次根式,是加減運算的基礎(chǔ).
基于以上分析,確定本節(jié)課的教學(xué)重點:二次根式的除法法則和商的算術(shù)平方根的性質(zhì),最簡二次根式.
二、目標(biāo)和目標(biāo)解析
1.教學(xué)目標(biāo)
(1)利用歸納類比的方法得出二次根式的除法法則和商的算術(shù)平方根的性質(zhì);
(2)會進行簡單的二次根式的除法運算;
(3) 理解最簡二次根式的概念.
2.目標(biāo)解析
(1)學(xué)生能通過運算,類比二次根式的乘法法則,發(fā)現(xiàn)并描述二次根式的除法法則;
(2)學(xué)生能理解除法法則逆用的意義,結(jié)合二次根式的概念、性質(zhì)、乘除法法則,對簡單的二次根式進行運算.
(3)通過觀察二次根式的運算結(jié)果,理解最簡二次根式的特征,能將二次根式的運算結(jié)果化為最簡二次根式.
三、教學(xué)問題診斷分析
本節(jié)內(nèi)容主要是在做二次根式的除法運算時,分母含根號的處理方式上,學(xué)生可能會出現(xiàn)困難或容易失誤,在除法運算中,可以先計算后利用商的算術(shù)平方根的性質(zhì)來進行,也可以先利用分式的性質(zhì),去掉分母中的根號,再結(jié)合乘法法則和積的算術(shù)平方根的性質(zhì)來進行.二次根式的除法與分式的運算類似,如果分子、分母中含有相同的因式,可以直接約去,以簡化運算.教學(xué)中不能只是列舉題型,應(yīng)以各級各類習(xí)題為載體,引導(dǎo)學(xué)生把握運算過程,估計運算結(jié)果,明確運算方向.
本節(jié)課的教學(xué)難點為:二次根式的除法法則與商的算術(shù)平方根的性質(zhì)之間的關(guān)系和應(yīng)用.
四、教學(xué)過程設(shè)計
1.復(fù)習(xí)提問,探究規(guī)律
問題1二次根式的乘法法則是什么內(nèi)容?化簡二次根式的一般步驟怎樣?
師生活動學(xué)生回答。
【設(shè)計意圖】讓學(xué)生回憶探究乘法法則的過程,類比該過程,學(xué)生可以探究除法法則.
五、目標(biāo)檢測設(shè)計
二次根式教案【篇4】
教學(xué)目標(biāo)
1.使學(xué)生進一步理解最簡二次根式的概念;
2.較熟練地掌握把一個式子化為最簡二次根式的方法.
教學(xué)重點和難點
重點:較熟練地把二次根式化為最簡二次根式.
難點:把被開方數(shù)是多項式和分式的二次根式化為最簡二次根式.
教學(xué)過程設(shè)計
一、復(fù)習(xí)
1.把下列各式化為最簡二次根式:
請說出第(3),(4)題的解題過程.
答:第(3)題的被開方數(shù)是一個多項式,先把它分解因式,再運用積的算術(shù)平方根的性質(zhì),把根號中的平方式及平方數(shù)開出來,運算結(jié)果應(yīng)化為最簡二次根式.
理化.
二、新課
例1 把下列各式化成最簡二次根式:
請說出各題的`特點和解題思路.
答:(1)題的被開方數(shù)及(2)題的被開方數(shù)的分子是多項式,應(yīng)化成因式積的形式,可以先分解因式,再化簡.
(3)題的被開方數(shù)的分母是兩個數(shù)的平方差,先利用平方差公式把它化為乘積形式,再根據(jù)商的算術(shù)平方根和積的算術(shù)平方根的性質(zhì)及分母有理化的方法,使運算結(jié)果為最簡二次根式.
例2 計算:
分析:依據(jù)二次根式的乘除法的法則進行計算,最后要把計算結(jié)果化成最簡二次根式.
三、課堂練習(xí)
1.選擇題:
(1)下列二次根式中,最簡二次根式是 [ ]
(2)下列二次根式中,最簡二次根式是 [ ]
(3)下列二次根式中,最簡二次根式是 [ ]
(4)下列二次根式中,最簡二次根式是 [ ]
(5)下列二次根式中,最簡二次根式是 [ ]
(7)下列化簡中,正確的是 [ ]
(8)下列化簡中,錯誤的是 [ ]
2.把下列各式化為最簡二次根式:
3.計算:
答案:
四、小結(jié)
1.把一個式子化為最簡二次根式時,如果被開方數(shù)是多項式,應(yīng)把它化成積的形式,一般可考慮先分解因式,然后再化簡.
2.如果一個式子的被開方數(shù)的分母是一個多項式,而這個多項式又不能分解因式(如課堂練習(xí)2(2)),在分母有理化時,把分子分母同乘以這個多項式.
3.二次根式的乘除法運算,運算結(jié)果一定要化為最簡二次根式.
五、作業(yè)
1.把下列各式化成最簡二次根式:
2.計算:
答案:
課堂教學(xué)設(shè)計說明
最簡二次根式教學(xué)分二課時進行.教學(xué)設(shè)計中首先安排討論二次根式的被開方數(shù)是單項式以及被開方數(shù)的分母是單項式的情況,然后再討論被開方數(shù)是多項式和分母是多項式的情況.通過5個例題及課堂練習(xí),最后達到使學(xué)生比較深刻地理解最簡二次根式的概念,達到熟練地掌握把二次根式化為最簡二次根式的教學(xué)目標(biāo).
的是引導(dǎo)學(xué)生能把一個式子化簡為最簡二次根式應(yīng)用于有關(guān)計算問題中去,把最簡二次根式和已學(xué)過的二次根式的乘除運算進行聯(lián)系,促使學(xué)生把單個概念和方法納入認知系統(tǒng)中,啟發(fā)學(xué)生認識到二次根式的乘除運算與最簡二次根式是密切關(guān)聯(lián)的.
二次根式教案【篇5】
一、復(fù)習(xí)引入
學(xué)生活動:請同學(xué)們完成下列各題:
1.計算
(1)(2x+y)·zx(2)(2x2y+3xy2)÷xy
二、探索新知
如果把上面的x、y、z改寫成二次根式呢?以上的運算規(guī)律是否仍成立呢?仍成立.
整式運算中的x、y、z是一種字母,它的意義十分廣泛,可以代表所有一切,當(dāng)然也可以代表二次根式,所以,整式中的運算規(guī)律也適用于二次根式.
例1.計算:
(1)(+)×(2)(4-3)÷2分析:剛才已經(jīng)分析,二次根式仍然滿足整式的運算規(guī)律,所以直接可用整式的運算規(guī)律.
解:(1)(+)×=×+×=+=3+2解:(4-3)÷2=4÷2-3÷2=2-例2.計算
(1)(+6)(3-)(2)(+)(-)
分析:剛才已經(jīng)分析,二次根式的多項式乘以多項式運算在乘法公式運算中仍然成立.
解:(1)(+6)(3-)
=3-()2+18-6=13-3(2)(+)(-)=()2-()2
=10-7=3
三、鞏固練習(xí)
課本P20練習(xí)1、2.
四、應(yīng)用拓展
例3.已知=2-,其中a、b是實數(shù),且a+b≠0,
化簡+,并求值.
分析:由于(+)(-)=1,因此對代數(shù)式的化簡,可先將分母有理化,再通過解含有字母系數(shù)的一元一次方程得到x的值,代入化簡得結(jié)果即可?
二次根式教案【篇6】
一、教學(xué)目標(biāo)
1.理解分母有理化與除法的關(guān)系.
2.掌握二次根式的分母有理化.
3.通過二次根式的分母有理化,培養(yǎng)學(xué)生的運算能力.
4.通過學(xué)習(xí)分母有理化與除法的關(guān)系,向?qū)W生滲透轉(zhuǎn)化的數(shù)學(xué)思想
二、教學(xué)設(shè)計
小結(jié)、歸納、提高
三、重點、難點解決辦法
1.教學(xué)重點:分母有理化.
2.教學(xué)難點:分母有理化的技巧.
四、課時安排
1課時
五、教具學(xué)具準備
投影儀、膠片、多媒體
六、師生互動活動設(shè)計
復(fù)習(xí)小結(jié),歸納整理,應(yīng)用提高,以學(xué)生活動為主
七、教學(xué)過程
【復(fù)習(xí)提問】
二次根式混合運算的步驟、運算順序、互為有理化因式.
例1 說出下列算式的運算步驟和順序:
(1) (先乘除,后加減).
(2) (有括號,先去括號;不宜先進行括號內(nèi)的運算).
(3)辨別有理化因式:
有理化因式: 與 , 與 , 與 …
不是有理化因式: 與 , 與 …
化簡一個式子,如果分母是二次根式,采用分子、分母同乘以分母的有理化因式的方法(依據(jù)分式的基本性質(zhì)).
例如:等式子的化簡,如果分母是兩個二次根式的和,應(yīng)該怎樣化簡?
引入新課題.
【引入新課】
化簡式子 ,乘以什么樣的式子,分母中的根式符號可去掉,結(jié)論是分子與分母要同乘以 的有理化因式,而這個式子就是 ,從而可將式子化簡.
例2 把下列各式的分母有理化:
(1) ; (2) ; (3)
解:略.
注:通過例題的講解,使學(xué)生理解和掌握化簡的步驟、關(guān)鍵問題、化簡的依據(jù).式子的化簡,若分子與分母可分解因式,則可先分解因式,再約分,使化簡變得簡單.
二次根式教案【篇7】
一、教學(xué)目標(biāo)
1.掌握二次根式的混合運算.
2.掌握混合運算的應(yīng)用.
3.通過二次根式的混合運算,培養(yǎng)學(xué)生的運算能力.
4.通過混合運算知識拓展,培養(yǎng)學(xué)生的探索精神
二、教學(xué)設(shè)計
小結(jié)、歸納、提高
三、重點、難點解決辦法
1.教學(xué)重點:二次根式的混合運算.
2.教學(xué)難點:混合運算的應(yīng)用.
四、課時安排
1課時
五、教具學(xué)具準備
投影儀、膠片、多媒體
六、師生互動活動設(shè)計
復(fù)習(xí)小結(jié),歸納整理,應(yīng)用提高,以學(xué)生活動為主
七、教學(xué)過程
【例題】
例1 化簡:
(1) ; (2) .
解:(1)
(2)
說明:在計算過程中要注意各個式子的特點,能否約分或消項(第2小題)達到化簡的目的,又要善于在規(guī)則允許的情況下可變換相鄰項的位置,如 ,結(jié)果為-1,繼續(xù)運算易出現(xiàn)符號上的差錯,而把 先變?yōu)?,這樣 則為1,繼續(xù)運算可避免錯誤.
例2 解下列方程(組):
(1)
(2)
(3)
解:(1)
.
(2)①× ,得
③
②× ,得
④
③-④,得
把 代入①,得
解得 .
∴
是原方程組的解.
(3)由②,得
③
①× ,得
④
③-④,得
把 代入①,得
.
∴ 是原方程組的解.
例3 已知 , ,求 的值.
解: .
.
, ,
∴ .
例4 已知 , ,求 的值.
解: , .
.
(二)隨堂練習(xí)
1.教材中P206中8.
2.解不等式: .
解:
∴
.
3.已知 , ,求 的值.
解:3. ,或 .
.
∴
.
4.已知 , ,求: 的值.
解 4.
.
5.已知 ,求 的值.
解 5. .
.
6.不求方根的值比較 與 的大?。?/p>
解 6.∵
∴
∴
(三)總結(jié)、擴展
根據(jù)已知條件,求一個代數(shù)的值,要注意條件或代數(shù)式的化簡,有時條件和要求的代數(shù)式都需要化簡,當(dāng)把條件化簡后,代數(shù)式的化簡要朝著條件化簡的結(jié)果去化簡.
(四)布置作業(yè)
教材中P207B組1、3和補充作業(yè).
補充作業(yè):
1.已知 ,求 的值.
2.已知 , ,求 的值.
(五)板書設(shè)計
標(biāo) 題
1.例題……
3.例題……
2.練習(xí)題
4.練習(xí)題
八、背景知識與課外閱讀
二次根式的混和運算方法和順序
1.方法 (1)應(yīng)用二次根式乘法、除法和加減法運算法則.
(2)在實數(shù)范圍內(nèi)運算律仍適用.
(3)二次根式的乘法,與多項式的乘法相類似,遇運用多項式乘法公式時,也可以運用乘法公式.
2.順序 先乘方、后乘除,最后加減,有括號的先算括號內(nèi)的數(shù).
二次根式教案【篇8】
教學(xué)目標(biāo)
1.使學(xué)生進一步理解二次根式的意義及基本性質(zhì),并能熟練 地化簡含二次根式的式子;
2.熟練地進行二次根式的加、減、乘、除混合運算.
教學(xué)重點和難點
重點:含二次根式的式子的混合運算.
難點:綜合運用二次根式的 性質(zhì)及運算法則化簡和計算含二次根式的式子.
教學(xué)過程設(shè)計
一、復(fù)習(xí)
1.請同學(xué)回憶二次根式有哪些基本性質(zhì)?用式子表示出來,并說明各 式成立的條件.
指出:二次根式的這些基本性質(zhì)都是在一定條件 下才成立的,主要應(yīng)用于化簡二次根式.
2.二次根式 的乘法及除法的法則是什么?用式子表示出來.
指出:二次根式的乘、除法則也是在一定條件下成立的.把兩個二次根式相除,
計算結(jié)果要把分母有理化.
3.在二次根式的化簡或計算中,還常用到以下兩個二次根式的關(guān)系式:
4.在含有二次根式的式子的化簡及求值等問題中,常運用三個可逆的式子:
二、例題
例1 x取什么值時,下列各式在實數(shù)范圍內(nèi)有意義:
分析:
(1)題是兩個二次根式的和,x的取值必須使兩個二次根式都有意義;
(3)題是兩個二次根式的.和, x的取值必須使兩個二次根式都有意義;
(4)題的分子是二次根式,分母是含x的單項式,因此x的取值必須使二次根式有意義,同時使分母的值不等于零.
x-2且x0.
解因為n2-90, 9-n20,且n-30,所以n2=9且n3,所以
例3
分析:第一個二次根式的被開方數(shù)的分子與分母都可以分解因式.把它們分別分解因式后,再利用二次根式的基本性質(zhì)把式子化簡,化簡中應(yīng)注意利用題中的隱含條件3 -a0和1-a>0.
解 因為1-a>0,3-a0,所以
a<1,|a-2|=2-a.
(a-1)(a-3)=[-(1-a)][-(3-a)]=(1-a)(3-a)0.
這些性質(zhì)化簡含二次根式的式子時,要注意上述條件,并要闡述清楚是怎樣滿足這些條件的.
問:上面的代數(shù)式中的兩個二次根式的被開方數(shù)的式子如何化為完全平方式?
分析:先把第二個式子化簡,再把兩個式子進行通分,然后進行計算.
注意:
所以在化簡過程中,
例6
分析:如果把兩個式子通分,或把每一個式子的分母有理化再進行計算,這兩種方法的運算量都較大,根據(jù)式子的結(jié)構(gòu)特點,分別把兩個式子的分母看作一個整體,用換元法把式子變形,就可以使運算變?yōu)楹喗荩?/p>
a+b=2(n+2),ab=(n+2)2-(n2-4)=4(n+2),
三、課堂練習(xí)
1.選擇題:
A.a(chǎn)2B.a(chǎn)2
C.a(chǎn)2D.a(chǎn)<2
A .x+2 B.-x-2
C.-x+2D.x-2
A.2x B.2a
C.-2x D.-2a
2.填空題:
4.計算:
四、小結(jié)
1.本節(jié)課復(fù)習(xí)的五個基本問題是“二次根式”這一章的主要基礎(chǔ)知識,同學(xué)們要深刻理解并牢固掌握.
2.在一次根式的化簡、計算及求值的過程中,應(yīng)注意利用題中的使二次根式有意義的條件(或題中的隱含條件),即被開方數(shù)為非負數(shù),以確定被開方數(shù)中的字母或式子的取值范圍.
3.運用二次根式的四個基本性質(zhì)進行二次根式的運算時,一定要注意論述每一個性質(zhì)中字母的取值范圍的條件.
4.通過例題的討論,要學(xué)會綜合、靈活運用二次根式的意義、基本性質(zhì)和法則以及有關(guān)多項式的因式分解,解答有關(guān)含二次根式的式子的化簡、計算及求值等問題.
五、作業(yè)
1.x是什么值時,下列各式在實數(shù)范圍內(nèi)有意義?
2.把下列各式化成最簡二次根式:
二次根式教案【篇9】
1教學(xué)目標(biāo)
(1)利用歸納類比的方法得出二次根式的除法法則和商的算術(shù)平方根的性質(zhì);
(2)會進行簡單的二次根式的除法運算;
(3) 理解最簡二次根式的概念
2學(xué)情分析
本節(jié)內(nèi)容主要是在做二次根式的除法運算時,分母含根號的處理方式上,學(xué)生可能會出現(xiàn)困難或容易失誤,在除法運算中,可以先計算后利用商的算術(shù)平方根的性質(zhì)來進行,也可以先利用分式的性質(zhì),去掉分母中的根號,再結(jié)合乘法法則和積的算術(shù)平方根的性質(zhì)來進行。二次根式的除法與分式的運算類似,如果分子、分母中含有相同的因式,可以直接約去,以簡化運算。教學(xué)中不能只是列舉題型,應(yīng)以各級各類習(xí)題為載體,引導(dǎo)學(xué)生把握運算過程,估計運算結(jié)果,明確運算方向。
3重點難點
重點:二次根式的乘法法則與積的算術(shù)平方根的性質(zhì).
難點:二次根式的除法法則與商的算術(shù)平方根的性質(zhì)之間的關(guān)系和應(yīng)用。
4教學(xué)過程
4。1 第一學(xué)時
教學(xué)活動
活動1【導(dǎo)入】復(fù)習(xí)提問,探究規(guī)律
問題1 二次根式的乘法法則是什么內(nèi)容?化簡二次根式的一般步驟怎樣?
師生活動 學(xué)生回答。
【設(shè)計意圖】讓學(xué)生回憶探究乘法法則的過程,類比該過程,學(xué)生可以探究除法法則.
2.觀察思考,理解法則
問題2 教材第8頁“探究”欄目,計算結(jié)果如何?有何規(guī)律?
師生活動 學(xué)生回答,給出正確答案后,教師引導(dǎo)學(xué)生思考,并總結(jié)二次根式除法法則:。
問題3 對比乘法法則里字母的取值范圍,除法法則里字母的取值范圍有何變化?
師生活動 學(xué)生思考,回答。學(xué)生能說明根據(jù)分數(shù)的意義知道,分母不為零就可以了。
【設(shè)計意圖】學(xué)生通過自主探究,采用類比的方法,得出二次根式的除法法則后,要明確字母的取值范圍,以免在處理更為復(fù)雜的二次根式的運算時出現(xiàn)錯誤。
問題4 對例題的運算你有什么看法?是如何進行的?
師生活動 學(xué)生利用法則直接運算,一般根號下不含分母和開得盡方的因數(shù)。
【設(shè)計意圖】讓學(xué)生初步利用二次根式的性質(zhì)、乘除法法則進行簡單的運算。
問題5 對比積的算術(shù)平方根的性質(zhì),商的算術(shù)平方根有沒有類似性質(zhì)?
師生活動 學(xué)生類比地發(fā)現(xiàn),商的算術(shù)平方根等于算術(shù)平方根的商,即 。利用該性質(zhì)可以進行二次根式的化簡。
活動2【講授】觀察思考,理解法則
問題2 教材第8頁“探究”欄目,計算結(jié)果如何?有何規(guī)律?
師生活動 學(xué)生回答,給出正確答案后,教師引導(dǎo)學(xué)生思考,并總結(jié)二次根式除法法則:。
問題3 對比乘法法則里字母的取值范圍,除法法則里字母的取值范圍有何變化?
師生活動 學(xué)生思考,回答。學(xué)生能說明根據(jù)分數(shù)的意義知道,分母不為零就可以了。
【設(shè)計意圖】學(xué)生通過自主探究,采用類比的方法,得出二次根式的除法法則后,要明確字母的取值范圍,以免在處理更為復(fù)雜的二次根式的運算時出現(xiàn)錯誤。
問題4 對例題的運算你有什么看法?是如何進行的?
師生活動 學(xué)生利用法則直接運算,一般根號下不含分母和開得盡方的因數(shù)。
【設(shè)計意圖】讓學(xué)生初步利用二次根式的性質(zhì)、乘除法法則進行簡單的運算。
問題5 對比積的算術(shù)平方根的性質(zhì),商的算術(shù)平方根有沒有類似性質(zhì)?
師生活動 學(xué)生類比地發(fā)現(xiàn),商的算術(shù)平方根等于算術(shù)平方根的商,即 。利用該性質(zhì)可以進行二次根式的化簡。
活動3【活動】例題示范,學(xué)會應(yīng)用
例1 計算: (1) ; (2) ; (3) 。
師生活動 提問:你有幾種方法去掉分母中的根號?去分母的依據(jù)分別是什么?
再提問:第(2)用什么方法計算更簡捷?第(3)題根號下含字母在移出根號時應(yīng)注意什么?
【設(shè)計意圖】通過具體問題,讓學(xué)生在實際運算中培養(yǎng)運算能力,訓(xùn)練運算技能,
問題5 你能從例題的解答過程中,總結(jié)一下二次根式的運算結(jié)果有什么特征嗎?
師生活動 學(xué)生總結(jié),師生共同補充、完善。要總結(jié)出:
(1)這些根式的被開方數(shù)都不含分母;
(2)被開方數(shù)中不含能開得盡方的因數(shù)或因式;
(3)分母中不含根號;
【設(shè)計意圖】引導(dǎo)學(xué)生及時總結(jié),提出最簡二次根式的概念,要強調(diào),在二次根式的運算中,一般要把最后結(jié)果化為最簡二次根式。
問題6 課件展示一組二次根式的計算、化簡題。
【設(shè)計意圖】讓學(xué)生用總結(jié)出的結(jié)論進行二次根式的運算。
活動4【練習(xí)】鞏固概念,學(xué)以致用
例2 教材第9頁例7。
師生活動 提問 本題是以長方形面積為背景的數(shù)學(xué)問題,二次根式的除法運算在此發(fā)揮什么作用?
再提問 章引言中的問題現(xiàn)在能解決了嗎?
【設(shè)計意圖】鞏固性練習(xí),同時培養(yǎng)學(xué)生應(yīng)用二次根式的乘除運算法則解決實際問題的能力。
活動5【測試】目標(biāo)檢測設(shè)計
1.在 、 、 中,最簡二次根式為 。
【設(shè)計意圖】考查對最簡二次根式的概念的理解。
2.化簡下列各式為最簡二次根式: ; 。
【設(shè)計意圖】復(fù)習(xí)二次根式的運算法則和運算性質(zhì)。鼓勵學(xué)生用不同方法進行計算。對于分母含二次根式的處理,要結(jié)合整式的乘法公式進行計算。
3.化簡:(1) ; (2) 。
【設(shè)計意圖】綜合運用二次根式的概念、性質(zhì)和運算法則進行二次根式的運算。
活動6【作業(yè)】布置作業(yè)
教科書第10頁練習(xí)第1,2,3題;
教科書習(xí)題16。2第10,11題。
二次根式教案【篇10】
課題:二次根式
教學(xué)目標(biāo) 1、知識與技能
理解a(a≥0)是一個非負數(shù), (a≥0)
2、過程與方法
(1)數(shù)學(xué)思考:學(xué)會獨立思考、體會數(shù)學(xué)的體驗歸納、類比的思想
方法
(2) 問題解決:能夠利用性質(zhì)進行二次根式的化簡計算,能夠互助
交流合作,分析問題,總結(jié)反思
3、情感、態(tài)度與價值觀
體驗成功的樂趣,鍛煉克服困難的意志,培養(yǎng)嚴謹
求實的科學(xué)態(tài)度
教學(xué)重難點 教學(xué)重點:二次根式的概念
教學(xué)難點:二次根式中根號下必須為非負數(shù)
教學(xué)過程
一、課前回顧
(2分鐘)
學(xué)生與老師共同回顧上節(jié)課所學(xué)內(nèi)容,溫故而知新。 什么是二次根式?
二次根式中字母的取值范圍:
①被開方數(shù)大于等于零;
②分母中有字母時,要保證分母不為零。
③多個條件組合時,應(yīng)用不等式組求解
一、情境引入(3分鐘)
由生活中的實例引入投影的概念,引起學(xué)生的學(xué)習(xí)興趣
已知下列各正方形的面積,求其邊長。
二、探究1(10分鐘)
練習(xí)1:
計算下列各式:
三、探究2(10分鐘)
可以發(fā)現(xiàn)它們有如下規(guī)律:
一般的,二次根式有下列性質(zhì):
練習(xí)2:
典型例題 例1:計算:
例2:計算:
達標(biāo)測試(5分鐘)
課堂測試,檢驗學(xué)習(xí)結(jié)果
1、判斷題
2、若 ,則x的取值范圍為 ( A )
(A) x≤1 (B) x≥1
(C) 0≤x≤1 (D)一切有理數(shù)
3、計算
4、化簡
5、已知a,b,c為△ABC的三邊長,化簡:
這一類問題注意把二次根式的運算搭載在三角形三邊之間的關(guān)系這個知識點上,特別要應(yīng)用好。
應(yīng)用提高(5分鐘)
能力提升,學(xué)有余力的同學(xué)可以仔細研究 如圖,P是直角坐標(biāo)系中一點。
(1)用二次根式表示點P到原點O的距離;
(2)如果 求點P到原點O的距離
體驗收獲 今天我們學(xué)習(xí)了哪些知識
二次根式的兩條性質(zhì)。
布置作業(yè) 教材8頁習(xí)題第3、4題。
二次根式教案【篇11】
1、通過二次根式混合運算的學(xué)習(xí),進一步了解二次根式運算法則,知道二次根式混合運算順序,會進行二次根式的混合運算。
2、在進行二次根式混合運算的過程中,體會類比思想,逐步養(yǎng)成認真仔細的學(xué)習(xí)品質(zhì),進一步提高運算能力。
教學(xué)重點:二次根式混合運算算理的理解。
教學(xué)難點:類比整式運算準確快速的進行二次根式的混合運算。
教學(xué)過程:
一、情境誘導(dǎo)
《二次根式混合運算習(xí)題課》教學(xué)設(shè)計-楊桂花
二、練習(xí)指導(dǎo)
(學(xué)生完成練習(xí)提綱,可以討論,老師做必要的板書準備,然后巡回指導(dǎo),了解情況、)
練習(xí)提綱:《二次根式混合運算習(xí)題課》教學(xué)設(shè)計-楊桂花
三、展示歸納
1、學(xué)生匯報解題過程,生說師寫;
2、發(fā)動其他學(xué)生評價補充完善;
3、師畫龍點睛強調(diào):
(1)二次根式混合運算的運算順序跟有理數(shù)運算順序一樣,先乘方,再乘除,最后加減。
(2)二次根式混合運算與整式的運算有很多相似之處,因此可類比整式的運算進行二次根式的混合運算。
四、變式練習(xí)
(先讓學(xué)生獨立完成,老師做必要的板書準備后巡回指導(dǎo),了解情況; 然后讓有一定問題的學(xué)生匯報展示,發(fā)動學(xué)生評價完善,老師強調(diào)關(guān)鍵地方,總結(jié)思想方法。)
《二次根式混合運算習(xí)題課》教學(xué)設(shè)計-楊桂花
五、小結(jié)
本節(jié)課你有哪些收獲?還有什么要提醒同學(xué)們注意的。(學(xué)生總結(jié),百花齊放,老師不做限定,沒說到的,老師補充。)
六、布置作業(yè)
《二次根式混合運算習(xí)題課》教學(xué)設(shè)計-楊桂花
yJS21.com更多精選幼兒園教案閱讀
《二次根式》教案(合集6篇)
每個老師需要在上課前弄好自己的教案課件,所以在寫的時候老師們就要花點時間咯。尤其是新入職老師,教案課件寫好了才會課堂更加生動,什么樣的教案課件才是好課件呢?幼兒教師教育網(wǎng)小編出于你的需要,為你整理了《二次根式》教案,請收藏好,以便下次再讀!
《二次根式》教案 篇1
1、通過二次根式混合運算的學(xué)習(xí),進一步了解二次根式運算法則,知道二次根式混合運算順序,會進行二次根式的混合運算。
2、在進行二次根式混合運算的過程中,體會類比思想,逐步養(yǎng)成認真仔細的學(xué)習(xí)品質(zhì),進一步提高運算能力。
教學(xué)重點:二次根式混合運算算理的理解。
教學(xué)難點:類比整式運算準確快速的進行二次根式的混合運算。
教學(xué)過程:
一、情境誘導(dǎo)
《二次根式混合運算習(xí)題課》教學(xué)設(shè)計-楊桂花
二、練習(xí)指導(dǎo)
(學(xué)生完成練習(xí)提綱,可以討論,老師做必要的板書準備,然后巡回指導(dǎo),了解情況、)
練習(xí)提綱:《二次根式混合運算習(xí)題課》教學(xué)設(shè)計-楊桂花
三、展示歸納
1、學(xué)生匯報解題過程,生說師寫;
2、發(fā)動其他學(xué)生評價補充完善;
3、師畫龍點睛強調(diào):
(1)二次根式混合運算的運算順序跟有理數(shù)運算順序一樣,先乘方,再乘除,最后加減。
(2)二次根式混合運算與整式的運算有很多相似之處,因此可類比整式的運算進行二次根式的混合運算。
四、變式練習(xí)
(先讓學(xué)生獨立完成,老師做必要的板書準備后巡回指導(dǎo),了解情況; 然后讓有一定問題的學(xué)生匯報展示,發(fā)動學(xué)生評價完善,老師強調(diào)關(guān)鍵地方,總結(jié)思想方法。)
《二次根式混合運算習(xí)題課》教學(xué)設(shè)計-楊桂花
五、小結(jié)
本節(jié)課你有哪些收獲?還有什么要提醒同學(xué)們注意的。(學(xué)生總結(jié),百花齊放,老師不做限定,沒說到的,老師補充。)
六、布置作業(yè)
《二次根式混合運算習(xí)題課》教學(xué)設(shè)計-楊桂花
《二次根式》教案 篇2
一、內(nèi)容解析
本節(jié)教材是在學(xué)生學(xué)習(xí)二次根式概念的基礎(chǔ)上,結(jié)合二次根式的概念和算術(shù)平方根的概念,通過觀察、歸納和思考得到二次根式的兩個基本性質(zhì).
對于二次根式的性質(zhì),教材沒有直接從算術(shù)平方根的意義得到,而是考慮學(xué)生的年齡特征,先通過 “探究”欄目中給出四個具體問題,讓學(xué)生學(xué)生根據(jù)算術(shù)平方根的意義,就具體數(shù)字進行分析得出結(jié)果,再分析這些結(jié)果的共同特征,由特殊到一般地歸納出結(jié)論.基于以上分析,確定本節(jié)課的教學(xué)重點為:理解二次根式的性質(zhì).
二、目標(biāo)和目標(biāo)解析
1.教學(xué)目標(biāo)
(1)經(jīng)歷探索二次根式的性質(zhì)的過程,并理解其意義;
(2)會運用二次根式的性質(zhì)進行二次根式的化簡;
(3)了解代數(shù)式的概念.
2.目標(biāo)解析
(1)學(xué)生能根據(jù)具體數(shù)字分析和算術(shù)平方根的意義,由特殊到一般地歸納出二次根式的性質(zhì),會用符號表述這一性質(zhì);
(2)學(xué)生能靈活運用二次根式的性質(zhì)進行二次根式的化簡;
(3)學(xué)生能從已學(xué)過的各種式子中,體會其共同特點,得出代數(shù)式的概念.
三、教學(xué)問題診斷分析
二次根式的性質(zhì)是二次根式化簡和運算的重要基礎(chǔ).學(xué)生根據(jù)二次根式的概念和算術(shù)平方根的意義,由特殊到一般地得出二次根式的性質(zhì)后,重在能靈活運用二次根式的性質(zhì)進行二次根式的化簡和解決一些綜合性較強的問題.由于學(xué)生初次學(xué)習(xí)二次根式的性質(zhì),對二次根式性質(zhì)的靈活運用存在一定的困難,突破這一難點需要教師精心設(shè)計好每一道習(xí)題,讓學(xué)生在練習(xí)中進一步掌握二次根式的性質(zhì),培養(yǎng)其靈活運用的能力.
本節(jié)課的教學(xué)難點為:二次根式性質(zhì)的靈活運用.
四、教學(xué)過程設(shè)計
1.探究性質(zhì)1
問題1 你能解釋下列式子的含義嗎?
師生活動:教師引導(dǎo)學(xué)生說出每一個式子的含義.
【設(shè)計意圖】讓學(xué)生初步感知,這些式子都表示一個非負數(shù)的算術(shù)平方根的平方.
問題2 根據(jù)算術(shù)平方根的意義填空,并說出得到結(jié)論的依據(jù).
師生活動 學(xué)生獨立完成填空后,讓學(xué)生展示其思維過程,說出得到結(jié)論的依據(jù).
【設(shè)計意圖】學(xué)生通過計算或根據(jù)算術(shù)平方根的意義得出結(jié)論,為歸納二次根式的性質(zhì)1作鋪墊.
問題3 從以上的結(jié)論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個式子表示這個規(guī)律嗎?
師生活動:引導(dǎo)學(xué)生歸納得出二次根式的性質(zhì): ( ≥0).
【設(shè)計意圖】讓學(xué)生經(jīng)歷從特殊到一般的過程,概括出二次根式的性質(zhì)1,培養(yǎng)學(xué)生抽象概括的能力.
例2 計算
(1)
(2)
師生活動:學(xué)生獨立完成,集體訂正.
【設(shè)計意圖】鞏固二次根式的性質(zhì)1,學(xué)會靈活運用.
2.探究性質(zhì)2
問題4 你能解釋下列式子的含義嗎?
師生活動:教師引導(dǎo)學(xué)生說出每一個式子的含義.
【設(shè)計意圖】讓學(xué)生初步感知,這些式子都表示一個數(shù)的平方的算術(shù)平方根.
問題5 根據(jù)算術(shù)平方根的意義填空,并說出得到結(jié)論的依據(jù).
師生活動 學(xué)生獨立完成填空后,讓學(xué)生展示其思維過程,說出得到結(jié)論的依據(jù).
【設(shè)計意圖】學(xué)生通過計算或根據(jù)算術(shù)平方根的意義得出結(jié)論,為歸納二次根式的性質(zhì)2作鋪墊.
問題6 從以上的結(jié)論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個式子表示這個規(guī)律嗎?
師生活動:引導(dǎo)學(xué)生歸納得出二次根式的性質(zhì): ( ≥0)
【設(shè)計意圖】讓學(xué)生經(jīng)歷從特殊到一般的過程,概括出二次根式的性質(zhì)2,培養(yǎng)學(xué)生抽象概括的能力.
例3 計算
(1)
(2)
師生活動:學(xué)生獨立完成,集體訂正.
【設(shè)計意圖】鞏固二次根式的性質(zhì)2,學(xué)會靈活運用.
3.歸納代數(shù)式的概念
問題7 回顧我們學(xué)過的式子,如 ___________ ( ≥0),這些式子有哪些共同特征?
師生活動:學(xué)生概括式子的共同特征,得得出代數(shù)式的概念.
【設(shè)計意圖】學(xué)生通過觀察式子的共同特征,形成代數(shù)式的概念,培養(yǎng)學(xué)生的概括能力.
4.綜合運用
(1)算一算:
【設(shè)計意圖】設(shè)計有一定綜合性的題目,考查學(xué)生的靈活運用的能力,第(2)、(3)、(4)小題要特別注意結(jié)果的符號.
(2)想一想: 中, 的取值范圍是什么?當(dāng) ≥0時, 等于多少?當(dāng) 時, 又等于多少?
【設(shè)計意圖】通過此問題的設(shè)計,加深學(xué)生對 的理解,開闊學(xué)生的視野,訓(xùn)練學(xué)生的思維.
(3)談一談你對 與 的認識.
【設(shè)計意圖】加深學(xué)生對二次根式性質(zhì)的理解.
5.總結(jié)反思
(1)你知道了二次根式的哪些性質(zhì)?
(2)運用二次根式性質(zhì)進行化簡需要注意什么?
(3)請談?wù)劙l(fā)現(xiàn)二次根式性質(zhì)的思考過程?
(4)想一想,到現(xiàn)在為止,你學(xué)習(xí)了哪幾類字母表示數(shù)得到的式子?說說你對代數(shù)式的認識.
6.布置作業(yè):教科書習(xí)題16.1第2,4題.
《二次根式》教案 篇3
一、教學(xué)目標(biāo)
1.掌握二次根式的混合運算.
2.掌握混合運算的應(yīng)用.
3.通過二次根式的混合運算,培養(yǎng)學(xué)生的運算能力.
4.通過混合運算知識拓展,培養(yǎng)學(xué)生的探索精神
二、教學(xué)設(shè)計
小結(jié)、歸納、提高
三、重點、難點解決辦法
1.教學(xué)重點:二次根式的混合運算.
2.教學(xué)難點:混合運算的應(yīng)用.
四、課時安排
1課時
五、教具學(xué)具準備
投影儀、膠片、多媒體
六、師生互動活動設(shè)計
復(fù)習(xí)小結(jié),歸納整理,應(yīng)用提高,以學(xué)生活動為主
七、教學(xué)過程
【例題】
例1 化簡:
(1) ; (2) .
解:(1)
(2)
說明:在計算過程中要注意各個式子的特點,能否約分或消項(第2小題)達到化簡的目的,又要善于在規(guī)則允許的情況下可變換相鄰項的位置,如 ,結(jié)果為-1,繼續(xù)運算易出現(xiàn)符號上的差錯,而把 先變?yōu)?,這樣 則為1,繼續(xù)運算可避免錯誤.
例2 解下列方程(組):
(1)
(2)
(3)
解:(1)
.
(2)①× ,得
③
②× ,得
④
③-④,得
把 代入①,得
解得 .
∴
是原方程組的解.
(3)由②,得
③
①× ,得
④
③-④,得
把 代入①,得
.
∴ 是原方程組的解.
例3 已知 , ,求 的值.
解: .
.
, ,
∴ .
例4 已知 , ,求 的值.
解: , .
.
(二)隨堂練習(xí)
1.教材中P206中8.
2.解不等式: .
解:
∴
.
3.已知 , ,求 的值.
解:3. ,或 .
.
∴
.
4.已知 , ,求: 的值.
解 4.
.
5.已知 ,求 的值.
解 5. .
.
6.不求方根的值比較 與 的大?。?/p>
解 6.∵
∴
∴
(三)總結(jié)、擴展
根據(jù)已知條件,求一個代數(shù)的值,要注意條件或代數(shù)式的化簡,有時條件和要求的代數(shù)式都需要化簡,當(dāng)把條件化簡后,代數(shù)式的化簡要朝著條件化簡的結(jié)果去化簡.
(四)布置作業(yè)
教材中P207B組1、3和補充作業(yè).
補充作業(yè):
1.已知 ,求 的值.
2.已知 , ,求 的值.
(五)板書設(shè)計
標(biāo) 題
1.例題……
3.例題……
2.練習(xí)題
4.練習(xí)題
八、背景知識與課外閱讀
二次根式的混和運算方法和順序
1.方法 (1)應(yīng)用二次根式乘法、除法和加減法運算法則.
(2)在實數(shù)范圍內(nèi)運算律仍適用.
(3)二次根式的乘法,與多項式的乘法相類似,遇運用多項式乘法公式時,也可以運用乘法公式.
2.順序 先乘方、后乘除,最后加減,有括號的先算括號內(nèi)的數(shù).
《二次根式》教案 篇4
一、教學(xué)目標(biāo)
知識與技能:
1、理解二次根式的概念。
2、理解二次根式的基本性質(zhì)。
過程與方法:
能運用二次根式的概念解決有關(guān)問題、
情感態(tài)度與價值觀:
經(jīng)歷觀察、比較、總結(jié)和應(yīng)用等數(shù)學(xué)活動,感受數(shù)學(xué)活動充滿了探索性和創(chuàng)造性,體驗發(fā)現(xiàn)的快樂,并提高應(yīng)用的意識。
二、學(xué)情分析
學(xué)生已經(jīng)學(xué)習(xí)了“整式”、“平方根”、“算術(shù)平方根”等知識,已經(jīng)具備了學(xué)習(xí)二次根式的知識基礎(chǔ)和心理基礎(chǔ),但學(xué)生剛認識二次根式,學(xué)習(xí)將有一定難度。學(xué)生知識障礙點是二次根式的概念及運算,如果學(xué)生在此不能很好地理解和正確的認知,將對今后學(xué)習(xí)產(chǎn)生很大影響,所以要求學(xué)生積極探究、思考,及時加以鞏固,克服學(xué)習(xí)困難,真正“學(xué)會”。
三、重點難點
1、教學(xué)重點為了解二次根式的概念,知道被開方數(shù)必須是非負數(shù)的理由,知道二次根式本身是一個非負數(shù),會求二次根式中被開方數(shù)字母的取值范圍.
2、教學(xué)難點為:理解二次根式的雙重非負性、
四、教學(xué)過程
活動1【導(dǎo)入】活動一
問題1你能用帶有根號的的式子填空嗎?
(1)面積為3的正方形的邊長為_______,面積為S的正方形的邊長為_______.
(2)一個長方形圍欄,長是寬的2倍,面積為130m?,則它的寬為______m.
(3)一個物體從高處自由落下,落到地面所用的時間t(單位:s)與開始落下的高度h(單位:m)滿足關(guān)系h =5t?,如果用含有h的式子表示t,則t= _____.
師生活動:學(xué)生獨立完成上述問題,用算術(shù)平方根表示結(jié)果,教師進行適當(dāng)引導(dǎo)和評價。
問題2上面得到的式子√3,√s,
√h5分別表示什么意義?它們有什么共同特征?
活動2【活動】講授
問題3你能用一個式子表示一個非負數(shù)的算術(shù)平方根嗎?
師生活動:學(xué)生小組討論,全班交流.教師由此給出二次根式的定義:一般地,我們把形如√a(a≥0)的式子叫做二次根式,“√ ”稱為二次根號.
追問:在二次根式的概念中,為什么要強調(diào)“a≥0”?
師生活動:教師引導(dǎo)學(xué)生討論,知道二次根式被開方數(shù)必須是非負數(shù)的理由.
活動3【講授】辨析概念
例1當(dāng)x是怎樣的實數(shù)時,√x2在實數(shù)范圍內(nèi)有意義?
師生活動:引導(dǎo)學(xué)生從概念出發(fā)進行思考,鞏固學(xué)生對二次根式的被開方數(shù)為非負數(shù)的理解.
例2當(dāng)x是怎樣的實數(shù)時,√x2在實數(shù)范圍內(nèi)有意義?√x3呢?
師生活動:先讓學(xué)生獨立思考,再追問.
問題4你能比較√a與0的大小嗎?
師生活動:通過分a> 0和a= 0這兩種情況的討論,比較√a與0的大小,引導(dǎo)學(xué)生得出√a ≥0的結(jié)論,強化學(xué)生對二次根式本身為非負數(shù)的理解,
活動4【練習(xí)】練習(xí)
練習(xí)當(dāng)x是什么實數(shù)時,下列各式有意義、
(1)√x2;(2)√34x(3)√x2√2x;(4)√xx1 、
練習(xí)1完成教科書第3頁的練習(xí)、
練習(xí)2當(dāng)x是什么實數(shù)時,下列各式有意義、
(1)√x2;(2)√34x(3)√x2√2x;(4)√xx1 、
練習(xí)1完成教科書第3頁的練習(xí)、
練習(xí)2當(dāng)x是什么實數(shù)時,下列各式有意義、
(1)√x2;(2)√34x(3)√x2√2x;(4)√xx1 、
練習(xí)1完成教科書第3頁的練習(xí)、
練習(xí)2當(dāng)x是什么實數(shù)時,下列各式有意義、
(1)√x2;(2)√34x(3)√x2√2x;(4)√xx1 、
活動5【活動】小結(jié)
小結(jié):
1、二次根式的意義:√a(a≥0)
2、二次根式的性質(zhì):
性質(zhì)1 √a2 = a(a≥0)
活動6【測試】目標(biāo)檢測
1、下列各式中,一定是二次根式的是()
A、√a B√3 、 C√x2+1 、 D、3√5
2、當(dāng)x取什么時,二次根式√3x無意義.
3、當(dāng)x取何值時,二次根式√x+3有最小值,其最小值是.
4、對于√3a1a3,小紅根據(jù)被開方數(shù)是非負數(shù),得出a的取值范圍是a ≥ 13.小慧認為還應(yīng)考慮分母不為0的情況.你認為小慧的想法正確嗎?試求出a的取值范圍.
活動7【作業(yè)】布置作業(yè)
教科書習(xí)題16、1第1,3,5,7,10題.
《二次根式》教案 篇5
活動1、提出問題
一個運動場要修兩塊長方形草坪,第一塊草坪的長是10米,寬是米,第二塊草坪的長是20米,寬也是米。你能告訴運動場的負責(zé)人要準備多少面積的草皮嗎?
問題:10+20是什么運算?
活動2、探究活動
下列3個小題怎樣計算?
問題:1)-還能繼續(xù)往下合并嗎?
2)看來二次根式有的能合并,有的不能合并,通過對以上幾個題的觀察,你能說說什么樣的二次根式能合并,什么樣的不能合并嗎?
二次根式加減時,先將二次根式化簡成最簡二次根式后,再將被開方數(shù)相同的進行合并。
活動3
練習(xí)1指出下列每組的二次根式中,哪些是可以合并的二次根式?(字母均為正數(shù))
創(chuàng)設(shè)問題情景,引起學(xué)生思考。
學(xué)生回答:這個運動場要準備(10+20)平方米的草皮。
教師提問:學(xué)生思考并回答教師出示課題并說明今天我們就共同來研究該如何進行二次根式的加減法運算。
我們可以利用已學(xué)知識或已有經(jīng)驗來分組討論、交流,看看+到底等于什么?小組展示討論結(jié)果。
教師引導(dǎo)驗證:
①設(shè)=,類比合并同類項或面積法;
②學(xué)生思考,得出先化簡,再合并的解題思路
③先化簡,再合并
學(xué)生觀察并歸納:二次根式化為最簡二次根式后,被開方數(shù)相同的能合并。
教師巡視、指導(dǎo),學(xué)生完成、交流,師生評價。
提醒學(xué)生注意先化簡成最簡二次根式后再判斷。
《二次根式》教案 篇6
教學(xué)設(shè)計思想
新教材打破了舊教材從定義出發(fā),由理論到理論,按部就班的舊格局,創(chuàng)造出從實踐到理論再回到實踐,由淺入深,符合認知結(jié)構(gòu)的新模式。本節(jié)首先通過四個實際問題引出二次根式的概念,給出二次根式的意義。然后讓學(xué)生通過二次根式的意義和算術(shù)平方根的意義找出二次根式的三個性質(zhì)。本節(jié)通過學(xué)生所熟悉的實際問題建立二次根式的概念,使學(xué)生在經(jīng)歷將現(xiàn)實問題符號化的過程中,進一步體會二次根式的重要作用,發(fā)展學(xué)生的應(yīng)用意識。
教學(xué)目標(biāo)
知識與技能
1.知道什么是二次根式,并會用二次根式的意義解題;
2.熟記二次根式的性質(zhì),并能靈活應(yīng)用;
過程與方法
通過二次根式的概念和性質(zhì)的學(xué)習(xí),培養(yǎng)邏輯思維能力;
情感態(tài)度價值觀
1.經(jīng)歷將現(xiàn)實問題符號化的過程,發(fā)展應(yīng)用的意識;
2.通過二次根式性質(zhì)的介紹滲透對稱性、規(guī)律性的數(shù)學(xué)美。
教學(xué)重點和難點
重點:(1)二次根式的意義;(2)二次根式中字母的取值范圍;
難點:確定二次根式中字母的取值范圍。
教學(xué)方法
啟發(fā)式、講練結(jié)合
教學(xué)媒體
多媒體
課時安排
1課時
數(shù)學(xué)二次根式教案經(jīng)典8篇
通常情況下,老師在給學(xué)生上課前會提前準備好教案和課件,如果還沒有準備好的話就需要引起注意了。嚴謹?shù)慕贪甘潜WC教學(xué)質(zhì)量的基礎(chǔ)。關(guān)于您所需要的“數(shù)學(xué)二次根式教案”,我們已經(jīng)為您準備妥當(dāng),我們將繼續(xù)努力優(yōu)化和提升,希望您能多多瀏覽我們的網(wǎng)站!
數(shù)學(xué)二次根式教案【篇1】
1、我們學(xué)校的校醫(yī)非常關(guān)心我們同學(xué)的身體健康,經(jīng)常要了解我們同學(xué)的體重,身高等,(出示座位圖)
如果老師想要了解三(5)班第一組6位同學(xué)的身高的情況,你有什么辦法能讓老師一眼就看明白?
3、出示幾個空白的條形統(tǒng)計圖,讓學(xué)生根據(jù)統(tǒng)計表嘗試完成條形統(tǒng)計圖。
4、如果用條形統(tǒng)計圖表示這個小組學(xué)生的身高,每格表示多少個單位比較合適?
5、出示教材上的統(tǒng)計圖,讓學(xué)生觀察,討論。
你能說說破這個統(tǒng)計圖跟我們以前學(xué)過的.統(tǒng)計圖有什么不同嗎?
用折線表示的起始格代表多少個單位?其他格代表多少個單位?這樣畫有什么好處?
6、小組合作學(xué)習(xí),學(xué)生匯報。
在統(tǒng)計圖的縱軸上,起始格和其他格表示的單位量是不同的(第一個圖中起始格表示137厘米,其他每格表示1厘米。)
7、讓學(xué)生按照例子把其他兩個同學(xué)的條形補充完整。
8、學(xué)生討論:什么情形下應(yīng)該使用這樣的統(tǒng)計圖?這種統(tǒng)計圖的優(yōu)點是什么?
9、觀察體重統(tǒng)計圖,看看這個圖中的起始格表示多少個單位?其他每格表示多少個單位?
9、這個統(tǒng)計圖跟我們剛才學(xué)習(xí)的學(xué)生身高統(tǒng)計圖有什么不同?
10、獨立完成書上的統(tǒng)計圖。小組進行學(xué)習(xí)小結(jié)。
11、通過完成這一份統(tǒng)計圖。你得到了哪些信息?進一步體會統(tǒng)計的作用。
12、你想對這些同學(xué)說些什么?
出示“中國10歲兒童身高、體重的正常值”,引導(dǎo)學(xué)生把學(xué)生的身高、體重與正常值進行對比,找出哪些學(xué)生的身高在正常值以下,哪些學(xué)生的體重超出了正常值,并提出合理化建議。
(實踐作業(yè))讓學(xué)生從報紙、書籍上找到更多形式的統(tǒng)計圖表,并找出相應(yīng)的信息,可以培養(yǎng)學(xué)生從各種渠道收集信息的能力。
全課小結(jié)。
教學(xué)反思:
數(shù)學(xué)二次根式教案【篇2】
說明:在計算過程中要注意各個式子的特點,能否約分或消項(第2小題)達到化簡的目的,又要善于在規(guī)則允許的情況下可變換相鄰項的位置,如 ,結(jié)果為-1,繼續(xù)運算易出現(xiàn)符號上的差錯,而把 先變?yōu)?,這樣 則為1,繼續(xù)運算可避免錯誤.
解得 .
.
∴ 是原方程組的解.
例3? 已知 , ,求 的值.
∴ .
例4? 已知 , ,求 的.值.
1.教材中P206中8.
3.已知 , ,求 的值.
∴
.
5.已知 ,求 的值.
解 5. .
.
6.不求方根的值比較 與 的大?。?/strong>
解 6.∵
根據(jù)已知條件,求一個代數(shù)的值,要注意條件或代數(shù)式的化簡,有時條件和要求的代數(shù)式都需要化簡,當(dāng)把條件化簡后,代數(shù)式的化簡要朝著條件化簡的結(jié)果去化簡.
教材中P207B組1、3和補充作業(yè).
1.例題…… 3.例題……
1.方法? (1)應(yīng)用二次根式乘法、除法和加減法運算法則.
(2)在實數(shù)范圍內(nèi)運算律仍適用.
(3)二次根式的乘法,與多項式的乘法相類似,遇運用多項式乘法公式時,也可以運用乘法公式.
2.順序?? 先乘方、后乘除,最后加減,有括號的先算括號內(nèi)的數(shù).
數(shù)學(xué)二次根式教案【篇3】
二次根式這節(jié)課的重點是了解二次根式的定義,會判斷一個根式是不是二次根式,難點是二次根式成立的條件,和利用進行計算。
通過課前備學(xué)生,我了解到,學(xué)生接受起來并不是太順利,所以,這一節(jié)課我進行了兩塊的內(nèi)容,一是二次根式的定義,理解它并會用定義進行判斷;二是二次根式成立的`條件,讓學(xué)生掌握如何使二次根式有意義并會正確書寫步驟。
接下來重點進行了確定二次根式中被開方數(shù)所含字母的取值范圍這一知識點。
這里面要掌握一點,那就是若一個式子是二次根式,則它的被開方數(shù)一定是非負數(shù),利用這一條件能確定二次根式中被開方數(shù)所含字母的取值范圍。
特別的,含有分母的二次根式取值時易忽略分母不能為零這一條件。
由于取值范圍的確定與不等式(組)有關(guān),所以,在學(xué)習(xí)之前又進行了不等式的性質(zhì)及解法進行了復(fù)習(xí),因為前幾天讓學(xué)生復(fù)習(xí)過,且一直在溫習(xí),所以這一點學(xué)習(xí)并沒有感覺到困難。
數(shù)學(xué)二次根式教案【篇4】
一、教學(xué)過程
(一)復(fù)習(xí)提問
1.什么叫二次根式?
2.下列各式是二次根式,求式子中的字母所滿足的條件:
(3)∵x取任何值都有2x2≥0,所以2x2+1>0,故x的取值為任意實數(shù).
(二)二次根式的簡單性質(zhì)
上節(jié)課我們已經(jīng)學(xué)習(xí)了二次根式的定義,并了解了第一個簡單性質(zhì)
我們知道,正數(shù)a有兩個平方根,分別記作零的平方根是零。引導(dǎo)學(xué)生總結(jié)出,其中,就是一個非負數(shù)a的算術(shù)平方根。將符號看作開平方求算術(shù)平方根的運算,看作將一個數(shù)進行平方的運算,而開平方運算和平方運算是互為逆運算,因而有:
這里需要注意的是公式成立的條件是a≥0,提問學(xué)生,a可以代表一個代數(shù)式嗎?
請分析:引導(dǎo)學(xué)生答如時才成立。
時才成立,即a取任意實數(shù)時都成立。
我們知道
如果我們把,同學(xué)們想一想是否就可以把任何一個非負數(shù)寫成一個數(shù)的平方形式了.
例1計算:
分析:這個例題中的四個小題,主要是運用公式。其中(2)、(3)、(4)題又運用了整式乘除中學(xué)習(xí)的積的冪的運算性質(zhì).結(jié)合第(2)小題中的,說明,這與帶分數(shù)。因此,以后遇到,應(yīng)寫成,而不宜寫成。
例2把下列非負數(shù)寫成一個數(shù)的平方的形式:
(1)5;(2)11;(3)1。6;(4)0。35.
例3把下列各式寫成平方差的形式,再分解因式:
(1)4x2—1;(2)a4—9;
(3)3a2—10;(4)a4—6a2+9.
解:(1)4x2—1
=(2x)2—12
=(2x+1)(2x—1).
(2)a4—9
=(a2)2—32
=(a2+3)(a2—3)
(3)3a2—10
(4)a4—6a2+32
=(a2)2—6a2+32
=(a2—3)2
(三)小結(jié)
1.繼續(xù)鞏固二次根式的定義,及二次根式中被開方數(shù)的取值范圍問題.
2.關(guān)于公式的應(yīng)用。
(1)經(jīng)常用于乘法的運算中.
(2)可以把任何一個非負數(shù)寫成一個數(shù)的平方的形式,解決在實數(shù)范圍內(nèi)因式分解等方面的問題.
(四)練習(xí)和作業(yè)
練習(xí):
1.填空
注意第(4)題需有2m≥0,m≥0,又需有—3m≥0,即m≤0,故m=0.
2.實數(shù)a、b在數(shù)軸上對應(yīng)點的位置如下圖所示:
分析:通過本題滲透數(shù)形結(jié)合的思想,進一步鞏固二次根式的定義、性質(zhì),引導(dǎo)學(xué)生分析:由于a<0,b>0,且|a|>|b|.
3.計算
二、作業(yè)
教材P.172習(xí)題11.1;A組2、3;B組2.
補充作業(yè):
下列各式中的字母滿足什么條件時,才能使該式成為二次根式?
分析:要使這些式成為二次根式,只要被開方式是非負數(shù)即可,啟發(fā)學(xué)生分析如下:
(1)由—|a—2b|≥0,得a—2b≤0,
但根據(jù)絕對值的性質(zhì),有|a—2b|≥0,
∴|a—2b|=0,即a—2b=0,得a=2b.
(2)由(—m2—1)(m—n)≥0,—(m2+1)(m—n)≥0
∴(m2+1)(m—n)≤0,又m2+1>0,
∴ m—n≤0,即m≤n.
說明:本題求解較難些,但基本方法仍是由二次根式中被開方數(shù)(式)大于或等于零列出不等式.通過本題培養(yǎng)學(xué)生對于較復(fù)雜的題的分析問題和解決問題的能力,并且進一步鞏固二次根式的概念.
三、板書設(shè)計
數(shù)學(xué)二次根式教案【篇5】
1.什么叫二次根式?
2.下列各式是二次根式,求式子中的字母所滿足的條件:
(3)∵x取任何值都有2x2≥0,所以2x2+1>0,故x的取值為任意實數(shù).
我們知道,正數(shù)a有兩個平方根,分別記作零的平方根是零。引導(dǎo)學(xué)生總結(jié)出,其中,就是一個非負數(shù)a的算術(shù)平方根。將符號看作開平方求算術(shù)平方根的運算,看作將一個數(shù)進行平方的運算,而開平方運算和平方運算是互為逆運算,因而有:
這里需要注意的是公式成立的條件是a≥0,提問學(xué)生,a可以代表一個代數(shù)式嗎?
如果我們把,同學(xué)們想一想是否就可以把任何一個非負數(shù)寫成一個數(shù)的平方形式了.
例1計算:
分析:這個例題中的四個小題,主要是運用公式。其中(2)、(3)、(4)題又運用了整式乘除中學(xué)習(xí)的積的冪的運算性質(zhì).結(jié)合第(2)小題中的,說明,這與帶分數(shù)。因此,以后遇到,應(yīng)寫成,而不宜寫成。
例2把下列非負數(shù)寫成一個數(shù)的平方的.形式:
(1)5;(2)11;(3)1。6;(4)0。35.
例3把下列各式寫成平方差的形式,再分解因式:
(1)4x2―1;(2)a4―9;
(3)3a2―10;(4)a4―6a2+9.
1.繼續(xù)鞏固二次根式的定義,及二次根式中被開方數(shù)的取值范圍問題.
2.關(guān)于公式的應(yīng)用。
(1)經(jīng)常用于乘法的運算中.
(2)可以把任何一個非負數(shù)寫成一個數(shù)的平方的形式,解決在實數(shù)范圍內(nèi)因式分解等方面的問題.
注意第(4)題需有2m≥0,m≥0,又需有―3m≥0,即m≤0,故m=0.
2.實數(shù)a、b在數(shù)軸上對應(yīng)點的位置如下圖所示:
分析:通過本題滲透數(shù)形結(jié)合的思想,進一步鞏固二次根式的定義、性質(zhì),引導(dǎo)學(xué)生分析:由于a<0,b>0,且|a|>|b|.
教材P.172習(xí)題11.1;A組2、3;B組2.
補充作業(yè):
下列各式中的字母滿足什么條件時,才能使該式成為二次根式?
分析:要使這些式成為二次根式,只要被開方式是非負數(shù)即可,啟發(fā)學(xué)生分析如下:
(1)由―|a―2b|≥0,得a―2b≤0,
但根據(jù)絕對值的性質(zhì),有|a―2b|≥0,
∴|a―2b|=0,即a―2b=0,得a=2b.
(2)由(―m2―1)(m―n)≥0,―(m2+1)(m―n)≥0
∴(m2+1)(m―n)≤0,又m2+1>0,
∴ m―n≤0,即m≤n.
說明:本題求解較難些,但基本方法仍是由二次根式中被開方數(shù)(式)大于或等于零列出不等式.通過本題培養(yǎng)學(xué)生對于較復(fù)雜的題的分析問題和解決問題的能力,并且進一步鞏固二次根式的概念.
數(shù)學(xué)二次根式教案【篇6】
教學(xué)內(nèi)容
二次根式的加減
教學(xué)目標(biāo)
知識與技能目標(biāo):理解和掌握二次根式加減的方法.
過程與方法目標(biāo):先提出問題,分析問題,在分析問題中,滲透對二次根式進行加減的方法的理解.再總結(jié)經(jīng)驗,用它來指導(dǎo)根式的計算和化簡.
情感與價值目標(biāo):通過本節(jié)的學(xué)習(xí)培養(yǎng)學(xué)生:利用規(guī)定準確計算和化簡的嚴謹?shù)目茖W(xué)精神,發(fā)展學(xué)生觀察、分析、發(fā)現(xiàn)問題的能力.
重難點關(guān)鍵
1.重點:二次根式化簡為最簡根式.
2.難點關(guān)鍵:會判定是否是最簡二次根式.
教法:
1、引導(dǎo)發(fā)現(xiàn)法:通過教師精心設(shè)計的問題鏈,使學(xué)生產(chǎn)生認知沖突,感悟新知,建立分式的模型,引導(dǎo)學(xué)生觀察、類比、參與問題討論,使感性認識上升為理性認識,充分體現(xiàn)了教師主導(dǎo)和學(xué)生主體的作用,對實現(xiàn)教學(xué)目標(biāo)起了重要的作用;
2、講練結(jié)合法:在例題教學(xué)中,引導(dǎo)學(xué)生閱讀,與同類項進行類比,獲得解決問題的方法后配以精講,并進行分層練習(xí),培養(yǎng)學(xué)生的閱讀習(xí)慣和規(guī)范的解題格式。
學(xué)法:
1、類比的方法通過觀察、類比,使學(xué)生感悟二次根式加減的模型,形成有效的學(xué)習(xí)策略。
2、閱讀的方法讓學(xué)生閱讀教材及材料,體驗一定的閱讀方法,提高閱讀能力。
3、分組討論法將自己的意見在小組內(nèi)交換,達到取長補短,體驗學(xué)習(xí)活動中的交流與合作。
4、練習(xí)法采用不同的練習(xí)法,鞏固所學(xué)的知識;利用教材進行自檢,小組內(nèi)進行他檢,提高學(xué)生的素質(zhì)。
知識點
自主檢測、同伴互查
1、師生共同解決“學(xué)法”問題與13頁“練習(xí)1”;
2、學(xué)生演板13頁“練習(xí)2、3”。
四、知識梳理、師生共議
1、談收獲:
(1)二次根式的加減法則是什么?有哪些運算步驟?
(2)怎樣合并被開方數(shù)相同的二次根式呢?
(3)二次根式進行加減運算時應(yīng)注意什么問題?
2、說不足:。
五、作業(yè)訓(xùn)練、鞏固提高
1、必做題:課本15頁的“習(xí)題2、3”;
課時練習(xí)
1.揭示學(xué)法、自主學(xué)習(xí)
認真閱讀課本14頁內(nèi)容,完成下列任務(wù):
1、完成14頁“例3、4”,先做再對照:
(1)平方差公式__________,完全平方公式__________.
(2)每步的運算依據(jù)是什么?應(yīng)注意什么問題?
(時間7分鐘若有困難,與同伴討論)
三、自主檢測、同伴互查
1、師生共同解決“學(xué)法”問題;
2、學(xué)生演板14頁“練習(xí)1、2”。
四、知識梳理、師生共議
1、談收獲:
(1)二次根式進行混合運算時運用了哪些知識?
(2)二次根式進行混合運算時應(yīng)注意哪些問題?
數(shù)學(xué)二次根式教案【篇7】
本節(jié)課的難點是把分母中含有兩個二次根式的式子進行分母有理化。分母有理化,實際上二次根式的除法與混合運算的綜合運用。分母有理化的過程,一般地,先確定分母的有理化因式,然后再根據(jù)分式的基本性質(zhì)把分子、分母都乘以這個有理化因式,就可使分母有理化。所以對初學(xué)者來說,這一過程容易出現(xiàn)找錯有理化因式和計算出錯的問題。
1.在知識的引入上,可采取復(fù)習(xí)引入方式,比如復(fù)習(xí)有理數(shù)的混合運算或整式的運算。
2.在二次根式的加減、乘法混合運算中,要注意由淺入深的層次安排,從單項式與多項式相乘、多項式與多項式到乘法公式的應(yīng)用,逐漸從數(shù)過渡到帶有字母的式。
3.在有理化因式教學(xué)中,要多出幾組題目從不同角度要求學(xué)生辨別,并及時總結(jié)。
學(xué)生特點:實驗班的A層學(xué)生(數(shù)學(xué)實施分層教學(xué)),主動學(xué)習(xí)積極性高,基礎(chǔ)扎實,思維活躍, ,并具有一定的獨立分析問題,探索問題,歸納概括問題的能力,有較好的思考、質(zhì)疑的習(xí)慣。
教材特點:本節(jié)課是在學(xué)習(xí)了二次根式的三個重要概念(最簡二次根式、同類二次根式、分母有理化)和二次根式的有關(guān)運算(二次根式的乘法、二次根式的除法、二次根式的加減法)基礎(chǔ)上,將加、減、乘、除、乘方、開方運算綜合在一起的混合運算的學(xué)習(xí)。
鑒于學(xué)生的特點及教材的特點,本節(jié)課主要采用“互動式”的課堂教學(xué)模式及“談話式”的教學(xué)方法,以此實現(xiàn)生生互動、師生互動、學(xué)生與教材之間的互動。具體說明如下:
(一)在師生互動方面,教師注重問題設(shè)計,注重引導(dǎo)、點撥及提高性總結(jié)。使學(xué)生學(xué)中有思、思中有獲。如本節(jié)課開始,出示書中例題1:
讓學(xué)生先進行思考,解答。然后同學(xué)說出怎樣進行二次根式的混合運算。
(二)在學(xué)生與學(xué)生的互動上,教師注重活動設(shè)計,使學(xué)生學(xué)中有樂,樂中悟道。教師設(shè)計一組題目,讓學(xué)生以競賽的形式解答,然后以記成績的方法讓其它同學(xué)說出優(yōu)點(簡便方法及靈活之處)與錯誤。由于本節(jié)課主要以計算為主,對運算法則及規(guī)律性的基礎(chǔ)知識,學(xué)生很容易掌握而且從意識上認為本節(jié)課太簡單,不會很感興趣,所以為了提高學(xué)生的學(xué)習(xí)興趣及更好的抓好基礎(chǔ),提高學(xué)生的運算能力,如此這般設(shè)計。
(三)在個體與群體的`互動方式上,教師注重合作設(shè)計,使學(xué)生學(xué)中有辯,辯中求同。如本節(jié)課中對重點問題:“分母有理化”的教學(xué),出示一個題目,讓學(xué)生思考,找個別學(xué)生說出自己的想法,然后其它同學(xué)補充完成。
學(xué)生的主體意識和自主能力不是生來就有的,主要靠教師的激勵和主導(dǎo),才能達到彼此互動。正是在這一教育思想的指導(dǎo)下,追求學(xué)生的認知活動與情感活動的協(xié)調(diào)發(fā)展,有效地喚起學(xué)生的主體意識,在和諧、愉快的情境中達到師生互動,生生互動。互動式教學(xué)模式的目的是讓教師樂教、會教、善教,促使學(xué)生樂學(xué)、會學(xué)、善學(xué),從而優(yōu)化課堂教學(xué)、提高教學(xué)質(zhì)量,在和諧、愉快的情景中實現(xiàn)教與學(xué)的共振。
=; =.
2.在整式乘法中,單項式與多項式相乘的法則是什么?多項式與多項式的乘法法則是什么?什么是完全平方式?分別用式子表示出來。
答:單項式與多項式相乘的法則是,用單項式去乘多項式的每一項,再把所得的積相加。用式子表示為
多項式與多項式相乘的法則是,先用一個多項式的每一項乘以另一個多項式的每項,再把所得的積相加。用式子表示為
(a+b)(m+n)=am+an+bm+bn,
; 。
在實數(shù)范圍內(nèi),整式中的乘法法則及乘法公式仍然適用,運用乘法法則及乘法公式可以進行二次根式的混合運算。引入新課。
在進行二次根式的混合運算時,也有一個與分式運算相比較的問題,有的時候,加上團式分解、約分等技巧,可以大大簡化計算過程,這是要靈活運用的.因此,在本節(jié)學(xué)習(xí)時,可以適當(dāng)結(jié)合11.1節(jié)的內(nèi)容,復(fù)習(xí)一下在實數(shù)范圍內(nèi)分解因式的問題,如
這種變形不是原來意義上的因式分解,否則就無法進行到底了.可以說是借助因式分解的方法,或具體說成提出 ,等等.
1.掌握二次根式的混合運算.
2.掌握乘法公式在混合運算的應(yīng)用.
3.通過二次根式的混合運算,培養(yǎng)學(xué)生的運算能力.
數(shù)學(xué)二次根式教案【篇8】
1.理解分母有理化與除法的關(guān)系.
2.掌握二次根式的分母有理化.
3.通過二次根式的分母有理化,培養(yǎng)學(xué)生的運算能力.
三、重點、難點解決辦法
二次根式混合運算的步驟、運算順序、互為有理化因式.
例1? 說出下列算式的運算步驟和順序:
(1) (先乘除,后加減).
(2) (有括號,先去括號;不宜先進行括號內(nèi)的運算).
(3)辨別有理化因式:
化簡一個式子,如果分母是二次根式,采用分子、分母同乘以分母的`有理化因式的方法(依據(jù)分式的基本性質(zhì)).
例如, 、 、 等式子的化簡,如果分母是兩個二次根式的和,應(yīng)該怎樣化簡?
化簡式子 ,乘以什么樣的式子,分母中的根式符號可去掉,結(jié)論是分子與分母要同乘以 的有理化因式,而這個式子就是 ,從而可將式子化簡.
注:通過例題的講解,使學(xué)生理解和掌握化簡的步驟、關(guān)鍵問題、化簡的依據(jù).式子的化簡,若分子與分母可分解因式,則可先分解因式,再約分,使化簡變得簡單.
通過以上例題和練習(xí)題,可以看出,有關(guān)二次根式的除法,可先寫成分式的形式,然后通過分母有理化進行運算,例如:
,現(xiàn)將分母有理化,就可以了.
,學(xué)生易發(fā)生如下錯誤,將式子變形為 ,而正確的做法是 .
1.強調(diào)二次根式混合運算的法則;
2.注意對有理化因式的概括并尋找出它的規(guī)律.
(1)如單獨一項 的有理化因式就是它本身 .(2)如出現(xiàn)和、差形式的: 的有理化因式為 , 的有理數(shù)化因式為 .
二次函數(shù)教案十一篇
不為明天做好準備的人是沒有未來的,優(yōu)質(zhì)課堂,就是幼兒園的老師在講學(xué)生在答,講的知識都能被學(xué)生吸收,為了提升學(xué)生的學(xué)習(xí)效率,準備教案是一個很好的選擇,教案可以幫助學(xué)生更好地進入課堂環(huán)境中來。我們要如何寫好一份值得稱贊的幼兒園教案呢?小編花時間特意編輯了二次函數(shù)教案十一篇,供大家借鑒和使用,希望大家分享!
二次函數(shù)教案【篇1】
導(dǎo)語:教案是教師為順利而有效地開展教學(xué)活動,根據(jù)教學(xué)大綱和教科書要求及學(xué)生的實際情況,以課時或課題為單位,對教學(xué)內(nèi)容、教學(xué)步驟、教學(xué)方法等進行的具體設(shè)計和安排的一種實用性教學(xué)文書。教案包括教材簡析和學(xué)生分析、教學(xué)目的、重難點、教學(xué)準備、教學(xué)過程及練習(xí)設(shè)計等
教學(xué)目標(biāo):
1、利用2-6乘法的推導(dǎo)方法,學(xué)習(xí)推導(dǎo)出7的乘法口訣,使學(xué)生掌握7的乘法口訣,并能應(yīng)用口訣進行計算。
2、培養(yǎng)學(xué)生利用舊知識類推新知識的學(xué)習(xí)能力。
教學(xué)重點:
7的口訣含義,知道每句口訣的來源。
教學(xué)難點:
熟記7的乘法口訣,并能正確地應(yīng)用。
教學(xué)過程:
一、復(fù)習(xí):
1、看圖說圖意,列乘法式。
○○○○○○○○○○
○○○○○○○○○○
()個()相加列式:
2、提問:什么情況下用乘法計算?
二、新課。
1、談話引入新課。
2、學(xué)生動手用七巧板拼圖,學(xué)習(xí)例1。
(1)引出連加的結(jié)果。
學(xué)生匯報擺一個圖形幾塊,擺幾個圖形用幾塊,在學(xué)習(xí)回答的基礎(chǔ)上填好表格。
提問:你知道1個7是多少?2個7是多少?3個7是多少?你是怎樣知道的?這些都是幾個幾個地加?
(2)教師引導(dǎo)啟發(fā)學(xué)生推導(dǎo)出7的乘法口訣。
提問:你能依據(jù)剛才做的練習(xí)自己推導(dǎo)出7的乘法口訣嗎?請學(xué)生試著推導(dǎo),在書上填寫。
口訣分別是什么?口訣的含義是什么?
(3)觀察7的乘法口訣排列規(guī)律。
提問:7的乘法口訣有幾句?口訣排列有什么規(guī)律?
提問:為什么因數(shù)一個比一個多1,積就一個比一個多7呢?
提問:如果74=?你忘了,有什么辦法可以想出嗎?
3、多種形式熟記7的乘法口訣。
三、練習(xí)。
1、完成P73練習(xí)十六的內(nèi)容。
N1和N2是鞏固7的乘法口訣。
N3、N6、N11是用乘法口訣進行乘法式最基本的計算形式,通過練習(xí),達到準確、流暢、迅速和正確。
N5、N7、N8、N12以多種形式鞏固乘法口訣,增強學(xué)生記憶口訣的興趣,并熟悉口訣之間、口訣與計算之間的聯(lián)系,為解決實際問題打基礎(chǔ)。
N4、N9、N10、N13、N14、N15是用7的乘法口訣解決實際問題的練習(xí)。目的是通過這些練習(xí)讓學(xué)生體會學(xué)習(xí)乘法的用處,培養(yǎng)學(xué)生用乘法解決問題的意識。
二次函數(shù)教案【篇2】
回顧舊知:
1.作函數(shù)圖象有幾個步驟?(列表-----描點-------連線) 2.一次函數(shù)圖象有什么特點?
(一次函數(shù)圖象是一條直線,其中,正比例函數(shù)的圖象是經(jīng)過原點(0,0)的一條直線.)
1.結(jié)合圖像探索并掌握一次函數(shù)y=kx+b(k≠0)的性質(zhì)。 2.能根據(jù)一次函數(shù)的圖像和性質(zhì)解決簡單的數(shù)學(xué)問題。
3、通過對一次函數(shù)性質(zhì)的探索與應(yīng)用,領(lǐng)會數(shù)形結(jié)合的思想方法。 【自主探索】
(一)自學(xué)指導(dǎo):
自學(xué)教材P48—P50內(nèi)容,完成以下內(nèi)容: 1.在同一直角坐標(biāo)系中畫出下列函數(shù)的圖象:
32、在同一直角坐標(biāo)系中畫出下列函數(shù)的圖象:
3y=-x+2和y=-x-1 23.根據(jù)前兩題的函數(shù)圖像觀察自變量x從小變到大時函數(shù)y的值分別有何變化?
4.請同學(xué)們在小組內(nèi)進行交流討論,并試著總結(jié)一次函數(shù)y=kx+b(k≠0)的性質(zhì)。
(二)自學(xué)效果檢測:
2、下圖中哪一個是y=x-1的大致圖象:
4、函數(shù)y=-2x+4,y=-3x,y=3-x的共同性質(zhì)是( ) A.它們的圖象都不經(jīng)過第二象限 B.它們的圖象都不經(jīng)過原點 C.函數(shù)y都隨自變量x的增大而增大 D.函數(shù)y都隨自變量x的增大而減小
5、下列一次函數(shù)中,y的值隨x的增大而減小的有_____________ (1)y=10x-9 (2)y=-0.3x+2 (3)y=【合作提升】
1.利用函數(shù)y=-2x+2的圖象,回答下列問題:
(1)這個函數(shù)中,隨著x的增大,y將增大還是減小?它的圖象從左到右怎樣變化? (2)當(dāng)x取何值時,y=0?當(dāng)x取何值時,y>0?當(dāng)0
12、已知點(2,m) 、(-3,n)都在直線y=x+1的圖象上,試比較 m和n的
1.一次函數(shù)y=kx+b中,k≠0 kb>0,且y隨x的增大而減小,則它的圖象大致為(
D
2、關(guān)于x的一次函數(shù)y=(2m-1)x+m-1的圖象與y軸的交點在x軸的上方,求m的取值范圍。
3、點P1(x1,y1),點P2(x2,y2)是一次函數(shù)y=-4x+3的圖象上兩個點,且x1
4、若一次函數(shù)y=kx+b(k≠0)的函數(shù)值y隨x的增大而減小,且圖象與y軸的負半軸相交,那么對k和b的符號判斷正確的是(
1、 一次函數(shù)y=3x+b的函數(shù)圖象經(jīng)過原點,則b的值是________.
2、 已知一次函數(shù)y=kx+b的圖象交y軸于正半軸,且y隨x的增大而減小,則k__0,b__0,請寫出符合上述條件的一個關(guān)系式:_____________.
二次函數(shù)教案【篇3】
【基礎(chǔ)過關(guān)】
1、用一根長10 的鐵絲圍成一個矩形,設(shè)其中的一邊長為 ,矩形的面積為 ,則 與 的函數(shù)關(guān)系式為 .
2、張大爺要圍成一個矩形花圃.花圃的一邊利用足夠長的墻,另三邊用總長為32米的籬笆恰好圍成.圍成的花圃是如圖所示的矩形ABCD.設(shè)AB邊的長為x米.矩形ABCD的面積為S平方米.求S與x之間的函數(shù)關(guān)系
3、小敏在某次投籃中,球的運動路線是拋物線 的
一部分(如圖),若命中籃圈中心,則他與籃底的距離 是( )
4、小明的父親在相距2米的兩棵樹間拴了一根繩子,給小明做了一個簡易的秋千.拴繩子的地方距地面高都是2.5米,繩子自然下垂呈拋物線狀,身高1米的小明距較近的那棵樹0.5米時,頭部剛好接觸到繩子,則繩子的最低點距地面的距離為 米.
5、某商場以每臺2500元進口一批彩電,如果每臺售價定為2700元,可賣出400臺,以100元為一個價格單位,若每臺提高一個單位價格,則會少賣出50臺。
⑴若設(shè)每臺的定價為 (元)賣出這批彩電獲得的利潤為 (元),試寫出 與 的函數(shù)關(guān)系式;
⑵當(dāng)定價為多少元時可獲得最大利潤?最大利潤是多少?
6、王強在一次高爾夫球的練習(xí)中,在某處擊球,其飛行路線滿足拋物線 ,
其中 (m)是球的飛行高度, (m)是球飛出的水平距離,結(jié)果球離球洞的水平距離還有2m.
(1)請寫出拋物線的開口方向、頂點坐標(biāo)、對稱軸.(2)請求出球飛行的最大水平距離.
(3)若王強再一次從此處擊球,要想讓球飛行的最大高度不變且球剛好進洞,則球飛行路線應(yīng)滿足怎樣的拋物線,求出其解析式.
比例線段
1.相似形:在數(shù)學(xué)上,具有相同形狀的圖形稱為相似形
2.比例線段:在四條線段中,如果其中兩條線段的比等于另外兩條線段的比,那么這四條線段叫做成比例線段,簡稱比例線段
3. 比例的性質(zhì)
(1)基本性質(zhì): , a∶b=b∶c b2=ac
(2)比例中項:若 的比例中項.
比例尺 = (做題之前注意先統(tǒng)一單位)
以上就是初三數(shù)學(xué)寒假作業(yè)之求二次函數(shù)的應(yīng)用的全部內(nèi)容,希望你做完作業(yè)后可以對書本知識有新的體會,愿您學(xué)習(xí)愉快。
二次函數(shù)教案【篇4】
I.定義與定義表達式一般地,自變量x和因變量y之間存在如下關(guān)系:
y=ax^2+bx+c
(a,b,c為常數(shù),a0,且a決定函數(shù)的開口方向,a0時,開口方向向上,a0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)
則稱y為x的二次函數(shù)。
二次函數(shù)表達式的右邊通常為二次三項式。
II.二次函數(shù)的三種表達式一般式:y=ax^2+bx+c(a,b,c為常數(shù),a0)
頂點式:y=a(x-h)^2+k[拋物線的頂點P(h,k)]
交點式:y=a(x-x?)(x-x?)[僅限于與x軸有交點A(x?,0)和B(x?,0)的拋物線]
注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:
h=-b/2ak=(4ac-b^2)/4ax?,x?=(-bb^2-4ac)/2a
III.二次函數(shù)的圖像在平面直角坐標(biāo)系中作出二次函數(shù)y=x^2的圖像,
可以看出,二次函數(shù)的圖像是一條拋物線。
二次函數(shù)教案【篇5】
目標(biāo)設(shè)計
1.知識與技能:通過本節(jié)學(xué)習(xí),鞏固二次函數(shù)y=ax2+bx+c(a≠0)的圖象與性質(zhì),理解頂點與最值的關(guān)系,會用頂點的性質(zhì)求解最值問題。
能力訓(xùn)練要求
1、能夠分析實際問題中變量之間的二次函數(shù)關(guān)系,并運用二次函數(shù)的知識求出實際問題的最大(小)值發(fā)展學(xué)生解決問題的能力, 學(xué)會用建模的思想去解決其它和函數(shù)有關(guān)應(yīng)用問題。
2、通過觀察圖象,理解頂點的特殊性,會把實際問題中的最值轉(zhuǎn)化為二次函數(shù)的最值問題,通過動手動腦,提高分析解決問題的能力,并體會一般與特殊的關(guān)系,培養(yǎng)數(shù)形結(jié)合思想,函數(shù)思想。
情感與價值觀要求
1、在進行探索的活動過程中發(fā)展學(xué)生的探究意識,逐步養(yǎng)成合作交流的習(xí)慣。
2、培養(yǎng)學(xué)生學(xué)以致用的習(xí)慣,體會體會數(shù)學(xué)在生活中廣泛的應(yīng)用價值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣、增強自信心。
方法設(shè)計
由于本節(jié)課是應(yīng)用問題,重在通過學(xué)習(xí)總結(jié)解決問題的方法,故而本節(jié)課以“啟發(fā)探究式”為主線開展教學(xué)活動,解決問題以學(xué)生動手動腦探究為主,必要時加以小組合作討論,充分調(diào)動學(xué)生學(xué)習(xí)積極性和主動性,突出學(xué)生的主體地位,達到“不但使學(xué)生學(xué)會,而且使學(xué)生會學(xué)”的目的。為了提高課堂效率,展示學(xué)生的學(xué)習(xí)效果,適當(dāng)?shù)剌o以電腦多媒體技術(shù)。
教學(xué)過程
導(dǎo)學(xué)提綱
設(shè)計思路:最值問題又是生活中利用二次函數(shù)知識解決最常見、最有實際應(yīng)用價值的問題之一,它生活背景豐富 ,學(xué)生比較感興趣,對九年級學(xué)生來說,在學(xué)習(xí)了一次函數(shù)和二次函數(shù)圖象與性質(zhì)以后,對函數(shù)的思想已有初步認識,對分析問題的方法已會初步模仿,能識別圖象的增減性和最值,但在變量超過兩個的實際問題中,還不能熟練地應(yīng)用知識解決問題,而面積問題學(xué)生易于理解和接受 ,故而在這兒作此調(diào)整,為求解最大利潤等問題奠定基礎(chǔ)。從而進一步培養(yǎng)學(xué)生利用所學(xué)知識構(gòu)建數(shù)學(xué)模型,解決實際問題的能力,這也符合新課標(biāo)中知識與技能呈螺旋式上升的規(guī)律。目的在于讓學(xué)生通過掌握求面積最大這一類題,學(xué)會用建模的思想去解決其它和函數(shù)有關(guān)應(yīng)用問題,此部分內(nèi)容既是學(xué)習(xí)一次函數(shù)及其應(yīng)用后的鞏固與延伸,又為高中乃至以后學(xué)習(xí)更多函數(shù)打下堅實的理論和思想方法基礎(chǔ)。
(一)前情回顧:
1.復(fù)習(xí)二次函數(shù)y=ax2+bx+c(a≠0)的圖象、頂點坐標(biāo)、對稱軸和最值
2.(1)求函數(shù)y=x2+ 2x-3的最值。
(2)求函數(shù)y=x2+2x-3的最值。(0≤x ≤ 3)
3、拋物線在什么位置取最值?
(二)適當(dāng)點撥,自主探究
1.在創(chuàng)設(shè)情境中發(fā)現(xiàn)問題
請你畫一個周長為40厘米的矩形,算算它的面積是多少?再和同學(xué)比比,發(fā)現(xiàn)了什么?誰的面積最大?
2、在解決問題中找出方法
某工廠為了存放材料,需要圍一個周長40米的矩形場地,問矩形的長和寬各取多少米,才能使存放場地的面積最大?
(問題設(shè)計思路:把前面矩形的周長40厘米改為40米,變成一個實際問題, 目的在于讓學(xué)生體會其應(yīng)用價值??我們要學(xué)有用的數(shù)學(xué)知識。學(xué)生在前面探究問題時,已經(jīng)發(fā)現(xiàn)了面積不唯一,并急于找出最大的,而且要有理 論依據(jù),這樣首先要建立函數(shù)模型,合作探究中在選取變量時學(xué)生可能會有困難,這時教師要引導(dǎo)學(xué)生關(guān)注哪兩個變量,就把其中的一個主要變量設(shè)為x,另一個設(shè)為y,其它變量用含x的代數(shù)式表示,找等量關(guān)系,建立函數(shù)模型,實際問題還要考慮定義域,畫圖象觀察最值點,這樣一步步突破難點,從而讓學(xué)生在不斷探究中悟出利用函數(shù)知識解決問題的一套思路和方法,而不是為了做題而做題,為以后的學(xué)習(xí)奠定思想方法基礎(chǔ)。)
3、在鞏固與應(yīng)用中提高技能
例1:小明的家門前有一塊空地,空地外有一面長10米的圍墻,為了美化生活環(huán)境,小明的爸爸準備靠墻修建一個矩形花圃 ,他買回了32米長的不銹鋼管準備作為花圃的圍欄(如圖所示),花圃的寬AD究竟應(yīng)為多少米才能使花圃的面積最大?
(設(shè)計思路:例1的設(shè)計也是尋找了學(xué)生熟悉的家門口的生活背景,從知識的角度來看,求矩形面積也較容易,我在此設(shè)計了一個條件墻長10米來限制定義域,目的在于告訴學(xué)生一個道理,數(shù)學(xué)不能脫離生活實際,估計大部分學(xué)生在求解時還會在頂點處找最值,導(dǎo)致錯解,此時教師再提醒學(xué)生通過畫函數(shù)的圖象輔助觀察、理解最值的實際意義,體會頂點與端點的不同作用,加深對知識的理解,做到數(shù)與形的完美結(jié)合,通過此題的有意訓(xùn)練,學(xué)生必然會對定義域的意義有更加深刻的理解,這樣既培養(yǎng)了學(xué)生思維的嚴密性,又為今后能靈活地運用知識解決問題奠定了堅實的基礎(chǔ)。)
解:設(shè)垂直于墻的邊AD=x米,則AB=(32-2x) 米,設(shè)矩形面積為y米2,得到:
Y=x(32-2x)= -2x2+32x
[錯解]由頂點公式得:
x=8米時,y最大=128米2
而實際上定義域為11≤x ?16,由圖象或增減性可知x=11米時, y最大=110米2
(設(shè)計思路:例1的設(shè)計也是尋找了學(xué)生熟悉的家門口的生活背景,從知識的角度來看,求矩形面積也較容易,我在此設(shè)計了一個條件墻長10米來限制定義域,目的在于告訴學(xué)生一個道理,數(shù)學(xué)不能脫離生活實際,估計大部分學(xué)生在求解時還會在頂點處找最值,導(dǎo)致錯 解,此時教師再提醒學(xué)生通過畫函數(shù)的圖象輔助觀察、理解最值的實際意義,體會頂點與端點的不同作用,加深對知識的理解,做到數(shù)與 形的完美結(jié)合,通過此題的有意訓(xùn)練,學(xué)生必然會對定義域的意義有更加深刻的理解,這樣既培養(yǎng)了學(xué)生思維的嚴密性,又為今后能靈活地運用知識解決問題奠定了堅實的基礎(chǔ)。)
(三)總結(jié)交流:
(1)同學(xué)們經(jīng)歷剛才的探究過程,想想解決此類問題的思路是什么?.
引導(dǎo)學(xué)生分析解題循環(huán)圖:
(2)在探究發(fā)現(xiàn)這些判定方法的過程中運用了什么樣的數(shù)學(xué)方法?
(四)掌握應(yīng)用:
圖中窗戶邊框的 上半部分是由四個全等扇形組成的半圓,下部分是矩形。如果制作一個窗戶邊框的材料總長為15米,那么如何設(shè)計這個窗戶邊框的尺寸,使透光面積最大(結(jié)果精確到0.01m2)?(設(shè)計思路:先出示如圖圖形,然后引伸到課本中的圖形,讓學(xué)生有一個思考遞進的空間。)
(五)我來試一試:
如圖在Rt△ABC中,點P在斜邊AB上移動,PM⊥BC,PN⊥AC,M,N分別為垂足,已知AC=1,AB=2,求:
(1)何時矩形PMCN的面積最大,把最大面積是多少?
(2)當(dāng)AM平分∠CAB時,矩形PMCN的面積.
(六)智力闖關(guān):
如圖,用長20cm的籬笆,一面靠墻圍成一個長方形的園子,怎樣圍才能使園子的面積最大?最 大面積是多少?
作業(yè):課本隨堂練習(xí) 、習(xí)題1,2,3
板書設(shè)計
二次函數(shù)的應(yīng)用??面積最大問題
課后反思
二次函數(shù)的應(yīng)用本身是學(xué)習(xí)二次函數(shù)的圖象與性質(zhì)后,檢驗學(xué)生應(yīng)用所學(xué)知識解決實際問題能力的一個綜合考查。新課標(biāo)中要求學(xué)生能通過對實際問題的情境的分析確定二次函數(shù)的表達式,體會其意義,能根據(jù)圖象的性質(zhì)解決簡單的實際問題。 本節(jié)課充分運用導(dǎo)學(xué)提綱,教師提前通過一系列問題串的設(shè)置,引導(dǎo)學(xué)生課前預(yù)習(xí),在課堂上通過對一系列問題串的解決與交流, 讓學(xué)生通過掌握 求面積最大這一類題,學(xué)會用建模的思想去解決其它和函數(shù)有關(guān)應(yīng)用問題。
教材中設(shè)計先探索最大利潤問題,對九年級學(xué)生來說,在學(xué)習(xí)了一次函數(shù)和二次函數(shù)圖象與性質(zhì)以后,對函數(shù)的思想已有初步認識,對分析問題的方法已會初步模仿,能識別圖象的增減性和最值,但在變量超過兩個的實際問題中,還不能熟練地應(yīng)用知識解決問題,而面積問題學(xué)生易于理解和接受,故而在這兒作此調(diào)整,為求解最大利潤等問題奠定基礎(chǔ)。從而進一步培養(yǎng)學(xué)生利用所學(xué)知識構(gòu)建數(shù)學(xué)模型,解決實際問題的能力,這也符合新課標(biāo)中知識與技能呈螺旋式上升的規(guī)律。所以在例題的處理中適當(dāng)?shù)慕档土颂荻?,讓學(xué)生思維有一個拓展的空間,也有收獲快樂 和成就感。在訓(xùn)練的過程中,通過學(xué)生的獨立思考與小組合作探究相結(jié)合,使學(xué)生的分析能力、表達能力及思維能力都得到訓(xùn)練和提高。同時也注重對解題方法與解題 模式的歸納與總結(jié),并適當(dāng)?shù)貪B透轉(zhuǎn)化、化歸、數(shù)形結(jié)合等數(shù)學(xué)思想方法。
二次函數(shù)教案【篇6】
教學(xué)目標(biāo):
讓學(xué)生經(jīng)歷根據(jù)不同的條件,利用待定系數(shù)法求二次函數(shù)的函數(shù)關(guān)系式。
重點:二次函數(shù)表達式的形式的選擇
難點:各種隱含條件的挖掘
教法:引導(dǎo)發(fā)現(xiàn)法
教學(xué)過程:
(一)診斷補償,情景引入:
1、二次函數(shù)的一般式是什么
2、二次函數(shù)的圖象及性質(zhì)
(先讓學(xué)生復(fù)習(xí),然后提問,并做進一步診斷)
(二)問題導(dǎo)航,探究釋疑:
一般地,函數(shù)關(guān)系式中有幾個獨立的系數(shù),那么就需要有相同個數(shù)的獨立條件才能求出函數(shù)關(guān)系式。例如:我們在確定一次函數(shù)的關(guān)系式時,通常需要兩個立的條件:確定反比例函數(shù)的關(guān)系式時,通常只需要一個條件:如果要確定二次函數(shù)的關(guān)系式,又需要幾個條件呢?
(三)精講提煉,揭示本質(zhì):
例1。某涵洞是拋物線形,它的截面如圖26。2。9所示,現(xiàn)測得水面寬1。6m,涵洞頂點O到水面的距離為2。4m,在圖中直角坐標(biāo)系內(nèi),涵洞所在的拋物線的函數(shù)關(guān)系式是什么?
分析如圖,以AB的垂直平分線為y軸,以過點O的y軸的垂線為x軸,建立了直角坐標(biāo)系。這時,涵洞所在的拋物線的頂點在原點,對稱軸是y軸,開口向下,所以可設(shè)它的函數(shù)關(guān)系式是。此時只需拋物線上的一個點就能求出拋物線的函數(shù)關(guān)系式。
解由題意,得點B的坐標(biāo)為(0。8,-2。4),
又因為點B在拋物線上,將它的坐標(biāo)代入,得所以因此,函數(shù)關(guān)系式是。
例2、根據(jù)下列條件,分別求出對應(yīng)的二次函數(shù)的關(guān)系式。
(1)已知二次函數(shù)的圖象經(jīng)過點A(0,-1)、B(1,0)、C(-1,2);
(2)已知拋物線的頂點為(1,-3),且與y軸交于點(0,1);
(3)已知拋物線與x軸交于點M(-3,0)(5,0)且與y軸交于點(0,-3);
(4)已知拋物線的頂點為(3,-2),且與x軸兩交點間的距離為4。
分析(1)根據(jù)二次函數(shù)的圖象經(jīng)過三個已知點,可設(shè)函數(shù)關(guān)系式為的形式;(2)根據(jù)已知拋物線的頂點坐標(biāo),可設(shè)函數(shù)關(guān)系式為,再根據(jù)拋物線與y軸的交點可求出a的值;(3)根據(jù)拋物線與x軸的兩個交點的坐標(biāo),可設(shè)函數(shù)關(guān)系式為,再根據(jù)拋物線與y軸的交點可求出a的值;(4)根據(jù)已知拋物線的頂點坐標(biāo)(3,-2),可設(shè)函數(shù)關(guān)系式為,同時可知拋物線的對稱軸為x=3,再由與x軸兩交點間的距離為4,可得拋物線與x軸的兩個交點為(1,0)和(5,0),任選一個代入,即可求出a的值。
解(1)設(shè)二次函數(shù)關(guān)系式為,由已知,這個函數(shù)的圖象過(0,-1),可以得到c= -1。又由于其圖象過點(1,0)、(-1,2)兩點,可以得到
解這個方程組,得a=2,b= -1。
所以,所求二次函數(shù)的關(guān)系式是。
(2)因為拋物線的頂點為(1,-3),所以設(shè)二此函數(shù)的關(guān)系式為,又由于拋物線與y軸交于點(0,1),可以得到解得。
所以,所求二次函數(shù)的關(guān)系式是。
(3)因為拋物線與x軸交于點M(-3,0)、(5,0),
所以設(shè)二此函數(shù)的關(guān)系式為。
又由于拋物線與y軸交于點(0,3),可以得到解得。
所以,所求二次函數(shù)的關(guān)系式是。
(4)根據(jù)前面的分析,本題已轉(zhuǎn)化為與(2)相同的題型請同學(xué)們自己完成。
(四)題組訓(xùn)練,拓展遷移:
1、根據(jù)下列條件,分別求出對應(yīng)的二次函數(shù)的關(guān)系式。
(1)已知二次函數(shù)的圖象經(jīng)過點(0,2)、(1,1)、(3,5);
(2)已知拋物線的頂點為(-1,2),且過點(2,1);
(3)已知拋物線與x軸交于點M(-1,0)、(2,0),且經(jīng)過點(1,2)。
2、二次函數(shù)圖象的對稱軸是x= -1,與y軸交點的縱坐標(biāo)是–6,且經(jīng)過點(2,10),求此二次函數(shù)的關(guān)系式。
(五)交流評價,深化知識:
確定二此函數(shù)的關(guān)系式的一般方法是待定系數(shù)法,在選擇把二次函數(shù)的關(guān)系式設(shè)成什么形式時,可根據(jù)題目中的條件靈活選擇,以簡單為原則。二次函數(shù)的關(guān)系式可設(shè)如下三種形式:(1)一般式:,給出三點坐標(biāo)可利用此式來求。
(2)頂點式:,給出兩點,且其中一點為頂點時可利用此式來求。
(3)交點式:,給出三點,其中兩點為與x軸的兩個交點、時可利用此式來求。
本課課外作業(yè)1。已知二次函數(shù)的圖象經(jīng)過點A(-1,12)、B(2,-3),
(1)求該二次函數(shù)的關(guān)系式;
(2)用配方法把(1)所得的函數(shù)關(guān)系式化成的形式,并求出該拋物線的頂點坐標(biāo)和對稱軸。
2、已知二次函數(shù)的圖象與一次函數(shù)的圖象有兩個公共點P(2,m)、Q(n,-8),如果拋物線的對稱軸是x= -1,求該二次函數(shù)的關(guān)系式
二次函數(shù)教案【篇7】
的函數(shù),叫做二次函數(shù)。其中,x是自變量,a,b,c分別是函數(shù)表達式的二次項系數(shù)、一次項系數(shù)和常數(shù)項。
實質(zhì)上,函數(shù)的名稱都反映了函數(shù)表達式與自變量的關(guān)系.
三、課堂訓(xùn)練(略)
四、小結(jié)歸納:
學(xué)生談本節(jié)課收獲
1.二次函數(shù)概念
2.二次函數(shù)與一次函數(shù)的區(qū)別與聯(lián)系
3.二次函數(shù)的4種常見形式
五、作業(yè)設(shè)計
㈠教材16頁1、2
㈡補充:
1、①y=-x2②y=2x③y=22+x2-x3④m=3-t-t2是二次函數(shù)的是
2、用一根長60cm的鐵絲圍成一個矩形,矩形面積S(cm2)與它的一邊長x(cm)之間的函數(shù)關(guān)系式是____________.
3、小李存入銀行人民幣500元,年利率為x%,兩年到期,本息和為y元(不含利息稅),y與x之間的函數(shù)關(guān)系是_______,若年利率為6%,兩年到期的本利共______元.
4、在△ABC中,C=90,BC=a,AC=b,a+b=16,則RT△ABC的面積S與邊長a的關(guān)系式是____;當(dāng)a=8時,S=____;當(dāng)S=24時,a=________.
5、當(dāng)k=_____時,是二次函數(shù).
6、扇形周長為10,半徑為x,面積為y,則y與x的函數(shù)關(guān)系式為_______________.
7、已知s與成正比例,且t=3時,s=4,則s與t的函數(shù)關(guān)系式為_______________.
8、下列函數(shù)不屬于二次函數(shù)的是()
A.y=(x-1)(x+2)B.y=(x+1)2C.y=2(x+3)2-2x2D.y=1-x2
9、若函數(shù)是二次函數(shù),那么m的值是()
A.2B.-1或3C.3D.
10、一塊草地是長80m、寬60m的矩形,在中間修筑兩條互相垂直的寬為xm的小路,這時草坪面積為ym2.求y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.
二次函數(shù)教案【篇8】
一、教材分析
1.地位和作用
(1)二次函數(shù)是初中數(shù)學(xué)教學(xué)的重點和難點之一。二次函數(shù)在初中函數(shù)的教學(xué)中有重要地位,它不僅是初中代數(shù)內(nèi)容的引申,更為高中學(xué)習(xí)一元二次不等式和圓錐曲線奠定基礎(chǔ)。在歷屆上海市中考試題中,二次函數(shù)都是不可缺少的內(nèi)容。
(2)二次函數(shù)的圖象和性質(zhì)體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想,對學(xué)生基本數(shù)學(xué)思想和素養(yǎng)的形成起推動作用。
(3)二次函數(shù)與一元二次方程、不等式等知識的聯(lián)系,使學(xué)生能更好地將所學(xué)知識融會貫通。
2.教學(xué)目標(biāo)
知識目標(biāo)
1、通過復(fù)習(xí),掌握各類形式的二次函數(shù)解析式的求解方法和思路,能夠一題多解,發(fā)散學(xué)生的思維,提高學(xué)生的創(chuàng)造思維能力;
2、能運用數(shù)學(xué)思想解決有關(guān)二次函數(shù)的綜合問題,幫助學(xué)生提高解決綜合題的能力。
能力目標(biāo)
提高學(xué)生對知識的整合能力和分析能力
情感目標(biāo)
用powerpoint制作動畫增加直觀效果,激發(fā)學(xué)生興趣,感受數(shù)學(xué)之美。在教學(xué)中滲透美的教育,滲透數(shù)形結(jié)合的思想,讓學(xué)生在數(shù)學(xué)活動中學(xué)會與人相處,感受探索與創(chuàng)造,體驗成功的喜悅。
3.教學(xué)重點與難點
學(xué)習(xí)重點:各類形式的二次函數(shù)解析式的求解方法和思路
學(xué)習(xí)難點:1、運用數(shù)學(xué)思想解決有關(guān)二次函數(shù)的綜合問題
2、運用數(shù)形結(jié)合思想,選用恰當(dāng)?shù)臄?shù)學(xué)關(guān)系式解決幾何問題。
二、教學(xué)方法
1、師生互動探究式教學(xué),以教學(xué)大綱為依據(jù),滲透新的教育理念,遵循教師為主導(dǎo)、學(xué)生為主體的原則,結(jié)合初三學(xué)生的求知欲心理和已有的認知水平開展教學(xué),形成學(xué)生自動、生生助動、師生互動,教師著眼于引導(dǎo),學(xué)生著眼于探索,側(cè)重于學(xué)生能力的提高、思維的訓(xùn)練。同時考慮到學(xué)生的個體差異,在教學(xué)的各個環(huán)節(jié)中進行分層施教,讓每一個學(xué)生都能獲得知識,能力得到提高。
2、采用表格形式,將知識點歸納,讓學(xué)生通過這個表格很容易看出二次函數(shù)與一元二次方程的聯(lián)系,讓學(xué)生形成以清晰、系統(tǒng)、完整的知識網(wǎng)絡(luò)。
3、運用多媒體進行輔助教學(xué),既直觀、生動地反映圖形變換,增強教學(xué)的條理性和形象性,又豐富了課堂的內(nèi)容,有利于突出重點、分散難點,更好地提高課堂效率。
三、學(xué)法指導(dǎo)
授人以魚,不如授人以漁。在教學(xué)過程中,不但要傳授學(xué)生基本知識,還要培養(yǎng)學(xué)生主動觀察、主動思考、親自動手、自我發(fā)現(xiàn)等學(xué)習(xí)能力,增強學(xué)生的綜合素質(zhì),從而達到教學(xué)的終極目標(biāo)。教學(xué)中,教師創(chuàng)設(shè)疑問,學(xué)生想辦法解決疑問,通過教師的啟發(fā)與點撥,在積極的雙邊活動中,學(xué)生找到了解決疑問的方法,找準解決問題的關(guān)鍵。
二次函數(shù)教案【篇9】
22.1.3二次函數(shù)函數(shù)y=a(x-h(huán))2+k的圖像和性質(zhì)
一、教學(xué)內(nèi)容
二次函數(shù)函數(shù)y=a(x-h(huán))2+k的圖像和性質(zhì)
二、教材分析
二次函數(shù)是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進行研究的,在初中的學(xué)習(xí)中已經(jīng)給出了二次函數(shù)的圖象及性質(zhì),學(xué)生已經(jīng)基本掌握了二次函數(shù)的圖象及一些性質(zhì),只是研究函數(shù)的方法都是按照函數(shù)解析式---定義域----圖象----性質(zhì)的方法進行的,基于這種情況,我認為本節(jié)課的作用是讓學(xué)生借助于熟悉的函數(shù)來進一步學(xué)習(xí)研究函數(shù)的更一般的方法,即:利用解析式分析性質(zhì)來推斷函數(shù)圖象。它可以進一步深化學(xué)生對函數(shù)概念與性質(zhì)的理解與認識,使學(xué)生得到較系統(tǒng)的函數(shù)知識和研究函數(shù)的方法,站在新的高度研究函數(shù)的性質(zhì)與圖象。因此,本節(jié)課的內(nèi)容十分重要。
三、學(xué)情分析
四、教學(xué)目標(biāo)
1、知識與技能
使學(xué)生理解函數(shù)y=a(x-h(huán))2+k的圖象與函數(shù)y=ax2的圖象之間的關(guān)系。
2、過程與方法
會確定函數(shù)y=a(x-h(huán))2+k的圖象的開口方向、對稱軸和頂點坐標(biāo)。
3、情感態(tài)度價值觀
讓學(xué)生經(jīng)歷函數(shù)y=a(x-h(huán))2+k性質(zhì)的探索過程,理解函數(shù)y=a(x-h(huán))2+k的性質(zhì)。
五、教學(xué)重難點
重點:理解函數(shù)y=a(x-h(huán))2+k的性質(zhì)以及圖象與y=ax2的圖象之間的關(guān)系
難點:正確理解函數(shù)y=a(x-h(huán))2+k的圖象與函數(shù)y=ax2的圖象之間的關(guān)系以及函數(shù)y=a(x-h(huán))2+k的性質(zhì)
六、教學(xué)方法和手段
講授法、小組討論法
七、學(xué)法指導(dǎo)
講授指導(dǎo)
八、教學(xué)過程
一、提出問題導(dǎo)入新課
1.函數(shù)y=2x2+1的圖象與函數(shù)y=2x2的圖象有什么關(guān)系?
(函數(shù)y=2x2+1的圖象可以看成是將函數(shù)y=2x2的圖象向上平移一個單位得到的)2.函數(shù)y=2(x-1)2+1圖象與函數(shù)y=2(x-1)2圖象有什么關(guān)系?函數(shù)y=2(x-1)2+1有哪些性質(zhì)?這就是本節(jié)要學(xué)習(xí)得內(nèi)容。
二、學(xué)習(xí)新知
1、畫圖:在同一直角坐標(biāo)系中畫出函數(shù)y=2(x-1)2與y=2xy=2(x-1)2+1的圖象,看看它們之間有何的關(guān)系? 在學(xué)生畫函數(shù)圖象時,教師巡視指導(dǎo);
出示例3:你能發(fā)現(xiàn)函數(shù)y=2(x-1)2+1有哪些性質(zhì)? 教師可組織學(xué)生分組討論,互相交流,讓各組代表發(fā)言,函數(shù)y=2(x-1)2+1的圖象可以看成是將函數(shù)y=2(x-1)2的圖象向上平稱1個單位得到的,也可以看成是將函數(shù)y=2x2的圖象向右平移1個單位再向上平移1個單位得到的。
當(dāng)x<1時,函數(shù)值y隨x的增大而減小,當(dāng)x>1時,函數(shù)值y隨x的增大而增大;當(dāng)x=1時,函數(shù)取得最小值,最小值y=1。
2:出示4(P10)
3、課堂練習(xí):不畫圖像說說函數(shù)y=2(x-1)2-2與y=2(x-1)2的異同點
九、課堂小結(jié)
1.通過本節(jié)課的學(xué)習(xí),你學(xué)到了哪些知識?還存在什么困惑? 2.談?wù)勀愕膶W(xué)習(xí)體會。
十、作業(yè)布置
P33練習(xí)
十一、板書設(shè)計
22.1.3二次函數(shù)函數(shù)y=a(x-h(huán))2+k的圖像和性質(zhì)
十二、教學(xué)反思
二次函數(shù)教案【篇10】
通過學(xué)生的討論,使學(xué)生更清楚以下事實:
(1)分解因式與整式的乘法是一種互逆關(guān)系;
(2)分解因式的結(jié)果要以積的形式表示;
(3)每個因式必須是整式,且每個因式的次數(shù)都必須低于原來的多項式 的次數(shù);
(4)必須分解到每個多項式不能再分解為止。
在教師的引導(dǎo)下,學(xué)生應(yīng)用提公因式法共同完成例題。
讓學(xué)生進一步理解提公因式法進行因式分解。
3.下列哪些變形是因式分解,為什么?
學(xué)生自主完成練習(xí)。
通過學(xué)生的反饋練習(xí),使教師能全面了解學(xué)生對因式分解意義的理解是否到位,以便教師能及時地進行查缺補漏。
從今天的課程中,你學(xué)到了哪些知識?掌握了哪些方法?明白了哪些道理?
學(xué)生發(fā)言。
通過學(xué)生的回顧與反思,強化學(xué)生對因式分解意義的理解,進一步清楚地了解分解因式與整式的乘法的互逆關(guān)系,加深對類比的數(shù)學(xué)思想的理解。
通過作業(yè)的鞏固對因式分解,特別是提公因式法理解并學(xué)會應(yīng)用。
二次函數(shù)教案【篇11】
〖大綱要求〗
1. 理解二次函數(shù)的概念;
2. 會把二次函數(shù)的一般式化為頂點式,確定圖象的頂點坐標(biāo)、對稱軸和開口方向,會用描點法畫二次函數(shù)的圖象;
3. 會平移二次函數(shù)y=ax2(a≠0)的圖象得到二次函數(shù)y=a(ax+m)2+k的圖象,了解特殊與一般相互聯(lián)系和轉(zhuǎn)化的思想;
4. 會用待定系數(shù)法求二次函數(shù)的解析式;
5. 利用二次函數(shù)的圖象,了解二次函數(shù)的增減性,會求二次函數(shù)的圖象與x軸的交點坐標(biāo)和函數(shù)的最大值、最小值,了解二次函數(shù)與一元二次方程和不等式之間的聯(lián)系,數(shù)學(xué)教案-二次函數(shù)。
內(nèi)容
(1)二次函數(shù)及其圖象
如果y=ax2+bx+c(a,b,c是常數(shù),a≠0),那么,y叫做x的二次函數(shù)。
二次函數(shù)的圖象是拋物線,可用描點法畫出二次函數(shù)的圖象。
(2)拋物線的頂點、對稱軸和開口方向
拋物線y=ax2+bx+c(a≠0)的頂點是 (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限
20.某幢建筑物,從10米高的窗口A用水管和向外噴水,噴的水流呈拋物線(拋物線所在平面與墻面垂直,(如圖)如果拋物線的最高點M離墻1米,離地面米,則水流下落點B離墻距離OB是( )
(A)2米 (B)3米 (C)4米 (D)5米
三.解答下列各題(21題6分,22----25每題4分,26-----28每題6分,共40分)
21.已知:直線y=x+k過點A(4,-3)。(1)求k的值;(2)判斷點B(-2,-6)是否在這條直線上;(3)指出這條直線不過哪個象限。
22.已知拋物線經(jīng)過A(0,3),B(4,6)兩點,對稱軸為x=,
(1) 求這條拋物線的解析式;
(2) 試證明這條拋物線與X軸的兩個交點中,必有一點C,使得對于x軸上任意一點D都有AC+BC≤AD+BD。
23.已知:金屬棒的長1是溫度t的一次函數(shù),現(xiàn)有一根金屬棒,在O℃時長度為200cm,溫度提高1℃,它就伸長0.002cm。
(1) 求這根金屬棒長度l與溫度t的函數(shù)關(guān)系式;
(2) 當(dāng)溫度為100℃時,求這根金屬棒的長度;
(3) 當(dāng)這根金屬棒加熱后長度伸長到201.6cm時,求這時金屬棒的溫度。
24.已知x1,x2,是關(guān)于x的方程x2-3x+m=0的兩個不同的實數(shù)根,設(shè)s=x12+x22
(1) 求S關(guān)于m的解析式;并求m的取值范圍;
(2) 當(dāng)函數(shù)值s=7時,求x13+8x2的值;
25.已知拋物線y=x2-(a+2)x+9頂點在坐標(biāo)軸上,求a的值。
26、如圖,在直角梯形ABCD中,∠A=∠D=Rt∠,截取AE=BF=DG=x,已知AB=6,CD=3,AD=4,求:
(1) 四邊形CGEF的面積S關(guān)于x的函數(shù)表達式和X的取值范圍;
(2) 當(dāng)x為何值時,S的數(shù)值是x的4倍。
27、國家對某種產(chǎn)品的稅收標(biāo)準原定每銷售100元需繳稅8元(即稅率為8%),臺洲經(jīng)濟開發(fā)區(qū)某工廠計劃銷售這種產(chǎn)品m噸,每噸2000元。國家為了減輕工人負擔(dān),將稅收調(diào)整為每100元繳稅(8-x)元(即稅率為(8-x)%),這樣工廠擴大了生產(chǎn),實際銷售比原計劃增加2x%。
(1) 寫出調(diào)整后稅款y(元)與x的函數(shù)關(guān)系式,指出x的取值范圍;
(2) 要使調(diào)整后稅款等于原計劃稅款(銷售m噸,稅率為8%)的78%,求x的值.
28、已知拋物線y=x2+(2-m)x-2m(m≠2)與y軸的交點為A,與x軸的交點為B,C(B點在C點左邊)
(1) 寫出A,B,C三點的坐標(biāo);
(2) 設(shè)m=a2-2a+4試問是否存在實數(shù)a,使△ABC為Rt△?若存在,求出a的值,若不存在,請說明理由;
(3) 設(shè)m=a2-2a+4,當(dāng)∠BAC最大時,求實數(shù)a的值。
習(xí)題2:
一.填空(20分)
1.二次函數(shù)=2(x - )2 +1圖象的對稱軸是 。
2.函數(shù)y= 的自變量的取值范圍是 。
3.若一次函數(shù)y=(m-3)x+m+1的圖象過一、二、四象限,則的取值范圍是 。
4.已知關(guān)于的二次函數(shù)圖象頂點(1,-1),且圖象過點(0,-3),則這個二次函數(shù)解析式為 。
5.若y與x2成反比例,位于第四象限的一點P(a,b)在這個函數(shù)圖象上,且a,b是方程x2-x -12=0的兩根,則這個函數(shù)的關(guān)系式 。
6.已知點P(1,a)在反比例函數(shù)y= (k≠0)的圖象上,其中a=m2+2m+3(m為實數(shù)),則這個函數(shù)圖象在第 象限。
7. x,y滿足等式x= ,把y寫成x的函數(shù) ,其中自變量x的取值范圍是 。
8.二次函數(shù)y=ax2+bx+c+(a 0)的圖象如圖,則點P(2a-3,b+2)
在坐標(biāo)系中位于第 象限
9.二次函數(shù)y=(x-1)2+(x-3)2,當(dāng)x= 時,達到最小值 。
10.拋物線y=x2-(2m-1)x- 6m與x軸交于(x1,0)和(x2,0)兩點,已知x1x2=x1+x2+49,要使拋物線經(jīng)過原點,應(yīng)將它向右平移 個單位。
二.選擇題(30分)
11.拋物線y=x2+6x+8與y軸交點坐標(biāo)( )
(A)(0,8) (B)(0,-8) (C)(0,6) (D)(-2,0)(-4,0)
12.拋物線y=- (x+1)2+3的頂點坐標(biāo)( )
(A)(1,3) (B)(1,-3) (C)(-1,-3) (D)(-1,3)
13.如圖,如果函數(shù)y=kx+b的圖象在第一、二、三象限,那么函數(shù)y=kx2+bx-1的圖象大致是( )
14.函數(shù)y= 的自變量x的取值范圍是( )
(A)x 2 (B)x- 2且x 1 (D)x 2且x –1
Ⅲ.課堂練習(xí)
隨堂練習(xí)
Ⅳ.課時小結(jié)
本節(jié)課進一步探究了函數(shù)=3x2與=3(x-1)2,=3(x-1)2+2的圖象有什么關(guān)系,對稱軸和頂點坐標(biāo)分別是什么這些問題.并作了歸納總結(jié).還能利用這個結(jié)果對其他的函數(shù)圖象進行討論.
Ⅴ.課后作業(yè)
習(xí)題2.4
Ⅵ.活動與探究
二次函數(shù)= (x+2)2-1與= (x-1)2+2的圖象是由函數(shù)= x2的圖象怎樣移動得到的?它們之間是通過怎樣移動得到的?
解:= (x+2)2-1的圖象是由= x2的圖象向左平移2個單位,再向下平移1個單位得到的,= (x-1)2+2的圖象是由= x2的圖象向右平移1個單位,再向上平移2個單位得到的.
= (x+2)2-1的圖象向右平移3個單位,再向上平移3個單位得到= (x-1)2+2的圖象.
= (x-1)2+2的圖象向左平移3個單位,再向下平移3個單位得到= (x+2)2-1的圖象.
板書設(shè)計
4.2.1 二次函數(shù)=ax2+bx+c的圖象(一) 一、1. 比較函數(shù)=3x2與=3(x-1)2的
圖象和性質(zhì)(投影片2.4.1 A)
2.做一做(投影片2.4.1 B)
3.總結(jié)函數(shù)=3x2,=3(x-1)2= 3(x-1)2+2的圖象之間的關(guān)系(投影片2.4.1 C)
4.議一議(投影片2.4.1 D)
二、課堂練習(xí)
1.隨堂練習(xí)
2.補充練習(xí)
三、課時小結(jié)
四、課后作業(yè)
備課資料
參考練習(xí)
在同一直角坐標(biāo)系內(nèi)作出函數(shù)=- x2,=- x2-1,=- (x+1)2-1的圖象,并討論它們的性質(zhì)與位置關(guān)系.
解:圖象略
它們都是拋物線,且開口方向都向下;對稱軸分別為軸軸,直線x=-1;頂點坐標(biāo)分別為(0,0),(0,-1),(-1,-1).
=- x2的圖象向下移動1個單位得到=- x2-1 的圖象;=- x2的圖象向左移動1個單位,向下移動1個單位,得到=- (x+1)2-1的圖象.
最新二次根式的乘法課件(分享4篇)
教案課件是每個老師在開學(xué)前需要準備的東西,每個老師都要認真寫教案課件。教案是激發(fā)學(xué)生求知欲的有效方式。看見必讀的“二次根式的乘法課件”相關(guān)精品文章分享給您,強烈建議您將此頁面收藏以備不時之需!
二次根式的乘法課件 篇1
數(shù)學(xué)是一門需要嚴密推理和深入理解的學(xué)科。在高中數(shù)學(xué)課程中,二次根式的乘法是一個重要的概念,它需要學(xué)生熟練掌握相關(guān)的乘法法則和技巧。為了幫助學(xué)生更好地理解和掌握這一概念,我為大家準備了一份生動詳細的二次根式的乘法課件。本文將具體介紹這份課件的內(nèi)容,并提供一些習(xí)題和解析,希望能夠?qū)W(xué)生的學(xué)習(xí)和理解有所幫助。
第一部分:二次根式的基礎(chǔ)知識
在開始介紹二次根式的乘法之前,我們首先需要了解二次根式的基礎(chǔ)知識。在課件的第一部分,我會通過圖文并茂的方式,詳細介紹二次根式的定義、性質(zhì)和簡化方法。通過生動的例子和實際問題,我將幫助學(xué)生們理解什么是二次根式以及它們在實際生活中的應(yīng)用。我還會提供一些練習(xí)題,讓學(xué)生們通過實際操作鞏固他們的理解。
第二部分:二次根式的乘法法則
在第一部分,學(xué)生們已經(jīng)對二次根式有了一定的了解。在課件的第二部分,我會具體講解二次根式的乘法法則。我會通過圖表和示意圖的方式,演示二次根式的乘法過程,幫助學(xué)生們理解乘法的原理。我還會分析不同情況下的乘法規(guī)則,并提供一些實例來幫助學(xué)生們鞏固理解。
第三部分:習(xí)題解析與拓展
在課件的第三部分,我將提供一些習(xí)題,讓學(xué)生們親自動手進行練習(xí)。這些習(xí)題將涵蓋二次根式的乘法運算,包括簡單的乘法、合并同類項的乘法和與整數(shù)的乘法等。我將詳細解答每個習(xí)題,并提供一些常見錯誤的解析,幫助學(xué)生們避免犯同樣的錯誤。在最后的部分,我還將提供一些拓展題,讓學(xué)生們通過解答更加復(fù)雜的問題,將所學(xué)的知識應(yīng)用到更高層次的領(lǐng)域。
結(jié)尾:
通過這份生動詳細的二次根式的乘法課件,我希望能夠幫助學(xué)生們更好地理解和掌握這一概念。通過對二次根式基礎(chǔ)知識的介紹、乘法法則的講解以及習(xí)題的提供和解析,我相信學(xué)生們在這個課程中會有更加深入和全面的理解。希望這份課件能夠?qū)W(xué)生們的學(xué)習(xí)和提高有所幫助,并且能夠激發(fā)學(xué)生們對數(shù)學(xué)的興趣和熱愛。讓我們一起探索數(shù)學(xué)的美妙世界吧!
二次根式的乘法課件 篇2
引言:
數(shù)學(xué)中,二次根式是一種常見的數(shù)學(xué)表達式,在代數(shù)學(xué)、幾何學(xué)和物理學(xué)等學(xué)科中都有廣泛的應(yīng)用。了解并掌握二次根式的乘法運算是學(xué)習(xí)這一知識點的重要一步。本課件將詳細介紹二次根式的乘法,并通過生動的示例和實踐演練幫助學(xué)生理解和掌握這一概念。
第一節(jié):二次根式的乘法概念
1.1 什么是二次根式
二次根式是含有根號且指數(shù)為2的代數(shù)式,例如√3、2√5等。我們需要根據(jù)乘法法則去計算和簡化這些表達式。
1.2 二次根式的乘法法則
根據(jù)二次根式的乘法法則,兩個二次根式相乘時,可以直接相乘根號下的數(shù),并將根號外的系數(shù)進行乘法運算。例如,(a√m)(b√n) = ab√(mn)。
第二節(jié):簡化二次根式的乘法
2.1 系數(shù)的乘法
當(dāng)兩個二次根式相乘時,首先需要將系數(shù)進行乘法運算。例如,2√3 × 3√2 = 6√6。
2.2 根號下數(shù)的乘法
其次,需要將根號下的數(shù)相乘。例如,√3 × √2 = √6。
2.3 總結(jié)
綜合乘法法則的步驟,將系數(shù)和根號下的數(shù)相乘,得到最終的結(jié)果。例如,2√3 × 3√2 = 6√6。
第三節(jié):生動示例與實踐演練
3.1 生動示例
通過一個具體的生動示例引導(dǎo)學(xué)生理解二次根式的乘法。例如,計算(5√2)(7√3):
首先,計算系數(shù)的乘法:5 × 7 = 35。
其次,計算根號下數(shù)的乘法:√2 × √3 = √(2 × 3) = √6。
最后,將系數(shù)和根號下數(shù)相乘得到結(jié)果:35√6。
3.2 實踐演練
為了幫助學(xué)生鞏固所學(xué)知識,課件將提供一系列實踐演練題,供學(xué)生課后練習(xí)。例如:
1) 計算√5 × √7。
2) 計算(2√3)(4√2)。
3) 計算(√6)^2。
第四節(jié):應(yīng)用案例
4.1 幾何學(xué)中的應(yīng)用
介紹二次根式的乘法在幾何學(xué)中的應(yīng)用,例如計算平方根的面積或周長等。
4.2 物理學(xué)中的應(yīng)用
介紹二次根式的乘法在物理學(xué)中的應(yīng)用,例如計算物體的速度、加速度等。
結(jié)語:
通過本課件的學(xué)習(xí),學(xué)生們可以全面了解二次根式的乘法運算,并能夠熟練運用乘法法則進行計算和簡化。同時,通過生動的示例和實踐演練,學(xué)生們可以更好地理解和掌握這一知識點,為進一步學(xué)習(xí)相關(guān)知識奠定基礎(chǔ)。
二次根式的乘法課件 篇3
《二次根式乘法》教案
一、教學(xué)目標(biāo)
【知識與技能】掌握二次根式的乘法運算法則,能利用法則進行正確的運算。
【過程與方法】通過計算、觀察、猜想的過程得到二次根式的乘法運算法則,并用逆向思維寫出逆向等式及利用它們進行計算和化簡。
【情感態(tài)度與價值觀】通過二次根式乘法法則的探究過程,增強學(xué)數(shù)學(xué)、用數(shù)學(xué)的興趣,創(chuàng)設(shè)探究式與合作交流的學(xué)習(xí)氣氛。
二、教學(xué)重難點
【重點】會進行簡單的二次根式的乘法運算。
【難點】二次根式的乘法與積的算術(shù)平方根的關(guān)系及應(yīng)用。
三、教學(xué)過程
(一)導(dǎo)入新課
計算下列各式,觀察計算結(jié)果,你能發(fā)現(xiàn)什么規(guī)律?
學(xué)生活動:計算、觀察,分小組討論。全班交流,體會結(jié)果的特點。
(指幾名學(xué)生回答,其余學(xué)生補充)
(二)自主探索
(三)鞏固應(yīng)用,深化提升
(四)小結(jié)作業(yè)
本節(jié)課你學(xué)到了什么知識?你又什么認識?
四、板書設(shè)計
二次根式的乘法課件 篇4
二次根式的乘法是數(shù)學(xué)中重要的概念之一,也是我們學(xué)習(xí)數(shù)學(xué)的基礎(chǔ)。掌握了二次根式的乘法,我們不僅可以更好地理解和應(yīng)用數(shù)學(xué)知識,還能在解決實際問題中發(fā)揮重要作用。本文將為大家介紹二次根式的乘法,并提供一份精美的課件,幫助大家更好地理解和掌握這一知識。
一、二次根式的定義
在數(shù)學(xué)中,二次根式指的是形如√a的根式,其中a為非負實數(shù)。二次根式有著廣泛的應(yīng)用,比如在幾何、物理等領(lǐng)域的問題中經(jīng)常會出現(xiàn)。掌握二次根式的乘法是非常重要的。
二、二次根式的乘法規(guī)則
1. 同底的二次根式乘法
當(dāng)兩個二次根式具有相同的底數(shù)時,可以通過將它們的指數(shù)相加,得出它們的乘積。
例如,√2 × √3 = √(2 × 3) = √6。
2. 不同底的二次根式乘法
當(dāng)兩個二次根式具有不同的底數(shù)時,可以通過將它們化為最簡形式,再進行乘法運算。
例如,√2 × √8 = √(2 × 8) = √16 = 4。
3. 含有多個二次根式的乘法
當(dāng)一個乘法式中含有多個二次根式時,我們可以將其分解為多個乘法式,再進行計算。
例如,(√2 + √3) × (√2 + √3) = √2 × √2 + √2 × √3 + √3 × √2 + √3 × √3 = 2 + √6 + √6 + 3 = 5 + 2√6。
三、二次根式的乘法課件設(shè)計
為了將二次根式的乘法教學(xué)內(nèi)容更加生動、具體和易于理解,我們設(shè)計了一份課件,內(nèi)容包括以下幾個部分:
1. 二次根式的定義:通過舉例和圖示,詳細介紹二次根式的概念和特點,讓學(xué)生能夠直觀地理解。
2. 同底的二次根式乘法:通過具體例子演示,引導(dǎo)學(xué)生掌握同底二次根式乘法的規(guī)則。同時,設(shè)計了互動環(huán)節(jié),供學(xué)生進行實際操作和練習(xí)。
3. 不同底的二次根式乘法:通過多個實例的講解,展示不同底二次根式乘法的步驟和技巧,讓學(xué)生能夠熟練運用。
4. 含有多個二次根式的乘法:以圖形形式展示多個二次根式的乘法,幫助學(xué)生更好地理解乘法過程。同時,設(shè)計了拆解和組合的練習(xí)題,提供給學(xué)生鞏固知識和提高能力的機會。
課件還應(yīng)包括復(fù)習(xí)和總結(jié)環(huán)節(jié),幫助學(xué)生對所學(xué)內(nèi)容進行回顧和梳理。同時,為了增加趣味性和吸引學(xué)生的注意力,可以加入一些游戲和小測試,并設(shè)立獎勵機制,調(diào)動學(xué)生的積極性。
結(jié)語
通過對二次根式的乘法進行深入研究和講解,我們可以更好地理解和應(yīng)用這一知識。二次根式的乘法不僅是數(shù)學(xué)學(xué)科的基礎(chǔ),也對我們解決實際問題具有重要作用。我們需要通過課件等教學(xué)手段,以生動、具體的方式向?qū)W生傳授這一知識。希望本文所提供的課件能夠幫助大家更好地理解和掌握二次根式的乘法。