反比例函數(shù)教案
發(fā)布時(shí)間:2023-09-26 反比例函數(shù)教案反比例函數(shù)教案范本。
經(jīng)驗(yàn)告訴我們,成功是留給有準(zhǔn)備的人。作為一位幼兒園教師,我們希望能讓小朋友們學(xué)到更多的知識(shí),為了防止學(xué)生抓不住重點(diǎn),教案就顯得非常重要,教案的作用就是為了緩解老師的壓力,提升教課效率。那么,你知道的幼兒園教案要怎么寫呢?考慮到你的需要,小編特地編輯了“反比例函數(shù)教案范本”,請(qǐng)?jiān)陂喿x后,可以繼續(xù)收藏本頁!
反比例函數(shù)教案(篇1)
一、教學(xué)目標(biāo)
1.利用反比例函數(shù)的知識(shí)分析、解決實(shí)際問題
2.滲透數(shù)形結(jié)合思想,提高學(xué)生用函數(shù)觀點(diǎn)解決問題的能力
二、重點(diǎn)、難點(diǎn)
1.重點(diǎn):利用反比例函數(shù)的知識(shí)分析、解決實(shí)際問題
2.難點(diǎn):分析實(shí)際問題中的數(shù)量關(guān)系,正確寫出函數(shù)解析式
三、例題的意圖分析
教材第57頁的例1,數(shù)量關(guān)系比較簡單,學(xué)生根據(jù)基本公式很容易寫出函數(shù)關(guān)系式,此題實(shí)際上是利用了反比例函數(shù)的定義,同時(shí)也是要讓學(xué)生學(xué)會(huì)分析問題的方法。
教材第58頁的例2是一道利用反比例函數(shù)的定義和性質(zhì)來解決的實(shí)際問題,此題的實(shí)際背景較例1稍復(fù)雜些,目的是為了提高學(xué)生將實(shí)際問題抽象成數(shù)學(xué)問題的'能力,掌握用函數(shù)觀點(diǎn)去分析和解決問題的思路。
補(bǔ)充例題一是為了鞏固反比例函數(shù)的有關(guān)知識(shí),二是為了提高學(xué)生從圖象中讀取信息的能力,掌握數(shù)形結(jié)合的思想方法,以便更好地解決實(shí)際問題
四、課堂引入
寒假到了,小明正與幾個(gè)同伴在結(jié)冰的河面上溜冰,突然發(fā)現(xiàn)前面有一處冰出現(xiàn)了裂痕,小明立即告訴同伴分散趴在冰面上,匍匐離開了危險(xiǎn)區(qū)。你能解釋一下小明這樣做的道理嗎?
五、例習(xí)題分析
例1.見教材第57頁
分析:(1)問首先要弄清此題中各數(shù)量間的關(guān)系,容積為104,底面積是S,深度為d,滿足基本公式:圓柱的體積=底面積×高,由題意知S是函數(shù),d是自變量,改寫后所得的函數(shù)關(guān)系式是反比例函數(shù)的形式,(2)問實(shí)際上是已知函數(shù)S的值,求自變量d的取值,(3)問則是與(2)相反
例2.見教材第58頁
分析:此題類似應(yīng)用題中的“工程問題”,關(guān)系式為工作總量=工作速度×工作時(shí)間,由于題目中貨物總量是不變的,兩個(gè)變量分別是速度v和時(shí)間t,因此具有反比關(guān)系,(2)問涉及了反比例函數(shù)的增減性,即當(dāng)自變量t取最大值時(shí),函數(shù)值v取最小值是多少?
例1.(補(bǔ)充)某氣球內(nèi)充滿了一定質(zhì)量的氣體,當(dāng)溫度不變時(shí),氣球內(nèi)氣體的氣壓P(千帕)是氣體體積V(立方米)的反比例函數(shù),其圖像如圖所示(千帕是一種壓強(qiáng)單位)
(1)寫出這個(gè)函數(shù)的解析式;
(2)當(dāng)氣球的體積是0.8立方米時(shí),氣球內(nèi)的氣壓是多少千帕?
(3)當(dāng)氣球內(nèi)的氣壓大于144千帕?xí)r,氣球?qū)⒈ǎ瑸榱税踩鹨?,氣球的體積應(yīng)不小于多少立方米?
分析:題中已知變量P與V是反比例函數(shù)關(guān)系,并且圖象經(jīng)過點(diǎn)A,利用待定系數(shù)法可以求出P與V的解析式,得,(3)問中當(dāng)P大于144千帕?xí)r,氣球會(huì)爆炸,即當(dāng)P不超過144千帕?xí)r,是安全范圍。根據(jù)反比例函數(shù)的圖象和性質(zhì),P隨V的增大而減小,可先求出氣壓P=144千帕?xí)r所對(duì)應(yīng)的氣體體積,再分析出最后結(jié)果是不小于立方米
六、隨堂練習(xí)
1.京沈高速公路全長658km,汽車沿京沈高速公路從沈陽駛往北京,則汽車行完全程所需時(shí)間t(h)與行駛的平均速度v(km/h)之間的函數(shù)關(guān)系式為
2.完成某項(xiàng)任務(wù)可獲得500元報(bào)酬,考慮由x人完成這項(xiàng)任務(wù),試寫出人均報(bào)酬y(元)與人數(shù)x(人)之間的函數(shù)關(guān)系式
3.一定質(zhì)量的氧氣,它的密度(kg/m3)是它的體積V(m3)的反比例函數(shù),當(dāng)V=10時(shí),=1.43,(1)求與V的函數(shù)關(guān)系式;(2)求當(dāng)V=2時(shí)氧氣的密度
答案:=,當(dāng)V=2時(shí),=7.15
反比例函數(shù)教案(篇2)
反比例函數(shù)的圖像和性質(zhì)
反比例函數(shù)是一種重要的數(shù)學(xué)函數(shù),通常用于描述兩個(gè)量之間的關(guān)系,例如,一個(gè)物品的價(jià)格隨著銷量的增加而下降。這種函數(shù)通常用形如f(x) = k/x的表達(dá)式來表示。其中,k是一個(gè)常數(shù),x是自變量,f(x)是函數(shù)的值。
反比例函數(shù)的圖像
反比例函數(shù)的圖像形狀與x軸和y軸之間的角度有關(guān),通常表現(xiàn)為一條經(jīng)過原點(diǎn)的傾斜的直線,其斜率與常數(shù)k有關(guān)。當(dāng)x趨近于無窮大時(shí),函數(shù)的值趨近于零;而當(dāng)x趨近于零時(shí),函數(shù)的值趨近于正無窮大。這樣的函數(shù)圖像通常被稱為“雙曲線”。
反比例函數(shù)的性質(zhì)
反比例函數(shù)具有一些重要的性質(zhì),這些性質(zhì)使得它在實(shí)際應(yīng)用中非常有用。其中一些性質(zhì)包括:
1. 反比例函數(shù)的定義域是除了0以外的所有實(shí)數(shù)。
2. 反比例函數(shù)的值域是除了0以外的所有實(shí)數(shù)。
3. 反比例函數(shù)在x=0處不連續(xù),因?yàn)樵?處函數(shù)值為無限大。
4. 反比例函數(shù)的導(dǎo)數(shù)是負(fù)的,意味著函數(shù)的斜率是單調(diào)遞減的。
應(yīng)用舉例
反比例函數(shù)在實(shí)際應(yīng)用中非常常見。其中一些應(yīng)用包括:
1. 電阻、電容、電感等的阻抗隨頻率的變化。
2. 彈簧的彈性隨伸長程度的變化。
3. 燃油消耗量與速度的關(guān)系。
4. 借款利息隨借款金額的變化。
結(jié)論
反比例函數(shù)是一種常見的函數(shù)類型,它在實(shí)際應(yīng)用中非常有用。反比例函數(shù)的圖像形狀非常特殊,而且具有許多重要的數(shù)學(xué)性質(zhì)。因此,理解反比例函數(shù)的圖像和性質(zhì)是學(xué)習(xí)數(shù)學(xué)和進(jìn)行實(shí)際應(yīng)用的重要一步。
反比例函數(shù)教案(篇3)
反比例函數(shù)的圖像和性質(zhì)
反比例函數(shù)是數(shù)學(xué)中的一個(gè)重要章節(jié),是常見的函數(shù)類型之一。反比例函數(shù)在實(shí)際生活中也有廣泛的應(yīng)用,如在經(jīng)濟(jì)學(xué)、物理學(xué)等領(lǐng)域中,反比例函數(shù)扮演著重要的角色。本文將介紹反比例函數(shù)的圖像和性質(zhì),旨在幫助讀者更好地了解反比例函數(shù)。
反比例函數(shù)的定義
反比例函數(shù)是一種函數(shù)類型,通常用y = k/x的形式表示,其中k為常數(shù)。這個(gè)函數(shù)的特點(diǎn)是,當(dāng)x值變大,y值變?。环粗?,當(dāng)x值變小,y值變大。這也是為什么這個(gè)函數(shù)被稱為“反比例函數(shù)”。
反比例函數(shù)的圖像
為了更好地理解反比例函數(shù)的特點(diǎn),我們可以通過圖像來展示它的性質(zhì)。下面我們將通過不同的常數(shù)k值來描繪反比例函數(shù)圖像,主要分為以下兩個(gè)部分:
1.當(dāng)k>0時(shí)
當(dāng)k為正數(shù)時(shí),反比例函數(shù)的圖像為一條從右上方斜向左下方傾斜的曲線。從原點(diǎn)開始繪制圖形,當(dāng)x值增加時(shí),y值不斷減小,而曲線卻越來越平緩,直至漸近于y = 0軸。這種趨勢表明,當(dāng)x值變得極大時(shí),y值將趨近于零。這也是代表反比例函數(shù)的“倒雙曲線”的一般圖像。
2.當(dāng)k
當(dāng)k為負(fù)數(shù)時(shí),反比例函數(shù)的圖像為一條斜率為負(fù)的直線。同樣從原點(diǎn)開始繪制圖像,當(dāng)x值增加時(shí),y值也會(huì)增加,直至漸近于y = 0軸。這種趨勢表明,當(dāng)x值變得非常小的時(shí)候,y值也會(huì)趨近于零。這也代表反比例函數(shù)的一般圖像。
反比例函數(shù)的性質(zhì)
1.無極限
反比例函數(shù)是一種無極限的函數(shù)類型。反比例函數(shù)的圖像在一條軸上漸近于零,因此當(dāng)x變得非常大或非常小的時(shí)候,此函數(shù)的值會(huì)接近于零。這種性質(zhì)的應(yīng)用非常廣泛,特別是在經(jīng)濟(jì)學(xué)領(lǐng)域中,例如數(shù)量需求和價(jià)格需求。
2.凸性
反比例函數(shù)不具有凸性,它在坐標(biāo)軸上逐漸趨近于平坦。這種凸性缺失的性質(zhì)反映了反比例函數(shù)的特殊性質(zhì)。
3.橫截距
反比例函數(shù)的橫截距是其常數(shù)k。當(dāng)x = 0時(shí),y=k,即反比例函數(shù)的截距為k。
4.漸進(jìn)線
反比例函數(shù)的圖像有兩條漸近線。當(dāng)k>0時(shí),漸近線分別為x = 0和y = 0;當(dāng)k
結(jié)論
反比例函數(shù)在數(shù)學(xué)中是一種重要的函數(shù)類型。本文分析了反比例函數(shù)的圖像和性質(zhì),體現(xiàn)了反比例函數(shù)的特殊性質(zhì),并說明了反比例函數(shù)在實(shí)際生活中的應(yīng)用。反比例函數(shù)在科學(xué)計(jì)算、經(jīng)濟(jì)學(xué)和物理學(xué)等領(lǐng)域中都有廣泛的應(yīng)用。希望本文能使讀者更好地了解反比例函數(shù)的圖像和性質(zhì),有助于讀者更深入地了解反比例函數(shù)。
反比例函數(shù)教案(篇4)
教學(xué)目標(biāo):
1.能運(yùn)用反比例函數(shù)的相關(guān)知識(shí)分析和解決一些簡單的實(shí)際問題。
2.在解決實(shí)際問題的過程中,進(jìn)一步體會(huì)和認(rèn)識(shí)反比例函數(shù)是刻
畫現(xiàn)實(shí)世界中數(shù)量關(guān)系的一種數(shù)學(xué)模型。
教學(xué)重點(diǎn)運(yùn)用反比例函數(shù)解決實(shí)際問題
教學(xué)難點(diǎn)運(yùn)用反比例函數(shù)解決實(shí)際問題
教學(xué)過程:
一、情景創(chuàng)設(shè)
引例:小麗是一個(gè)近視眼,整天眼鏡不離鼻子,但自己一直不理解自己的眼鏡配制的原理,很是苦悶,近來她了解到近視眼鏡的度數(shù)y(度)與鏡片的焦距為x(m)成反比例,并請(qǐng)教師傅了解到自己400度的近視眼鏡鏡片的焦距為0.2m,可惜她不知道反比例函數(shù)的概念,所以她寫不出y與x的函數(shù)關(guān)系式,我們大家正好學(xué)過反比例函數(shù)了,誰能幫助她解決這個(gè)問題呢?
反比例函數(shù)在生活、生產(chǎn)實(shí)際中也有著廣泛的應(yīng)用。
例如:在矩形中S一定,a和b之間的關(guān)系?你能舉例嗎?
二、例題精析
例1、見課本73頁
例2、見課本74頁
例3、某氣球內(nèi)充滿一定質(zhì)量的氣體,當(dāng)溫度不變時(shí),氣球內(nèi)氣體的.氣壓p(千帕)是氣球體積V(米3)的反比例函數(shù)(1)寫出這個(gè)函數(shù)解析式(2)當(dāng)氣球的體積為0.8m3時(shí),氣球的氣壓是多少千帕?(3)當(dāng)氣球內(nèi)的氣壓大于144千帕?xí)r,氣球?qū)⒈?,為了安全起見,氣球的體積不小于多少立方米?
四、課堂練習(xí)課本P74練習(xí)1、2題
五、課堂小結(jié)反比例函數(shù)的應(yīng)用
六、課堂作業(yè)課本P75習(xí)題9.3第1、2題
七、教學(xué)反思
更多初二數(shù)學(xué)教案,請(qǐng)點(diǎn)擊
反比例函數(shù)教案(篇5)
一、知識(shí)與技能
1、能靈活列反比例函數(shù)表達(dá)式解決一些實(shí)際問題。
2、能綜合利用物理杠桿知識(shí)、反比例函數(shù)的知識(shí)解決一些實(shí)際問題。
二、過程與方法
1、經(jīng)歷分析實(shí)際問題中變量之間的關(guān)系,建立反比例函數(shù)模型,進(jìn)而解決問題。
2、 體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的緊密聯(lián)系,增強(qiáng)應(yīng)用意識(shí),提高運(yùn)用代數(shù)方法解決問題的`能力。
三、情感態(tài)度與價(jià)值觀
1、積極參與交流,并積極發(fā)表意見。
2、體驗(yàn)反比例函數(shù)是有效地描述物理世界的重要手段,認(rèn)識(shí)到數(shù)學(xué)是解決實(shí)際問題和進(jìn)行交流的重要工具。
教學(xué)重點(diǎn)
掌握從物理問題中建構(gòu)反比例函數(shù)模型。
教學(xué)難點(diǎn)
從實(shí)際問題中尋找變量之間的關(guān)系,關(guān)鍵是充分運(yùn)用所學(xué)知識(shí)分析物理問題,建立函數(shù)模型,教學(xué)時(shí)注意分析過程,滲透數(shù)形結(jié)合的思想。
教具準(zhǔn)備
多媒體課件。
教學(xué)過程
一、創(chuàng)設(shè)問題情境,引入新課
活動(dòng)1
問 屬:在物理學(xué)中,有很多量之間的變化是反比例函數(shù)的關(guān)系,因此,我們可以借助于反比例函數(shù)的圖象和性質(zhì)解決一些物理學(xué)中的問題,這也稱為跨學(xué)科應(yīng)用。下面的例子就是其中之一。
在某一電路中,保持電壓不變,電流I(安培)和電阻R(歐姆)成反比例,當(dāng)電阻R=5歐姆時(shí),電流I=2安培。
(1)求I與R之間的函數(shù)關(guān)系式;
(2)當(dāng)電流I=0.5時(shí),求電阻R的值。
設(shè)計(jì)意圖:
運(yùn)用反比例函數(shù)解決物理學(xué)中的一些相關(guān)問題,提高各學(xué)科相互之間的綜合應(yīng)用能力。
師生行為:
可由學(xué)生獨(dú)立思考,領(lǐng)會(huì)反比例函數(shù)在物理學(xué)中的綜合應(yīng)用。
教師應(yīng)給“學(xué)困生”一點(diǎn)物理學(xué)知識(shí)的引導(dǎo)。
師:從題目中提供的信息看變量I與R之間的反比例函數(shù)關(guān)系,可設(shè)出其表達(dá)式,再由已知條件(I與R的一對(duì)對(duì)應(yīng)值)得到字母系數(shù)k的值。
生:(1)解:設(shè)I=kR ∵R=5,I=2,于是2=k5 ,所以k=10,I=10R 。
(3) 當(dāng)I=0.5時(shí),R=10I=100.5 =20(歐姆)。
師:很好!“給我一個(gè)支點(diǎn),我可以把地球撬動(dòng)?!边@是哪一位科學(xué)家的名言?這里蘊(yùn)涵著什么 樣的原理呢?
生:這是古希臘科學(xué)家阿基米德的名言。
師:是的。公元前3世紀(jì),古希臘科學(xué)家阿基米德發(fā)現(xiàn)了著名的“杠桿定律”: 若兩物體與支點(diǎn)的距離反比于其重量,則杠桿平衡,通俗一點(diǎn)可以描述為;阻力阻力臂=動(dòng)力動(dòng)力臂。
下面我們就來看一例子。
二、講授新課
小偉欲用撬棍橇動(dòng)一塊大石頭,已知阻力和阻力臂不變,分別為1200牛頓和0.5米。
(1)動(dòng)力F與動(dòng)力臂l有怎樣的函數(shù)關(guān)系?當(dāng)動(dòng)力臂為1.5米時(shí),撬動(dòng)石頭至少需要多大的力?
(2)若想使動(dòng)力F不超過題(1)中所用力的一半,則動(dòng)力臂至少要加長多少?
設(shè)計(jì)意圖:
物理學(xué)中的很多量之間的變化是反比例函數(shù)關(guān)系。因此,在這兒又一次借助反比例函數(shù)的圖象和性質(zhì)解決一些物理學(xué)中的問題,即跨學(xué)科綜合應(yīng)用。
師生行為:
先由學(xué)生根據(jù)“杠桿定律”解決上述問題。
教師可引導(dǎo)學(xué)生揭示“杠桿乎衡”與“反比例函數(shù)”之間的關(guān)系。
反比例函數(shù)教案(篇6)
教學(xué)目標(biāo)
(1)進(jìn)一步體驗(yàn)現(xiàn)實(shí)生活與反比例函數(shù)的關(guān)系。
(2)能解決確定反比例函數(shù)中常數(shù)志值的實(shí)際問題。
(3)會(huì)處理涉及不等關(guān)系的實(shí)際問題。
(4)繼續(xù)培養(yǎng)學(xué)生的交流與合作能力。重點(diǎn):用反比例函數(shù)知識(shí)解決實(shí)際問題。
難點(diǎn):如何從實(shí)際問題中抽象出數(shù)學(xué)問題,建立數(shù)學(xué)模型,用數(shù)學(xué)知識(shí)解決實(shí)際問題。教學(xué)過程
1、引入新課
上節(jié)課我們學(xué)習(xí)了實(shí)際問題與反比例函數(shù),使我們認(rèn)識(shí)到了反比例函數(shù)在現(xiàn)實(shí)生活中的實(shí)際存在。今天我們將繼續(xù)學(xué)習(xí)這一部分內(nèi)容,請(qǐng)看例1(投影出課本第50頁例2)。例1碼頭工人以每天30噸的速度往一艘輪船上裝載貨物,把輪船裝載完畢恰好用了8天時(shí)間。輪船到達(dá)目的地后開始卸貨,卸貨速度v(噸/天)與卸貨時(shí)間t(天)之間有怎樣的關(guān)系由于緊急情況,船上貨物必須在不超過5日內(nèi)卸載完畢,那么每天至少卸貨多少噸
2、提出問題、解決問題
(1)審?fù)觐}后,你的切入點(diǎn)是什么,
由題意知:船上載物重是30×8=240噸,這是一個(gè)不變量,也就是在這個(gè)卸貨過程中的常量,所以根據(jù)卸貨速度×卸貨天數(shù)=貨物重量,可以得到v與t的函數(shù)關(guān)系即vt=240,v=240,所以v是t的反比例函數(shù),且t>0.t
(2)你們?cè)倩貞浺幌?,今天求出的反比例函?shù)與昨天求出的反比例函數(shù)在思路上有什么不同(昨天求出的反比例函數(shù),常數(shù)k是直接知道的,今天要先確定常數(shù)k)
(3)明確了問題的區(qū)別,那么第二問怎樣解決
根據(jù)反比例函數(shù)v=240(t>0),當(dāng)t=5時(shí),v=48。即每天至少要48噸。這樣做的答t
案是不錯(cuò)的.,這里請(qǐng)同學(xué)們?cè)僮屑?xì)看一下第二問,你有什么想法。實(shí)際上這里是不等式關(guān)系,5日內(nèi)完成,可以這樣化簡t=240/v,03、鞏固練習(xí)例2某蓄水池的排水管道每小時(shí)排水8 m3,6 h可將滿池水全部排空。(1)蓄水池的容積是多少(2)如果增加排水管,使每時(shí)的排水量達(dá)到q(m3),將滿池水排空所需時(shí)間為t(h),求q與t之間的函數(shù)關(guān)系式。(3)如果準(zhǔn)備在5 h內(nèi)將滿池水排空,那么每小時(shí)排水量至少為多少(4)已知排水管的最大排水量為每時(shí)12 m3,那么最少多長時(shí)間可將滿池水全部排空這個(gè)鞏固練習(xí)前三問與例題類似,設(shè)置第四問是為了與第一堂課相銜接,使學(xué)生學(xué)會(huì)將函數(shù)關(guān)系式變形。授課時(shí),教師要對(duì)第四問進(jìn)行細(xì)致分析。由學(xué)生板書,師生分析,為小結(jié)作準(zhǔn)備。4、小結(jié)讓學(xué)生以小組為單位進(jìn)行合作交流,總結(jié)出本節(jié)課的收獲與困惑,而后師生共同得出結(jié)論:(1)學(xué)習(xí)了反比例函數(shù)的應(yīng)用。(2)確定反比例函數(shù)時(shí),先根據(jù)題意求出走,而后根據(jù)已有知識(shí)得出反比例函數(shù)。(3)求“至少”“最多”值時(shí),可根據(jù)函數(shù)的性質(zhì)得到。5、作業(yè)設(shè)計(jì)①必做題:(1)課本第61頁第2題。(2)某打印店要完成一批電腦打字任務(wù),每天完成75頁,需8天,設(shè)每天完成的頁數(shù)y,所需天數(shù)x。問y與x是何種函數(shù)關(guān)系若要求在5天內(nèi)完成任務(wù),每天至少要完成幾頁
反比例函數(shù)教案(篇7)
今天我說課的內(nèi)容是人教版代數(shù)章第節(jié)反比例函數(shù)及其圖象。面我從教材分析、教法設(shè)計(jì)、學(xué)法指導(dǎo)、教學(xué)過程、幾個(gè)方面進(jìn)行闡述。
一、教材分析主要從地位與作用、教學(xué)目標(biāo)、重點(diǎn)難點(diǎn)三方面進(jìn)行闡述。
(一)地位與作用
本節(jié)課所研究的內(nèi)容是反比例函數(shù)及其圖象,函數(shù)知識(shí)是初中代數(shù)的核心內(nèi)容。隨著學(xué)習(xí)的不斷深入,函數(shù)把前面所學(xué)的方程,不等式等知識(shí)有機(jī)結(jié)合起來,是整個(gè)初中代數(shù)知識(shí)的“橋梁”,反比例函數(shù)及其圖象是在學(xué)生已經(jīng)初步掌握研究函數(shù)的基本方法的基礎(chǔ)上,有別于解析式為整式的一次函數(shù)。同時(shí),反比例函數(shù)的圖象也與眾不同。
(二)教學(xué)目標(biāo)
依據(jù)數(shù)學(xué)課程標(biāo)準(zhǔn)的要求和教材內(nèi)容,結(jié)合初三學(xué)生的認(rèn)知特點(diǎn)和實(shí)際情況,我確立以下教學(xué)目標(biāo):
●知識(shí)技能目標(biāo):
1、知識(shí)目標(biāo):
(1)使學(xué)生了解反比例函數(shù)的概念
(2)使學(xué)生能夠根據(jù)問題中的條件確定反比例函數(shù)的解析式。
(3)使學(xué)生理解反比例函數(shù)的性質(zhì),會(huì)畫出它們的圖象,以及根據(jù)圖象指出函數(shù)值隨自變量的增加或減少而變化的情況。
(4)會(huì)用待定系數(shù)法確定反比例函數(shù)的解析式。
2、能力目標(biāo):
培養(yǎng)學(xué)生的觀察能力,分析能力,獨(dú)立解決問題的能力。
3、德育目標(biāo):
(1)向?qū)W生滲透數(shù)學(xué)來源于實(shí)踐又反過去作用于實(shí)踐的觀點(diǎn)。
(2)使學(xué)生體會(huì)事物是有規(guī)律地變化著的觀點(diǎn)。
4、心育目標(biāo):
(1)通過學(xué)生獨(dú)立的解決問題,增強(qiáng)學(xué)習(xí)意志。
(2)讓學(xué)生在做中學(xué),敢于并樂于展示自我,敢說,敢問,敢于相信自我。
(3)克服對(duì)數(shù)學(xué)學(xué)習(xí)的畏懼,學(xué)習(xí)過程中的惰性及對(duì)教師的依賴性。
(4)培養(yǎng)對(duì)數(shù)學(xué)學(xué)習(xí)的信心。
(三)教學(xué)重點(diǎn),難點(diǎn)。
1、教學(xué)重點(diǎn):反比例的概念、圖象、性質(zhì),以及用待定系數(shù)法確定反比例函數(shù)的解析性。
2、教學(xué)難點(diǎn):畫反比例函數(shù)的圖象。
因?yàn)榉幢壤瘮?shù)的圖象有兩個(gè)分支,而且這兩個(gè)分支的變化趨勢又不同,學(xué)生初次接觸,一定會(huì)感到困難。
二、教法設(shè)計(jì)
根據(jù)本節(jié)課的內(nèi)容,結(jié)合初三學(xué)生的認(rèn)知特點(diǎn),我確定本節(jié)課教法的整體構(gòu)思是:從學(xué)生生活經(jīng)驗(yàn)和已有的知識(shí)出發(fā),采用引導(dǎo)、啟發(fā)、合作、探究等方法,經(jīng)歷觀察、思考、歸納、交流等數(shù)學(xué)活動(dòng),獲得知識(shí),形成技能,發(fā)展思維,學(xué)會(huì)學(xué)習(xí);提高自主探究、合作交流和分析歸納能力;同時(shí)在教學(xué)過程對(duì)不同層次的學(xué)生進(jìn)行分類指導(dǎo),讓每個(gè)學(xué)生都得到充分的發(fā)展;這樣做,充分體現(xiàn)了“學(xué)生是課堂的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者與合作者“和以學(xué)生的發(fā)展為本的新課程理念,另外,我還注意現(xiàn)代信息技術(shù)與學(xué)科教學(xué)的整合,充分利用多媒體技術(shù),采用動(dòng)畫的形式,變抽象為直觀,變復(fù)雜為簡單,有效的突破重點(diǎn)、難點(diǎn),同時(shí)加快了教學(xué)節(jié)奏,擴(kuò)大課堂容量,極大地提高了課堂教學(xué)效益。
三、學(xué)法指導(dǎo):
在教學(xué)過程中,學(xué)生掌握一種方法遠(yuǎn)比學(xué)會(huì)一個(gè)知識(shí)點(diǎn)重要的多。為使學(xué)生掌握科學(xué)的學(xué)習(xí)方法,養(yǎng)成良好的學(xué)習(xí)習(xí)慣,我根據(jù)課程標(biāo)準(zhǔn)的要求及本節(jié)的內(nèi)容以及學(xué)情分析,在課堂教學(xué)中,我充分發(fā)揮學(xué)生在教學(xué)中的主體作用,讓他們觀察、操作、歸納、猜想和驗(yàn)證的方式進(jìn)行學(xué)習(xí),養(yǎng)成善于觀察、樂于思考、勤于動(dòng)手、敢于表達(dá)的學(xué)習(xí)習(xí)慣,挖掘?qū)W習(xí)潛能,培養(yǎng)自主學(xué)習(xí)和與人合作交流的能力。
四、教學(xué)過程:
(一)、導(dǎo)入新知:
提問:
1.小學(xué)時(shí)我們是否反比例關(guān)系?結(jié)合實(shí)例談一談如何敘述反比例關(guān)系?
(1)當(dāng)路程S一定時(shí),時(shí)間t與速度v之間的關(guān)系。
(2)當(dāng)矩形面積S一定時(shí),長a與寬b之間的關(guān)系。
2.若從函數(shù)的觀點(diǎn)看,上面例子中的兩個(gè)變量可以分別看作自變量和函數(shù)。可以寫成怎樣的函數(shù)關(guān)系式呢?
讓學(xué)生改寫,得出結(jié)論。用以得出反比例函數(shù)的'概念。
設(shè)計(jì)意圖:通過課件展示的實(shí)例,形象地把抽象的定義引出。增加學(xué)習(xí)興趣,降低思維難度,減少學(xué)生對(duì)函數(shù)部分學(xué)習(xí)的畏懼心理。增加學(xué)習(xí)興趣,強(qiáng)化主動(dòng)的學(xué)習(xí)動(dòng)機(jī)。
(二)、新課傳授:
1、反比例函數(shù)的定義。
問1.說出觀察兩個(gè)變形式后的初步印象,什么是反比例函數(shù)?
問2.當(dāng)路程S是常數(shù)時(shí),時(shí)間t就是速度v的反比例函數(shù),能否說:速度v是時(shí)間t的反比例函數(shù)呢?(學(xué)生思考,進(jìn)一步加深對(duì)反比例函數(shù)概念的理解)
鞏固練習(xí):(投影出示練習(xí)題)學(xué)生口答。鼓勵(lì)學(xué)生積極思考,勇于表達(dá)自己的想法,回答好的給予贊揚(yáng),不完善的或不得要領(lǐng)的給予熱情的幫助,鼓勵(lì)。
這一環(huán)節(jié)讓學(xué)生自主探索,循序漸進(jìn)的挖掘定義的內(nèi)涵,去體會(huì)數(shù)學(xué)的嚴(yán)謹(jǐn)。通過授課的語言,表情動(dòng)作為學(xué)生創(chuàng)設(shè)民主的氛圍,為學(xué)生自信的心理品質(zhì)的發(fā)展和學(xué)習(xí)主動(dòng)性的培養(yǎng)提供良好的心理環(huán)境。
2.反比例函數(shù)的圖象和性質(zhì)
(1)學(xué)生體會(huì),自己動(dòng)手畫圖。
(投影出示)畫出反比例函數(shù)的圖象。
問1:畫函數(shù)圖象的關(guān)鍵問題是什么?
問2:選值時(shí),你認(rèn)為要注意什么問題?
問3:你能不能自己完成這道題?
讓學(xué)生自己動(dòng)手,幫助學(xué)生消除依賴心理,把作圖最標(biāo)準(zhǔn)的用投影儀投出,以此為例圖。并希望大家學(xué)習(xí),養(yǎng)成良好的學(xué)習(xí)習(xí)慣,培養(yǎng)嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度。
(2)引導(dǎo)學(xué)生分析圖象的特征和性質(zhì)
問:觀察函數(shù)y=kx和y=kx-1的圖象。分析反比例函數(shù)的特征。找出反比例函數(shù)圖象有那些共同的特點(diǎn)?有那些不同的特點(diǎn)?
①分組討論,并鼓勵(lì)全體同學(xué)要細(xì)心,有耐心,善于觀察、善于發(fā)現(xiàn)并相信靠大家的智慧會(huì)全部找出。這一環(huán)節(jié)意在培養(yǎng)學(xué)生的觀察、猜想能力,用自主探索、合作討論交流的方式,促進(jìn)學(xué)生的積極參與,積極的去發(fā)現(xiàn)、思考,體會(huì)學(xué)習(xí)方法。
②找學(xué)生小結(jié)本組討論的結(jié)果。
(看哪組總結(jié)的最全、語言最標(biāo)準(zhǔn)、簡練,不夠準(zhǔn)確的下面組可以給予補(bǔ)充)在本環(huán)節(jié)中回答精彩的給予肯定,沒想出的鼓勵(lì)大家繼續(xù)去發(fā)現(xiàn),最后讓大家去評(píng)判回答最佳組,激勵(lì)大家學(xué)習(xí)他們肯于動(dòng)腦、積極思考的態(tài)度,讓大家給予掌聲,讓學(xué)生體會(huì)努力后成功的感覺。并學(xué)會(huì)且樂于自己去思考問題,解決問題。
③根據(jù)對(duì)圖象的觀察,由得到的圖象特征總結(jié)反比例函數(shù)的性質(zhì)。
(由電腦投影出空表格,大家一起添表格內(nèi)容,鞏固記憶)
圖象
性質(zhì):
雙曲線的兩分支位于一、三象限,y隨x的增大而減小。
雙曲線的兩分支位于二、四象限,y隨x的增大而增大。
設(shè)計(jì)意圖:使每個(gè)學(xué)生的認(rèn)知、條理更清晰,呈現(xiàn)出本節(jié)課知識(shí)重點(diǎn),鞏固記憶。又因?yàn)槭谴蠹遗Φ慕Y(jié)果,使學(xué)生
體會(huì)團(tuán)結(jié)協(xié)作的作用和努力后的成就感和自豪感。
3.(待定系數(shù)法)確定函數(shù)解析式
投影出示例題:已知y與x成反比例,并且當(dāng)x=3時(shí)y=4
求x=1.5時(shí),y的值。
用提問的方式對(duì)此題加以分析.
(1)y與x成反比例是什么含義?
(2)根據(jù)式子能否求出當(dāng)x=1.5時(shí),y的值?
(3)要想求出y的值,必須先知道哪個(gè)量呢?
(4)怎樣才能確定k的值?用什么條件?
(5)你能否自己完成這道題?(學(xué)生板演)
設(shè)計(jì)意圖:在問、想、做中鼓勵(lì)思考,體會(huì)成功的感覺,讓學(xué)生在做中學(xué),敢于并樂于展示自我,使學(xué)生敢說、敢問,敢于相信自我。
4.鞏固練習(xí)(反比例函數(shù)性質(zhì)的鞏固與拓展)
(投影出示自選題目)
聯(lián)系所學(xué)知識(shí)由學(xué)到用的結(jié)合。使學(xué)生對(duì)新知識(shí)有更深的理解,是知識(shí)從感性到理性的一個(gè)躍遷。
5.總結(jié):
學(xué)生:從學(xué)習(xí)知識(shí)和情感體驗(yàn)等方面談體會(huì)和收獲。
教師:肯定大家的努力及大家在本堂課中的表現(xiàn)。表揚(yáng)在本節(jié)課中表現(xiàn)突出的同學(xué)。
6.布置作業(yè)
教材130頁1、2、3、4.131頁5、6。
反比例函數(shù)教案(篇8)
今天我說課的內(nèi)容是八年級(jí)數(shù)學(xué)下冊(cè)第十七章反比例函數(shù)及其圖象。
一、教材分析:
本課時(shí)的內(nèi)容是在已經(jīng)學(xué)習(xí)了平面直角坐標(biāo)系和一次函數(shù)的基礎(chǔ)上,再一次進(jìn)入函數(shù)范疇,讓學(xué)生進(jìn)一步理解函數(shù)的內(nèi)涵,并感受到現(xiàn)實(shí)世界中存在各種函數(shù)。反比例函數(shù)的圖象與性質(zhì)是對(duì)正比例函數(shù)圖象與性質(zhì)的復(fù)習(xí)和對(duì)比,也是以后學(xué)習(xí)二次函數(shù)的基礎(chǔ)。本課時(shí)的學(xué)習(xí)是學(xué)生對(duì)函數(shù)的圖象與性質(zhì)一個(gè)再知的過程,由于初二學(xué)生是首次接觸雙曲線這種函數(shù)圖象,所以教學(xué)時(shí)應(yīng)注意引導(dǎo)學(xué)生抓住反比例函數(shù)圖象的特征,讓學(xué)生對(duì)反比例函數(shù)有一個(gè)形象和直觀的認(rèn)識(shí)。
二、教學(xué)目標(biāo)分析:
根據(jù)新課改“以學(xué)生為主體,激活課堂氣氛,充分調(diào)動(dòng)起學(xué)生參與教學(xué)過程”的精神。在教學(xué)設(shè)計(jì)上,我設(shè)想通過使用多媒體課件創(chuàng)設(shè)情境,在掌握反比例函數(shù)相關(guān)知識(shí)的同時(shí)激發(fā)學(xué)生的學(xué)習(xí)興趣和探究欲望,引導(dǎo)學(xué)生積極參與和主動(dòng)探索。
因此把教學(xué)目標(biāo)確定為:
(一)知識(shí)目標(biāo):
1.使學(xué)生了解反比例函數(shù)的概念
2.使學(xué)生能夠根據(jù)問題中的條件確定反比例函數(shù)的解析式。
3.使學(xué)生理解反比例函數(shù)的性質(zhì),會(huì)畫出它們的圖象,以及根據(jù)圖象指出函數(shù)值隨自變量的增加或減少而變化的情況。
4.會(huì)用待定系數(shù)法確定反比例函數(shù)的解析式。
(二)能力目標(biāo):
培養(yǎng)學(xué)生的觀察能力,分析能力,獨(dú)立解決問題的能力。
(三)數(shù)學(xué)思想:
1.向?qū)W生滲透數(shù)學(xué)來源于實(shí)踐又反過去作用于實(shí)踐的觀點(diǎn)。
2.使學(xué)生體會(huì)事物是有規(guī)律地變化著的觀點(diǎn)。
(四)情感態(tài)度:
通過反比例函數(shù)圖象的研究,滲透反映其性質(zhì)的圖象的直觀形象美,激發(fā)學(xué)生的興趣,也培養(yǎng)了學(xué)生積極探索知識(shí)的能力。
三、教學(xué)重點(diǎn),難點(diǎn)。
(一)教學(xué)重點(diǎn):反比例的概念、圖象、性質(zhì),以及用待定系數(shù)法確定反比例函數(shù)的解析性。
(二)教學(xué)難點(diǎn):畫反比例函數(shù)的圖象。
(三)解決方法
(1)由分組討論,積極思考,分析問題,發(fā)現(xiàn)結(jié)論。
(2)訓(xùn)練,研究,總結(jié)
因?yàn)榉幢壤瘮?shù)的圖象有兩個(gè)分支,而且這兩個(gè)分支的變化趨勢又不同,學(xué)生初次接觸,一定會(huì)感到困難。為了突出重點(diǎn)、突破難點(diǎn)。我設(shè)計(jì)并制作了能動(dòng)態(tài)演示函數(shù)圖象的多媒體課件。讓學(xué)生親手操作,積極參與并主動(dòng)探索函數(shù)性質(zhì),幫助學(xué)生直觀地理解反比例函數(shù)的性質(zhì)
(一)探究學(xué)習(xí)1——函數(shù)圖象的畫法
問題3:如何畫出正比例函數(shù)的圖象?
通過問題3來復(fù)習(xí)正比例函數(shù)圖象的畫法主要分為列表、描點(diǎn)、連線三個(gè)步驟,為學(xué)習(xí)反比例函數(shù)圖像的畫法打下基礎(chǔ)。
問題4:那反比例函數(shù)的圖象應(yīng)該怎樣去畫呢?
在教學(xué)過程中可以引導(dǎo)學(xué)生仿照正比例函數(shù)圖象的的畫法。
設(shè)想的教學(xué)設(shè)計(jì)是:
(1)引導(dǎo)學(xué)生運(yùn)用在畫正比例函數(shù)圖象中所學(xué)到的方法,分小組討論嘗試,采用列表、描點(diǎn)、連線的方法畫出函數(shù)和的圖象;
(2)老師邊巡視,邊指導(dǎo),用實(shí)物投影儀反映一些學(xué)生在函數(shù)圖象中出現(xiàn)的典型錯(cuò)誤,和學(xué)生一起找出錯(cuò)誤的地方,分析原因;
(3)隨后老師在在黑板上演示畫好反比例函數(shù)圖像的步驟,展示正確的函數(shù)圖象,引導(dǎo)學(xué)生觀察其圖象特征(雙曲線有兩個(gè)分支)。
初二學(xué)生是首次接觸到雙曲線這種比較特殊函數(shù)圖象,設(shè)想學(xué)生可能會(huì)在下面幾個(gè)環(huán)節(jié)中出錯(cuò):
(1)在“列表”這一環(huán)節(jié)在取點(diǎn)時(shí)學(xué)生可能會(huì)取零,在這里可以引導(dǎo)學(xué)生結(jié)合代數(shù)的方法得出x不能為零。也可能由于在取點(diǎn)時(shí)的不恰當(dāng),導(dǎo)致函數(shù)圖象的不完整、不對(duì)稱。在這里應(yīng)該要指導(dǎo)學(xué)生在列表時(shí),自變量x的取值可以選取絕對(duì)值相等而符號(hào)相反的數(shù),相應(yīng)的就得到絕對(duì)相等而符號(hào)相反的對(duì)應(yīng)的函數(shù)值,這樣可以簡化計(jì)算的手續(xù),又便于在坐標(biāo)平面內(nèi)找到點(diǎn)。
(2)在“連線”這一環(huán)節(jié)學(xué)生畫的點(diǎn)與點(diǎn)之間連線可能會(huì)有端點(diǎn),未能用光滑的線條連接。因而在這里要特別要強(qiáng)調(diào)在將所選取的點(diǎn)連結(jié)時(shí),應(yīng)該是“光滑曲線”,為以后學(xué)習(xí)二次函數(shù)的圖像打下基礎(chǔ)。為了使函數(shù)圖象清晰明顯,可以引導(dǎo)學(xué)生注意盡量選取較多的自變量x的值和對(duì)應(yīng)的函數(shù)值y,以便在坐標(biāo)平面內(nèi)得到較多的“點(diǎn)”,畫出曲線。從而引導(dǎo)學(xué)生畫出正確的函數(shù)圖象.
(3)圖象與x軸或y軸相交
在這里我認(rèn)為可以埋下一個(gè)伏筆,給學(xué)生留下一個(gè)懸念,為后面學(xué)習(xí)函數(shù)的性質(zhì)打下基礎(chǔ)
四、教學(xué)方法:
初中學(xué)生好動(dòng)、好奇、好表現(xiàn),抓住學(xué)生特點(diǎn),積極采用形象生動(dòng)、形式多樣的教學(xué)方法和學(xué)生廣泛的、積極主動(dòng)參與的學(xué)習(xí)方式,定能激發(fā)學(xué)生興趣,有效地培養(yǎng)學(xué)生能力,促進(jìn)學(xué)生個(gè)性發(fā)展。生理上,青少年好動(dòng),注意力易分散,愛發(fā)表見解,希望得到老師的表揚(yáng),所以在教學(xué)中應(yīng)抓住學(xué)生這一生理特點(diǎn),一方面要運(yùn)用直觀生動(dòng)的形象,引發(fā)學(xué)生的興趣,使他們的注意力始終集中在課堂上;另一方面要?jiǎng)?chuàng)造條件和機(jī)會(huì),讓學(xué)生發(fā)表見解,發(fā)揮學(xué)生學(xué)習(xí)的主動(dòng)性。鑒于教材和初二學(xué)生的年齡特點(diǎn)、心理特征和認(rèn)知水平,設(shè)想采用問題教學(xué)法和對(duì)比教學(xué)法,用層層推進(jìn)的提問啟發(fā)學(xué)生深入思考,主動(dòng)探究,主動(dòng)獲取知識(shí)。同時(shí)注意與學(xué)生已有知識(shí)的聯(lián)系,減少學(xué)生對(duì)新概念接受的困難,給學(xué)生充分的自主探索時(shí)間。通過教師的引導(dǎo),啟發(fā)調(diào)動(dòng)學(xué)生的積極性,讓學(xué)生在課堂上多活動(dòng)、多觀察,主動(dòng)參與到整個(gè)教學(xué)活動(dòng)中來,組織學(xué)生參與“探究——討論——交流——總結(jié)”的學(xué)習(xí)活動(dòng)過程,同時(shí)在教學(xué)中,還充分利用多媒體教學(xué),通過演示,操作,觀察,練習(xí)等師生的共同活動(dòng)中啟發(fā)學(xué)生,讓每個(gè)學(xué)生動(dòng)手、動(dòng)口、動(dòng)眼、動(dòng)腦,培養(yǎng)學(xué)生直覺思維能力。
五、學(xué)法指導(dǎo):
本堂課立足于學(xué)生的“學(xué)”,要求學(xué)生多動(dòng)手、多觀察從而可以幫助學(xué)生形成分析、對(duì)比、歸納的思想方法。在對(duì)比和討論中讓學(xué)生在“做中學(xué)”,提高學(xué)生利用已學(xué)知識(shí)去主動(dòng)獲取新知識(shí)的能力。因此在課堂上要采用積極引導(dǎo)學(xué)生主動(dòng)參與,合作交流的方法組織教學(xué),使學(xué)生真正成為教學(xué)的主體,體會(huì)參與的樂趣,成功的喜悅,感知數(shù)學(xué)的奇妙。
最后我來具體談一談這一堂課的教學(xué)過程。
六、教學(xué)過程:
(一)復(fù)習(xí)引入——反函數(shù)解析式
練習(xí)1:寫出下列各題的關(guān)系式:
(1)正方形的周長C和它的一邊的長a之間的關(guān)系
(2)矩形的面積為10時(shí),它的長x和寬y之間的關(guān)系
(3)王師傅要生產(chǎn)100個(gè)零件,他的工作效率x和工作時(shí)間t之間的關(guān)系
問題1:請(qǐng)大家判斷一下,在我們寫出來的這些關(guān)系式中哪些是正比例函數(shù)?
問題1主要是復(fù)習(xí)正比例函數(shù)的定義,為后面學(xué)生運(yùn)用對(duì)比的方法給出反比例函數(shù)的定義打下基礎(chǔ)。
問題2:那么請(qǐng)大家再仔細(xì)觀察一下,其余兩個(gè)函數(shù)關(guān)系式有什么共同點(diǎn)嗎?
通過問題2來引出反比例函數(shù)的解析式,請(qǐng)學(xué)生對(duì)比正比例函數(shù)的定義來給出反比例函數(shù)的定義,這不僅有助于對(duì)舊知識(shí)的復(fù)習(xí)和鞏固,同時(shí)還可以培養(yǎng)學(xué)生的對(duì)比和探究能力。
反比例函數(shù)教案(篇9)
教學(xué)目標(biāo)
(一)教學(xué)知識(shí)點(diǎn)
1.從現(xiàn)實(shí)情境和已有的知識(shí)經(jīng)驗(yàn)出發(fā),討論兩個(gè)變量之間的相似關(guān)系,加深對(duì)函數(shù)概念的理解.
2.經(jīng)歷抽象反比例函數(shù)概念的過程,領(lǐng)會(huì)反比例函數(shù)的意義,理解反比例函數(shù)的概念.
(二)能力訓(xùn)練要求
結(jié)合具體情境體會(huì)反比例函數(shù)的意義,能根據(jù)已知條件確定反比例函數(shù)表達(dá)式.
(三)情感與價(jià)值觀要求
結(jié)合實(shí)例引導(dǎo)學(xué)生了解所討論的函數(shù)的表達(dá)形式,形成反比例函數(shù)概念的具體形象,是從感性認(rèn)識(shí)到理性認(rèn)識(shí)的轉(zhuǎn)化過程,發(fā)展學(xué)生的思維;同時(shí)體驗(yàn)數(shù)學(xué)活動(dòng)與人類生活的密切聯(lián)系及對(duì)人類歷史發(fā)展的作用.
教學(xué)重點(diǎn)
經(jīng)歷抽象反比例函數(shù)概念的過程,領(lǐng)會(huì)反比例函數(shù)的意義,理解反比例函數(shù)的概念.
教學(xué)難點(diǎn)
領(lǐng)會(huì)反比例函數(shù)的意義,理解反比例函數(shù)的概念.
教學(xué)方法
教師引導(dǎo)學(xué)生進(jìn)行歸納.
教具準(zhǔn)備
投影片兩張
第一張:(記作5.1A)
第二張:(記作5.1B)
教學(xué)過程
Ⅰ.創(chuàng)設(shè)問題情境,引入新課
[師]我們?cè)谇懊鎸W(xué)過一次函數(shù)和正比例函數(shù),知道一次函數(shù)的表達(dá)式為y=kx+b.其中k,b為常數(shù)且k≠0,正比例函數(shù)的表達(dá)式為y=kx,其中k為不為零的常數(shù).但是在現(xiàn)實(shí)生活中,并不是只有這兩種類型的表達(dá)式.如從A地到B地的路程為1200km,某人開車要從A地到B地,汽車的速度v(km/h)和時(shí)間t(h)之間的關(guān)系式為vt=1200,則t= 中t和v之間的關(guān)系式肯定不是正比例函數(shù)和一次函數(shù)的關(guān)系式,那么它們之間的關(guān)系式究竟是什么關(guān)系式呢?這就是本節(jié)課我們要揭開的奧秘.
Ⅱ.新課講解
[師]我們今天要學(xué)習(xí)的是反比例函數(shù),它是函數(shù)中的一種,首先我們先來回憶一下什么叫函數(shù)?
1.復(fù)習(xí)函數(shù)的定義
[師]大家還記得函數(shù)的定義嗎?
[生]記得.
在某變化過程中有兩個(gè)變量x,y.若給定其中一個(gè)變量x的值,y都有唯一確定的值與它對(duì)應(yīng),則稱y是x的函數(shù).
[師]大家能舉出實(shí)例嗎?
[生]可以.
例如購買單價(jià)是0.4元的鉛筆,總金額y(元)與鉛筆數(shù)n(個(gè))的關(guān)系是y=0.4n.這是一個(gè)正比例函數(shù).
等腰三角形的頂角的度數(shù)y與底角的度數(shù)x的關(guān)系為y=180-2x,y是x的一次函數(shù).
[師]很好,我們復(fù)習(xí)了函數(shù)的定義以及正比例函數(shù)和一次函數(shù)的表達(dá)式以后,再來看下面實(shí)際問題中的變量之間是否存在函數(shù)關(guān)系,若是函數(shù)關(guān)系,那么是否為正比例或一次函數(shù)關(guān)系式.
2.經(jīng)歷抽象反比例函數(shù)概念的過程,并能類推歸納出反比例函數(shù)的表達(dá)式.
[師]請(qǐng)看下面的問題.
電流I,電阻R,電壓U之間滿足關(guān)系式U=IR,當(dāng)U=220V時(shí).
(1)你能用含有R的代數(shù)式表示I嗎?
(2)利用寫出的關(guān)系式完成下表:
R/Ω20406080100
I/A
當(dāng)R越來越大時(shí),I怎樣變化?當(dāng)R越來越小呢?
(3)變量I是R的函數(shù)嗎?為什么?
請(qǐng)大家交流后回答.
[生](1)能用含有R的代數(shù)式表示I.
由IR=220,得I= .
(2)利用上面的關(guān)系式可知,從左到右依次填11,5.5,3.67,2.75,2.2.
從表格中的數(shù)據(jù)可知,當(dāng)電阻R越來越大時(shí),電流I越來越小;當(dāng)R越來越小時(shí),I越來越大.
(3)變量I是R的函數(shù).
由IR=220得I= .當(dāng)給定一個(gè)R的值時(shí),相應(yīng)地就確定了一個(gè)I值,因此I是R的函數(shù).
[師]這位同學(xué)回答的非常精彩,下面大家再思考一個(gè)問題.
舞臺(tái)燈光為什么在很短的時(shí)間內(nèi)將陽光燦爛的晴日變成濃云密布的陰天,或由黑夜變成白晝的?請(qǐng)大家互相交流后回答.
[生]根據(jù)I= ,當(dāng)R變大時(shí),I變小,燈光較暗;當(dāng)R變小時(shí),I變大,燈光較亮.所以通過改變電阻R的大小來控制電流I的變化,就可以在很短的時(shí)間內(nèi)將陽光燦爛的晴日變成濃云密布的陰天,或由黑夜變成白晝.
投影片:(5.1A)
京滬高速公路全長約為1262km,汽車沿京滬高速公路從上海駛往北京,汽車行完全程所需的時(shí)間t(h)與行駛的平均速度v(km/h)之間有怎樣的關(guān)系?變量t是v的函數(shù)嗎?為什么?
[師]經(jīng)過剛才的例題講解,大家可以獨(dú)立完成此題.如有困難再進(jìn)行交流.
[生]由路程等于速度乘以時(shí)間可知1262=vt,則有t= .當(dāng)給定一個(gè)v的值時(shí),相應(yīng)地就確定了一個(gè)t值,根據(jù)函數(shù)的定義可知t是v的函數(shù).
[師]從上面的兩個(gè)例題得出關(guān)系式
I= 和t= .
它們是函數(shù)嗎?它們是正比例函數(shù)嗎?是一次函數(shù)嗎?
[生]因?yàn)榻o定一個(gè)R的值,相應(yīng)地就確定了一個(gè)I的值,所以I是R的函數(shù);同理可知t是v的函數(shù).但是從表達(dá)式來看,它們既不是正比例函數(shù),也不是一次函數(shù).
[師]我們知道正比例函數(shù)的關(guān)系式為y=kx(k≠0),一次函數(shù)的關(guān)系式為y=kx+b(k,b為常數(shù)且k≠0).大家能否根據(jù)兩個(gè)例題歸納出這一類函數(shù)的表達(dá)式呢?
[生]可以.由I= 與t= 可知關(guān)系式為y= (k為常數(shù)且k≠0).
[師]很好.
一般地,如果兩個(gè)變量x、y之間的關(guān)系可以表示成y= (k為常數(shù),k≠0)的形式,那么稱y是x的反比例函數(shù).
從y= 中可知x作為分母,所以x不能為零.
3.做一做
投影片(5.1B)
1.一個(gè)矩形的面積為20cm2,相鄰的兩條邊長分別為x cm和y cm,那么變量y是變量x的函數(shù)嗎?是反比例函數(shù)嗎?為什么?
2.某村有耕地346.2公頃,人口數(shù)量n逐年發(fā)生變化,那么該村人均占有耕地面積m(公頃/人)是全村人口數(shù)n的.函數(shù)嗎?是反比例函數(shù)嗎?為什么?
3.y是x的反比例函數(shù),下表給出了x與y的一些值:
x-2-1
13
y
2-1
(1)寫出這個(gè)反比例函數(shù)的表達(dá)式;
(2)根據(jù)函數(shù)表達(dá)式完成上表.
[生]由面積等于長乘以寬可得xy=20.則有y= .變量y是變量x的函數(shù).因?yàn)榻o定一個(gè)x的值,相應(yīng)地就確定了一個(gè)y的值,根據(jù)函數(shù)的定義可知變量y是變量x的函數(shù).再根據(jù)反比例函數(shù)的表達(dá)式可知y是x的反比例函數(shù).
[生]根據(jù)人均占有耕地面積等于總耕地面積除以總?cè)藬?shù)得m= .給定一個(gè)n的值,就相應(yīng)地確定了一個(gè)m的值,因此m是n的函數(shù),又m= 符合反比例函數(shù)的形式,所以是反比例函數(shù).
[師]在做第3題之前,我們先回憶一下如何求正比例函數(shù)和一次函數(shù)的表達(dá)式.在y=kx中,要確定關(guān)系式的關(guān)鍵是求得非零常數(shù)k的值,因此需要一個(gè)條件即可;在一次函數(shù)y=kx+b中,要確定關(guān)系式實(shí)際上是要求得b和k的值,有兩個(gè)待定系數(shù)因此需要兩個(gè)條件.同理,在求反比例函數(shù)的表達(dá)式時(shí),實(shí)際上是要確定k的值.因此只需要一個(gè)條件即可,也就是要有一組x與y的值確定k的值.所以要從表格中進(jìn)行觀察.由x=-1,y=2確定k的值.然后再根據(jù)求出的表達(dá)式分別計(jì)算x或y的值.
[生]設(shè)反比例函數(shù)的表達(dá)式為
y= .
(1)當(dāng)x=-1時(shí),y=2;
∴k=-2.
∴表達(dá)式為y=- .
(2)當(dāng)x=-2時(shí),y=1.
當(dāng)x=- 時(shí),y=4;
當(dāng)x= 時(shí),y=-4;
當(dāng)x=1時(shí),y=-2.
當(dāng)x=3時(shí),y=- ;
當(dāng)y= 時(shí),x=-3;
當(dāng)y=-1時(shí),x=2.
因此表格中從左到右應(yīng)填
-3,1,4,-4,-2,2,- .
Ⅲ.課堂練習(xí)
隨堂練習(xí)(P131)
Ⅳ.課時(shí)小結(jié)
本節(jié)課我們學(xué)習(xí)了反比例函數(shù)的定義,并歸納總結(jié)出反比例函數(shù)的表達(dá)式為y= (k為常數(shù),k≠0),自變量x不能為零.還能根據(jù)定義和表達(dá)式判斷某兩個(gè)變量之間的關(guān)系是否是函數(shù),是什么函數(shù).
Ⅴ.課后作業(yè)
習(xí)題5.1
Ⅵ.活動(dòng)與探究
已知y-1與 成反比例,且當(dāng)x=1時(shí),y=4,求y與x的函數(shù)表達(dá)式,并判斷是哪類函數(shù)?
分析:由y與x成反比例可知y= ,得y-1與 成反比例的關(guān)系式為y-1= =k(x+2),由x=1、y=4確定k的值.從而求出表達(dá)式.
解:由題意可知y-1= =k(x+2).
當(dāng)x=1時(shí),y=4.
所以3k=4-1,
k=1.
即表達(dá)式為y-1=x+2,
y=x+3.
由上可知y是x的一次函數(shù).
板書設(shè)計(jì)
yJS21.com更多精選幼兒園教案閱讀
反比例函數(shù)教案集合
今天編輯為大家?guī)砹艘黄c“反比例函數(shù)教案”相關(guān)的文章推薦,請(qǐng)收藏此頁和我們的網(wǎng)站以備后用。上課前準(zhǔn)備好課堂用到教案課件很重要,撰寫教案課件是每位老師都要做的事。教案的編寫是教師課堂教學(xué)的決定性因素之一。
反比例函數(shù)教案 篇1
第一課時(shí)
教學(xué)設(shè)計(jì)思想
本節(jié)課是在學(xué)習(xí)了反比例函數(shù)的概念,反比例函數(shù)的圖像和性質(zhì)等相關(guān)知識(shí)的基礎(chǔ)上引入的。首先創(chuàng)設(shè)問題情境,展示反比例函數(shù)在實(shí)際生活中的應(yīng)用情況,激發(fā)學(xué)生的求知欲和濃厚的學(xué)習(xí)興趣。接下來主要討論了反比例函數(shù)在體積、面積這樣的實(shí)際問題中的應(yīng)用。分析實(shí)際問題中變量之間的關(guān)系,建立反比例函數(shù)模型,進(jìn)而解決問題。
教學(xué)目標(biāo)
知識(shí)與技能
1、能靈活列反比例函數(shù)表達(dá)式解決一些實(shí)際問題。
2、能綜合利用幾何、方程、反比例函數(shù)的知識(shí)解決一些實(shí)際問題。
過程與方法
1、經(jīng)歷分析實(shí)際問題中變量之間的關(guān)系,建立反比例函數(shù)模型,進(jìn)而解決問題。
2、體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的緊密聯(lián)系,增強(qiáng)應(yīng)用意識(shí),提高運(yùn)用代數(shù)方法解決問題的能力。
情感態(tài)度與價(jià)值觀
體驗(yàn)反比例函數(shù)是有效地描述現(xiàn)實(shí)世界的重要手段,認(rèn)識(shí)到數(shù)學(xué)是解決實(shí)際問題和進(jìn)行交流的重要工具。
教學(xué)重難點(diǎn)
重點(diǎn):掌握從實(shí)際問題中建構(gòu)反比例函數(shù)模型。
難點(diǎn):從實(shí)際問題中尋找變量之間的關(guān)系。關(guān)鍵是充分運(yùn)用所學(xué)知識(shí)分析實(shí)際情況,建立函數(shù)模型,教學(xué)時(shí)注意分析過程,滲透數(shù)形結(jié)合的思想。
教學(xué)方法
啟發(fā)引導(dǎo)、合作探究
教學(xué)媒體
課件
教學(xué)過程設(shè)計(jì)
(一)創(chuàng)設(shè)問題情境,引入新課
[師]有關(guān)反比例函數(shù)的表達(dá)式,圖像的特征我們都研究過了,那么,我們學(xué)習(xí)它們的目的是什么呢?
[生]是為了應(yīng)用。
[師]很好。學(xué)習(xí)的目的是為了用學(xué)到的知識(shí)解決實(shí)際問題。究竟反比例函數(shù)能解決一些什么問題呢?本節(jié)課我們就來學(xué)一學(xué)。
問題:某??萍夹〗M進(jìn)行野外考察,途中遇到一片十幾米寬的爛泥濕地,為了安全、迅速通過這片濕地,他們沿著前進(jìn)路線鋪墊了若干塊木板,構(gòu)筑成一條臨時(shí)通道,從而順利完成了任務(wù)的情境。
反比例函數(shù)教案 篇2
一、教學(xué)目標(biāo)
1.利用反比例函數(shù)的知識(shí)分析、解決實(shí)際問題
2.滲透數(shù)形結(jié)合思想,提高學(xué)生用函數(shù)觀點(diǎn)解決問題的能力
二、重點(diǎn)、難點(diǎn)
1.重點(diǎn):利用反比例函數(shù)的知識(shí)分析、解決實(shí)際問題
2.難點(diǎn):分析實(shí)際問題中的數(shù)量關(guān)系,正確寫出函數(shù)解析式
三、例題的意圖分析
教材第57頁的例1,數(shù)量關(guān)系比較簡單,學(xué)生根據(jù)基本公式很容易寫出函數(shù)關(guān)系式,此題實(shí)際上是利用了反比例函數(shù)的定義,同時(shí)也是要讓學(xué)生學(xué)會(huì)分析問題的方法。
教材第58頁的例2是一道利用反比例函數(shù)的定義和性質(zhì)來解決的實(shí)際問題,此題的實(shí)際背景較例1稍復(fù)雜些,目的是為了提高學(xué)生將實(shí)際問題抽象成數(shù)學(xué)問題的能力,掌握用函數(shù)觀點(diǎn)去分析和解決問題的思路。
補(bǔ)充例題一是為了鞏固反比例函數(shù)的有關(guān)知識(shí),二是為了提高學(xué)生從圖象中讀取信息的能力,掌握數(shù)形結(jié)合的思想方法,以便更好地解決實(shí)際問題
四、課堂引入
寒假到了,小明正與幾個(gè)同伴在結(jié)冰的河面上溜冰,突然發(fā)現(xiàn)前面有一處冰出現(xiàn)了裂痕,小明立即告訴同伴分散趴在冰面上,匍匐離開了危險(xiǎn)區(qū)。你能解釋一下小明這樣做的道理嗎?
反比例函數(shù)教案 篇3
反比例函數(shù)的圖像和性質(zhì)
反比例函數(shù)是高中數(shù)學(xué)中一個(gè)非常重要的函數(shù)類型,具有很多特殊的性質(zhì)和應(yīng)用。掌握反比例函數(shù)的圖像和性質(zhì)對(duì)于理解和解決實(shí)際問題非常有幫助。在本文中,我們將重點(diǎn)介紹反比例函數(shù)的圖像和性質(zhì),幫助學(xué)生更好地理解和應(yīng)用反比例函數(shù)。
一、反比例函數(shù)的定義
反比例函數(shù)是指函數(shù)y=k/x,其中k為常數(shù),x為自變量,y為因變量。它的定義域?yàn)閧x | x ≠ 0},值域?yàn)閧y | y ≠ 0}。
二、反比例函數(shù)的圖像
反比例函數(shù)的圖像是一條經(jīng)過坐標(biāo)軸原點(diǎn)的雙曲線。當(dāng)x趨近于0時(shí),y趨近于無窮大;當(dāng)x趨近于無窮大時(shí),y趨近于0。反比例函數(shù)的圖像如下所示:
三、反比例函數(shù)的性質(zhì)
1. 定義域和值域
反比例函數(shù)的定義域?yàn)閧x | x ≠ 0},值域?yàn)閧y | y ≠ 0},即y不能等于0。
2. 單調(diào)性
反比例函數(shù)是單調(diào)遞增的,即當(dāng)x1 y2。
3. 零點(diǎn)和漸近線
反比例函數(shù)的零點(diǎn)為(0,k),即過原點(diǎn)且與y軸平行的直線。反比例函數(shù)還有兩條漸近線,分別是x軸和y軸。當(dāng)x趨近于無窮大或負(fù)無窮大時(shí),反比例函數(shù)的值趨近于0。
4. 對(duì)稱性
反比例函數(shù)是關(guān)于y軸的對(duì)稱函數(shù)。如果將函數(shù)圖像沿y軸翻轉(zhuǎn)180度,則原來在第二象限的點(diǎn)會(huì)被映射到第三象限,原來在第一象限的點(diǎn)會(huì)被映射到第四象限。
四、反比例函數(shù)的應(yīng)用
反比例函數(shù)在實(shí)際問題中有廣泛的應(yīng)用,例如:
1. 比例問題
反比例函數(shù)可以用于解決比例問題,例如“一個(gè)物體的密度與其體積成反比例關(guān)系,當(dāng)物體的密度為2時(shí),它的體積是多少?”可以用反比例函數(shù)y=k/x表示物體的密度和體積之間的關(guān)系,其中k為常數(shù)。根據(jù)題意,當(dāng)密度為2時(shí),體積為k/2,因此k=2v,所以y=2v/x。當(dāng)密度為2時(shí),體積為2v/2=V,即體積為V。
2. 費(fèi)用問題
反比例函數(shù)可以用于解決費(fèi)用問題,例如“一輛汽車每小時(shí)行駛60公里,行駛一定距離的時(shí)間越短,所產(chǎn)生的費(fèi)用越大,費(fèi)用與行駛時(shí)間成反比例關(guān)系,費(fèi)用為每小時(shí)80元,行駛120公里需要多少費(fèi)用?”可以用反比例函數(shù)y=k/x表示費(fèi)用和時(shí)間之間的關(guān)系,其中k為常數(shù)。根據(jù)題意,當(dāng)時(shí)間為1小時(shí)時(shí),費(fèi)用為80元,因此k=80。此時(shí)反比例函數(shù)為y=80/x,當(dāng)行駛120公里時(shí),時(shí)間為120/60=2小時(shí),因此費(fèi)用為80元/小時(shí)×2小時(shí)=160元。
總之,反比例函數(shù)是高中數(shù)學(xué)中一個(gè)非常重要的函數(shù)類型,具有很多特殊的性質(zhì)和應(yīng)用。掌握反比例函數(shù)的圖像和性質(zhì)不僅可以幫助學(xué)生理解反比例函數(shù),還可以應(yīng)用到實(shí)際問題中,解決各種復(fù)雜的問題。
反比例函數(shù)教案 篇4
《實(shí)際問題與反比例函數(shù)(第三課時(shí))》說課稿
一、數(shù)學(xué)本質(zhì)與教學(xué)目標(biāo)定位
《實(shí)際問題與反比例函數(shù)(第三課時(shí))》是新人教版八年級(jí)下冊(cè)第十七章第二節(jié)的課題,是在前面學(xué)習(xí)了反比例函數(shù)、反比例函數(shù)的圖象和性質(zhì)的基礎(chǔ)上的一節(jié)應(yīng)用課。體現(xiàn)反比例函數(shù)是解決實(shí)際問題有效的數(shù)學(xué)模型,經(jīng)歷“找出常量和變量,建立并表示函數(shù)模型,討論函數(shù)模型,解決實(shí)際問題“的過程。
本節(jié)課的教學(xué)目標(biāo)分以下三個(gè)方面:
1、知識(shí)與技能目標(biāo):(1)通過對(duì)“杠桿原理”等實(shí)際問題與反比例函數(shù)關(guān)系的探究,使學(xué)生能夠從函數(shù)的觀點(diǎn)來解決一些實(shí)際問題;
(2)通過對(duì)實(shí)際問題中變量之間關(guān)系的分析,建立函數(shù)模型,運(yùn)用已學(xué)過的反比例函數(shù)知識(shí)加以解決,體會(huì)數(shù)學(xué)建模思想和學(xué)以致用的數(shù)學(xué)理念。
2、能力訓(xùn)練目標(biāo):分析實(shí)際問題中變量之間的關(guān)系,建立反比例函數(shù)模型解決問題,進(jìn)一步運(yùn)用函數(shù)的圖像、性質(zhì)挖掘杠桿原理中蘊(yùn)涵的道理。
3.情感、態(tài)度與價(jià)值觀目標(biāo):(1)利用函數(shù)探索古希臘科學(xué)家阿基米德發(fā)現(xiàn)的“杠桿定律”,使學(xué)生的求知欲望得到激發(fā),再通過自己所學(xué)知識(shí)解決了身邊的問題,大大提高了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
(2)訓(xùn)練學(xué)生能把思考的結(jié)果用語言很好地表達(dá)出來,同時(shí)要讓學(xué)生很好地交流和合作.
二、學(xué)習(xí)內(nèi)容的基礎(chǔ)以及其作用
在17.1學(xué)習(xí)了反比例函數(shù)的概念及函數(shù)的圖像和性質(zhì)基礎(chǔ)上,《實(shí)際問題與反比例函數(shù)》這一節(jié)重點(diǎn)介紹反比例函數(shù)在現(xiàn)實(shí)生活中的廣泛性,以及如何應(yīng)用反比例函數(shù)的知識(shí)解決現(xiàn)實(shí)生活中的實(shí)際問題。
本節(jié)課的探究的例題和練習(xí)題都是現(xiàn)實(shí)生活中的常見問題,反映了數(shù)學(xué)與實(shí)際的關(guān)系,即數(shù)學(xué)理論來源于實(shí)際又發(fā)過來服務(wù)實(shí)際,這樣有助于提高學(xué)生把抽象的數(shù)學(xué)概念應(yīng)用于實(shí)際問題的能力。在數(shù)學(xué)課上涉及了物理學(xué)力學(xué)的實(shí)際問題,運(yùn)用到古希臘科學(xué)家阿基米德發(fā)現(xiàn)的“杠桿定理”,其本質(zhì)體現(xiàn)的是力與力臂兩個(gè)量的發(fā)比例關(guān)系,最后落實(shí)到運(yùn)用數(shù)學(xué)來解決。通過學(xué)習(xí),讓學(xué)生進(jìn)一步加深對(duì)反比例函數(shù)的運(yùn)用和理解,更深層次體會(huì)建立反比例模型解決實(shí)際問題的思想,鞏固和提高所學(xué)知識(shí),鼓勵(lì)學(xué)生將所學(xué)知識(shí)應(yīng)用到生活中去。
三、教學(xué)診斷分析:
本節(jié)課容易了解的地方是:杠桿是我們?cè)谏钪谐3S龅降奈锢砟P?,利用杠桿定理容易建立函數(shù)關(guān)系式。而我認(rèn)為本節(jié)課有兩個(gè)問題學(xué)生比較難理解:(1)是注意在實(shí)際問題中函數(shù)自變量的取值范圍,用數(shù)學(xué)知識(shí)去解決實(shí)際問題。在講課時(shí)注意提醒學(xué)生關(guān)注實(shí)際問題的意義;(2)從函數(shù)的角度深層次挖掘變量的關(guān)系,在這一過程中學(xué)生逐漸建立運(yùn)用運(yùn)動(dòng)變化的觀點(diǎn)解釋一些現(xiàn)象,實(shí)現(xiàn)從靜到動(dòng)的轉(zhuǎn)變。授課時(shí)教師要按照學(xué)生的認(rèn)知規(guī)律有層次、有步驟地引導(dǎo)學(xué)生分析解決問題。學(xué)生可以在我設(shè)計(jì)的問題的提示下來進(jìn)行探究,學(xué)生若能發(fā)現(xiàn)其他的規(guī)律,教師應(yīng)表揚(yáng),并讓同學(xué)自己來講解。
四、教法特點(diǎn)以及預(yù)期效果分析
教法特點(diǎn):1、在研究性學(xué)習(xí)中應(yīng)以問題情境和學(xué)習(xí)任務(wù)為驅(qū)動(dòng).教學(xué)過程中 ,教師不應(yīng)把現(xiàn)成的結(jié)論和方法直接告訴學(xué)生,應(yīng)以問題情境和學(xué)習(xí)任務(wù)為驅(qū)動(dòng),激發(fā)學(xué)生的探索精神和求知欲望.同時(shí),又要營造一種寬松、和諧、積極民主的學(xué)習(xí)氛圍,使每位學(xué)生都成為問題的探索者、研究中的發(fā)現(xiàn)者.
2、注重觀察能力的培養(yǎng).教學(xué)過程中應(yīng)注重對(duì)學(xué)生觀察的目的.性、敏銳性和思辨性結(jié)合的培養(yǎng) ,優(yōu)化觀察的對(duì)象,透過現(xiàn)象看本質(zhì),迅速從繁雜無序問題中捕捉最有價(jià)值的信息.此能力是發(fā)現(xiàn)問題和解決問題的關(guān)鍵.
3、合作意識(shí)和合作能力的培養(yǎng).合作意識(shí)和合作能力是現(xiàn)代人才必備的基本素質(zhì)之一.現(xiàn)代社會(huì)中,幾乎任何一項(xiàng)工作都要許多人通力合作才能完成(如上述眾多結(jié)論的獲得) ,是否具有協(xié)作精神,能否與他人合作,已成為決定一個(gè)人能否成功的重要因素.教師要?jiǎng)?chuàng)設(shè)一切為學(xué)生合作的情境和機(jī)會(huì),使學(xué)生學(xué)會(huì)與他人合作.
4、數(shù)學(xué)應(yīng)用意識(shí)的培養(yǎng).作為數(shù)學(xué)教師 ,我們的主要任務(wù)是,培養(yǎng)學(xué)生用數(shù)學(xué)的眼光去觀察和分析實(shí)際問題,提高對(duì)數(shù)學(xué)的興趣,增強(qiáng)學(xué)好數(shù)學(xué)的信心,達(dá)到培養(yǎng)創(chuàng)新精神和能力的目的.以上問題的解決過程,實(shí)際上就是要求學(xué)生作為主體去面對(duì)解決的問題,主動(dòng)去探索、討論,尋找問題解決的途徑,用數(shù)學(xué)的方法和技術(shù)來處理實(shí)際模型,最終得出結(jié)論.
5、數(shù)學(xué)審美能力的培養(yǎng).?dāng)?shù)學(xué)是“真”的典范 ,同時(shí)又是“美”的科學(xué).教師應(yīng)引導(dǎo)學(xué)生去發(fā)現(xiàn)美、體驗(yàn)美、感受美和創(chuàng)造美,這樣能夠使學(xué)生的思維得到鍛煉、智力得到開發(fā)、情操得到陶冶和創(chuàng)新能力得到提高.它是鼓舞學(xué)生奮發(fā)向上,引導(dǎo)學(xué)生積極創(chuàng)造的重要因素.
預(yù)期效果分析:
(1)教學(xué)難點(diǎn)的突破:本節(jié)的難點(diǎn)在于“把實(shí)際問題利用反比例函數(shù)轉(zhuǎn)化為數(shù)學(xué)問題加以解決”,課前預(yù)設(shè)通過“師生共分析——分析錯(cuò)處——再獨(dú)立解題”的三個(gè)環(huán)節(jié),以達(dá)到學(xué)生逐步掌握轉(zhuǎn)化的方法。
(2)教學(xué)重點(diǎn)的落實(shí):在探索實(shí)際問題與反比例函數(shù)時(shí),教學(xué)活動(dòng)設(shè)計(jì)了學(xué)生通過“現(xiàn)觀察——后歸納——再比較——后小結(jié)”的循環(huán)上升的思維進(jìn)程進(jìn)行引導(dǎo),在實(shí)際教學(xué)活動(dòng)中學(xué)生通過自主探索能發(fā)現(xiàn)并歸納,使學(xué)生所學(xué)知識(shí)進(jìn)一步內(nèi)化和系統(tǒng)化??傊?,學(xué)生是具有學(xué)習(xí)的自主性、探索性、協(xié)作性和實(shí)踐性.本節(jié)課是學(xué)生對(duì)科學(xué)探索與研究的初步嘗試,但是它對(duì)學(xué)生今后的學(xué)習(xí)和15.1分式的意義說課稿
教材《上教版九年制義務(wù)教育課本數(shù)學(xué)七年級(jí)第二冊(cè)》P51-P53
一、教材分析
1.地位、作用和前后聯(lián)系:本節(jié)課的主要內(nèi)容是分式的概念以及掌握分式有意義、無意義、分式值為0的條件.它是在學(xué)生掌握了整式的四則運(yùn)算、多項(xiàng)式的因式分解,并以六年級(jí)第一學(xué)期的分?jǐn)?shù)知識(shí)為基礎(chǔ),對(duì)比引出分式的概念,把學(xué)生對(duì)“式”的認(rèn)識(shí)由整式擴(kuò)充到有理式.學(xué)好本節(jié)知識(shí)是為進(jìn)一步學(xué)習(xí)分式知識(shí)打下扎實(shí)的基礎(chǔ),是以后學(xué)習(xí)函數(shù)、方程等問題的關(guān)鍵。
2.學(xué)情分析:我校初二年級(jí)學(xué)生基礎(chǔ)比較差,學(xué)習(xí)能力較弱.但通過預(yù)初年級(jí)分?jǐn)?shù)的學(xué)習(xí),頭腦中已形成了分?jǐn)?shù)的相關(guān)知識(shí),知道分?jǐn)?shù)的分子、分母都是具體的數(shù),因此學(xué)生可能會(huì)用學(xué)習(xí)分?jǐn)?shù)的思維定勢去認(rèn)知、理解分式.但是在分式中,它的分母不是具體的數(shù),而是抽象的含有字母的整式,會(huì)隨著字母取值的變化而變化.為了學(xué)生能切實(shí)掌握所學(xué)知識(shí),在教學(xué)中特別設(shè)計(jì)了幾組練習(xí);對(duì)于教材中的例題和練習(xí)題,將作適當(dāng)?shù)难由焱卣购妥兪教幚恚?/p>
二、目標(biāo)分析:教育目標(biāo)的確立應(yīng)該建立在學(xué)生的學(xué)習(xí)過程上,而學(xué)生對(duì)數(shù)學(xué)的學(xué)習(xí)應(yīng)該包括三個(gè)層次:學(xué)習(xí)數(shù)學(xué)基礎(chǔ)知識(shí);形成一定的數(shù)學(xué)能力;完善自我的精神品格。結(jié)合我校學(xué)生的實(shí)際情況,我對(duì)本節(jié)課的教學(xué)目標(biāo)確定如下:
1、知識(shí)技能目標(biāo)①理解分式的概念.②能求出分式有意義的條件.
2、過程性目標(biāo)①通過對(duì)分式與分?jǐn)?shù)的類比,學(xué)生親身經(jīng)歷探究整式擴(kuò)充到分式的過程,初步學(xué)會(huì)運(yùn)用類比轉(zhuǎn)化的思想方法研究數(shù)學(xué)問題.②學(xué)生通過類比方法的學(xué)習(xí),提高了對(duì)事物之間是普遍聯(lián)系又是變化發(fā)展的辯證觀點(diǎn)的再認(rèn)識(shí).
3、情感與態(tài)度目標(biāo)①通過聯(lián)系實(shí)際探究分式的概念,能夠體會(huì)到數(shù)學(xué)的應(yīng)用價(jià)值.②在合作學(xué)習(xí)過程中增強(qiáng)與他人的合作意識(shí).
三、教學(xué)方法1.師生互動(dòng)探究式教學(xué) 以教學(xué)大綱為依據(jù),滲透新的教育理念,遵循教師為主導(dǎo)、學(xué)生為主體的原則,結(jié)合初二學(xué)生的求知心理和已有的認(rèn)知水平開展教學(xué).學(xué)生通過熟悉的現(xiàn)實(shí)生活情景,發(fā)現(xiàn)有些數(shù)量關(guān)系僅用整式來表示是不夠的,引發(fā)認(rèn)知沖突,提出需要學(xué)習(xí)新的知識(shí).引導(dǎo)學(xué)生類比分?jǐn)?shù)探究分式的概念,形成師生互動(dòng),體現(xiàn)了數(shù)學(xué)教學(xué)活動(dòng)必須建立在學(xué)生的認(rèn)知發(fā)展水平和已有的知識(shí)經(jīng)驗(yàn)基礎(chǔ)之上.
2.自主探索、研討發(fā)現(xiàn).知識(shí)是通過學(xué)生自己動(dòng)口、動(dòng)腦,積極思考、主動(dòng)探索獲得.學(xué)生在討論、交流、合作、探究活動(dòng)中形成分式概念、掌握分式有意義、分式值為0的條件.在活動(dòng)中注重引導(dǎo)學(xué)生體會(huì)用類比的方法(如類比分?jǐn)?shù)的概念形成分式的概念)擴(kuò)展知識(shí)的過程,培養(yǎng)學(xué)生學(xué)習(xí)的主動(dòng)性和積極性.
3.設(shè)計(jì)理念.根據(jù)《上海市中小學(xué)數(shù)學(xué)課程標(biāo)準(zhǔn)(試行本)》中明確指出以學(xué)生發(fā)展為本,堅(jiān)持全體學(xué)生的全面發(fā)展,關(guān)注學(xué)生個(gè)性的健康發(fā)展和可持續(xù)發(fā)展。
本節(jié)課的教學(xué),是在學(xué)生已有的分?jǐn)?shù)知識(shí)基礎(chǔ)上,創(chuàng)設(shè)情景,產(chǎn)生認(rèn)知沖突,引導(dǎo)學(xué)生開展觀察特點(diǎn)、類比歸納、討論交流等探究活動(dòng),在活動(dòng)中向?qū)W生滲透類比思想、特殊與一般的辯證唯物主義觀點(diǎn).
4.教學(xué)重點(diǎn)與難點(diǎn):重點(diǎn):分式的概念.難點(diǎn):理解和掌握分式有意義、值為0的條件.
突破點(diǎn):由于部分學(xué)生容易忽略分式分母的值不能為0,所以在教學(xué)中,采取類比分?jǐn)?shù)的意義,加強(qiáng)對(duì)分式的分母不能為0的教學(xué).
四、教學(xué)過程分析
1、教學(xué)流程圖2、流程說明:根據(jù)教材的結(jié)構(gòu)特點(diǎn),緊緊抓住新舊知識(shí)的內(nèi)在聯(lián)系,運(yùn)用類比、聯(lián)想、轉(zhuǎn)化的思想,突破難點(diǎn).本節(jié)課的教學(xué)設(shè)計(jì)思路:
1、創(chuàng)設(shè)情景 從實(shí)際問題引入,提出表示數(shù)量關(guān)系僅用整式是不夠的,體現(xiàn)了數(shù)學(xué)源于生活.
2、形成概念 類比分?jǐn)?shù)知識(shí),得到分式概念. 由分式的概念,類比分?jǐn)?shù)得到分式有意義的條件.
3、反饋訓(xùn)練 為了更好地理解、掌握分式的基本概念,根據(jù)不同學(xué)生的學(xué)習(xí)需要,按照分層遞進(jìn)的教學(xué)原則,設(shè)計(jì)安排了2個(gè)由淺入深的例題.例1是熟悉分式有意義的條件,其變式是訓(xùn)練學(xué)生掌握分式無意義的條件;例2是如何求分式的值為0.同時(shí)配有三個(gè)由低到高、層次不同的鞏固性練習(xí),體現(xiàn)漸進(jìn)性原則,希望學(xué)生能將知識(shí)轉(zhuǎn)化為技能.
4、歸納小結(jié) 由學(xué)生總結(jié)、歸納、反思,加深對(duì)知識(shí)的理解,并且能熟練運(yùn)用所學(xué)知識(shí)解決問題.
反比例函數(shù)教案 篇5
一、教材分析:
本節(jié)課學(xué)習(xí)的主要內(nèi)容是畫反比例函數(shù)的圖象,讓學(xué)生經(jīng)歷畫圖、觀察、猜想、思考等數(shù)學(xué)活動(dòng),初步認(rèn)識(shí)具體的反比例函數(shù)圖象的特征。反比例函數(shù)的圖象是在學(xué)生已經(jīng)知道了研究函數(shù)圖象的一般方法,以及一次函數(shù)的圖象是一條直線的基礎(chǔ)之上進(jìn)一步去研究的。同時(shí),反比例函數(shù)的圖象也與眾不同。針對(duì)教材及學(xué)生的實(shí)際情況,本節(jié)課的設(shè)計(jì)是讓學(xué)生多動(dòng)手去探索規(guī)律。
二、教學(xué)目標(biāo):
知識(shí)與技能:
(1)作反比例函數(shù)的圖象。
(2)掌握反比例函數(shù)的圖象與性質(zhì)。
過程與方法:
逐步提高從函數(shù)圖象中獲取信息的能力,和數(shù)形結(jié)合的能力。
情感、態(tài)度與價(jià)值觀:
培養(yǎng)學(xué)生積極參與,樂于探究,善于交流的意識(shí)和習(xí)慣。
三、教學(xué)重難點(diǎn)
教學(xué)重點(diǎn):學(xué)習(xí)反比例函數(shù)圖象的畫法,概括反比例函數(shù)圖象的共同特征。
教學(xué)難點(diǎn):從反比例函數(shù)的圖象中歸納總結(jié)反比例函數(shù)的主要性質(zhì)。
四、教學(xué)過程:
(一)創(chuàng)設(shè)情境、提出問題
我們已經(jīng)知道一次函數(shù)的圖象是一條直線,那么反比例函數(shù)(k為常數(shù),k≠0)的圖象是什么呢?猜猜看,應(yīng)該怎么畫呢?(讓學(xué)生根據(jù)已有的知識(shí)經(jīng)驗(yàn),回憶畫函數(shù)圖象的一般方法與步驟,類比一次函數(shù)的圖象進(jìn)行猜想)
(二)動(dòng)手實(shí)踐、解決問題
1、畫圖:畫出反比例函數(shù)的圖象在教師的引導(dǎo)下,讓學(xué)生通過親自動(dòng)腦、動(dòng)手實(shí)踐去科學(xué)地驗(yàn)證自己的猜想,培養(yǎng)學(xué)生科學(xué)的態(tài)度與精神。
師:畫函數(shù)圖象的第一個(gè)步驟是什么?
生:列表。
師:(大屏幕投影:表格)根據(jù)前面學(xué)習(xí)一次函數(shù)的經(jīng)驗(yàn),列表時(shí)應(yīng)注意什么?
生:應(yīng)注意自變量x的取值范圍,本題當(dāng)中x≠0。
師:是不是把所有的x不等于零的值全都列舉出來?
生:不是。
師:那怎么取值呢?(學(xué)生討論)
生:為了便于計(jì)算和描點(diǎn),我們通常取x>0和x
師:(大屏幕投影)那么,對(duì)應(yīng)的y值分別是多少呢?(學(xué)生填表、口答答案。)
目的:讓學(xué)生回憶、類比,注意比較與畫一次函數(shù)的圖象時(shí)列表的相同點(diǎn)與不同點(diǎn)。
師:列表之后,我們得到了幾組x、y的對(duì)應(yīng)值,即幾組有序?qū)崝?shù)對(duì),如何用直角坐標(biāo)系中的點(diǎn)把它們表示出來呢?也就是如何描點(diǎn)?
生:以表中x的值作為點(diǎn)的橫坐標(biāo),y的值作為點(diǎn)的縱坐標(biāo)依次描點(diǎn)。
①學(xué)生描點(diǎn)
②教師利用多媒體課件演示描點(diǎn)的動(dòng)畫過程。
友情提醒:描點(diǎn)可要細(xì)心哦!
目的:讓學(xué)生獨(dú)立描點(diǎn),觀察描出的點(diǎn)的位置。培養(yǎng)學(xué)生細(xì)心的良好品質(zhì)。
師:如何把描出的點(diǎn)連接起來,從而畫出它的圖象呢?
①學(xué)生連接。
②教師利用實(shí)物投影儀展示學(xué)生成果。
師:這里有同學(xué)們畫的一些反比例函數(shù)的圖象,我從中選出了四幅圖象,請(qǐng)同學(xué)們仔細(xì)觀察并進(jìn)行討論這四幅圖象畫得對(duì)還是不對(duì)?如果不對(duì),它們分別錯(cuò)在哪里?為什么?(學(xué)生分析討論)
生:第一幅圖象是對(duì)的;第二、三、四幅圖象都是錯(cuò)誤的,錯(cuò)誤的原因是:沒有注意到自變量x的取值范圍是x≠0的全體實(shí)數(shù)師:一位同學(xué)有這樣一種想法:“在相鄰的兩點(diǎn)之間用線段來連接?!边@種想法對(duì)嗎?如果不對(duì),錯(cuò)在哪里?為什么?學(xué)生分組討論。學(xué)生相互討論生:除了線段兩個(gè)端點(diǎn)的坐標(biāo)滿足函數(shù)解析式之外,線段上其余各點(diǎn)的坐標(biāo)都不滿足函數(shù)解析式。所以用線段連接的方法是錯(cuò)誤的。
師:除了已描好的點(diǎn)之外,你還能不能找到其它坐標(biāo)滿足函數(shù)解析式的點(diǎn),比如橫坐標(biāo)在大于1小于2之間?
師:那么,應(yīng)當(dāng)用什么樣的線來連接呢?
生:應(yīng)當(dāng)用平滑的曲線順次連接。
目的:師生互動(dòng)、生生互動(dòng),讓學(xué)生充分參與、經(jīng)歷畫圖的過程,體會(huì)知識(shí)的形成過程;通過對(duì)學(xué)生畫圖個(gè)案的評(píng)析、多媒體課件填充點(diǎn)的過程演示、以及學(xué)生的認(rèn)真觀察、思考,探索得出重要的結(jié)論:應(yīng)當(dāng)用平滑的曲線順次連接。學(xué)生自發(fā)的為自己發(fā)現(xiàn)的結(jié)論鼓掌,讓學(xué)生品嘗到成功的喜悅,增強(qiáng)學(xué)生的自信心。教師利用多媒體課件演示連接的過程:用平滑的曲線先順次連接第一象限內(nèi)的各點(diǎn),得到圖象的一個(gè)分支;然后再順次連接第三象限內(nèi)的各點(diǎn),得到圖象的另一個(gè)分支。把兩個(gè)分支組合在一起就得到了反比例函數(shù)的圖象。
2、猜想:反比例函數(shù)的圖象在什么象限?請(qǐng)你在下面的平面直角坐標(biāo)系內(nèi)畫出它的圖象。
師:剛才,我們畫出了k=6時(shí),反比例函數(shù)的圖象。請(qǐng)同學(xué)們猜想一下,k=-6時(shí),反比例函數(shù)的圖象在什么象限?為什么?
生:圖象分布在二、四象限。由k=-6得xy=-6所以x、y異號(hào)所以反比例函數(shù)的圖象分布在二、四象限。
3、師:請(qǐng)同學(xué)們畫圖驗(yàn)證自己的猜想。
4、①學(xué)生畫圖驗(yàn)證
②相互交流成果檢驗(yàn)自己的猜想是否正確。
目的:讓學(xué)生先類比k=6時(shí),反比例函數(shù)的圖象的位置,猜想k=-6時(shí),反比例函數(shù)的圖象的位置;然后,再獨(dú)立畫圖驗(yàn)證自己的猜想。培養(yǎng)學(xué)生類比、猜想、說理、獨(dú)立畫圖驗(yàn)證的能力。
師:(大屏幕投影:顯示畫圖象的全過程)請(qǐng)同學(xué)們觀察反比例函數(shù)的圖象,注意比較與一次函數(shù)圖象有哪些不同?討論反比例函數(shù)的圖象具有那些特征(學(xué)生分組討論)
生:①一次函數(shù)的圖象是一條直線,反比例函數(shù)的圖象是由兩個(gè)分支組成的,而且都是曲線;
②一次函數(shù)的圖象與x、y軸有交點(diǎn),反比例函數(shù)的圖象與x、y軸沒有交點(diǎn);
③反比例函數(shù)的圖象的兩個(gè)分支關(guān)于原點(diǎn)成中心對(duì)稱。
④反比例函數(shù)的圖象的兩個(gè)分支被坐標(biāo)軸隔開,它們可以無限地靠近x、y軸,但是永遠(yuǎn)不能與x、y軸有交點(diǎn);
師:反比例函數(shù)的圖象有許多的特征,在今后的學(xué)習(xí)當(dāng)中,我們會(huì)逐步地去認(rèn)識(shí)它。
設(shè)計(jì)目的:通過觀察圖象并比較與一次函數(shù)圖象的不同點(diǎn),讓學(xué)生初步認(rèn)識(shí)具體的反比例函數(shù)圖象的特征。)
五、本節(jié)課你學(xué)到了什么?有哪些收獲?
生:①畫反比例函數(shù)的圖象的方法
②知道了反比例函數(shù)的圖象是雙曲線
③反比例函數(shù)的圖象不與坐標(biāo)軸有交點(diǎn)
④反比例函數(shù)的圖象是中心對(duì)稱圖形
反比例函數(shù)教案 篇6
初二數(shù)學(xué)《17.2反比例函數(shù)》說課稿
一、教材分析:
反比例函數(shù)的圖象與性質(zhì)是對(duì)正比例函數(shù)圖象與性質(zhì)的復(fù)習(xí)和對(duì)比,也是以后學(xué)習(xí)二次函數(shù)的基礎(chǔ)。本課時(shí)的學(xué)習(xí)是學(xué)生對(duì)函數(shù)的圖象與性質(zhì)一個(gè)再知的過程,由于初二學(xué)生是首次接觸雙曲線這種函數(shù)圖象,所以教學(xué)時(shí)應(yīng)注意引導(dǎo)學(xué)生抓住反比例函數(shù)圖象的特征,讓學(xué)生對(duì)反比例函數(shù)有一個(gè)形象和直觀的認(rèn)識(shí)。
二、教學(xué)目標(biāo)分析
根據(jù)二期課改“以學(xué)生為主體,激活課堂氣氛,充分調(diào)動(dòng)起學(xué)生參與教學(xué)過程”的精神。在教學(xué)設(shè)計(jì)上,我設(shè)想通過使用多媒體課件創(chuàng)設(shè)情境,在掌握反比例函數(shù)相關(guān)知識(shí)的同時(shí)激發(fā)學(xué)生的學(xué)習(xí)興趣和探究欲望,引導(dǎo)學(xué)生積極參與和主動(dòng)探索。
因此把教學(xué)目標(biāo)確定為:1.掌握反比例函數(shù)的概念,能夠根據(jù)已知條件求出反比例函數(shù)的解析式;學(xué)會(huì)用描點(diǎn)法畫出反比例函數(shù)的圖象;掌握?qǐng)D象的特征以及由函數(shù)圖象得到的函數(shù)性質(zhì)。2.在教學(xué)過程中引導(dǎo)學(xué)生自主探索、思考及想象,從而培養(yǎng)學(xué)生觀察、分析、歸納的綜合能力。3.通過學(xué)習(xí)培養(yǎng)學(xué)生積極參與和勇于探索的精神。
三、教學(xué)重點(diǎn)難點(diǎn)分析
本堂課的重點(diǎn)是掌握反比例函數(shù)的定義、圖象特征以及函數(shù)的性質(zhì);
難點(diǎn)則是如何抓住特征準(zhǔn)確畫出反比例函數(shù)的圖象。
為了突出重點(diǎn)、突破難點(diǎn)。我設(shè)計(jì)并制作了能動(dòng)態(tài)演示函數(shù)圖象的多媒體課件。讓學(xué)生親手操作,積極參與并主動(dòng)探索函數(shù)性質(zhì),幫助學(xué)生直觀地理解反比例函數(shù)的性質(zhì)。
四、教學(xué)方法
鑒于教材特點(diǎn)及初二學(xué)生的'年齡特點(diǎn)、心理特征和認(rèn)知水平,設(shè)想采用問題教學(xué)法
和對(duì)比教學(xué)法,用層層推進(jìn)的提問啟發(fā)學(xué)生深入思考,主動(dòng)探究,主動(dòng)獲取知識(shí)。同時(shí)注意與學(xué)生已有知識(shí)的聯(lián)系,減少學(xué)生對(duì)新概念接受的困難,給學(xué)生充分的自主探索時(shí)間。通過教師的引導(dǎo),啟發(fā)調(diào)動(dòng)學(xué)生的積極性,讓學(xué)生在課堂上多活動(dòng)、多觀察,主動(dòng)參與到整個(gè)教學(xué)活動(dòng)中來,組織學(xué)生參與“探究——討論——交流——總結(jié)” 的學(xué)習(xí)活動(dòng)過程,同時(shí)在教學(xué)中,還充分利用多媒體教學(xué),通過演示,操作,觀察,練習(xí)等師生的共同活動(dòng)中啟發(fā)學(xué)生,讓每個(gè)學(xué)生動(dòng)手、動(dòng)口、動(dòng)眼、動(dòng)腦,培養(yǎng)學(xué)生直覺思維能力。
反比例函數(shù)課件匯編14篇
老師會(huì)對(duì)課本中的主要教學(xué)內(nèi)容整理到教案課件中,所以老師寫教案可不能隨便對(duì)待。教案是評(píng)估學(xué)生學(xué)習(xí)效果的有效依據(jù),好的教案課件是怎么寫成的?我們聽了一場關(guān)于“反比例函數(shù)課件”的演講讓我們思考了很多,經(jīng)過閱讀本頁你的認(rèn)識(shí)會(huì)更加全面!
反比例函數(shù)課件(篇1)
反比例函數(shù)是高中數(shù)學(xué)中比較重要的一類函數(shù),也是在理論和實(shí)際問題中經(jīng)常遇到的一類函數(shù)。本文將圍繞反比例函數(shù)的圖像和性質(zhì)展開,詳細(xì)介紹反比例函數(shù)的特點(diǎn)、性質(zhì)以及圖像的繪制方法。一、反比例函數(shù)的定義及特點(diǎn)
首先來回顧反比例函數(shù)的定義:若x≠0(λ為常數(shù)),則稱y=λ/x(x≠0)為變量x的反比例函數(shù),又稱為x的倒數(shù)函數(shù)。
反比例函數(shù)的特點(diǎn)如下:
(1)定義域?yàn)槌齲=0外的所有實(shí)數(shù),即Df={x|x≠0};
(2)值域?yàn)槌齳=0外的所有實(shí)數(shù),即Rf={y|y≠0};
(3)反比例函數(shù)曲線在第一象限內(nèi)或第三象限內(nèi)。
二、反比例函數(shù)的性質(zhì)
接下來,我們來介紹反比例函數(shù)的性質(zhì),以及結(jié)合實(shí)例來解析反比例函數(shù)的實(shí)際運(yùn)用。
1. 單調(diào)性
由于反比例函數(shù)的定義式中y=λ/x(x≠0),因此當(dāng)x越大,x的倒數(shù)1/x越小,于是y越小。
可得,當(dāng)x1
y1,即反比例函數(shù)在定義域內(nèi)是單調(diào)遞減的。
2. 對(duì)稱性
對(duì)于反比例函數(shù),有性質(zhì)f(-x)=f(x),即x軸為反比例函數(shù)的對(duì)稱軸。
例如,當(dāng)λ=2時(shí),反比例函數(shù)為y=2/x,則f(-x)=2/-x=-2/x=-f(x)。
3. 漸進(jìn)線
反比例函數(shù)的圖像有兩條漸進(jìn)線,分別是x軸和y軸。
當(dāng)x趨于0時(shí),y=λ/x趨近于無窮大,故反比例函數(shù)的y軸是圖像的漸進(jìn)線。
同理,當(dāng)y趨于0時(shí),x趨近于無窮大,故反比例函數(shù)的x軸是圖像的漸進(jìn)線。
4. 零點(diǎn)
反比例函數(shù)的零點(diǎn)為x=0,即當(dāng)x=0時(shí),y=λ/0沒有定義,從而無零點(diǎn)。
實(shí)際應(yīng)用中,反比例函數(shù)常常用來表示比例關(guān)系。例如,當(dāng)速度和時(shí)間成反比例關(guān)系時(shí),我們可以使用反比例函數(shù)來表示。設(shè)物體運(yùn)動(dòng)速度為v(km/h),運(yùn)動(dòng)時(shí)間為t(h),則速度和時(shí)間的比例關(guān)系式為v=k/t,其中k為比例常數(shù)。因此,反比例函數(shù)就等于y=k/x,表示運(yùn)動(dòng)速度和運(yùn)動(dòng)時(shí)間的關(guān)系。
三、反比例函數(shù)的圖像繪制方法
反比例函數(shù)的圖像繪制方法如下:
1. 確定定義域和值域
反比例函數(shù)的定義域?yàn)槌齲=0外的所有實(shí)數(shù),值域?yàn)槌齳=0外的所有實(shí)數(shù)。
2. 求取漸進(jìn)線
當(dāng)x趨于0時(shí),y=λ/x趨近于無窮大,故反比例函數(shù)的y軸是圖像的漸進(jìn)線;同理,當(dāng)y趨于0時(shí),x趨近于無窮大,故反比例函數(shù)的x軸是圖像的漸進(jìn)線。
3. 計(jì)算函數(shù)圖像的一些特殊點(diǎn)
例如,當(dāng)λ=1時(shí),反比例函數(shù)曲線上的幾個(gè)特殊點(diǎn)為:(1,1)、(2,1/2)、(3,1/3)
4. 向直觀的圖像平面上繪制圖像
通過上述計(jì)算,我們可以將反比例函數(shù)的圖像繪制到二維平面上。通過對(duì)稱性、單調(diào)性和漸進(jìn)線的考慮,我們可以繪制出一條準(zhǔn)確的反比例函數(shù)圖像。
綜上所述,反比例函數(shù)是一類在高中數(shù)學(xué)中非常重要的函數(shù)類型,它不僅擁有一些獨(dú)特的性質(zhì)和特點(diǎn),同時(shí)也具有廣泛的實(shí)際應(yīng)用。通過本文的介紹,相信讀者們對(duì)反比例函數(shù)的圖像和性質(zhì)有了更深入的理解,能夠更好地理解和掌握這一重要數(shù)學(xué)概念。
反比例函數(shù)課件(篇2)
一、教學(xué)目標(biāo)
1、利用反比例函數(shù)的知識(shí)分析、解決實(shí)際問題
2、滲透數(shù)形結(jié)合思想,提高學(xué)生用函數(shù)觀點(diǎn)解決問題的能力
二、重點(diǎn)、難點(diǎn)
1、重點(diǎn):利用反比例函數(shù)的知識(shí)分析、解決實(shí)際問題
2、難點(diǎn):分析實(shí)際問題中的數(shù)量關(guān)系,正確寫出函數(shù)解析式
3、難點(diǎn)的突破方法:
用函數(shù)觀點(diǎn)解實(shí)際問題,一要搞清題目中的基本數(shù)量關(guān)系,將實(shí)際問題抽象成數(shù)學(xué)問題,看看各變量間應(yīng)滿足什么樣的關(guān)系式(包括已學(xué)過的基本公式),這一步很重要;二是要分清自變量和函數(shù),以便寫出正確的函數(shù)關(guān)系式,并注意自變量的取值范圍;三要熟練掌握反比例函數(shù)的意義、圖象和性質(zhì),特別是圖象,要做到數(shù)形結(jié)合,這樣有利于分析和解決問題。教學(xué)中要讓學(xué)生領(lǐng)會(huì)這一解決實(shí)際問題的基本思路。
三、例題的意圖分析
教材第57頁的例1,數(shù)量關(guān)系比較簡單,學(xué)生根據(jù)基本公式很容易寫出函數(shù)關(guān)系式,此題實(shí)際上是利用了反比例函數(shù)的定義,同時(shí)也是要讓學(xué)生學(xué)會(huì)分析問題的方法。
教材第58頁的例2是一道利用反比例函數(shù)的定義和性質(zhì)來解決的實(shí)際問題,此題的實(shí)際背景較例1稍復(fù)雜些,目的是為了提高學(xué)生將實(shí)際問題抽象成數(shù)學(xué)問題的能力,掌握用函數(shù)觀點(diǎn)去分析和解決問題的思路。
反比例函數(shù)課件(篇3)
一、 說教學(xué)內(nèi)容
(一)、本課時(shí)的內(nèi)容、地位及作用
本課內(nèi)容是北師大版九年級(jí)(上)數(shù)學(xué)第五章《反比例函數(shù)》的第一課時(shí),是繼一次函數(shù)學(xué)習(xí)之后又一類新的函數(shù)——反比例函數(shù),它位居初中階段三大函數(shù)中的第二,區(qū)別于一次函數(shù),但又建立在一次函數(shù)之上,而又為以后更高層次函數(shù)的學(xué)習(xí),函數(shù)、方程、不等式間的關(guān)系的處理奠定了基礎(chǔ)。函數(shù)本身是數(shù)學(xué)學(xué)習(xí)中的重要內(nèi)容,而反比例函數(shù)則是基礎(chǔ)函數(shù),因此,本節(jié)內(nèi)容有著舉足輕重的地位。
(二)、本課題的教學(xué)目標(biāo):
教學(xué)目標(biāo)是教學(xué)的出發(fā)點(diǎn)和歸宿。因此,我根據(jù)新課標(biāo)的知識(shí)、能力和德育目標(biāo)的要求,以學(xué)生的認(rèn)知點(diǎn),心理特點(diǎn)和本課的特點(diǎn)來制定教學(xué)目標(biāo):
1、 知識(shí)目標(biāo)
(1) 通過對(duì)實(shí)際問題的探究,理解反比例函數(shù)的實(shí)際意義。
(2) 體會(huì)反比例函數(shù)的不同表示法。
(3) 會(huì)判斷反比例函數(shù)。
2、 能力目標(biāo)
(1) 通過兩個(gè)實(shí)際問題,培養(yǎng)學(xué)生勤于思考和分析歸納能力。
(2) 在思考、歸納過程中,發(fā)展學(xué)生的合情說理能力。
(3) 讓學(xué)生會(huì)求反比例函數(shù)關(guān)系式。
3、 情感目標(biāo)
(1)通過創(chuàng)設(shè)情境讓學(xué)生經(jīng)歷在實(shí)際問題中探索數(shù)量關(guān)系的過程,體驗(yàn)數(shù)學(xué)活動(dòng)與人類的生活的密切聯(lián)系,養(yǎng)成用數(shù)學(xué)思維方式解決實(shí)際問題的習(xí)慣。
(2)理論聯(lián)系實(shí)際,讓學(xué)生有學(xué)有所用的感性認(rèn)識(shí)。
4、 本課題的重點(diǎn)、難點(diǎn)和關(guān)鍵
重點(diǎn):反比例函數(shù)的概念
難點(diǎn):求反比例函數(shù)的解析式。
關(guān)鍵:如何由實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)模型。
二、 說教學(xué)方法:
本課將采用探究式教學(xué),讓學(xué)生主動(dòng)去探索,并分層教學(xué)將顧及到全體學(xué)生,達(dá)到優(yōu)生得到培養(yǎng),后進(jìn)生也有所收獲的效果。同時(shí)在教學(xué)中將理論聯(lián)系實(shí)際,讓學(xué)生用所學(xué)的知識(shí)去解決身邊的實(shí)際問題。
由于學(xué)生在前面已學(xué)過“變量之間的關(guān)系”和“一次函數(shù)”的內(nèi)容,對(duì)函數(shù)已經(jīng)有了初步的認(rèn)識(shí)。因此,在教這節(jié)課時(shí),要注意和一次函數(shù),尤其是正比例函數(shù)一反比例的類比。引導(dǎo)學(xué)生從函函數(shù)的意義、自變量的取值范圍等方面辨明相應(yīng)的差別,在學(xué)生探索過程中,讓學(xué)生體會(huì)到在探索的途徑和方法上與一次函數(shù)相似。
對(duì)于所設(shè)置的兩個(gè)問題為學(xué)生熟悉,盡量貼近學(xué)生生活,或者進(jìn)入學(xué)生生活的圈子里,讓學(xué)生感受到親切、自然,激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生思考問題的積極主動(dòng)性和解決問題的能力,從而培養(yǎng)對(duì)數(shù)學(xué)學(xué)科的濃厚興趣,使部分學(xué)生由不愛學(xué)變得愛學(xué)。讓學(xué)生真正體會(huì)到:生活處處皆數(shù)學(xué),生活處處有函數(shù)。
三、 說學(xué)法指導(dǎo):
課堂,只有寶貴的四十分鐘,有相當(dāng)一部分學(xué)生注意力不能集中。針對(duì)這種情況,從學(xué)生身邊的生活和已有的知識(shí)出發(fā)創(chuàng)設(shè)情境,目的是讓學(xué)生感受到生活中處處有數(shù)學(xué),激發(fā)學(xué)生對(duì)數(shù)學(xué)的興趣和愿望,同時(shí)也為抽象反比例函數(shù)概念做好鋪墊。讓學(xué)生自己舉例,討論總結(jié)規(guī)律,抽象概念,便于學(xué)生理解和掌握反比例函數(shù)的概念,同時(shí),培養(yǎng)和提高了學(xué)生的總結(jié)歸納能力和抽象能力。
為了讓學(xué)生對(duì)反比例函數(shù)的意義牢牢掌握和深刻理解,啟發(fā)學(xué)生回憶正比例函數(shù)并與之相類比,從內(nèi)容到形式,學(xué)生自主地體會(huì)出反比例函數(shù)的真正內(nèi)涵。
在本課時(shí)的師生互動(dòng)過程中,積極創(chuàng)造條件和機(jī)會(huì),關(guān)注個(gè)體差異,讓學(xué)困生發(fā)表見解,使他們有成功的學(xué)習(xí)體驗(yàn),激發(fā)他們的學(xué)習(xí)興趣,增強(qiáng)他們的自信心,提高他們學(xué)習(xí)的主動(dòng)性。
教師要善于捕捉學(xué)生的反饋信息,并能立即反饋給學(xué)生,矯正學(xué)生的學(xué)法和知識(shí)錯(cuò)誤。力求體現(xiàn)以學(xué)生為主體,教師為主導(dǎo)的原則,在輕松愉快的氛圍中,順利地“消化”本節(jié)課的內(nèi)容。同時(shí),讓學(xué)生體會(huì)到理論來自于實(shí)踐,而理論又反過來指導(dǎo)實(shí)踐的哲學(xué)思想。從而培養(yǎng)和提高學(xué)生分析問題和解決問題的能力。
四、 說教學(xué)過程:
1、 復(fù)習(xí)引入:
師生共同回憶前一階段所學(xué)知識(shí),再次強(qiáng)調(diào)函數(shù)和重要性,同時(shí)啟開新的課題——反比例函數(shù)(教師板書)。
(一) 創(chuàng)設(shè)情景,激發(fā)熱情
我經(jīng)常在思考:長期以來,我們的學(xué)生為什么對(duì)數(shù)學(xué)不感興趣,甚至害怕數(shù)學(xué),其中的一個(gè)重要因素就是數(shù)學(xué)離學(xué)生的生活實(shí)際太遠(yuǎn)了。事實(shí)上,數(shù)學(xué)學(xué)習(xí)應(yīng)該與學(xué)生的生活融合起來,從學(xué)生的生活經(jīng)驗(yàn)和已有的知識(shí)背景出發(fā),讓他們?cè)谏钪腥グl(fā)現(xiàn)數(shù)學(xué)、探究數(shù)學(xué)、認(rèn)識(shí)并掌握數(shù)學(xué)。
因而用兩個(gè)最貼近學(xué)生生活實(shí)例引出反比例函數(shù)的概念;從而讓學(xué)生感受數(shù)學(xué)與生活的緊密聯(lián)系。
多媒體課件展示
(問題1)我校車棚工程已經(jīng)啟動(dòng),規(guī)劃地基為36平方米的矩形,設(shè)連長為X(米),則另一連長Y(米)與X(米)的函數(shù)關(guān)系式。
讓學(xué)生分析變量關(guān)系,然后教師總結(jié):依矩形面積可得
XY=36 即Y=36/X
(問題2)昨天在放學(xué)回家時(shí),小明的車胎爆了。第二天,小明的爸爸騎摩托車送小明來學(xué)校。中午放學(xué)小明不得不走回家。(小明家距學(xué)校2000米)
(1)、在這個(gè)故事中,有幾種交通工具?
(2)、兩種交通工具的正常行駛速度一樣嗎?來去的路程一樣嗎?時(shí)間呢?
師生共同探究,時(shí)間的變化是由速度所引起的,設(shè)時(shí)間為T,速度為V,則有T=2000/V
(二) 觀察歸納——形成概念
由實(shí)例XY=36 即Y=36/X和T=2000/V 兩個(gè)式子教師引導(dǎo)學(xué)生概括總結(jié)出本課新的知識(shí)點(diǎn):
一般地,形如Y=K/X或XY=K(K是常數(shù),K不為0)的函數(shù)叫做反比例函數(shù)。
在此教師對(duì)該函數(shù)做些說明。
(三) 討論研究——深化概念
學(xué)生通過對(duì)例1的觀察、討論、交流后更進(jìn)一步理解和掌握反比例函數(shù)的概念
多媒體課件展示、
例1、 下列函數(shù)關(guān)系中,哪些是反比例函數(shù)?
(1)、一個(gè)矩形面積是20平方厘米,相鄰兩條連長分別為X厘米和Y厘米那么變量Y是變量X的函數(shù)嗎?是反比例函數(shù)嗎?為什么?
(2)、滑動(dòng)變阻器兩端的電壓為U,移動(dòng)滑片時(shí)通過變阻器的電流I和電阻R之間的關(guān)系;
(3)、某地有耕地346.2公頃,人口數(shù)量N逐年發(fā)生變化,那么該村人均占有耕地面積M(公頃?(人))是全村人口數(shù)N的函數(shù)嗎?是反比例函數(shù)嗎?為什么?
(4)某鄉(xiāng)糧食總產(chǎn)量M噸,那么該鄉(xiāng)每人平均糧食Y(噸)與該鄉(xiāng)人口數(shù)X的函數(shù)關(guān)系。
學(xué)生回答后教師給出正確答案。
四、 即時(shí)訓(xùn)練——鞏固新知
為了使學(xué)生達(dá)到對(duì)知識(shí)的深化理解,從而達(dá)到鞏固提高的效果,我特地設(shè)計(jì)了一組即時(shí)訓(xùn)練題,把課本的習(xí)題熔入即時(shí)訓(xùn)練題中,通過學(xué)生的觀察嘗試,討論研究,教師引導(dǎo)來鞏固新知識(shí)。
多媒體課件展示
(鞏固練習(xí):)
(口答)下列函數(shù)關(guān)系中,X均表示自變量,那么哪些是反比例函數(shù)?每一個(gè)反比例函數(shù)的K的值是多少?
Y=5/X Y=0.4/X Y=X/2 XY=2
5)Y=-1/X(給學(xué)困生發(fā)表見解的機(jī)會(huì),激發(fā)他們的學(xué)習(xí)興趣)
學(xué)生回答后教師給出正確答案。
反比例函數(shù)課件(篇4)
教學(xué)目標(biāo)
(一)教學(xué)知識(shí)點(diǎn)
1、從現(xiàn)實(shí)情境和已有的知識(shí)經(jīng)驗(yàn)出發(fā),討論兩個(gè)變量之間的相似關(guān)系,加深對(duì)函數(shù)概念的理解。
2、經(jīng)歷抽象反比例函數(shù)概念的過程,領(lǐng)會(huì)反比例函數(shù)的意義,理解反比例函數(shù)的概念。
(二)能力訓(xùn)練要求
結(jié)合具體情境體會(huì)反比例函數(shù)的意義,能根據(jù)已知條件確定反比例函數(shù)表達(dá)式。
(三)情感與價(jià)值觀要求
結(jié)合實(shí)例引導(dǎo)學(xué)生了解所討論的函數(shù)的表達(dá)形式,形成反比例函數(shù)概念的具體形象,是從感性認(rèn)識(shí)到理性認(rèn)識(shí)的轉(zhuǎn)化過程,發(fā)展學(xué)生的思維;同時(shí)體驗(yàn)數(shù)學(xué)活動(dòng)與人類生活的密切聯(lián)系及對(duì)人類歷史發(fā)展的作用。
教學(xué)重點(diǎn)
經(jīng)歷抽象反比例函數(shù)概念的過程,領(lǐng)會(huì)反比例函數(shù)的意義,理解反比例函數(shù)的概念。
教學(xué)難點(diǎn)
領(lǐng)會(huì)反比例函數(shù)的意義,理解反比例函數(shù)的概念。
教學(xué)方法
教師引導(dǎo)學(xué)生進(jìn)行歸納。
教具準(zhǔn)備
投影片兩張
第一張:(記作§5.1A)
第二張:(記作§5.1B)
教學(xué)過程
Ⅰ。創(chuàng)設(shè)問題情境,引入新課
[師]我們?cè)谇懊鎸W(xué)過一次函數(shù)和正比例函數(shù),知道一次函數(shù)的表達(dá)式為y=kx+b.其中k,b為常數(shù)且k≠0,正比例函數(shù)的表達(dá)式為y=kx,其中k為不為零的常數(shù)。但是在現(xiàn)實(shí)生活中,并不是只有這兩種類型的表達(dá)式。如從A地到B地的路程為1200km,某人開車要從A地到B地,汽車的速度v(km/h)和時(shí)間t(h)之間的關(guān)系式為vt=1200,則t= 中t和v之間的關(guān)系式肯定不是正比例函數(shù)和一次函數(shù)的關(guān)系式,那么它們之間的關(guān)系式究竟是什么關(guān)系式呢?這就是本節(jié)課我們要揭開的奧秘。
反比例函數(shù)課件(篇5)
教學(xué)目標(biāo)?:
1、理解反比例函數(shù),并能從實(shí)際問題中抽象出反比例關(guān)系的函數(shù)解析式;
2、會(huì)畫出反比例函數(shù)的圖象,并結(jié)合圖象分析總結(jié)出反比例函數(shù)的性質(zhì);
3、滲透數(shù)形結(jié)合的數(shù)學(xué)思想及普遍聯(lián)系的辨證唯物主義思想;
4、體會(huì)數(shù)學(xué)從實(shí)踐中來又到實(shí)際中去的研究、應(yīng)用過程;
5、培養(yǎng)學(xué)生的觀察能力,及數(shù)學(xué)地發(fā)現(xiàn)問題,解決問題的能力.
教學(xué)重點(diǎn):
結(jié)合圖象分析總結(jié)出反比例函數(shù)的性質(zhì);
即vt=S(S是常數(shù));
從函數(shù)的觀點(diǎn)看,在運(yùn)動(dòng)變化的過程中,有兩個(gè)變量可以分別看成自變量與函數(shù),寫成:
一般地,函數(shù) (k是常數(shù), )叫做反比例函數(shù).
如上例,當(dāng)路程S是常數(shù)時(shí),時(shí)間t就是v的反比例函數(shù).當(dāng)矩形面積S是常數(shù)時(shí),長a是寬b的反比例函數(shù).
在現(xiàn)實(shí)生活中,也有許多反比例關(guān)系的例子.可以組織學(xué)生進(jìn)行討論.下面的例子僅供
1
說明:由于學(xué)生第一次接觸反比例函數(shù),無法推測出它的大致圖象.取點(diǎn)的時(shí)候最好多取幾個(gè),正負(fù)可以對(duì)稱著取分別畫點(diǎn)描圖
一般地反比例函數(shù) (k是常數(shù), )的圖象由兩條曲線組成,叫做雙曲線.
前面學(xué)習(xí)了三類基本的初等函數(shù),有了一定的基礎(chǔ),這里可視學(xué)生的程度或展開全面的討論,或在老師的引導(dǎo)下完成知識(shí)的學(xué)習(xí).
顯示這兩個(gè)函數(shù)的圖象,提出問題:你能從圖象上發(fā)現(xiàn)什么有關(guān)反比例函數(shù)的性質(zhì)呢?并能從解析式或列表中得到論證.(下列答案僅供參考)
(1) 的圖象在第一、三象限.可以擴(kuò)展到k >0時(shí)的情形,即k>0時(shí),雙曲線兩支各在第一和第三象限.從解析式中,也可以得出這個(gè)結(jié)論:xy=k,即x與y同號(hào),因此,圖象在第一、三象限.
的討論與此類似.
抓住機(jī)會(huì),說明數(shù)與形的統(tǒng)一,也滲透了數(shù)形結(jié)合的數(shù)學(xué)思想方法.體現(xiàn)了由特殊到一般的研究過程.
(2)函數(shù) 的圖象,在每一個(gè)象限內(nèi),y隨x的增大而減??;
從圖象中可以看出,當(dāng)x從左向右變化時(shí),圖象呈下坡趨勢.從列表中也可以看出這樣的變化趨勢.有理數(shù)除法說明了同樣的道理,被除數(shù)一定時(shí),若除數(shù)大于零,除數(shù)越大,商越小;若除數(shù)小于零,同樣是除數(shù)越大,商越小.由此可歸納出,當(dāng)k>0時(shí),函數(shù) 的圖象,在每一個(gè)象限內(nèi),y隨x的增大而減小.
同樣可以推出 的圖象的性質(zhì).
(3)函數(shù) 的圖象不經(jīng)過原點(diǎn),且不與x軸、y軸交.從解析式中也可以看出, .如果x取值越來越大時(shí),y的值越來越小,趨近于零;如果x取負(fù)值且越來越小時(shí),y的值也越來越趨近于零.因此,呈現(xiàn)的是雙曲線的樣子.同理,抽象出 圖象的性質(zhì).
函數(shù) 的圖象性質(zhì)的討論與次類似.
4、小結(jié):
本節(jié)課我們學(xué)習(xí)了反比例函數(shù)的概念及其圖象的性質(zhì).大家展開了充分的討論,對(duì)函數(shù)的概念,函數(shù)的圖象的性質(zhì)有了進(jìn)一步的認(rèn)識(shí).數(shù)學(xué)學(xué)習(xí)要求我們要深刻地理解,找出事物間的普遍聯(lián)系和發(fā)展規(guī)律,能數(shù)學(xué)地發(fā)現(xiàn)問題,并能運(yùn)用已有的數(shù)學(xué)知識(shí),給以一定的解釋.即數(shù)學(xué)是世界的一個(gè)部分,同時(shí)又隱藏在世界中.
1.使學(xué)生了解反比例函數(shù)的概念;
2.使學(xué)生能夠根據(jù)問題中的條件確定反比例函數(shù)的解析式;
3.使學(xué)生理解反比例函數(shù)的性質(zhì),會(huì)畫出它們的圖像,以及根據(jù)圖像指出函數(shù)值隨自變量的增加或減小而變化的情況;
4.會(huì)用待定系數(shù)法確定反比例函數(shù)的解析式.
1.培養(yǎng)學(xué)生的作圖、觀察、分析、總結(jié)的能力;
2.向?qū)W生滲透數(shù)形結(jié)合的教學(xué)思想方法.
1.向?qū)W生滲透數(shù)學(xué)來源于實(shí)踐又反過來作用于實(shí)踐的觀點(diǎn);
2.使學(xué)生體會(huì)事物是有規(guī)律地變化著的觀點(diǎn).
通過反比例函數(shù)圖像的研究,滲透反映其性質(zhì)的圖像的直觀形象美,激發(fā)學(xué)生的興趣,也培養(yǎng)學(xué)生積極探求知識(shí)的能力.
學(xué)生學(xué)習(xí)反比例函數(shù)要與學(xué)習(xí)其他函數(shù)一樣,要善于數(shù)形結(jié)合,由解析式聯(lián)想到圖像的位置及其性質(zhì),由圖像和性質(zhì)聯(lián)想比例系數(shù)k的符號(hào).
1.教學(xué)重點(diǎn):反比例的概念、圖像、性質(zhì)以及用待定系數(shù)法確定反比例函數(shù)的解析式.因?yàn)橐芯糠幢壤瘮?shù)就必須明確反比例函數(shù)的上述問題.
2.教學(xué)難點(diǎn)?:畫反比例函數(shù)的圖像.因?yàn)榉幢壤瘮?shù)的圖像有兩個(gè)分支,而且這兩個(gè)分支的變化趨勢又不同,學(xué)生初次接觸,一定會(huì)感到困難.
3.教學(xué)疑點(diǎn):(1)反比例函數(shù)為何與x軸,y軸無交點(diǎn);(2)反比例函數(shù)的圖像只能說在第一、三象限或第二、四象限,而不能說經(jīng)過第幾象限,增減性也要說明在第幾象限(或說在它的每一個(gè)象限內(nèi)).
4.解決辦法:(1) 中隱含條件是 或 ;(2)雙曲線的兩個(gè)分支是斷開的,研究函數(shù)的增減性時(shí),要將兩個(gè)分支分別討論,不能一概而論.
由學(xué)生先考慮及討論一下.
答:小學(xué)學(xué)過:兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對(duì)應(yīng)的兩個(gè)數(shù)的積一定,這兩種量就叫做反比例的量,它們的關(guān)系叫做反比例關(guān)系.
1. 當(dāng)路程s一定時(shí),時(shí)間t與速度v成反比例;
2.當(dāng)矩形面積S一定時(shí),長a與寬b成反比例;
它們分別可以寫成 (s是常數(shù)), (S是常數(shù))寫在黑板上,用以得出反比例函數(shù)的概念:(板書)
一般地,函數(shù) (k是常數(shù), )叫做反比例函數(shù).
即在上面的例子中,當(dāng)路程s是常數(shù)時(shí),時(shí)間t就是速度v的反比例函數(shù),能否說:速度v是時(shí)間t的反比例函數(shù)呢?
通過這個(gè)問題,使學(xué)生進(jìn)一步理解反比例函數(shù)的概念,只要滿足 (k是常數(shù), )就可以.因此可以說速度v是時(shí)間t的反比例函數(shù),因?yàn)?(s是常量).對(duì)第2個(gè)實(shí)例也一樣.
根據(jù)前面學(xué)習(xí)特殊函數(shù)的經(jīng)驗(yàn),研究完函數(shù)的概念,跟著要研究的是什么?
通過這個(gè)問題,使學(xué)生對(duì)課本上給出的知識(shí)的發(fā)生、發(fā)展過程有一個(gè)明確的認(rèn)識(shí),以后
學(xué)生要研究其他函數(shù),也可以按照這種方式來研究.
下面,我們就來看桓隼?猓海ǔ鍪凈玫疲?/P>
例1? 畫出反比例函數(shù) 與 的圖像.
2.在選值時(shí),你認(rèn)為要注意什么問題?
答:(1)由于函數(shù)圖像的特點(diǎn)還不清楚,多選幾個(gè)點(diǎn)較好;
(2)不能選 ,因?yàn)?時(shí)函數(shù)無意義;
(3)選整數(shù)較好計(jì)算和描點(diǎn).
這個(gè)問題中最核心的一點(diǎn)是關(guān)于 的問題,提醒學(xué)生注意.
3.你能不能自己完成這道題呢?
學(xué)生在練習(xí)本上列表、描點(diǎn)、連線,教師在黑板上板演,到連線時(shí)可暫停,讓學(xué)生先連完線之后,找一名同學(xué)上黑板連線,然后就這名同學(xué)的連線加以評(píng)價(jià)、總結(jié):
注意:(1)一般地,反比例函數(shù) 的圖像由兩條曲線組成,叫做雙曲線;
(2)這兩條曲線不相交;
(3)這兩條曲線無限延伸,無限靠近x軸和y軸,但永不會(huì)與x軸和y軸相交.
通過這個(gè)問題既可加深學(xué)生對(duì)反比例函數(shù)圖像的記憶,又可培養(yǎng)學(xué)生思維的靈活性和深刻性.
再讓學(xué)生觀察黑板上的圖,提問:
1.當(dāng) 時(shí),雙曲線的兩個(gè)分支各在哪個(gè)象限?在每個(gè)象限內(nèi),y隨x的增大怎樣變化?
2.當(dāng) 時(shí),雙曲線的兩個(gè)分支各在哪個(gè)象限?在每個(gè)象限內(nèi),y隨x的增大怎樣變化?
這兩個(gè)問題由學(xué)生討論總結(jié)之后回答,教師板書:
對(duì)于雙曲線(1)當(dāng) :(1)當(dāng) 時(shí),雙曲線的兩分支位于一、三象限,y隨x的增大而減少;(2)當(dāng) 時(shí),雙曲線的兩分支位于二、四象限,y隨x的增大而增大.
3.反比例函數(shù)的這一性質(zhì)與正比例函數(shù)的性質(zhì)有何異同?
通過這個(gè)問題使學(xué)生能把學(xué)過的相關(guān)知識(shí)有機(jī)地串聯(lián)起來,便于記憶和應(yīng)用.
練習(xí)二:教材P129中2由學(xué)生在練習(xí)本上完成,教師巡回指導(dǎo).P130中2、3填在書上
上面,我們討論了反比例函數(shù)的概念、圖像和性質(zhì),下面我們?cè)賮砜匆粋€(gè)不同類型的例題:(出示幻燈)
例2已知y與 成反比例,并且當(dāng) 時(shí), ,求 時(shí),y的`值.
用提問的方式對(duì)此題加以分析:
(1)y與 成反比例是什么含義?
由學(xué)生討論這一問題,最后歸結(jié)為根據(jù)反比例函數(shù)的概念,這句話說明了: .
(2)根據(jù)這個(gè)式子,能否求出當(dāng) 時(shí),y的值?
(3)要想求出y的值,必須先知道哪個(gè)量呢?
(4)怎樣才能確定k的值?用什么條件?
答:用待定系數(shù)法,把 時(shí) 代入 ,求出k的值.
(5)你能否自己完成這道例題:
由一名同學(xué)板演,其他同學(xué)在練習(xí)本上完成.
例3?? 已知: , 與x成正比例, 與x成反比例,當(dāng) 時(shí), 時(shí), ,求y與x的解析式.
要用x分別把 , 表示出來得 ,
要注意 不能寫成k,∴
2.反比例函數(shù)的圖像是什么樣的?
3.反比例函數(shù) 的性質(zhì)是什么?
4.命題方向及題型設(shè)置,反比例函數(shù)也是中考命題的主要考點(diǎn),其圖像和性質(zhì),以及其函數(shù)解析式的確定,常以填空題、選擇題出現(xiàn),在低檔題中,近兩年各省、市的中考試卷中出現(xiàn)不少將反比例函數(shù)與一次函數(shù)、幾何知識(shí)、三角知識(shí)等綜合編擬的解答題,豐富了壓軸題的形式和內(nèi)容.
已知:如圖,一次函數(shù)的圖像經(jīng)過第一、二、三象限,且與反比例函數(shù)的圖像交于A、B兩點(diǎn),與y軸交于點(diǎn)C,與x軸交于點(diǎn)D。 。
(1)求反比例函數(shù)的解析式;
(2)設(shè)點(diǎn)A的橫坐標(biāo)為m, 的面積為S,求S與m的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
(3)當(dāng) 的面積等于 時(shí),試判斷過A、B兩點(diǎn)的拋物線在x軸上截得的線段長能否等于3。如果能,求此時(shí)拋物線的解析式;如果不能,請(qǐng)說明理由。
又 ,
。
∵? 點(diǎn)B在反比例函數(shù)的圖像上,
。
∴? 反比例函數(shù)的解析式為 。
(2)設(shè)直線AB的解析式為 。
由點(diǎn)A在第一象限,得 。
又由點(diǎn)A在函數(shù) 的圖像上,可求得點(diǎn)A的縱坐標(biāo)為 。
∵? 點(diǎn)B(-3,-1),點(diǎn) ,
∴? 直線AB的解析式為 。
令? 。
由已知,直線經(jīng)過第一、二、三象限,
∴? 。
即? 。
(3)過A、B兩點(diǎn)的拋物線在x軸上截得的線段長不能等于3。
解得 。
經(jīng)檢驗(yàn), 都是這個(gè)方程的根。
,
∴? 不合題意,舍去。
∴? 點(diǎn)A(1,3)。
設(shè)過A(1,3)、B(-3,-1)兩點(diǎn)的拋物線的解析式為 。
即? 。
令
則? 。
即? 。
整理,得? 。
,
∴? 方程 無實(shí)數(shù)根。
因此過A、B兩點(diǎn)的拋物線在x軸上截得的線段長不能等于3。
反比例函數(shù)課件(篇6)
教學(xué)目標(biāo):
1、知識(shí)與能力目標(biāo):
(1)復(fù)習(xí)反比例函數(shù)概念、圖象與性質(zhì)的知識(shí)點(diǎn),通過相應(yīng)知識(shí)點(diǎn)的配套練習(xí)加深學(xué)生對(duì)反比例函數(shù)本章知識(shí)的理解與掌握。
(2)能夠根據(jù)問題中的條件確定反比例函數(shù)的解析式,會(huì)畫出它的圖象,并根據(jù)問題確定自變量的取值范圍及增減性。
2、過程與方法目標(biāo):通過對(duì)相關(guān)問題的變式探究,正確運(yùn)用反比例函數(shù)知識(shí),進(jìn)一步體驗(yàn)形成解決問題的一些基本策略,發(fā)展實(shí)踐能力和創(chuàng)新精神。
3、情感態(tài)度與價(jià)值觀目標(biāo):創(chuàng)設(shè)教學(xué)情景,鼓勵(lì)學(xué)生主動(dòng)參與反比例函數(shù)復(fù)習(xí)活動(dòng),激發(fā)學(xué)習(xí)興趣,獲得問題解決后的樂趣,繼續(xù)滲透數(shù)形結(jié)合等數(shù)學(xué)思想方法。
教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):進(jìn)一步掌握反比例函數(shù)的概念、圖像、性質(zhì)并正確運(yùn)用。
難點(diǎn):反比例函數(shù)性質(zhì)的靈活運(yùn)用。數(shù)形結(jié)合思想的應(yīng)用。
教學(xué)方法:
探究——討論——交流——總結(jié)
教學(xué)媒體:
多媒體課件。
教學(xué)過程:
一、知識(shí)梳理:
同學(xué)們,今天我們就來復(fù)習(xí)反比例函數(shù),通過今天的復(fù)習(xí)課,希望大家加深對(duì)反比例函數(shù)知識(shí)的理解和運(yùn)用首先請(qǐng)同學(xué)們回憶一下,對(duì)反比例函數(shù)你了解那知識(shí)?
課件展示:
1、反比例函數(shù)的意義
2、反比例函數(shù)的圖象與性質(zhì)
3、利用反比例函數(shù)解決實(shí)際問題
二、合作交流、解讀探究
(一)與反比例函數(shù)的意義有關(guān)的問題
課件展示:
憶一憶:什么是反比例函數(shù)?
要求學(xué)生說出反比例函數(shù)的意義及其等價(jià)形式
鞏固練習(xí):課件展示:
1、下列函數(shù)中,哪些是反比例函數(shù)?
(1)y= 5/x(2)y=x/4+2 (3)y= -5/3x(4)y=-7 x的-1次方(5)y=1/x+4
2、寫出下列問題中的函數(shù)關(guān)系式,并指出它們是什 么函數(shù)?
⑴當(dāng)路程s一定時(shí),時(shí)間t與平均速度v之間的關(guān)系。
⑵質(zhì)量為m(kg)的氣體,其體積v(m3)與密度ρ(kg/m3)之間的關(guān)系。
3、若y= 為反比例函數(shù),則m=______
4、若y=(m-1) 為反比例函數(shù),則m=______ 。
(二)運(yùn)用反比例函數(shù)的圖象與性質(zhì)解決問題
1、反比例函數(shù)的圖象是
2、圖象性質(zhì)見下表(課件展示):
3、做一做(課件展示)
(1)函數(shù)y= 的圖象在第______象限,當(dāng)x
(2)雙曲線y= 經(jīng)過點(diǎn) (-3 ,______ )。
(3)函數(shù)y= 的圖象在二、四象限內(nèi),m的取值范圍是______ 。
(4)若雙曲線經(jīng)過點(diǎn)(-3 ,2),則其解析式是______.
(5)已知點(diǎn)A(-2,y1),B(-1,y2) C(4,y3)都在反比例函數(shù)y= 的圖象上,則y1、y2 與y3的大小關(guān)系(從大到?。開___________ 。
(三)綜合運(yùn)用(課件展示)
一次函數(shù)的圖像y=ax+b與反比例函數(shù)y= 交與M(2,m)、N(-1,-4)兩點(diǎn)。(1)求反比例函數(shù)和一次函數(shù)的解析式;(2)根據(jù)圖像寫出反比例函數(shù)的值大于一次函數(shù)的值的X 的取值范圍
三、隨堂練習(xí)
見課件
四、小結(jié)
1、反比例函數(shù)的意義
2、反比例函數(shù)的圖象與性質(zhì)
五、作業(yè):
配套練習(xí)22頁21、22題
反比例函數(shù)課件(篇7)
反比例函數(shù)的圖像和性質(zhì)
反比例函數(shù)是一類非常重要的函數(shù),它在數(shù)學(xué)和實(shí)際生活中都有廣泛的應(yīng)用。反比例函數(shù)是一種特殊的函數(shù),它是一種比例關(guān)系的反向反映。反比例函數(shù)的圖像特點(diǎn)是它的圖像是一條雙曲線。在本文中,我們將介紹反比例函數(shù)的圖像和性質(zhì),以深入了解反比例函數(shù)的本質(zhì)。
一、反比例函數(shù)的定義和性質(zhì)
反比例函數(shù)通常被定義為:y = k/x,其中k是一個(gè)常數(shù)。這個(gè)函數(shù)的重要性在于它表示一種反比例關(guān)系。反比例關(guān)系是一種數(shù)學(xué)關(guān)系,它表示兩個(gè)變量的相對(duì)變化。在反比例關(guān)系中,當(dāng)一個(gè)變量變大時(shí),另一個(gè)變量會(huì)減少,反之亦然。反比例函數(shù)是兩個(gè)變量之間的比例關(guān)系反轉(zhuǎn)。
反比例函數(shù)是一種特殊的函數(shù),它有以下性質(zhì):
1. 反比例函數(shù)的定義域?yàn)槌龜?shù)不為零的實(shí)數(shù)。
2. 反比例函數(shù)的值域?yàn)閷?shí)數(shù)。
3. 反比例函數(shù)在y軸上是不連續(xù)的。
4. 反比例函數(shù)在x軸上是漸近線。
5. 反比例函數(shù)是對(duì)稱的。
二、反比例函數(shù)的圖像
反比例函數(shù)的圖像是一條雙曲線。這個(gè)雙曲線分為兩個(gè)分支,分別圍繞著x軸和y軸展開。這個(gè)雙曲線的兩個(gè)極點(diǎn)分別在x軸和y軸上。這個(gè)雙曲線與x軸、y軸和兩個(gè)漸近線相交。
反比例函數(shù)的圖像具有如下幾個(gè)特點(diǎn):
1. 通過原點(diǎn)。因?yàn)楫?dāng)x=0時(shí),y=0,所以反比例函數(shù)的圖像一定通過原點(diǎn)。
2. 分為兩個(gè)分支。反比例函數(shù)的圖像有兩個(gè)分支,分別位于x軸的正負(fù)兩側(cè)。這兩個(gè)分支對(duì)稱于y軸。
3. 極點(diǎn)。反比例函數(shù)的圖像的極點(diǎn)位于x軸和y軸上。極點(diǎn)是函數(shù)的定義區(qū)間的兩個(gè)端點(diǎn)x=0和y=0。
4. 表示反比例關(guān)系。反比例函數(shù)的圖像反映了兩個(gè)變量的反比例關(guān)系,即當(dāng)一個(gè)變量增加,另一個(gè)變量減少。
5. 無零點(diǎn)。反比例函數(shù)的圖像不穿過x軸,也就是說,反比例函數(shù)沒有零點(diǎn)。
三、反比例函數(shù)的應(yīng)用
反比例函數(shù)廣泛應(yīng)用于實(shí)際生活中的許多問題。以下是反比例函數(shù)的一些典型應(yīng)用:
1. 電阻和電流的關(guān)系。電阻和電流之間通常是一個(gè)反比例關(guān)系。這個(gè)反比例關(guān)系可以用反比例函數(shù)來表示。反比例函數(shù)可以幫助我們更好地理解電路中電流和電阻之間的關(guān)系。
2. 壓力和面積的關(guān)系。在流體動(dòng)力學(xué)中,壓力和面積之間通常是一個(gè)反比例關(guān)系。這個(gè)反比例關(guān)系可以用反比例函數(shù)來表示。反比例函數(shù)可以幫助我們更好地理解流體動(dòng)力學(xué)中壓力和面積之間的關(guān)系。
3. 速度和時(shí)間的關(guān)系。在運(yùn)動(dòng)學(xué)中,速度和時(shí)間之間通常是一個(gè)反比例關(guān)系。這個(gè)反比例關(guān)系可以用反比例函數(shù)來表示。反比例函數(shù)可以幫助我們更好地理解運(yùn)動(dòng)學(xué)中速度和時(shí)間之間的關(guān)系。
4. 人口和資源的關(guān)系。在人口學(xué)和資源經(jīng)濟(jì)學(xué)中,人口數(shù)量和資源數(shù)量之間通常是一個(gè)反比例關(guān)系。這個(gè)反比例關(guān)系可以用反比例函數(shù)來表示。反比例函數(shù)可以幫助我們更好地理解人口學(xué)和資源經(jīng)濟(jì)學(xué)中人口數(shù)量和資源數(shù)量之間的關(guān)系。
四、總結(jié)
反比例函數(shù)是一個(gè)非常重要的數(shù)學(xué)工具,它在實(shí)際生活和學(xué)術(shù)研究中都有廣泛的應(yīng)用。反比例函數(shù)的圖像特點(diǎn)是它的圖像是一條雙曲線。反比例函數(shù)的主要性質(zhì)包括定義域、值域、y軸不連續(xù)性、x軸漸近線和對(duì)稱性。反比例函數(shù)在許多領(lǐng)域有著廣泛的應(yīng)用,包括電路、流體動(dòng)力學(xué)、運(yùn)動(dòng)學(xué)和人口學(xué)和資源經(jīng)濟(jì)學(xué)。通過深入了解反比例函數(shù)的圖像和性質(zhì),我們可以更好地理解這個(gè)重要的函數(shù),從而更好地應(yīng)用它。
反比例函數(shù)課件(篇8)
一、教材分析:
本課時(shí)的內(nèi)容是在已經(jīng)學(xué)習(xí)了平面直角坐標(biāo)系和一次函數(shù)的基礎(chǔ)上,再一次進(jìn)入函數(shù)范疇,讓學(xué)生進(jìn)一步理解函數(shù)的內(nèi)涵,并感受到現(xiàn)實(shí)世界中存在各種函數(shù)。反比例函數(shù)的圖象與性質(zhì)是對(duì)正比例函數(shù)圖象與性質(zhì)的復(fù)習(xí)和對(duì)比,也是以后學(xué)習(xí)二次函數(shù)的基礎(chǔ)。本課時(shí)的學(xué)習(xí)是學(xué)生對(duì)函數(shù)的圖象與性質(zhì)一個(gè)再知的過程,由于初二學(xué)生是首次接觸雙曲線這種函數(shù)圖象,所以教學(xué)時(shí)應(yīng)注意引導(dǎo)學(xué)生抓住反比例函數(shù)圖象的特征,讓學(xué)生對(duì)反比例函數(shù)有一個(gè)形象和直觀的認(rèn)識(shí)。
二、教學(xué)目標(biāo)分析:
根據(jù)新課改“以學(xué)生為主體,激活課堂氣氛,充分調(diào)動(dòng)起學(xué)生參與教學(xué)過程”的精神。在教學(xué)設(shè)計(jì)上,我設(shè)想通過使用多媒體課件創(chuàng)設(shè)情境,在掌握反比例函數(shù)相關(guān)知識(shí)的同時(shí)激發(fā)學(xué)生的學(xué)習(xí)興趣和探究欲望,引導(dǎo)學(xué)生積極參與和主動(dòng)探索。
因此把教學(xué)目標(biāo)確定為:
(一)知士標(biāo):
1、使學(xué)生了解反比例函數(shù)的概念
2、使學(xué)生能夠根據(jù)問題中的條件確定反比例函數(shù)的解析式。
3、使學(xué)生理解反比例函數(shù)的性質(zhì),會(huì)畫出它們的圖象,以及根據(jù)圖象指出函數(shù)值隨自變量的增加或減少而變化的情況。
4、會(huì)用待定系數(shù)法確定反比例函數(shù)的解析式。
(二)能力目標(biāo):
培養(yǎng)學(xué)生的觀察能力,分析能力,立解決問題的能力。
(三)德育目標(biāo):
1、向?qū)W生滲透數(shù)學(xué)來源于實(shí)踐又反過去作用于實(shí)踐的觀點(diǎn)。
2、使學(xué)生體會(huì)事物是有規(guī)律地變化著的觀點(diǎn)。
(四)美育目標(biāo):
通過反比例函數(shù)圖象的研究,滲透反映其性質(zhì)的圖象的直觀形象美,激發(fā)學(xué)生的興趣,也培養(yǎng)了學(xué)生積極探索知識(shí)的能力。
三、教學(xué)重點(diǎn),難點(diǎn)。
(一)教學(xué)重點(diǎn):反比例的概念、圖象、性質(zhì),以及用待定系數(shù)法確定反比例函數(shù)的解析性。
(二)教學(xué)難點(diǎn):畫反比例函數(shù)的圖象。
(三)解決方法
(1)由分組討論,積極思考,分析問題,發(fā)現(xiàn)結(jié)論。
(2)訓(xùn)練,研究,總結(jié)
因?yàn)榉幢壤瘮?shù)的圖象有兩個(gè)分支,而且這兩個(gè)分支的變化趨勢又不同,學(xué)生初次接觸,一定會(huì)感到困難。為了突出重點(diǎn)、突破難點(diǎn)。我設(shè)計(jì)并制作了能動(dòng)態(tài)演示函數(shù)圖象的多媒體課件。讓學(xué)生親手操作,積極參與并主動(dòng)探索函數(shù)性質(zhì),幫助學(xué)生直觀地理解反比例函數(shù)的性質(zhì)。
四、教學(xué)方法:
初中學(xué)生好動(dòng)、好奇、好表現(xiàn),抓住學(xué)生特點(diǎn),積極采用形象生動(dòng)、形式多樣的教學(xué)方法和學(xué)生廣泛的`、積極主動(dòng)參與的學(xué)習(xí)方式,定能激發(fā)學(xué)生興趣,有效地培養(yǎng)學(xué)生能力,促進(jìn)學(xué)生個(gè)性發(fā)展。生理上,青少年好動(dòng),注意力易分散,愛發(fā)表見解,希望得到老師的表揚(yáng),所以在教學(xué)中應(yīng)抓住學(xué)生這一生理特點(diǎn),一方面要運(yùn)用直觀生動(dòng)的形象,引發(fā)學(xué)生的興趣,使他們的注意力始終集中在課堂上;另一方面要?jiǎng)?chuàng)造條件和機(jī)會(huì),讓學(xué)生發(fā)表見解,發(fā)揮學(xué)生學(xué)習(xí)的主動(dòng)性。鑒于教材和初二學(xué)生的年齡特點(diǎn)、心理特征和認(rèn)知水平,設(shè)想采用問題教學(xué)法和對(duì)比教學(xué)法,用層層推進(jìn)的提問啟發(fā)學(xué)生深入思考,主動(dòng)探究,主動(dòng)獲取知識(shí)。同時(shí)注意與學(xué)生已有知識(shí)的聯(lián)系,減少學(xué)生對(duì)新概念接受的困難,給學(xué)生充分的自主探索時(shí)間。通過教師的引導(dǎo),啟發(fā)調(diào)動(dòng)學(xué)生的積極性,讓學(xué)生在課堂上多活動(dòng)、多觀察,主動(dòng)參與到整個(gè)教學(xué)活動(dòng)中來,組織學(xué)生參與“探究。
4、反比例函數(shù)及其圖象說課稿
今天我說課的內(nèi)容是八年級(jí)數(shù)學(xué)下冊(cè)第十七章反比例函數(shù)及其圖象。
反比例函數(shù)課件(篇9)
反比例函數(shù)是高中數(shù)學(xué)中的一個(gè)重要概念,它是由一個(gè)定值與變量的乘積所組成的函數(shù)。反比例函數(shù)的圖像和性質(zhì)是理解和掌握反比例函數(shù)的關(guān)鍵。
一、反比例函數(shù)的定義
反比例函數(shù)是指當(dāng)自變量 x 取不同值時(shí),函數(shù)值 y 與 x 呈倒比例關(guān)系的函數(shù),即 y = k/x。其中,k 為常數(shù),被稱為比例常數(shù)。反比例函數(shù)通常用字母 y 或 f(x) 表示。
二、反比例函數(shù)的圖像
反比例函數(shù) y = k/x 的圖像是一條雙曲線,其圖像在 x 軸和 y 軸上的漸近線分別為 y = 0 和 x = 0。當(dāng) x 趨近于 0 時(shí),y 的值趨近于正無窮大或負(fù)無窮大;當(dāng) y 趨近于 0 時(shí),x 的值趨近于正無窮大或負(fù)無窮大。
三、反比例函數(shù)的性質(zhì)
1. 定義域和值域
反比例函數(shù)的定義域?yàn)?x ≠ 0,值域?yàn)?y ≠ 0。
2. 單調(diào)性
反比例函數(shù)在定義域上是單調(diào)的。當(dāng) x1 y2。反比例函數(shù)是一個(gè)下凸函數(shù),也就是說,在兩個(gè)端點(diǎn)處函數(shù)的導(dǎo)數(shù)等于正無窮大。
3. 零點(diǎn)
反比例函數(shù)沒有零點(diǎn)。因?yàn)楫?dāng) x ≠ 0 時(shí),y ≠ 0。
4. 對(duì)稱軸
反比例函數(shù)的圖像關(guān)于一條傾斜的直線 y = x 對(duì)稱。
5. 變換
反比例函數(shù)的圖像可以通過平移、拉伸或翻轉(zhuǎn)等變換來得到。
四、反比例函數(shù)的應(yīng)用
反比例函數(shù)在實(shí)際生活中有著廣泛的應(yīng)用。例如,電子元件的電阻值和電流的關(guān)系、探測器的靈敏度和距離的關(guān)系、貸款的利率和貸款金額的關(guān)系等。在這些應(yīng)用中,反比例函數(shù)的圖像和性質(zhì)是非常重要的,因?yàn)樗鼈儙椭覀兏玫乩斫膺@些問題,并提供了解決問題的方法。
總之,反比例函數(shù)的圖像和性質(zhì)是高中數(shù)學(xué)中的重要內(nèi)容,它們是理解和掌握反比例函數(shù)的關(guān)鍵。通過學(xué)習(xí)反比例函數(shù)的圖像和性質(zhì),我們可以更好地掌握反比例函數(shù)的應(yīng)用,為實(shí)際生活中的問題提供解決方案。
反比例函數(shù)課件(篇10)
反比例函數(shù)的圖像和性質(zhì)
反比例函數(shù)是數(shù)學(xué)中一個(gè)常見的函數(shù)類型,它在實(shí)際生活和工作中也得到了廣泛應(yīng)用。在學(xué)習(xí)和掌握反比例函數(shù)時(shí),為了更好地理解和應(yīng)用,需要掌握其圖像和性質(zhì)。本文將詳細(xì)介紹反比例函數(shù)的圖像和性質(zhì)。
一、反比例函數(shù)的定義及表達(dá)式
反比例函數(shù)是由兩個(gè)變量的乘積等于一個(gè)常數(shù)來定義的函數(shù)。其一般表達(dá)式為: y = k/x (k ≠ 0)。
其中,x 和 y 是函數(shù)的自變量和因變量,k 是常數(shù)。
二、反比例函數(shù)的圖像
反比例函數(shù)的圖像是一條雙曲線。其特點(diǎn)是:當(dāng) x 趨近于正無窮或負(fù)無窮時(shí),y 趨近于 0;當(dāng) x 靠近 0 時(shí),y 趨近于正或負(fù)無窮。
拿 y = 3/x 的反比例函數(shù)為例,它的圖像如下所示:
[圖像]
可以看到,當(dāng) x 靠近 0 時(shí),y 趨近于正或負(fù)無窮,而當(dāng) x 趨近正無窮或負(fù)無窮時(shí),y 趨近于 0。這也是反比例函數(shù)圖像的一個(gè)特點(diǎn)。
三、反比例函數(shù)的性質(zhì)
1. 零點(diǎn)(x 軸交點(diǎn))
反比例函數(shù)的 x 軸上的零點(diǎn)為 k/y。也就是說,當(dāng) y = 0 時(shí),x = ±∞。因?yàn)楫?dāng) y = 0 時(shí),x 無限大或無限小,與反比例函數(shù)圖像的特點(diǎn)相符。
2. 對(duì)稱軸
反比例函數(shù)的對(duì)稱軸為 y = x。這是因?yàn)榉幢壤瘮?shù)的定義是 y = k/x,即 x = k/y。將 x 和 y 互換位置,即可得到 y = k/x,即對(duì)稱軸為 y = x。
3. 單調(diào)性
反比例函數(shù)在自變量的正負(fù)兩側(cè)單調(diào)遞減。這是因?yàn)楫?dāng)自變量 x 增大時(shí),因變量 y 會(huì)減小。以 y = 3/x 為例,可以看到,當(dāng) x 變大時(shí),y 會(huì)變小。
4. 漸進(jìn)線
反比例函數(shù)的漸進(jìn)線有兩條,分別是 x 軸和 y 軸。當(dāng) x 趨近于正無窮或負(fù)無窮時(shí),函數(shù)值趨近于 0,即與 x 軸趨近。當(dāng) y 趨近于正無窮或負(fù)無窮時(shí),函數(shù)值趨近于 0,即與 y 軸趨近。
5. 消減率
反比例函數(shù)的消減率為反比例常數(shù) k。消減率定義為 y 的變化量與 x 的變化量之比,即 dy/dx = -k/x^2。
在應(yīng)用反比例函數(shù)時(shí),可以利用其性質(zhì)來解決問題,例如根據(jù)消減率求解問題、利用漸進(jìn)線來近似計(jì)算函數(shù)值等。
總之,反比例函數(shù)是數(shù)學(xué)中一個(gè)重要的函數(shù)類型。在學(xué)習(xí)和應(yīng)用中,掌握其圖像和性質(zhì)是非常重要的。希望本文能夠?qū)ψx者更好地理解和掌握反比例函數(shù)提供幫助。
反比例函數(shù)課件(篇11)
1、知識(shí)與能力目標(biāo):
(1)復(fù)習(xí)反比例函數(shù)概念、圖象與性質(zhì)的知識(shí)點(diǎn),通過相應(yīng)知識(shí)點(diǎn)的配套練習(xí)加深學(xué)生對(duì)反比例函數(shù)本章知識(shí)的理解與掌握。
(2)能夠根據(jù)問題中的條件確定反比例函數(shù)的解析式,會(huì)畫出它的圖象,并根據(jù)問題確定自變量的取值范圍及增減性。
2、過程與方法目標(biāo):通過對(duì)相關(guān)問題的變式探究,正確運(yùn)用反比例函數(shù)知識(shí),進(jìn)一步體驗(yàn)形成解決問題的一些基本策略,發(fā)展實(shí)踐能力和創(chuàng)新精神。
3、情感態(tài)度與價(jià)值觀目標(biāo):創(chuàng)設(shè)教學(xué)情景,鼓勵(lì)學(xué)生主動(dòng)參與反比例函數(shù)復(fù)習(xí)活動(dòng),激發(fā)學(xué)習(xí)興趣,獲得問題解決后的樂趣,繼續(xù)滲透數(shù)形結(jié)合等數(shù)學(xué)思想方法。
重點(diǎn):進(jìn)一步掌握反比例函數(shù)的概念、圖像、性質(zhì)并正確運(yùn)用。
難點(diǎn):反比例函數(shù)性質(zhì)的靈活運(yùn)用。數(shù)形結(jié)合思想的`應(yīng)用。
探究——討論——交流——總結(jié)
多媒體課件。
同學(xué)們,今天我們就來復(fù)習(xí)反比例函數(shù),通過今天的復(fù)習(xí)課,希望大家加深對(duì)反比例函數(shù)知識(shí)的理解和運(yùn)用首先請(qǐng)同學(xué)們回憶一下,對(duì)反比例函數(shù)你了解那知識(shí)?
課件展示:
1、反比例函數(shù)的意義
2、反比例函數(shù)的圖象與性質(zhì)
3、利用反比例函數(shù)解決實(shí)際問題
(一)與反比例函數(shù)的意義有關(guān)的問題
課件展示:
憶一憶:什么是反比例函數(shù)?
要求學(xué)生說出反比例函數(shù)的意義及其等價(jià)形式
鞏固練習(xí):課件展示:
1、下列函數(shù)中,哪些是反比例函數(shù)?
(1)y= 5/x(2)y=x/4+2 (3)y= -5/3x(4)y=-7 x的-1次方(5)y=1/x+4
2、寫出下列問題中的函數(shù)關(guān)系式,并指出它們是什么函數(shù)?
⑴當(dāng)路程s一定時(shí),時(shí)間t與平均速度v之間的關(guān)系。
⑵質(zhì)量為m(kg)的氣體,其體積v(m3)與密度ρ(kg/m3)之間的關(guān)系。
3、若y=為反比例函數(shù),則m=______
4、若y=(m-1)為反比例函數(shù),則m=______ 。
(二)運(yùn)用反比例函數(shù)的圖象與性質(zhì)解決問題
1、反比例函數(shù)的圖象是
2、圖象性質(zhì)見下表(課件展示):
3、做一做(課件展示)
(1)函數(shù)y=的圖象在第______象限,當(dāng)x
(2)雙曲線y=經(jīng)過點(diǎn)(-3,______)。
(3)函數(shù)y=的圖象在二、四象限內(nèi),m的取值范圍是______ 。
(4)若雙曲線經(jīng)過點(diǎn)(-3,2),則其解析式是______.
(5)已知點(diǎn)A(-2,y1),B(-1,y2) C(4,y3)都在反比例函數(shù)y=的圖象上,則y1、y2與y3的大小關(guān)系(從大到小)為____________ 。
(三)綜合運(yùn)用(課件展示)
一次函數(shù)的圖像y=ax+b與反比例函數(shù)y=交與M(2,m)、N(-1,-4)兩點(diǎn)。(1)求反比例函數(shù)和一次函數(shù)的解析式;(2)根據(jù)圖像寫出反比例函數(shù)的值大于一次函數(shù)的值的X的取值范圍
見課件
1、反比例函數(shù)的意義
2、反比例函數(shù)的圖象與性質(zhì)
配套練習(xí)22頁21、22題
反比例函數(shù)課件(篇12)
教學(xué)目標(biāo):
使學(xué)生對(duì)反比例函數(shù)和反比 例函數(shù)的圖象意義加深理解。
教學(xué)重點(diǎn):
反比例函數(shù) 的應(yīng)用
教學(xué)程序:
一、新授:
1、實(shí)例1:(1)用含S的代數(shù)式 表示P,P是 S的反比例函數(shù)嗎?為什么?
答:P=600s (s0),P 是S的反比例函數(shù)。
(2)、當(dāng)木板面積為0.2 m2時(shí),壓強(qiáng)是多少?
答:P=3000Pa
(3)、如果要求壓強(qiáng)不超過6000Pa,木板的面積至少 要多少?
答:至少0.lm2。
(4)、在直角坐標(biāo)系中,作出相應(yīng)的函數(shù) 圖象。
(5)、請(qǐng)利用圖象(2)和(3)作出直觀 解釋,并與同伴進(jìn)行交流。
二、做一做
1、(1)蓄電池的電 壓為定值,使用此電源時(shí),電流I(A)與電阻R()之間的函數(shù)關(guān)系如圖5-8 所示。
(2)蓄電池的電壓是多少?你以寫出這一函數(shù)的表達(dá)式嗎?
電壓U=36V , I=60k
2、完成下表,并 回答問題,如果以蓄電池為電源的用電器限制電流不得超過10A,那么用電器的可變電阻應(yīng)控制在什么范圍內(nèi)?
R() 3 4 5 6 7 8 9 10
I(A )
3、如圖5-9,正比例函數(shù)y=k1x的圖象與反比例函數(shù)y=60k 的圖象相交于A、B兩點(diǎn),其中點(diǎn)A的坐標(biāo)為(3 ,23 )
(1)分別寫出這兩個(gè)函 數(shù)的表達(dá)式;
(2)你能求出點(diǎn)B的坐標(biāo)嗎?你是怎樣求的?與同伴進(jìn)行交流;
隨堂練習(xí):
P145~146 1、2、3、4、5
作業(yè):P146 習(xí)題5.4 1、2
反比例函數(shù)課件(篇13)
反比例函數(shù)的圖像和性質(zhì)
反比例函數(shù)是數(shù)學(xué)中的一個(gè)重要章節(jié),是常見的函數(shù)類型之一。反比例函數(shù)在實(shí)際生活中也有廣泛的應(yīng)用,如在經(jīng)濟(jì)學(xué)、物理學(xué)等領(lǐng)域中,反比例函數(shù)扮演著重要的角色。本文將介紹反比例函數(shù)的圖像和性質(zhì),旨在幫助讀者更好地了解反比例函數(shù)。
反比例函數(shù)的定義
反比例函數(shù)是一種函數(shù)類型,通常用y = k/x的形式表示,其中k為常數(shù)。這個(gè)函數(shù)的特點(diǎn)是,當(dāng)x值變大,y值變?。环粗?,當(dāng)x值變小,y值變大。這也是為什么這個(gè)函數(shù)被稱為“反比例函數(shù)”。
反比例函數(shù)的圖像
為了更好地理解反比例函數(shù)的特點(diǎn),我們可以通過圖像來展示它的性質(zhì)。下面我們將通過不同的常數(shù)k值來描繪反比例函數(shù)圖像,主要分為以下兩個(gè)部分:
1.當(dāng)k>0時(shí)
當(dāng)k為正數(shù)時(shí),反比例函數(shù)的圖像為一條從右上方斜向左下方傾斜的曲線。從原點(diǎn)開始繪制圖形,當(dāng)x值增加時(shí),y值不斷減小,而曲線卻越來越平緩,直至漸近于y = 0軸。這種趨勢表明,當(dāng)x值變得極大時(shí),y值將趨近于零。這也是代表反比例函數(shù)的“倒雙曲線”的一般圖像。
2.當(dāng)k
當(dāng)k為負(fù)數(shù)時(shí),反比例函數(shù)的圖像為一條斜率為負(fù)的直線。同樣從原點(diǎn)開始繪制圖像,當(dāng)x值增加時(shí),y值也會(huì)增加,直至漸近于y = 0軸。這種趨勢表明,當(dāng)x值變得非常小的時(shí)候,y值也會(huì)趨近于零。這也代表反比例函數(shù)的一般圖像。
反比例函數(shù)的性質(zhì)
1.無極限
反比例函數(shù)是一種無極限的函數(shù)類型。反比例函數(shù)的圖像在一條軸上漸近于零,因此當(dāng)x變得非常大或非常小的時(shí)候,此函數(shù)的值會(huì)接近于零。這種性質(zhì)的應(yīng)用非常廣泛,特別是在經(jīng)濟(jì)學(xué)領(lǐng)域中,例如數(shù)量需求和價(jià)格需求。
2.凸性
反比例函數(shù)不具有凸性,它在坐標(biāo)軸上逐漸趨近于平坦。這種凸性缺失的性質(zhì)反映了反比例函數(shù)的特殊性質(zhì)。
3.橫截距
反比例函數(shù)的橫截距是其常數(shù)k。當(dāng)x = 0時(shí),y=k,即反比例函數(shù)的截距為k。
4.漸進(jìn)線
反比例函數(shù)的圖像有兩條漸近線。當(dāng)k>0時(shí),漸近線分別為x = 0和y = 0;當(dāng)k
結(jié)論
反比例函數(shù)在數(shù)學(xué)中是一種重要的函數(shù)類型。本文分析了反比例函數(shù)的圖像和性質(zhì),體現(xiàn)了反比例函數(shù)的特殊性質(zhì),并說明了反比例函數(shù)在實(shí)際生活中的應(yīng)用。反比例函數(shù)在科學(xué)計(jì)算、經(jīng)濟(jì)學(xué)和物理學(xué)等領(lǐng)域中都有廣泛的應(yīng)用。希望本文能使讀者更好地了解反比例函數(shù)的圖像和性質(zhì),有助于讀者更深入地了解反比例函數(shù)。
反比例函數(shù)課件(篇14)
教學(xué)目標(biāo)
1. 經(jīng)歷從實(shí)際問題抽象出反比例函數(shù)的探索過程,發(fā)展學(xué)生的抽象思維能力。
2. 理解反比例函數(shù)的概念,會(huì)列出實(shí)際問題的反比例函數(shù)關(guān)系式。
3. 使學(xué)生會(huì)畫出反比例函數(shù)的圖象。
4. 經(jīng)歷對(duì)反比例函數(shù)圖象的觀察、分析、討論、概括過程,會(huì)說出它的性質(zhì)。
教學(xué)重點(diǎn)
1、 使學(xué)生了解反比例函數(shù)的表達(dá)式,會(huì)畫反比例函數(shù)圖象
2、 使學(xué)生掌握反比例函數(shù)的圖象性質(zhì)
3、 利用反比例函數(shù)解題
教學(xué)難點(diǎn)
1、 列函數(shù)表達(dá)式
2、 反比例函數(shù)圖象解題
教學(xué)過程
教師活動(dòng)
一、作業(yè)檢查與講評(píng)
二、復(fù)習(xí)導(dǎo)入
1.什么是正比例函數(shù)?
我們知道當(dāng)
(1) 當(dāng)路程s一定,時(shí)間t與速度v成反比例,即vt=s(s是常數(shù))
(2) 當(dāng)矩形面積一定時(shí),長a和寬b成反比例,即ab=s(s是常數(shù))
創(chuàng)設(shè)問題情境
問題1:小華的爸爸早晨騎自行車帶小華到15千米外的鎮(zhèn)上去趕集,回來時(shí)讓小華乘坐公共汽車,用的時(shí)間少了。假設(shè)自行車和汽車的速度在行駛過程中都不變,爸爸要小華找出從家里到鎮(zhèn)上的時(shí)間和乘坐不同交通工具的速度之間的關(guān)系。
分析 和其他實(shí)際問題一樣,要探求兩個(gè)變量之間的關(guān)系,就應(yīng)先選用適當(dāng)?shù)姆?hào)表示變量,再根據(jù)題意列出相應(yīng)的函數(shù)關(guān)系式.
設(shè)小華乘坐交通工具的速度是v千米/時(shí),從家里到鎮(zhèn)上的時(shí)間是t小時(shí).因?yàn)樵趧蛩龠\(yùn)動(dòng)中,時(shí)間=路程÷速度,所以
從這個(gè)關(guān)系式中發(fā)現(xiàn):
1.路程一定時(shí),時(shí)間t就是速度v的反比例函數(shù).即速度增大了,時(shí)間變小;速度減小了,時(shí)間增大.
2.自變量v的取值是v>0.
問題2:學(xué)校課外生物小組的同學(xué)準(zhǔn)備自己動(dòng)手,用舊圍欄建一個(gè)面積為24平方米的矩形飼養(yǎng)場.設(shè)它的一邊長為x(米),求另一邊的長y(米)與x的函數(shù)關(guān)系式.
分析 根據(jù)矩形面積可知
xy=24,即
從這個(gè)關(guān)系中發(fā)現(xiàn):
1.當(dāng)矩形的面積一定時(shí),矩形的一邊是另一邊的反比例函數(shù).即矩形的一邊長增大了,則另一邊減小;若一邊減小了,則另一邊增大;
2.自變量的取值是x>0.
二次函數(shù)教案范例5篇
我們常說,機(jī)會(huì)是留給有準(zhǔn)備的人。作為一位幼兒園教師,我們希望能讓小朋友們學(xué)到更多的知識(shí),為了給孩子提供更高效的學(xué)習(xí)效率,教案是個(gè)不錯(cuò)的選擇,教案可以讓同學(xué)們很容易的聽懂所講的內(nèi)容。優(yōu)秀有創(chuàng)意的幼兒園教案要怎樣寫呢?以下由小編為大家精心整理的“二次函數(shù)教案范例5篇”,希望能幫助到你的學(xué)習(xí)和工作!
二次函數(shù)教案(篇1)
知識(shí)技能
1. 能列出實(shí)際問題中的二次函數(shù)關(guān)系式;
2. 理解二次函數(shù)概念;
3. 能判斷所給的函數(shù)關(guān)系式是否二次函數(shù)關(guān)系式;
4. 掌握二次函數(shù)解析式的幾種常見形式.
過程方法
從實(shí)際問題中感悟變量間的二次函數(shù)關(guān)系,揭示二次函數(shù)概念.學(xué)生經(jīng)歷觀察、思考、交流、歸納、辨析、實(shí)踐運(yùn)用等過程,體會(huì)函數(shù)中的常量與變量,深刻領(lǐng)悟二次函數(shù)意義
情感態(tài)度
使學(xué)生進(jìn)一步體驗(yàn)函數(shù)是描述變量間對(duì)應(yīng)關(guān)系的重要數(shù)學(xué)模型,培養(yǎng)學(xué)生合作交流意識(shí)和探索能力。
教學(xué)重點(diǎn)
理解二次函數(shù)的意義,能列出實(shí)際問題中二次函數(shù)解析式
教學(xué)難點(diǎn)
能列出實(shí)際問題中二次函數(shù)解析式
教學(xué)過程設(shè)計(jì)
教學(xué)程序及教學(xué)內(nèi)容 師生行為 設(shè)計(jì)意圖
一、情境引入
播放實(shí)際生活中的有關(guān)拋物線的圖片,概括性的介紹本章.
二、探究新知
㈠、用函數(shù)關(guān)系式表示下列問題中變量之間的關(guān)系:
1.正方體的棱長是x,表面積是y,寫出y關(guān)于x的'函數(shù)關(guān)系式;
2.n邊形的對(duì)角線條數(shù)d與邊數(shù)n有什么關(guān)系?
3.某工廠一種產(chǎn)品現(xiàn)在的年產(chǎn)量是20件,計(jì)劃今后兩年增加產(chǎn)量,如果每年都必上一年的產(chǎn)量增加x倍,那么兩年后這種產(chǎn)品的產(chǎn)量y將隨計(jì)劃所定的x的值而確定,y與x之間的關(guān)系應(yīng)怎樣表示?
㈡觀察所列函數(shù)關(guān)系式,看看有何共同特點(diǎn)?
㈢類比一次函數(shù)和反比例函數(shù)概念揭示二次函數(shù)概念:
一般地,形如 的函數(shù),叫做二次函數(shù)。其中,x是自變量,a,b,c分別是函數(shù)表達(dá)式的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)和常數(shù)項(xiàng)。
實(shí)質(zhì)上,函數(shù)的名稱都反映了函數(shù)表達(dá)式與自變量的關(guān)系.
三、課堂訓(xùn)練(略)
四、小結(jié)歸納:
學(xué)生談本節(jié)課收獲
1.二次函數(shù)概念
2.二次函數(shù)與一次函數(shù)的區(qū)別與聯(lián)系
3.二次函數(shù)的4種常見形式
五、作業(yè)設(shè)計(jì)
㈠教材16頁1、2
㈡補(bǔ)充:
1、①y=-x2②y=2x③y=22+x2-x3④m=3-t-t2是二次函數(shù)的是
2、用一根長60cm的鐵絲圍成一個(gè)矩形,矩形面積S(cm2)與它的一邊長x(cm)之間的函數(shù)關(guān)系式是xxxxxxxxxxxx.
3、小李存入銀行人民幣500元,年利率為x%,兩年到期,本息和為y元(不含利息稅),y與x之間的函數(shù)關(guān)系是xxxxxxx,若年利率為6%,兩年到期的本利共xxxxxx元.
4、在△ABC中,C=90,BC=a,AC=b,a+b=16,則RT△ABC的面積S與邊長a的關(guān)系式是xxxx;當(dāng)a=8時(shí),S=xxxx;當(dāng)S=24時(shí),a=xxxxxxxx.
5、當(dāng)k=xxxxx時(shí), 是二次函數(shù).
6、扇形周長為10,半徑為x,面積為y,則y與x的函數(shù)關(guān)系式為xxxxxxxxxxxxxxx.
7、已知s與 成正比例,且t=3時(shí),s=4,則s與t的函數(shù)關(guān)系式為xxxxxxxxxxxxxxx.
8、下列函數(shù)不屬于二次函數(shù)的是( )
A.y=(x-1)(x+2) B.y= (x+1)2 C.y=2(x+3)2-2x2 D.y=1- x2
9、若函數(shù) 是二次函數(shù),那么m的值是( )
A.2 B.-1或3 C.3 D.
10、一塊草地是長80 m、寬60 m的矩形,在中間修筑兩條互相垂直的寬為x m的小路,這時(shí)草坪面積為y m2.求y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.
二次函數(shù)教案(篇2)
〖大綱要求
1. 理解二次函數(shù)的概念;
2. 會(huì)把二次函數(shù)的一般式化為頂點(diǎn)式,確定圖象的頂點(diǎn)坐標(biāo)、對(duì)稱軸和開口方向,會(huì)用描點(diǎn)法畫二次函數(shù)的圖象;
3. 會(huì)平移二次函數(shù)y=ax2(a≠0)的圖象得到二次函數(shù)y=a(ax+m)2+k的圖象,了解特殊與一般相互聯(lián)系和轉(zhuǎn)化的思想;
4. 會(huì)用待定系數(shù)法求二次函數(shù)的解析式;
5. 利用二次函數(shù)的圖象,了解二次函數(shù)的增減性,會(huì)求二次函數(shù)的圖象與x軸的交點(diǎn)坐標(biāo)和函數(shù)的最大值、最小值,了解二次函數(shù)與一元二次方程和不等式之間的聯(lián)系。
內(nèi)容
(1)二次函數(shù)及其圖象
如果y=ax2+bx+c(a,b,c是常數(shù),a≠0),那么,y叫做x的二次函數(shù)。
二次函數(shù)的圖象是拋物線,可用描點(diǎn)法畫出二次函數(shù)的圖象。
(2)拋物線的頂點(diǎn)、對(duì)稱軸和開口方向
拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)是 ,對(duì)稱軸是 ,當(dāng)a>0時(shí),拋物線開口向上,當(dāng)a
拋物線y=a(x+h)2+k(a≠0)的頂點(diǎn)是(-h,k),對(duì)稱軸是x=-h.
〖考查重點(diǎn)與常見題型
1. 考查二次函數(shù)的定義、性質(zhì),有關(guān)試題常出現(xiàn)在選擇題中,如:
已知以x為自變量的二次函數(shù)y=(m-2)x2+m2-m-2額圖像經(jīng)過原點(diǎn),
則m的值是
2. 綜合考查正比例、反比例、一次函數(shù)、二次函數(shù)的圖像,習(xí)題的特點(diǎn)是在同一直角坐標(biāo)系內(nèi)考查兩個(gè)函數(shù)的圖像,試題類型為選擇題,如:
如圖,如果函數(shù)y=kx+b的圖像在第一、二、三象限內(nèi),那么函數(shù)
y=kx2+bx-1的圖像大致是( )
y y y y
1 1
0 x o-1 x 0 x 0 -1 x
A B C D
3. 考查用待定系數(shù)法求二次函數(shù)的解析式,有關(guān)習(xí)題出現(xiàn)的頻率很高,習(xí)題類型有中檔解答題和選拔性的綜合題,如:
已知一條拋物線經(jīng)過(0,3),(4,6)兩點(diǎn),對(duì)稱軸為x=,求這條拋物線的.解析式。
4. 考查用配方法求拋物線的頂點(diǎn)坐標(biāo)、對(duì)稱軸、二次函數(shù)的極值,有關(guān)試題為解答題,如:
已知拋物線y=ax2+bx+c(a≠0)與x軸的兩個(gè)交點(diǎn)的橫坐標(biāo)是-1、3,與y軸交點(diǎn)的縱坐標(biāo)是-(1)確定拋物線的解析式;(2)用配方法確定拋物線的開口方向、對(duì)稱軸和頂點(diǎn)坐標(biāo).
5.考查代數(shù)與幾何的綜合能力,常見的作為專項(xiàng)壓軸題。
習(xí)題1:
一、填空題:(每小題3分,共30分)
1、已知A(3,6)在第一象限,則點(diǎn)B(3,-6)在第 象限
2、對(duì)于y=-,當(dāng)x>0時(shí),y隨x的增大而
3、二次函數(shù)y=x2+x-5取最小值是,自變量x的值是
4、拋物線y=(x-1)2-7的對(duì)稱軸是直線x=
5、直線y=-5x-8在y軸上的截距是
6、函數(shù)y=中,自變量x的取值范圍是
7、若函數(shù)y=(m+1)xm2+3m+1是反比例函數(shù),則m的值為
8、在公式=b中,如果b是已知數(shù),則a=
9、已知關(guān)于x的一次函數(shù)y=(m-1)x+7,如果y隨x的增大而減小,則m的取值范圍是
10、 某鄉(xiāng)糧食總產(chǎn)值為m噸,那么該鄉(xiāng)每人平均擁有糧食y(噸),與該鄉(xiāng)人口數(shù)x的函數(shù)關(guān)系式是
二、選擇題:(每題3分,共30分)
11、函數(shù)y=中,自變量x的取值范圍 ( )
(A)x>5 (B)x<5 (C)x≤5 (D)x≥5
12、拋物線y=(x+3)2-2的頂點(diǎn)在 ( )
(A)第一象限 (B) 第二象限 (C) 第三象限 (D) 第四象限
13、拋物線y=(x-1)(x-2)與坐標(biāo)軸交點(diǎn)的個(gè)數(shù)為 ( )
(A)0 (B)1 (C)2 (D)3
14、下列各圖中能表示函數(shù)和在同一坐標(biāo)系中的圖象大致是( )
(A) (B) (C) (D)
15.平面三角坐標(biāo)系內(nèi)與點(diǎn)(3,-5)關(guān)于y軸對(duì)稱點(diǎn)的坐標(biāo)為( )
(A)(-3,5) (B)(3,5) (C)(-3,-5) (D)(3,-5)
16.下列拋物線,對(duì)稱軸是直線x=的是( )
(A) y=x2(B)y=x2+2x(C)y=x2+x+2(D)y=x2-x-2
17.函數(shù)y=中,x的取值范圍是( )
(A)x≠0 (B)x> (C)x≠ (D)x<
18.已知A(0,0),B(3,2)兩點(diǎn),則經(jīng)過A、B兩點(diǎn)的直線是( )
(A)y=x (B)y=x (C)y=3x (D)y=x+1
19.不論m為何實(shí)數(shù),直線y=x+2m與y=-x+4 的交點(diǎn)不可能在( )
(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限
20.某幢建筑物,從10米高的窗口A用水管和向外噴水,噴的水流呈拋物線(拋物線所在平面與墻面垂直,(如圖)如果拋物線的最高點(diǎn)M離墻1米,離地面米,則水流下落點(diǎn)B離墻距離OB是( )
(A)2米 (B)3米 (C)4米 (D)5米
二次函數(shù)教案(篇3)
一、教學(xué)內(nèi)容的分析
(一)地位與作用:
二次函數(shù)的應(yīng)用本身是學(xué)習(xí)二次函數(shù)的圖象與性質(zhì)后,檢驗(yàn)學(xué)生應(yīng)用所學(xué)知識(shí)解決實(shí)際問題能力的一個(gè)綜合考查。新課標(biāo)中要求學(xué)生能通過對(duì)實(shí)際問題的情境的分析確定二次函數(shù)的表達(dá)式,體會(huì)其意義,能根據(jù)圖象的性質(zhì)解決簡單的實(shí)際問題。而最值問題又是生活中利用二次函數(shù)知識(shí)解決最常見、最有實(shí)際應(yīng)用價(jià)值的問題之一,它生活背景豐富,學(xué)生比較感興趣,面積問題與最大利潤學(xué)生易于理解和接受,故而在這兒作專題講座。目的在于讓學(xué)生通過掌握求面積、利潤最大這一類題,學(xué)會(huì)用建模的思想去解決其它和函數(shù)有關(guān)應(yīng)用問題,此部分內(nèi)容既是學(xué)習(xí)一次函數(shù)及其應(yīng)用后的鞏固與延伸,又為高中乃至以后學(xué)習(xí)更多函數(shù)打下堅(jiān)實(shí)的理論和思想方法基礎(chǔ)。例題和一部分習(xí)題,無論是例題還是習(xí)題都沒有歸類,不利于學(xué)生系統(tǒng)地掌握解決問題的方法,我設(shè)計(jì)時(shí)把它分為面積、利潤最大、運(yùn)動(dòng)中的二次函數(shù)、綜合應(yīng)用三課時(shí),本節(jié)是第一課時(shí)。
(二)學(xué)情及學(xué)法分析
對(duì)九年級(jí)學(xué)生來說,在學(xué)習(xí)了一次函數(shù)和二次函數(shù)圖象與性質(zhì)以后,對(duì)函數(shù)的思想已有初步認(rèn)識(shí),對(duì)分析問題的方法已會(huì)初步模仿,能識(shí)別圖象的增減性和最值,但在變量超過兩個(gè)的實(shí)際問題中,還不能熟練地應(yīng)用知識(shí)解決問題,本節(jié)課正是為了彌補(bǔ)這一不足而設(shè)計(jì)的,目的是進(jìn)一步培養(yǎng)學(xué)生利用所學(xué)知識(shí)構(gòu)建數(shù)學(xué)模型,解決實(shí)際問題的能力,這也符合新課標(biāo)中知識(shí)與技能呈螺旋式上升的規(guī)律。
二、教學(xué)目標(biāo)、重點(diǎn)、難點(diǎn)的確定
對(duì)于函數(shù)知識(shí)來說它是從生活中廣泛的實(shí)際問題中抽象出來的數(shù)學(xué)知識(shí),所以它是解決實(shí)際問題中被廣泛應(yīng)用的工具。這部分知識(shí)的學(xué)習(xí)無論對(duì)提高學(xué)生在生活中應(yīng)用函數(shù)知識(shí)的意識(shí),還是對(duì)掌握運(yùn)用函數(shù)知識(shí)的方法,都具有重要意義。
而二次函數(shù)的知識(shí)是九年級(jí)數(shù)學(xué)學(xué)習(xí)的重要內(nèi)容之一。同樣它也是從生活實(shí)際問題中抽象出的知識(shí),又是在解決實(shí)際問題時(shí)廣泛應(yīng)用的數(shù)學(xué)工具。課程標(biāo)準(zhǔn)強(qiáng)調(diào)學(xué)生的應(yīng)用意識(shí)的培養(yǎng),讓學(xué)生面對(duì)實(shí)際問題時(shí),能嘗試著從數(shù)學(xué)的角度運(yùn)用所學(xué)知識(shí)和方法尋求解決問題的策略。
本節(jié)課是學(xué)生在學(xué)習(xí)了二次函數(shù)的概念、圖像和性質(zhì)后進(jìn)一步學(xué)習(xí)二次函數(shù)的應(yīng)用。學(xué)生有了一定的二次函數(shù)的知識(shí),并且在前兩節(jié)課已經(jīng)接觸到運(yùn)用二次函數(shù)的知識(shí)解決函數(shù)的最值問題,而本節(jié)課需要利用建模的思想,將實(shí)際問題轉(zhuǎn)化為二次函數(shù)的問題,從而使問題得到解決。建立二次函數(shù)關(guān)系對(duì)學(xué)生而言比較困難,尤其是關(guān)注實(shí)際問題中自變量的取值范圍,需要學(xué)生經(jīng)歷分析、討論、對(duì)比等過程,進(jìn)而得出結(jié)論。本節(jié)課的問題均來自學(xué)生的日常生活,學(xué)生會(huì)感到很有興趣,愿意去探究。但學(xué)生基礎(chǔ)比較薄弱,對(duì)學(xué)習(xí)數(shù)學(xué)還是有一些畏難的情緒,因此需要教師進(jìn)行適當(dāng)引導(dǎo)、分散難點(diǎn)。
根據(jù)上述教學(xué)背景分析,特制訂如下教學(xué)目標(biāo):
1.知識(shí)與技能:學(xué)會(huì)將實(shí)際問轉(zhuǎn)化為數(shù)學(xué)問題;學(xué)會(huì)用二次函數(shù)的知識(shí)解決有關(guān)的實(shí)際問題.
2.過程與方法:經(jīng)歷實(shí)際問題轉(zhuǎn)化成數(shù)學(xué)問題利用二次函數(shù)知識(shí)解決問題利用求解的結(jié)果解釋問題的過程體會(huì)數(shù)學(xué)建模的思想,體會(huì)到數(shù)學(xué)來源于生活,又服務(wù)于生活。
3.情感態(tài)度、價(jià)值觀:培養(yǎng)學(xué)生的獨(dú)立思考的能力和合作學(xué)習(xí)的精神,在動(dòng)手、交流過程中培養(yǎng)學(xué)生的交際能力和語言表達(dá)能力,促進(jìn)學(xué)生綜合素質(zhì)的養(yǎng)成。
利用二次函數(shù)的知識(shí)對(duì)現(xiàn)實(shí)問題進(jìn)行數(shù)學(xué)地分析,即用數(shù)學(xué)的方式表示問題以及用數(shù)學(xué)的方法解決問題,就是本節(jié)課的教學(xué)重點(diǎn);由于學(xué)生理解問題的能力和知識(shí)儲(chǔ)備情況的不同,那么從現(xiàn)實(shí)問題中建立二次函數(shù)模型。就是本節(jié)課的一個(gè)難點(diǎn)。
新課程標(biāo)準(zhǔn)強(qiáng)調(diào)動(dòng)手實(shí)踐、自主探索與合作交流應(yīng)該是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。教師應(yīng)該是學(xué)生數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者、合作者。同時(shí),我認(rèn)為教學(xué)方法與學(xué)習(xí)方法應(yīng)該是相輔相成的不應(yīng)該是割裂開來的,而且在一節(jié)課中教學(xué)方法和學(xué)習(xí)方法不可能是單一的而是多種方式方法并存的,因此根據(jù)本節(jié)課的內(nèi)容和學(xué)生的實(shí)際情況,同時(shí)也為了突出本節(jié)課的重點(diǎn)并突破學(xué)習(xí)難點(diǎn)我確定本節(jié)課的教法與學(xué)法有啟發(fā)法、探究法、試驗(yàn)法、課堂討論法、練習(xí)法等。
三、教學(xué)方法與手段的選擇
本節(jié)課我采用的是導(dǎo)學(xué)案的教法,
創(chuàng)設(shè)情境、引入問題------二人小組、復(fù)習(xí)回顧------自主探究、小組合作-------板演展示、別組糾錯(cuò)---------教師點(diǎn)評(píng)、總結(jié)歸納--------課堂測評(píng)
四、教學(xué)設(shè)計(jì)分析
首先創(chuàng)設(shè)問題情境,激發(fā)學(xué)生的學(xué)習(xí)興趣。數(shù)學(xué)課程的內(nèi)容應(yīng)當(dāng)是現(xiàn)實(shí)的、有意義的、富有挑戰(zhàn)性的,這些內(nèi)容要有利于學(xué)生主動(dòng)地進(jìn)行觀察、實(shí)驗(yàn)、猜想、驗(yàn)證、推理與交流。而20世紀(jì)下半葉數(shù)學(xué)的一個(gè)最大進(jìn)展是它的廣泛應(yīng)用,數(shù)學(xué)的價(jià)值觀因此發(fā)生了深刻的變化。最直接的一個(gè)結(jié)論就是數(shù)學(xué)教育要重視應(yīng)用意識(shí)和應(yīng)用能力的培養(yǎng)。數(shù)學(xué)應(yīng)用意識(shí)的孕育數(shù)學(xué)建模能力的培養(yǎng)聯(lián)系學(xué)生的日常生活并解決相關(guān)的問題等方面的要求越來越處于突出的地位。所以我以養(yǎng)雞場問題、商品銷售利潤問題為例,提出問題,引起學(xué)生的興趣,同時(shí)也讓學(xué)生切實(shí)體會(huì)到數(shù)學(xué)來源于生活。針對(duì)學(xué)生基礎(chǔ)比較薄弱,解題能力較差的現(xiàn)狀,我緊接著先給出幾道關(guān)于二次函數(shù)的練習(xí)題,鞏固二次函數(shù)最值的求法,為后面解決實(shí)際問題掃清障礙。
接下來就是解決最開始提出的商品何時(shí)利潤最大問題,在解決商品利潤問題時(shí)我先讓學(xué)生做了幾道關(guān)于利潤的計(jì)算題,回憶一下有關(guān)利潤的公式。
由于有了前面例子的認(rèn)知基礎(chǔ),因此引導(dǎo)學(xué)生考慮能否利用二次函數(shù)的知識(shí)來解決,這時(shí)學(xué)生能想到要列出函數(shù)關(guān)系式。由于獲得最大利潤的方式有很兩種,因此采用小組合作探究的方式分組討論實(shí)施。這是為了給學(xué)生提供充分從事數(shù)學(xué)活動(dòng)的機(jī)會(huì),在自主探索和合作交流的過程中真正理解和掌握基本的數(shù)學(xué)知識(shí)與技能、數(shù)學(xué)思想和方法。由于學(xué)生的基礎(chǔ)比較薄弱,因此教師作為引導(dǎo)者與合作者參與到學(xué)生的討論中。這里要給學(xué)生充分的時(shí)間進(jìn)行探究。在各小組充分討論后進(jìn)行全班交流,歸納出全班哪種辦法求解起來最簡便,作出優(yōu)劣的判斷。接著由所得到的結(jié)論繼續(xù)提出新問題,再次體會(huì)數(shù)學(xué)來源于生活又服務(wù)于生活。
最后是歸納總結(jié)、加深印象環(huán)節(jié)。在小結(jié)中,引導(dǎo)學(xué)生總結(jié)出從數(shù)學(xué)的角度解決實(shí)際問題的過程:有實(shí)際問題抽象轉(zhuǎn)化成數(shù)學(xué)問題,然后運(yùn)用所學(xué)的數(shù)學(xué)知識(shí)得到問題的解,再由結(jié)論反過來解釋或解決新的實(shí)際問題。
最后是課堂測評(píng)。
對(duì)于作業(yè)的處理,針對(duì)學(xué)生的實(shí)際情況,作業(yè)分為必做題與選做題。對(duì)于基礎(chǔ)比較薄弱的學(xué)生只需完成課堂中的鞏固練習(xí)即可;對(duì)于學(xué)有余力的學(xué)生補(bǔ)充兩道選做題。
以上就是我對(duì)本節(jié)課的設(shè)計(jì)。提出的問題都是學(xué)生親身的經(jīng)歷的情境,學(xué)生能感受到數(shù)學(xué)來源于生活,又服務(wù)于生活。而且新課標(biāo)也提出為學(xué)生提供的素材應(yīng)該具有現(xiàn)實(shí)性和趣味性,要密切聯(lián)系生活實(shí)際,讓學(xué)生體會(huì)到數(shù)學(xué)在生活中的作用
二次函數(shù)教案(篇4)
學(xué)習(xí)目標(biāo):
1、能夠分析和表示變量間的二次函數(shù)關(guān)系,并解決用二次函數(shù)所表示的問題。
2、用三種方式表示變量間二次函數(shù)關(guān)系,從不同側(cè)面對(duì)函數(shù)性質(zhì)進(jìn)行研究。
3、通過解決用二次函數(shù)所表示的問題,培養(yǎng)學(xué)生的運(yùn)用能力
學(xué)習(xí)重點(diǎn):
能夠分析和表示變量之間的二次函數(shù)關(guān)系,并解決用二次函數(shù)所表示的問題。
能夠根據(jù)二次函數(shù)的不同表示方式,從不同的側(cè)面對(duì)函數(shù)性質(zhì)進(jìn)行研究。
學(xué)習(xí)難點(diǎn):
能夠分析和表示變量之間的二次函數(shù)關(guān)系,并解決用二次函數(shù)所表示的問題。
學(xué)習(xí)過程:
一、學(xué)前準(zhǔn)備
函數(shù)的三種表示方式,即表格、表達(dá)式、圖象法,我們都不陌生,比如在商店的廣告牌上這樣寫著:一種豆子的售價(jià)與購買數(shù)量之間的關(guān)系如下:
x(千克) 0 0。5 1 1。5 2 2。5 3
y(元) 0 1 2 3 4 5 6
這是售貨員為了便于計(jì)價(jià),常常制作這種表示售價(jià)與數(shù)量關(guān)系的表,即用表格表示函數(shù)。用表達(dá)式和圖象法來表示函數(shù)的情形我們更熟悉。這節(jié)課我們不僅要掌握三種表示方式,而且要體會(huì)三種方式之間的聯(lián)系與各自不同的特點(diǎn),在什么情況下用哪一種方式更好?
二、探究活動(dòng)
(一)合作探究:
矩形的周長是20cm,設(shè)它一邊長為 ,面積為 cm2。 變化的規(guī)律是什么?你能分別用函數(shù)表達(dá)式、表格和圖象表示出來嗎?
交流完成:
(1)一邊長為x cm,則另一邊長為 cm,所以面積為: 用函數(shù)表達(dá)式表示: =________________________________。
(2) 表格表示:
1 2 3 4 5 6 7 8 9
10—
(3)畫出圖象
討論:函數(shù)的圖象在第一象限,可是我們知道開口向下的拋物線可以到達(dá)第四象限和第三象限,思考原因
(二)議一議
(1)在上述問題中,自變量x的取值范圍是什么?
(2)當(dāng)x取何值時(shí),長方形的面積最大?它的最大面積是多少?你是怎樣得到的?請(qǐng)你描述一下y隨x的變化而變化的情況。
點(diǎn)撥:自變量x的取值范圍即是使函數(shù)有意義的自變量的取值范圍。請(qǐng)大家互相交流。
(1)因?yàn)閤是邊長,所以x應(yīng)取 數(shù),即x 0,又另一邊長(10—x)也應(yīng)大于 ,即10—x 0,所以x 10,這兩個(gè)條件應(yīng)該同時(shí)滿足,所以x的取值范圍是 。
(2)當(dāng)x取何值時(shí),長方形的面積最大,就是求自變量取何值時(shí),函數(shù)有最大值,所以要把二次函數(shù)y=—x2+10x化成頂點(diǎn)式。當(dāng)x=— 時(shí),函數(shù)y有最大值y最大= 。當(dāng)x= 時(shí),長方形的面積最大,最大面積是25cm2。
可以通過觀察圖象得知。也可以代入頂點(diǎn)坐標(biāo)公式中求得。。
(三)做一做:學(xué)生獨(dú)立思考完成P62,P63的函數(shù)表達(dá)式,表格,圖象問題
(1)用函數(shù)表達(dá)式表示:y=________。
(2)用表格表示:
(3)用圖象表示:
三、學(xué)習(xí)體會(huì)
本節(jié)課你有哪些收獲?你還有哪些疑問?
四、自我測試
1、把長1。6米的鐵絲圍成長方形ABCD,設(shè)寬為x(m),面積為y(m2)。則當(dāng)最大時(shí),所取的值是( )
A 0。5 B 0。4 C 0。3 D 0。6
2、兩個(gè)數(shù)的和為6,這兩個(gè)數(shù)的積最大可能達(dá)到多少?利用圖象描述乘積與因數(shù)之間的關(guān)系。
3、把一根長120cm的鐵絲分為兩部分,每一部分均彎曲成一個(gè)正方形,它們的面積和是多少?它們的面積和的最小值是多少?
(選作題)邊長為12的正方形鐵片,中間剪去一個(gè)邊長為x(cm)的小正方形鐵片,剩下的四方框鐵片的面積y(cm2)與x(cm)之間的函數(shù)表達(dá)式為
二次函數(shù)教案(篇5)
一、教材分析:
1、教材所處的地位:
二次函數(shù)是滬科版初中數(shù)學(xué)九年級(jí)(上冊(cè))第22章的內(nèi)容,在此之前,學(xué)生在八年級(jí)已經(jīng)學(xué)過了函數(shù)及一次函數(shù)的內(nèi)容,對(duì)于函數(shù)已經(jīng)有了初步的認(rèn)識(shí)。從一次函數(shù)的學(xué)習(xí)來看,學(xué)習(xí)一種函數(shù)大致包括以下內(nèi)容:通過具體實(shí)例認(rèn)識(shí)這種函數(shù);探索這種函數(shù)的圖象和性質(zhì),利用這種函數(shù)解決實(shí)際問題;探索這種函數(shù)與相應(yīng)方程不等式的關(guān)系。本章“二次函數(shù)”的學(xué)習(xí)也是從以上幾個(gè)方面展開的。本節(jié)課的主要內(nèi)容在于使學(xué)生認(rèn)識(shí)并了解兩個(gè)變量之間的二次函數(shù)的關(guān)系,為二次函數(shù)的后續(xù)學(xué)習(xí)奠定基礎(chǔ)
2、教學(xué)目的要求:
(1)學(xué)生經(jīng)歷從實(shí)際問題中抽象出兩個(gè)變量之間的二次函數(shù)關(guān)系的過程,進(jìn)一步體驗(yàn)如何用數(shù)學(xué)的方法描述變量之間的數(shù)量關(guān)系;
(2)讓學(xué)生學(xué)習(xí)了二次函數(shù)的定義后,能夠表示簡單變量之間的二次函數(shù)關(guān)系;
(3)知道實(shí)際問題中存在的二次函數(shù)關(guān)系中,多自變量的取值范圍的要求。
(4)把數(shù)學(xué)問題和實(shí)際問題相聯(lián)系,使學(xué)生初步體會(huì)數(shù)學(xué)與人類生活的密切聯(lián)系及對(duì)人類歷史發(fā)展的作用。
3、教學(xué)重點(diǎn)和難點(diǎn)
本著課程標(biāo)準(zhǔn),在吃透教材基礎(chǔ)上,我確立了如下的教學(xué)重點(diǎn)、難點(diǎn):
重點(diǎn):
(1)二次函數(shù)的概念
(2)能夠表示簡單變量之間的二次函數(shù)關(guān)系.
難點(diǎn):
具體的分析、確定實(shí)際問題中函數(shù)關(guān)系式
二.教法、學(xué)法分析:
下面,為了講清重點(diǎn)、難點(diǎn),使學(xué)生能達(dá)到本節(jié)設(shè)定的教學(xué)目標(biāo),我再從教法和學(xué)法上談?wù)劊?/p>
1、教法研究
教學(xué)中教師應(yīng)當(dāng)暴露概念的再創(chuàng)造過程,鼓勵(lì)學(xué)生不但要?jiǎng)涌?、?dòng)腦,而且要?jiǎng)邮?,學(xué)生經(jīng)過自己親身的實(shí)踐活動(dòng),形成自己的經(jīng)驗(yàn)、猜想,產(chǎn)生對(duì)結(jié)論的感知,這不僅讓學(xué)生對(duì)所學(xué)內(nèi)容留下了深刻的印象,而且能力得到培養(yǎng),素質(zhì)得以提高,充分地調(diào)動(dòng)學(xué)生學(xué)習(xí)的熱情,讓學(xué)生學(xué)會(huì)主動(dòng)學(xué)習(xí),學(xué)會(huì)研究問題的方法,培養(yǎng)學(xué)生的能力。本節(jié)課的設(shè)計(jì)堅(jiān)持以學(xué)生為主體,充分發(fā)揮學(xué)生的主觀能動(dòng)性。教學(xué)過程中,注重學(xué)生探究能力的培養(yǎng)。還課堂給學(xué)生,讓學(xué)生去親身體驗(yàn)知識(shí)的產(chǎn)生過程,拓展學(xué)生的創(chuàng)造性思維。同時(shí),注意加強(qiáng)對(duì)學(xué)生的啟發(fā)和引導(dǎo),鼓勵(lì)培養(yǎng)學(xué)生們大膽猜想,小心求證的科學(xué)研究的思想。
2、學(xué)法研究
初中學(xué)生的思維方式往往還是比較具象的,要讓他們?cè)趩栴}的探究過程中充分體驗(yàn)問題的發(fā)現(xiàn)、解決及最終表述的方式方法,遇到困難可以和同伴、老師進(jìn)行交流甚至爭論,這樣既可以加深學(xué)生對(duì)問題的理解又可以讓學(xué)生體驗(yàn)獲得學(xué)習(xí)的快樂。
3、教學(xué)方式
(1)由于本節(jié)課的內(nèi)容是學(xué)生在學(xué)習(xí)了《一次函數(shù)》和《正比例函數(shù)》的基礎(chǔ)上的加深,所以可以利用學(xué)生已有的知識(shí)在問題一、二中放手讓學(xué)生先去探究探究兩個(gè)問題中的變量之間的關(guān)系,在得到具體的關(guān)系式后,再引導(dǎo)學(xué)生觀察關(guān)系式都有著什么樣的特點(diǎn),可以和多項(xiàng)式中的二次三項(xiàng)式或一元二次方程比較認(rèn)識(shí),并最終得出二次函數(shù)的一般式及二次項(xiàng)系數(shù)的取值為什么不為零的道理。
(2)要特別提醒學(xué)生注意:二次函數(shù)是解決實(shí)際生活生產(chǎn)的一個(gè)很有效的模板,因而對(duì)二次函數(shù)解析式中自變量的取值范圍一定要從理論上和實(shí)際中加以綜合討論和認(rèn)定。
(3)可以多讓學(xué)生解決實(shí)際生活中的一些具有二次函數(shù)關(guān)系的實(shí)例來加深和提高學(xué)生對(duì)這一關(guān)系模型的理解。
三.教學(xué)流程分析:
這一流程體現(xiàn)了知識(shí)發(fā)生、形成和發(fā)展的過程,讓學(xué)生體會(huì)到觀察、猜想、歸納、驗(yàn)證的思想和數(shù)形結(jié)合的思想。
1、溫故知新—揭示課題
由回顧所學(xué)過的正比例函數(shù),一次函數(shù)入手,引入函數(shù)大家庭中還會(huì)認(rèn)識(shí)那一種函數(shù)呢?再由例子打籃球投籃時(shí)籃球運(yùn)動(dòng)的軌跡如何?何時(shí)達(dá)到最高點(diǎn)?引入二次函數(shù)。
2、自我嘗試、合作探究—探求新知
通過學(xué)生自己獨(dú)立解決運(yùn)用函數(shù)知識(shí)表述變量間關(guān)系,即自我探討環(huán)節(jié);合作探究環(huán)節(jié),學(xué)生間互動(dòng),集群體力量,共破難關(guān),來自主探究新知,從而通過觀察,歸納得到二次函數(shù)的解析式,獲取新知。
3、小試身手—循序漸進(jìn)
本組題目是對(duì)新學(xué)的直接應(yīng)用,目的在于使學(xué)生能辨認(rèn)二次函數(shù),準(zhǔn)確指出a、b、c,并應(yīng)用其定義求字母系數(shù)的值,能應(yīng)用二次函數(shù)準(zhǔn)確表示具體問題中的變量間關(guān)系。本組題目的解決以學(xué)生快速解答為主,重點(diǎn)對(duì)第2題分析解決方法。這一環(huán)節(jié)主要由學(xué)生處理解決,以檢查學(xué)生的掌握程度。
4、課堂回眸—?dú)w納提高
本課小結(jié)從內(nèi)容、應(yīng)用、數(shù)學(xué)思想方法,獲取知識(shí)的途徑等幾個(gè)方面展開,既有知識(shí)的總結(jié),又有方法的提煉,這樣對(duì)于學(xué)生學(xué)知識(shí),用知識(shí)是有很大的促進(jìn)的。方法以學(xué)生暢談收獲為主。
5、課堂檢測—測評(píng)反饋
共有6個(gè)題目,由學(xué)生獨(dú)自處理第1、2、3、4、5小題,再發(fā)表自己的看法,第6小題可由學(xué)生或獨(dú)自或同組交流均可。教師多以巡視為主,注意掌握學(xué)生對(duì)本節(jié)的掌握情況。
6、作業(yè)布置
作業(yè)我選擇“同步作業(yè)”里的題目,其中基礎(chǔ)訓(xùn)練為必做題,全員均做;綜合應(yīng)用為選做題,可供學(xué)有余力的學(xué)生能力提升用。
四、對(duì)本節(jié)課的一點(diǎn)看法
通過引入實(shí)例,豐富學(xué)生認(rèn)識(shí),理解新知識(shí)的意義,進(jìn)而擺脫其原型,從而進(jìn)行更深層次的研究,這種“數(shù)學(xué)化”的方法是認(rèn)識(shí)事物規(guī)律的重要方法之一,通過教學(xué)讓學(xué)生初步掌握這種方法,對(duì)于學(xué)生良好思維品質(zhì)的形成有重要作用,對(duì)于學(xué)生的終身發(fā)展也有一定的作用。
北師大版數(shù)學(xué)九年級(jí)上冊(cè)6.3反比例函數(shù)的應(yīng)用優(yōu)秀教案反思
現(xiàn)在向您介紹幼兒園教案《北師大版數(shù)學(xué)九年級(jí)上冊(cè)6.3反比例函數(shù)的應(yīng)用優(yōu)秀教案反思》
《北師大版數(shù)學(xué)九年級(jí)上冊(cè)6.3反比例函數(shù)的應(yīng)用優(yōu)秀教案反思》這是一篇九年級(jí)上冊(cè)數(shù)學(xué)教案,教師應(yīng)以學(xué)段教學(xué)目標(biāo)為背景,以本章教學(xué)目標(biāo)為標(biāo)準(zhǔn)來考察學(xué)生的學(xué)習(xí)狀況。在教與學(xué)的過程中,了解學(xué)生數(shù)學(xué)活動(dòng)中情感與智力的參與程度和目標(biāo)達(dá)到的水平,及時(shí)進(jìn)行歸因分析,不斷積極引導(dǎo)和激勵(lì)。同時(shí)利用診斷結(jié)果不斷改進(jìn)自己的教學(xué)。
6.3反比例函數(shù)的應(yīng)用
1.會(huì)根據(jù)實(shí)際問題中變量之間的關(guān)系,建立反比例函數(shù)模型;(重點(diǎn))
2.能利用反比例函數(shù)解決實(shí)際問題.(難點(diǎn))
一、情景導(dǎo)入
我們都知道,氣球內(nèi)可以充滿一定質(zhì)量的氣體.
如果在溫度不變的情況下,氣球內(nèi)氣體的氣壓p(kPa)與氣體體積V(m3)之間有怎樣的關(guān)系?你想知道氣球在什么條件下會(huì)爆炸嗎?
二、合作探究
探究點(diǎn)一:實(shí)際問題與反比例函數(shù)
做拉面的過程中,滲透著反比例函數(shù)的知識(shí).一定體積的面團(tuán)做成拉面,面條的總長度y(m)是面條的粗細(xì)(橫截面積)S(mm2)的反比例函數(shù),其圖象如圖所示:
(1)寫出y與S之間的函數(shù)表達(dá)式;
(2)當(dāng)面條的橫截面積為1.6mm2時(shí),面條的總長度是多少米?
(3)要使面條的橫截面積不多于1.28mm2,面條的總長度至少是多少米?
解析:由題意可設(shè)y與S之間的函數(shù)表達(dá)式為y=kS,而P(32,4)為函數(shù)圖象上一點(diǎn),所以把對(duì)應(yīng)的S,y的值代入函數(shù)表達(dá)式即可求出比例系數(shù),從而得出反比例函數(shù)的表達(dá)式,最后根據(jù)反比例函數(shù)的圖象和性質(zhì)解題.
解:(1)由題意可設(shè)y與S之間的函數(shù)關(guān)系式為y=kS.∵點(diǎn)P(4,32)在圖象上,
∴32=k4,∴k=128.
∴y與S之間的函數(shù)表達(dá)式為y=128S(S>0);
(2)把S=1.6代入y=128S中,得y=1281.6=80.
∴當(dāng)面條的橫截面積為1.6mm2時(shí),面條的總長度是80m;
(3)把S=1.28代入y=128S,得y=100.
由圖象可知,要使面條的橫截面積不多于1.28mm2,面條的總長度至少應(yīng)為100m.
方法總結(jié):解決實(shí)際問題的關(guān)鍵是認(rèn)真閱讀,理解題意,明確基本數(shù)量關(guān)系(即題中的變量與常量之間的關(guān)系),抽象出實(shí)際問題中的反比例函數(shù)模型,由此建立反比例函數(shù),再利用反比例函數(shù)的圖象與性質(zhì)解決問題.
探究點(diǎn)二:反比例函數(shù)與其他學(xué)科知識(shí)的綜合
某??萍夹〗M進(jìn)行野外考察,途中遇到一片十幾米寬的爛泥濕地,為了安全、迅速通過這片濕地,他們沿著前進(jìn)路線鋪了若干木塊,構(gòu)筑成一條臨時(shí)近道.木板對(duì)地面的壓強(qiáng)p(Pa)是木板面積S(m2)的反比例函數(shù),其圖象如圖所示.
(1)請(qǐng)直接寫出這一函數(shù)表達(dá)式和自變量的取值范圍;
(2)當(dāng)木板面積為0.2m2時(shí),壓強(qiáng)是多少?
(3)如果要求壓強(qiáng)不超過6000Pa,木板的面積至少要多大?
解析:由于木板對(duì)地面的壓強(qiáng)p(Pa)是木板面積S(m2)的反比例函數(shù),而圖象經(jīng)過點(diǎn)A,于是可以利用待定系數(shù)法求得反比例函數(shù)的關(guān)系式,進(jìn)而可以進(jìn)一步求解.
解:(1)設(shè)木板對(duì)地面的壓強(qiáng)p(Pa)與木板面積S(m2)的反比例函數(shù)關(guān)系式為p=kS(S>0).
因?yàn)榉幢壤瘮?shù)的圖象經(jīng)過點(diǎn)A(1.5,400),所以有k=600.
所以反比例函數(shù)的關(guān)系式為p=600S(S>0);
(2)當(dāng)S=0.2時(shí),p=6000.2=3000,即壓強(qiáng)是3000Pa;
(3)由題意知600S≤6000,所以S≥0.1,即木板面積至少要有0.1m2.
方法總結(jié):本題滲透了物理學(xué)中壓強(qiáng)、壓力與受力面積之間的關(guān)系p=,當(dāng)壓力F一定時(shí),p與S成反比例.另外,利用反比例函數(shù)的知識(shí)解決實(shí)際問題時(shí),要善于發(fā)現(xiàn)實(shí)際問題中變量之間的關(guān)系,從而進(jìn)一步建立反比例函數(shù)模型.
三、板書設(shè)計(jì)
反比例函數(shù)的應(yīng)用實(shí)際問題與反比例函數(shù)反比例函數(shù)與其他學(xué)科知識(shí)的綜合
經(jīng)歷分析實(shí)際問題中變量之間的關(guān)系,建立反比例函數(shù)模型,進(jìn)而解決問題的過程,提高運(yùn)用代數(shù)方法解決問題的能力,體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的緊密聯(lián)系,增強(qiáng)應(yīng)用意識(shí).通過反比例函數(shù)在其他學(xué)科中的運(yùn)用,體驗(yàn)學(xué)科整合思想.
【反思】
“反比例函數(shù)的圖像與性質(zhì)”是反比例函數(shù)的教學(xué)重點(diǎn),學(xué)生需要在理解的基礎(chǔ)上熟練運(yùn)用。為此應(yīng)該有意識(shí)地加強(qiáng)反比例函數(shù)與正比例函數(shù)之間的對(duì)比。對(duì)比可以從以下幾個(gè)方面進(jìn)行:
(1)兩種函數(shù)的關(guān)系式有何不同?兩種函數(shù)的圖像的特征有何區(qū)別?
(2)在常數(shù)相同的情況下,當(dāng)自變量變化時(shí),兩種函數(shù)的函數(shù)值的變化趨勢有什么區(qū)別?
(3)兩種函數(shù)的取值范圍有什么不同,常數(shù)的符號(hào)的改變對(duì)兩種函數(shù)圖像的變化趨勢有什么影響?
從這些方面去比較理解反比例函數(shù)與一次函數(shù),幫助學(xué)生將所學(xué)知識(shí)串聯(lián)起來,提高學(xué)生綜合能力。
此外,在學(xué)習(xí)反比例函數(shù)圖像的性質(zhì)(k大于0雙曲線的兩個(gè)分支在一、三象限,k小于0雙曲線的兩個(gè)分支在二、四象限)時(shí),學(xué)生由畫法觀察圖象可知;而增減性由解析式y(tǒng)等于k比x(k不等于0),學(xué)生也容易理解,但從圖象觀察增減性較難,借助計(jì)算機(jī)的動(dòng)態(tài)演示就容易多了。運(yùn)用多媒體比較兩函數(shù)圖像,使學(xué)生更直觀、更清楚地看清兩函數(shù)的區(qū)別。從而使學(xué)生加深對(duì)兩函數(shù)性質(zhì)的理解。
通過本案例的教學(xué),使我深刻地體會(huì)到了信息技術(shù)在數(shù)學(xué)課堂教學(xué)中的靈活性、直觀性。雖然制作起來比較麻煩,但能使課堂教學(xué)達(dá)到預(yù)想不到的效果,使課堂教學(xué)效率也明顯提高。
在評(píng)價(jià)學(xué)生的學(xué)習(xí)時(shí)應(yīng)關(guān)注以下幾個(gè)過程
1、關(guān)注學(xué)生學(xué)習(xí)過程,進(jìn)行形成性評(píng)價(jià)
教師應(yīng)以學(xué)段教學(xué)目標(biāo)為背景,以本章教學(xué)目標(biāo)為標(biāo)準(zhǔn)來考察學(xué)生的學(xué)習(xí)狀況。在教與學(xué)的過程中,了解學(xué)生數(shù)學(xué)活動(dòng)中情感與智力的參與程度和目標(biāo)達(dá)到的水平,及時(shí)進(jìn)行歸因分析,不斷積極引導(dǎo)和激勵(lì)。同時(shí)利用診斷結(jié)果不斷改進(jìn)自己的教學(xué)。
2、知識(shí)技能的評(píng)價(jià),注重學(xué)生對(duì)函數(shù)概念及反比例函數(shù)的理解水平。
本部分內(nèi)容中,對(duì)知識(shí)技能的評(píng)價(jià)包括:能否理解反比例函數(shù)的概念,了解函數(shù)及其圖象的主要性質(zhì);能否根據(jù)所給信息確定反比例函數(shù)表達(dá)式,畫出反比例函數(shù)的圖象,并利用它們解決簡單的實(shí)際問題等。對(duì)這些知識(shí)技能的評(píng)價(jià),應(yīng)當(dāng)更多的關(guān)注其在實(shí)際問題情境中的意義理解。如對(duì)于反比例函數(shù)的概念及其性質(zhì),關(guān)鍵是體會(huì)它們?cè)诓煌榫持械膽?yīng)用,只要學(xué)生能在具體情境應(yīng)用它們解決問題即可,而不要過于關(guān)注其具體運(yùn)用的熟練程度,如可以要求學(xué)生舉例說明反比例函數(shù)在顯示生活中的應(yīng)用等。
3、發(fā)展性評(píng)價(jià),關(guān)注數(shù)學(xué)活動(dòng)引起人的變化
觀察反比例函數(shù)圖象獲取函數(shù)相關(guān)性質(zhì)的信息有較大空間,考察學(xué)生能否對(duì)信息作出靈敏反應(yīng),應(yīng)用時(shí),能否善于分析和決策,靈活支配運(yùn)用知識(shí)有效的解決問題。關(guān)注并追蹤這些活動(dòng)所引起的學(xué)生的持久變化。
不足與改進(jìn):在整個(gè)課堂教學(xué)過程中,教師圍繞主題、圍繞學(xué)生提問的多,給學(xué)生提問的時(shí)間和機(jī)會(huì)很少.我的改進(jìn)設(shè)想是:留給時(shí)間讓學(xué)生提出問題,師生共同討論、交流,讓學(xué)生的學(xué)習(xí)更富有主動(dòng)性;在活動(dòng)一畫出反比例函數(shù)的圖象后,沒有讓學(xué)生趁熱打鐵“看圖說話”,說出具體的圖象的特征,為活動(dòng)二猜想作很好的鋪墊.我的改進(jìn)設(shè)想是:在活動(dòng)一畫出反比例函數(shù)的圖象后,追加這樣一個(gè)問題:“請(qǐng)同學(xué)們仔細(xì)觀察圖象并進(jìn)行討論,這個(gè)反比例函數(shù)的圖象區(qū)別于一次函數(shù)的圖象有那些不同的特征呢?”留給時(shí)間讓學(xué)生討論、交流,這樣改進(jìn)之后,必將能更大的激發(fā)學(xué)生的探索熱情,更能體現(xiàn)學(xué)生的創(chuàng)新能力,同時(shí)也為進(jìn)一步學(xué)習(xí)反比例函數(shù)的圖象的特征埋下伏筆,能增強(qiáng)學(xué)生學(xué)習(xí)的信心.