幼兒教師教育網(wǎng),為您提供優(yōu)質(zhì)的幼兒相關(guān)資訊

不等式與不等式組教案

發(fā)布時(shí)間:2023-05-25 不等式教案

不等式與不等式組教案必備4篇。

每一位教師都必須在上課之前擁有一份完備的教案課件,因此每天都需要按時(shí)按質(zhì)地編寫完善的教案課件。教案作為教育教學(xué)領(lǐng)域中的重要管理和組織工具,其質(zhì)量也至關(guān)重要。如何編寫出優(yōu)質(zhì)的教案課件呢?我相信這份“不等式與不等式組教案”可以滿足您的需求,歡迎借鑒和學(xué)習(xí),同時(shí)希望對您的教學(xué)工作有所幫助!

不等式與不等式組教案【篇1】

各位領(lǐng)導(dǎo)老師,大家好:(幻燈1)

今天我說課的題目是人教版、七年級下冊、第九章,《不等式》中的第一節(jié):《不等式及其解集》。對于本節(jié)課的處理,我準(zhǔn)備從教材分析、教法學(xué)法、教材處理、教學(xué)過程(幻燈2)這幾個(gè)方面談?wù)勛约旱目捶ǎ?/p>

1 教材分析(幻燈3)

1. 1 教材的地位和作用

本章的主要內(nèi)容是一元一次不等式解法及其簡單的應(yīng)用,是繼一元一次方程學(xué)習(xí)之后,又一次數(shù)學(xué)建模思想的教學(xué),是進(jìn)一步探究現(xiàn)實(shí)生活中的數(shù)量關(guān)系、培養(yǎng)學(xué)生分析問題和解決問題能力的重要內(nèi)容,也是今后學(xué)習(xí)一元二次方程、函數(shù)、以及進(jìn)一步學(xué)習(xí)不等式知識的基礎(chǔ)。相等與不等是研究數(shù)量關(guān)系的兩個(gè)重要方面,用不等式表示不等的關(guān)系,是代數(shù)基礎(chǔ)知識的一個(gè)重要組成部份,它在解決各類實(shí)際問題中有著廣泛的應(yīng)用.

本節(jié)課的內(nèi)容主要介紹不等式及不等式的解的概念及解集的表示方法,是研究不等式的導(dǎo)入課,通過實(shí)例引入,使學(xué)生充分認(rèn)識到學(xué)習(xí)不等式的重要性和必然性,激發(fā)他們的求知欲望;經(jīng)歷、感受概念形成的過程,使學(xué)生正確抓住不等式的本質(zhì)特征,為進(jìn)一步學(xué)習(xí)不等式的性質(zhì)、解法及簡單應(yīng)用起到鋪墊作用.

1.2 學(xué)情分析

(1) 學(xué)生對實(shí)際生活中的不等量關(guān)系、數(shù)量大小的比較等知識,在小學(xué)階段已有所了解.

(2) 學(xué)生已初步具備了“從實(shí)際問題中抽象出數(shù)學(xué)模型,并回到實(shí)際問題解釋和檢驗(yàn)”的數(shù)學(xué)建模能力.

(3) 學(xué)生已初步具備探究和比較的能力.

1.3教學(xué)目標(biāo)分析

本節(jié)課的教學(xué)目標(biāo)是:

1.知識方面:了解不等式及一元一次不等式概念,并理解不等式的解、解集,能夠正確表示不等式的解集;經(jīng)歷把實(shí)際問題抽象為不等式的過程,能夠列出不等關(guān)系式.

2、能力方面:使學(xué)生進(jìn)一步理解歸納和類比的數(shù)學(xué)方法,以及從具體到抽象獲取知識的思維方式;初步體會不等式是刻畫現(xiàn)實(shí)世界中不等關(guān)系的一種有效數(shù)學(xué)模型。3、情感方面:通過對不等式概念及其解集等有關(guān)概念的探索,加強(qiáng)同學(xué)之間的分工合作與交流.

1.4教學(xué)重難點(diǎn)分析

本節(jié)課的教學(xué)重點(diǎn)是:不等式相關(guān)概念的理解和不等式的解集的表示。

本節(jié)課課的教學(xué)難點(diǎn)是:不等式的解不是一個(gè)或幾個(gè)具體的數(shù)值,而是適合不等式的未知數(shù)的值的全體,具有較高的抽象性,學(xué)生不易理解和接受,是本節(jié)教學(xué)中的難點(diǎn). 2教法和學(xué)法(幻燈4)

2.1 教法:

根據(jù)本節(jié)課教學(xué)內(nèi)容和七年級學(xué)生的年齡、心理特點(diǎn)及目標(biāo)教學(xué)的要求,本節(jié)課采用引導(dǎo)探究法;讓學(xué)生以觀察實(shí)例為基礎(chǔ),用歸納的方法形成概念,把教學(xué)過程轉(zhuǎn)化為學(xué)生觀察、發(fā)現(xiàn)、探究的過程,再現(xiàn)知識的“發(fā)生”和“發(fā)現(xiàn)”及“形成”的過程,揭示事物發(fā)展從“特殊”到“一般”再到“特殊”的辯證規(guī)律;既提高了學(xué)生的學(xué)習(xí)興趣,增強(qiáng)了信心,又有利于接受知識;也有益于形成對問題進(jìn)行探索、研究和解決的能力.

2.2 學(xué)法:

建構(gòu)主義教學(xué)構(gòu)想的核心思想是:通過問題的解決來學(xué)習(xí).根據(jù)本節(jié)課的特點(diǎn),采用自主探究、合作交流的探究式學(xué)習(xí)方法.

3 教材處理(幻燈5)

本節(jié)課是從一個(gè)實(shí)例(問題)的解答來引出不等式及其概念的,為了降低學(xué)生的認(rèn)知難度,我通過不等式與方程的類比教學(xué),主要采用了:實(shí)際問題——列方程解答——改編為問題——列不等式——提出不等式的概念——不等式解的概念,并及時(shí)穿插相對應(yīng)的例題和練習(xí),加以鞏固.

4 教學(xué)過程

下面我來說說本節(jié)課的教學(xué)過程共同分為五個(gè)環(huán)節(jié)

第一個(gè)環(huán)節(jié) 創(chuàng)設(shè)情境,激發(fā)求知欲

首先通過老師的自我介紹,我們先認(rèn)識一下,我叫丁文婷,我的年齡嗎------比您們都大,等等。讓學(xué)生體會到生活中的不等關(guān)系,也讓學(xué)生輕松地找出生活中的不等關(guān)系,既把學(xué)生的注意力帶入本節(jié)課的內(nèi)容,也拉近了與學(xué)生的距離,創(chuàng)建了融洽的教學(xué)氛圍。然后利用兩個(gè)實(shí)際問題讓學(xué)生從列方程到列出不等關(guān)系式。(幻燈6)

(1) 20xx年12月1日起施行修改后的《鐵路旅客運(yùn)輸規(guī)程》,將此前規(guī)定的身高1.1米-1.4米的兒童應(yīng)購買兒童票,調(diào)整為身高1.2米-1.5米的兒童應(yīng)購買兒童票。這意味著在12月1日新規(guī)實(shí)行后,1.2米以下兒童可免票,1.2米至1.5米的可購買半票,1.5米以上則須全票. 問題:現(xiàn)在若用x表示一名兒童的身高,那么

①x滿足______時(shí),他可免票.

②x滿足______時(shí),他該買全票.

⑵已知襄樊與武當(dāng)山的距離為150千米,他們上午10點(diǎn)鐘從襄樊出發(fā),汽車勻速行駛. ①若該車計(jì)劃中午12點(diǎn)準(zhǔn)時(shí)到達(dá)武當(dāng)山,車速應(yīng)滿足什么條件?

設(shè)車速為x千米/小時(shí),可列式子:______________.

②若該車實(shí)際上在中午12點(diǎn)之前已到達(dá)武當(dāng)山,車速應(yīng)滿足什么條件?

設(shè)車速為x千米/小時(shí),可列式子:______________.

考慮學(xué)生實(shí)際情況和題目難度,所以設(shè)置問題串,降低難度.這樣編排教材我認(rèn)為更能體現(xiàn)知識呈現(xiàn)的序列性,從易到難,讓學(xué)生“列不等式”能力實(shí)現(xiàn)螺旋上升.最后類比方程的概念由學(xué)生總結(jié)出不等式的概念.

第二個(gè)環(huán)節(jié),4.2承上啟下

通過兩組練習(xí),(幻燈7)

①下列式子中哪些是不等式?

(1)a+b=b+a

(2)-3>-5

(3)x≠1

(4)x+3>6 (5)2m<n(6)2x-3

②用不等式表示:

⑴a是正;⑵a是負(fù)數(shù);⑶a與5的和小于7;⑷a與2的差大于-1;

⑸a的4倍大于8;

⑹a的一半小于3.

一是判斷不等式,既鞏固了不等式的概念也補(bǔ)充“≠”“≤”“≥”這些符號。二是讓學(xué)生用不等式來刻畫題中6個(gè)簡單的不等關(guān)系,也由此得出一元一次不等式的概念. 學(xué)生得出答案并不難,所以該環(huán)節(jié)讓學(xué)生獨(dú)立完成、互相評價(jià),同時(shí)進(jìn)一步培養(yǎng)學(xué)生列不等式能力. 第三個(gè)環(huán)節(jié),4.3 合作質(zhì)疑、探索新知

問題1.(幻燈片8)

①判斷下列數(shù)中哪些滿足不等式2x/3>50:

76、73、79、80、74.9、75.1、90、60

②滿足不等式的未知數(shù)的值還有嗎?若有,還有多少?請舉出2—3例.

③.上問中的不等式的解有什么共同特點(diǎn)?若有,怎么表示?你能驗(yàn)證一下你的結(jié)論嗎? ④.②中答案在數(shù)軸上怎么表示?

本環(huán)節(jié)主要任務(wù)是突出重點(diǎn)和突破難點(diǎn). 首先通過一組環(huán)環(huán)相扣,步步深入的問題來實(shí)現(xiàn),第一問四人一組分工合作完成,通過簡單代值運(yùn)算,使每名學(xué)生都動(dòng)起來,邊代、邊算、邊答、邊交流,調(diào)動(dòng)學(xué)生的學(xué)習(xí)興趣,為每位學(xué)生都創(chuàng)造在數(shù)學(xué)活動(dòng)中獲取成功的體驗(yàn)機(jī)會,并培養(yǎng)學(xué)生觀察能力和數(shù)感. 第二問的設(shè)計(jì),使學(xué)生感受不等式的解不是一個(gè)或幾個(gè)具體數(shù)值,加深對不等式解的理解。第三問四問突破不等式的解是適合不等式的未知數(shù)的值的全體這一難點(diǎn),使學(xué)生及時(shí)掌握、運(yùn)用新知識。從而類比方程的解得出不等式的解和解集的概念.尤其第四問的不等式的解集在數(shù)軸上的表示也體現(xiàn)了數(shù)形結(jié)合的思想,連同前面的文字表示,充分體現(xiàn)了數(shù)學(xué)的三種表示形式.

其次通過兩組練習(xí)觀察學(xué)生掌握知識的情況,及時(shí)反饋,及時(shí)調(diào)節(jié)。整個(gè)環(huán)節(jié)通過“觀察特點(diǎn)——猜想結(jié)論——驗(yàn)證猜想”的思路展開,符合學(xué)生的認(rèn)知過程.

第四個(gè)環(huán)節(jié),4.4 運(yùn)用新知、解決問題(幻燈9)

某班同學(xué)經(jīng)調(diào)查發(fā)現(xiàn),1個(gè)易拉罐瓶可賣0.1元,1名山區(qū)貧困生一年生活費(fèi)用至少是500元。該班同學(xué)今年計(jì)劃資助兩名山區(qū)貧困生一年生活費(fèi)用,他們已集資了450元,不足部分準(zhǔn)備靠回收易拉罐所得。那么他們一年至少要回收多少個(gè)易拉罐?

該環(huán)節(jié)設(shè)置了一個(gè)儉省節(jié)約和助人為樂的實(shí)際問題,通過對學(xué)生熟悉的生活背景進(jìn)行處理,讓學(xué)生體會數(shù)學(xué)生活化,能將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題加以解決,培養(yǎng)學(xué)生應(yīng)用意識,同時(shí)也對學(xué)生進(jìn)行潛移默化的思想品德教育.

第五個(gè)環(huán)節(jié),歸納反思、重組結(jié)構(gòu)(幻燈10)[實(shí)用文書網(wǎng) wEI508.coM]

4.5 歸納反思、重組結(jié)構(gòu)

(1)通過本節(jié)課的學(xué)習(xí),你學(xué)會了哪些知識?

(2)通過本節(jié)課的學(xué)習(xí),你最大的收獲是什么?

(3)通過本節(jié)課的學(xué)習(xí),你獲得了哪些學(xué)習(xí)數(shù)學(xué)的`方法?

充分發(fā)揮學(xué)生的主體地位,從學(xué)習(xí)知識、方法和延伸三方面進(jìn)行歸納。,讓學(xué)生養(yǎng)成“反思”的好習(xí)慣,并培養(yǎng)學(xué)生語言表述能力。

最后分層次設(shè)置作業(yè)讓學(xué)生鞏固所學(xué)內(nèi)容并進(jìn)行自我檢驗(yàn)與評價(jià),既面向全體學(xué)生,又因材施教,照顧到學(xué)有余力的學(xué)生.

教學(xué)評價(jià):本節(jié)課主要在第一環(huán)節(jié),學(xué)生有沒有積極思考,嘗試列不等式,能不能歸納出不等式的概念. 第二個(gè)環(huán)節(jié)關(guān)注學(xué)生能不能判斷不等式,歸納出一元一次不等式的概念.第三個(gè)環(huán)節(jié)關(guān)注學(xué)生參與活動(dòng)的積極性和對數(shù)學(xué)的三種表示的總結(jié),然后通過學(xué)生板演評價(jià)學(xué)生的知識的掌握,能力的遷移情況.第四環(huán)節(jié)考察學(xué)生把實(shí)際問題數(shù)學(xué)化的能力.第五環(huán)節(jié)不僅評價(jià)學(xué)生總結(jié)的知識點(diǎn) 而且有數(shù)學(xué)思想、數(shù)學(xué)方法等等

最后展示一下我的板書設(shè)計(jì):

不等式及其解集

問題一: 鞏固練習(xí): 練習(xí)1

問題二: 探索新知: 練習(xí)2

不等式的概念: 不等式的解: 反思:

一元一次不等式的概念: 不等式的解在數(shù)軸上的表示

以上,我僅說明了“教什么”和“怎么教”,闡述了“為什么這樣教” 希望各位專家領(lǐng)導(dǎo)對本堂說課提出寶貴意見

不等式與不等式組教案【篇2】

(第1課時(shí))

一、教材內(nèi)容解析

(一)內(nèi)容

一元一次不等式的概念及解法

(二)內(nèi)容解析

在初中階段,不等式位于一次方程(組)之后,它是進(jìn)一步探究現(xiàn)實(shí)世界數(shù)量關(guān)系的重要內(nèi)容,不等式的研究從最簡單的一元一次不等式開始,一元一次不等式及其相關(guān)概念是本章的基礎(chǔ)知識,解任何一個(gè)代數(shù)不等式(組)最終都要化歸為解一元一次不等式,因此解一元一次不等式是一項(xiàng)基本技能.另外,不等式解集在數(shù)軸上表示從形的角度描述了不等式的解集,并為解不等式組做了準(zhǔn)備,本節(jié)內(nèi)容是進(jìn)一步學(xué)習(xí)其它不等式(組)的基礎(chǔ).

解一元一次不等式與解一元一次方程在本質(zhì)上是相同的,即依據(jù)不等式的的3個(gè)性質(zhì)(特別是性質(zhì)3,要改變不不等號的方向),逐步將不等式化為x>a或x<a的形式,從而確定未知數(shù)的取值范圍,這一化繁為簡的過程,充分體現(xiàn)了化歸的思想.基于以上分析,本節(jié)課的教學(xué)重點(diǎn):一元一次不等式的解法.

二、學(xué)習(xí)目標(biāo)

1·了解一元一次不等式的概念,掌握一元一次不等式的解法;2·在依據(jù)不等式的性質(zhì)探究一元一次不等式的解法的過程中,加深對化歸思想的體會.

3·依據(jù)不等式的性質(zhì),將一元一次不等式逐步化簡為x>a或x<a的形式,學(xué)生能借助具體例子,將化歸思想具體化,獲得解一元一次不等式的步驟.

三、教學(xué)重難點(diǎn)

1·教學(xué)重點(diǎn):掌握一元一次方程概念及解法,運(yùn)用化歸思想把形式復(fù)雜的不等式轉(zhuǎn)化為x>a或x<a的形式,逐步將不等式變形為最簡形式.2·教學(xué)難點(diǎn):解一元一次不等式步驟的確定.

四、教學(xué)方法:

啟發(fā)式、小組合作學(xué)、學(xué)生展講、教師點(diǎn)評、歸納總結(jié)等模式

五、教學(xué)過程設(shè)計(jì)

(一)新課導(dǎo)入形成概念

問題:觀察下面的不等式,它們有哪些共同特征?

3x—7>26

3x<2x+1x>50

—4x>3

4學(xué)生回答,教師可以引導(dǎo)學(xué)生從不等式中未知數(shù)的個(gè)數(shù)和次數(shù)兩個(gè)方面去觀察不等式的特點(diǎn),并與一元一次方程的定義類比.

師生共同歸納獲得:含有一個(gè)未知數(shù),未知數(shù)的`次數(shù)是1的不等式,叫做一元一次不等式.

設(shè)計(jì)意圖:引導(dǎo)學(xué)生通過觀察給出不等式,歸納出它們的共同特征,進(jìn)而得到一元一次不等式的定義,培養(yǎng)學(xué)生觀察、歸納的能力.

(二)通過類比研究解法

練習(xí):利用不等式的性質(zhì)解不等式x—7>26學(xué)生嘗試獨(dú)立完成練習(xí)

教師結(jié)合解題過程,指出:由x—7>26可得到x>26+7,也就是說解不等式和解方程一樣,也可以“移項(xiàng)”,即把不等式一邊的某項(xiàng)變號后移到另一邊,而不改變不等號的方向.

設(shè)計(jì)意圖:通過解簡單的一元一次不等式,讓學(xué)生回憶利用解方程的過程,教師通過簡化練習(xí)中的解題步驟,讓學(xué)生明確不等式和解方程一樣可以“移項(xiàng)”,為下面類比解方程形成解不等式的步驟作好準(zhǔn)備.設(shè)問1:解一元一次方程的依據(jù)和一般步驟是什么?

學(xué)生回憶解一元一次方程的依據(jù)是等式的性質(zhì).一般步驟是:去分母,去括號,移項(xiàng),合并同類項(xiàng),系數(shù)化為1.

設(shè)問2:解一元一次不等式能否采用類似的步驟?學(xué)生討論解一元一次不等式是否可以采用類似的步驟,教師再指出:利用不等式的性質(zhì),采取與解一元一次方程類似的步驟,就可以求出一元一次不等式的解集.設(shè)計(jì)意圖:通過回憶解一元一次方程的依據(jù)和一般步驟,讓學(xué)生思考解一元一次不等式能否采用同樣步驟,從而獲得解一元一次不等式的思路.

(三)例題講解

規(guī)范步驟

例:解下列不等式,并在數(shù)軸上表示解集(1)2(1+x)<3(2)

設(shè)問(1):解一元一次不等式的目標(biāo)是什么?

學(xué)生在教師問題的引導(dǎo)下,思考如何將一元一次不等式變形為最簡形式.設(shè)問(2):你能類比解一元一次方程的步驟,解第(1)小題嗎?由學(xué)生獨(dú)立完成,老師評講設(shè)問(3)對比不等式么不同?

設(shè)問(4):怎樣將不等式

變形,使變形后的不等式不含分母?

與2(1+x)<3的兩邊,它們在形式上有什小組合作交流,老師點(diǎn)撥

設(shè)問(5):你能說出解一元一次不等式的基本步驟嗎?

學(xué)生回答,教師總結(jié):去分母,去括號,移項(xiàng),合并同類項(xiàng),系數(shù)化為1.設(shè)問(6):對比第(1)小題和第(2)小題的解題過程,系數(shù)化為1時(shí)應(yīng)注意些什么?

學(xué)生回答,教師再強(qiáng)調(diào):要看未知數(shù)系數(shù)的符號,若未知數(shù)的系數(shù)是正數(shù),則不等號的方向不變,若是負(fù)數(shù),則不等號的方向要改變.設(shè)計(jì)意圖:通過解具體的一元一次不等式,引導(dǎo)學(xué)生明確解不等式以化歸思想為指導(dǎo),比較原不等式與目標(biāo)形式(x>a或x<a)的差異,思考如何依據(jù)不等式的性質(zhì)將原不等式通過變形轉(zhuǎn)化為最簡形式,以獲得解一元一次不等式的步驟.

(四)辨別異同

深化認(rèn)識

設(shè)問1:解一元一次不等式和解一元一次方程有哪些相同和不同處?

學(xué)生在教師的引導(dǎo)下將解一元一次不等式的過程與解一元一次方程的過程進(jìn)行比較,思考二者的相同和不同處.

相同之處:基本步驟相同:去分母、去括號、移項(xiàng)、合并同類項(xiàng)、系數(shù)化為1.基本思想相同:都是運(yùn)用化歸思想,都要變?yōu)樽詈喰问剑?/p>

不同之處:解法依據(jù)不同:解不等式是依據(jù)不等式的性質(zhì),解方程依據(jù)等式的性質(zhì).最簡形式不同:解一元一次不等式:最簡形式是x>a或x<a,一元一次方程的最簡形式是x=a.設(shè)計(jì)意圖:在歸納出一元一次不等式的解法之后,引導(dǎo)學(xué)生對比一元一次方程的解法,思考二者的異同,加深對一元一次不等式解法的理解,體會化歸思想和類比思想.

設(shè)問2:解一元一次不等式每一步變形的依據(jù)是什么?

學(xué)生作答,教師再引導(dǎo)學(xué)生體會結(jié)合例題的解題過程思考每一步變形的依據(jù).設(shè)計(jì)意圖:通過具體操作,歸納出解一元一次不等式的基本步驟及每一步變形的依據(jù),提高學(xué)生的總結(jié)、歸納能力.

(五)學(xué)以致用,能力提升

課本P124頁的練習(xí)1、2兩題

設(shè)計(jì)意圖:學(xué)生獨(dú)立按照解集一元一次不等式的步驟解不等式,學(xué)以致用.

(六)課堂小結(jié)

(七)布置作業(yè),課外反饋

教科書P126習(xí)題9.2第1,3題

設(shè)計(jì)意圖:通過課后作業(yè),教師及時(shí)了解學(xué)生對本節(jié)課知識的掌握情況,以便對教學(xué)進(jìn)度和方法進(jìn)行適當(dāng)?shù)恼{(diào)整.本節(jié)課教學(xué)反思

通過問題引導(dǎo)讓學(xué)生會一元一次不等式的解法,由于一元一次不等式的解法與一元一次方程的解法十分相似,解一元一次方程的依據(jù)是等式的性質(zhì),而解一元一次不等式的依據(jù)是不等式的性質(zhì),所以講授新課之前老師先口頭復(fù)習(xí)了等式的性質(zhì),然后通過對兩個(gè)不等式不等式的式子在左右兩邊同時(shí)加上、減去、乘以、除以某一個(gè)相同有數(shù),讓學(xué)生自己歸納出不等式的性質(zhì),同時(shí)和前面剛復(fù)習(xí)的等式的性質(zhì)比較,對比掌握。類比一元一次方程的解法學(xué)習(xí)一元一次不等式的解法,讓學(xué)生非常清楚地看到不等式的解法與方程的解法只是最后系數(shù)化為1不同,其它的步驟是相同的,強(qiáng)調(diào)最后一步(用不等式的性質(zhì)2或3)系數(shù)化為1“負(fù)變,正不變”。學(xué)生掌握得很好。并在這一節(jié)重視用數(shù)軸表示不等式的解集。

存在不足:發(fā)現(xiàn)學(xué)生對不等式及不等式組的解法掌握得較好,但對不等式的特殊解不是很理解還有在列不等式的時(shí)候很多學(xué)生不懂如何用不等式表示“負(fù)數(shù)”、“正數(shù)”、“非正數(shù)”、“非負(fù)數(shù)”,“不大于”、“不小于”。對一元一次不等式的應(yīng)用這部分內(nèi)容,我們感覺學(xué)生掌握得最薄弱,這也作為老師的我覺得比較困惑的問題。正在努力尋找行之有效的措施。提出建議:對將表示不等式的語句轉(zhuǎn)化成不等式要強(qiáng)化訓(xùn)練,如“至多“、“至少”、“不超過”,“剩余”、“不夠”等等,為后面的應(yīng)用題作準(zhǔn)備,我們知道在列一元一次方程或方程組解應(yīng)用題,學(xué)生學(xué)握起來非常困難,主要是等量關(guān)系難找。而在不等式的應(yīng)用題中,不等關(guān)系將更難找,很多表示不等關(guān)系的語句隱藏得較深,所以要提前作好這方面的準(zhǔn)備。

不等式與不等式組教案【篇3】

各位評委老師大家好!我說課的題目是華東師大版初中數(shù)學(xué)七年級(下)第八章第二節(jié)《解一元一次不等式》的第一節(jié)《不等式的解集》,下面我從教材分析等方面對本課的設(shè)計(jì)進(jìn)行說明。

一、教材分析

本節(jié)課研究的是不等式的解集和不等式解集在數(shù)軸上的表示。這之前學(xué)生已經(jīng)初步學(xué)習(xí)了不等式和不等式解,這部分在本章中不但有承上啟下的作用,而且為今后學(xué)習(xí)函數(shù)的應(yīng)用奠定了數(shù)形結(jié)合的基礎(chǔ),因此它在教材中處于非常重要的位置。一元一次不等式的解集是前面一元一次方程解的擴(kuò)展,兩者存在區(qū)別與聯(lián)系。在數(shù)軸上表示不等式的解集,是學(xué)生學(xué)習(xí)數(shù)軸之后,又一次接觸到圖形與數(shù)量的對應(yīng)關(guān)系,同時(shí)為今后函數(shù)的學(xué)習(xí)提供了方法和依據(jù)。

二、目標(biāo)分析

根據(jù)學(xué)生已有的認(rèn)知基礎(chǔ)和本科教材的地位,由于數(shù)學(xué)教學(xué)不僅是知識的教學(xué),技能的訓(xùn)練,更能重視能力的培養(yǎng)及情感教育,因此確定教學(xué)目標(biāo)1,2,3。

即:

1、知識目標(biāo):了解不等式解集的意義和不等式的解集在數(shù)軸上的表示。

2、能力目標(biāo):建立圖形與數(shù)量的對應(yīng)關(guān)系,能在數(shù)軸上表示不等式的解集,滲透數(shù)形結(jié)合的數(shù)學(xué)思想。

3、情感目標(biāo):引導(dǎo)學(xué)生在獨(dú)立思考的基礎(chǔ)上,參與問題的討論,激發(fā)學(xué)生主動(dòng)獲取知識的興趣增強(qiáng)學(xué)生學(xué)習(xí)的信心。

教學(xué)重點(diǎn):一元一次不等式的解集和表示。

教學(xué)難點(diǎn):一元一次不等式解集的意義和不等式解集在數(shù)軸上的表示。

教學(xué)難點(diǎn)突破辦法: 通過觀察,分析、概括過程,使學(xué)生對不等式的解集有了初步的理解,然后通過數(shù)軸直觀地表示出不等式的解集,從而加深了學(xué)生對不等式的解集的理解。

三、教法分析

為創(chuàng)設(shè)寬松民主的學(xué)習(xí)氣氛,激發(fā)學(xué)生思維的主動(dòng)性,順利完成教學(xué)目標(biāo)根據(jù)學(xué)生特點(diǎn)和學(xué)生的實(shí)際情況采用引導(dǎo)發(fā)現(xiàn)法,計(jì)算機(jī)輔助教學(xué)。將學(xué)生個(gè)體的自我反饋,小組間的合作交流,與師生間的信息及時(shí)聯(lián)系起來,形成多層次多方面的合作交流,共同發(fā)現(xiàn)知識,獲取知識。學(xué)生知識掌握過程離不開學(xué)生自身的智力活動(dòng),因此,在教學(xué)中,突出引導(dǎo)學(xué)生觀察,分析,以舊探新,猜測論證等方法,揭示數(shù)學(xué)問題,并采用個(gè)人思考,分組討論,匯報(bào)結(jié)果等多種形式,使每個(gè)學(xué)生都參與到學(xué)習(xí)中來,學(xué)生在獲得知識的過程中悟出道理,得出結(jié)論,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的自信心,

四、學(xué)法分析

1.學(xué)生要深刻思考,把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)模型,養(yǎng)成認(rèn)真思考的好習(xí)慣。

2.合作類推法:學(xué)習(xí)過程中學(xué)生共同討論,并用類比推理的方法學(xué)習(xí)。

五、教學(xué)過程

1、創(chuàng)設(shè)情景,提出問題

通過實(shí)際應(yīng)用問題讓學(xué)生在解決的過程中先找出幾個(gè)符合題意的解,然后發(fā)現(xiàn)問題,這樣,既復(fù)習(xí)了不等式,又給新課做好了鋪墊,由此可以發(fā)現(xiàn),不等式的解有許多個(gè),他們組成一個(gè)集合,稱為不等式的解集,這樣既符合認(rèn)知規(guī)律,又能找到最佳切入點(diǎn),使學(xué)生產(chǎn)生探索的欲望,從而引出不等式的解集。

2、探究新知

通過討論、交流、歸納得到:大于3的每個(gè)數(shù)都是不等式x+2>5的解,而小于3的每一個(gè)數(shù)都不是不等式x+2>5的解,因此不等式x+25的解有無限多個(gè),它們組成集合,稱為一元不等式x+25的解集。即表示為x3。

由實(shí)例概括出不等式的解集以及解不等式的概念:一個(gè)不等式的所有解,組成這個(gè)不等式的解的集合,簡稱為這個(gè)不等式的解集;求不等式的解集過程,叫做解不等式。

我們知道解不等式不能只求個(gè)別解,而應(yīng)求它的解集.一般而言,不等式的解集不是由一個(gè)數(shù)或幾個(gè)數(shù)組成的,而是由無限多個(gè)數(shù)組成的,如x>3.那么如何在數(shù)軸上直觀地表示不等式x+2>5的解集x>3呢? 不等式解集x>3,在數(shù)軸上可以直觀地表示出來。如圖8.2.1

如果某個(gè)不等式x≤-2,也可在數(shù)軸上直觀地表示出來,如圖8.2.2

說明:8.2.1在表示范表演的點(diǎn)畫空心圓圈,表不包括這一點(diǎn),表示大時(shí)就往右拐;圖8.2.2在表示-2的點(diǎn)畫黑點(diǎn)表示包括這一點(diǎn),表示小時(shí)往左拐。

3、講解補(bǔ)充例題,

例1:判斷:

①x=2是不等式4x<9的一個(gè)解.( )

② x=2是不等式4x<9的解集.( )

例2、將下列不等式的解集在數(shù)軸上表示出來:

(1)x<2

(2)x≥-2

(設(shè)計(jì)意圖:例1是讓學(xué)生理解不等式的解與不等式的解集。聯(lián)系與區(qū)別,例2揭示不等式的解集與數(shù)軸上表示數(shù)的范圍的一種對應(yīng)關(guān)系,從而進(jìn)一步加深學(xué)生對不等式解集的理解,以使學(xué)生進(jìn)一步領(lǐng)會到數(shù)形結(jié)合的方法具有形象,直觀,易于說明問題的優(yōu)點(diǎn))

4、鞏固練習(xí):課本44頁練習(xí)2,3題

5、歸納總結(jié),

結(jié)合板書,引導(dǎo)學(xué)生自我總結(jié),重點(diǎn)知識和學(xué)習(xí)方法,達(dá)到掌握重點(diǎn),順理成章的目的。

6、作業(yè):課本49頁習(xí)題1,2題

設(shè)計(jì)意圖:促進(jìn)學(xué)生及時(shí)地復(fù)習(xí)課文,鞏固和強(qiáng)化所學(xué)知識,提高解決問題的能力。

不等式與不等式組教案【篇4】

課題:§3.2.2均值不等式 課時(shí):第2課時(shí) 授課時(shí)間: 授課類型:新授課

【教學(xué)目標(biāo)】

1.知識與技能:利用均值定理求極值與證明。

2.過程與方法:培養(yǎng)學(xué)生的探究能力以及分析問題、解決問題的能力。

3.情態(tài)與價(jià)值:激發(fā)學(xué)習(xí)數(shù)學(xué)的熱情,培養(yǎng)善于思考、勤于動(dòng)手的學(xué)習(xí)品質(zhì)?!窘虒W(xué)重點(diǎn)】利用均值定理求極值與證明。【教學(xué)難點(diǎn)】利用均值定理求極值與證明。

【教學(xué)過程】

1、復(fù)習(xí):

定理:如果a,b是正數(shù),那么

a?b?ab(當(dāng)且僅當(dāng)a?b時(shí)取“?”號).22、利用均值定理求最值應(yīng)注意:“正”,“定”,“等”,靈活的配湊是解題的關(guān)鍵

3、例子:

1)已知x≠0,當(dāng)x取什么值時(shí),x2+2)已知x>1,求y=x+

81的值最小,最小值是多少? 2x1的最小值 x?13)已知x∈R,求y=x2?2x?12的最小值

4)已知x>1,求y=x+116x+2的最小值 xx?15)已知08)要建一個(gè)底面積為12m2,深為3m的長方體無蓋水池,如果底面造價(jià)每平方米600元,側(cè)面造價(jià)每平方米400元,問怎樣設(shè)計(jì)使總造價(jià)最低,最低總造價(jià)是多少元?9)一段長為Lm的籬笆圍成一個(gè)一邊靠墻的矩形菜園,問這個(gè)矩形的長和寬各為多少時(shí),菜園的面積最大,最大面積是多少? 小結(jié):利用均值定理求極值課堂練習(xí):第73頁習(xí)題3-2B:1,2 課后作業(yè):第72頁習(xí)題3-2A:3,4,5 2板書設(shè)計(jì):教學(xué)反思:

yJS21.com更多精選幼兒園教案閱讀

不等式解法教案9篇


老師會對課本中的主要教學(xué)內(nèi)容整理到教案課件中,所以老師寫教案可不能隨便對待。制作合理充分的教案是鞏固學(xué)生知識的有效途徑,老師應(yīng)該從什么方面去寫教案課件?幼兒教師教育網(wǎng)編輯深度評估了這篇“不等式解法教案”強(qiáng)烈推薦給大家,如果您對這個(gè)話題有所興趣請跟進(jìn)我們的官網(wǎng)!

不等式解法教案 篇1

1.復(fù)習(xí)一元一次方程、一元一次不等式與一次函數(shù)的關(guān)系

[師]前面我們已經(jīng)學(xué)習(xí)了絕對值不等式的解法,今天開始研究一元二次不等式的解法。(板書課題)記得在初中我們已學(xué)習(xí)了一元一次不等式的解法,還記得是用什么方法解的嗎?

學(xué)生可能回答是代數(shù)方法,也可能說是利用直線圖象。

[師]初中學(xué)習(xí)了一次函數(shù)的圖象,使得我們對一元一次不等式的解法有了更深入的了解。首先請同學(xué)們畫出 y=2x-7

[師]請同學(xué)們畫出圖象,并回答問題。

一次函數(shù)y=2x-7的圖象如下:

填表:

當(dāng)x 時(shí),y = 0,即 2x-7 0;

當(dāng)x 時(shí),y

當(dāng)x 時(shí),y > 0,即 2x-7 0;

注:(1)引導(dǎo)學(xué)生由圖象得出結(jié)論(數(shù)形結(jié)合)

(2)由學(xué)生填空(一邊演示y0部分圖象)

從上例的特殊情形,你能得出什么結(jié)論?

注:教師引導(dǎo)下學(xué)生發(fā)現(xiàn)其結(jié)論,并由學(xué)生嘗試敘述:一元一次方程ax+b=0的根實(shí)質(zhì)上就是直線y=ax+b與x軸交點(diǎn)的橫坐標(biāo);一元一次不等式ax+b>0(或ax+b

2.新課導(dǎo)入

[師]我們可以利用一次函數(shù)的圖象快速準(zhǔn)確地求出一元一次不等式的解集,那能否也可以借助二次函數(shù)的圖象來解一元二次不等式呢?

不等式解法教案 篇2

一元二次不等式及其解法教學(xué)反思

塘沽中專-----戚衛(wèi)民

我在13級電子班教室上了一節(jié)課,由此我進(jìn)行了深刻的反思:

我教的是一個(gè)普通中專的班,學(xué)生基礎(chǔ)比較差。因此,第一,課前組織很重要,給 學(xué)生 做思想 工 作,這 節(jié) 課很重要,是大家表現(xiàn) 自己 的好機(jī)會,同 學(xué) 們應(yīng)該遵守紀(jì)律,積極發(fā)言,展示 自己 班良好的素質(zhì)和班風(fēng)。這樣學(xué)生激情會高一些,自然課堂也會活躍一些。第二,把握本節(jié)課的難點(diǎn),課前做好鋪墊。一元二次不等式及其解法看上去好像很簡單,但是它需要同學(xué)們有很好的基礎(chǔ),解一元二次方程的基礎(chǔ)。而學(xué)生在初中只是熟悉用求根公式解方程,對于十字相乘法分解因式只有極個(gè)別會,對于這種情形我在課前把一元二次方程的解法好好的補(bǔ)了一下。還有二次函數(shù)的圖象畫法,也好好的復(fù)習(xí)一下,加深鞏固,突破難點(diǎn),使得這節(jié)課能順利進(jìn)行下去。

盡管這樣我的課堂效果也不是很好,這是為什么呢?我陷入迷茫之中可能是我的學(xué)生不適應(yīng)教學(xué)方式?可能是學(xué)生緊張?弄錯(cuò)?后來想想可能我沒有好好地備學(xué)生。我覺得這節(jié)課的教案應(yīng)該這樣設(shè)計(jì),可能會更好:課前引入去掉,應(yīng)該在復(fù)習(xí)時(shí)讓學(xué)生解一元二次方程,畫二次函數(shù)圖象,這樣學(xué)生容易進(jìn)入狀態(tài)。然后直接導(dǎo)入新課,有特殊到 一般,由具體到抽象,逐步揭開解一元二次不等式的方法。給出例題應(yīng)由淺入深,先給出形如這樣的:(x-2)(x-3)

讓他們好求方程的根,從而畫圖求不等式的解集,為后續(xù)例題做鋪墊。作為教師我應(yīng)該很規(guī)范的板書。以給學(xué)生榜樣。然后給出形如這樣的不等式:x2+3x-4≥0 由上道題的啟示他們自然會去驗(yàn)證Δ,用十字相乘法求一元二次方程x2+3x-4=0 的根,畫函數(shù)的圖像,從而求出解集。從這兩道題讓他們自己歸納一下解一元二次不等式的步驟,再出課本習(xí)題,這樣他們一定可以解出來,此種做法可以提高他們的解興趣,把課堂氣氛變得濃烈一些。接著給出-x2-3x+4>0提醒他們要把二項(xiàng)式系數(shù)變?yōu)檎龜?shù)。用課本課后題做練習(xí)。再給出x2-3x+4>0這種Δ0Δ=0的情形。根據(jù)二次函數(shù)的圖像學(xué)生應(yīng)該可以解決。

一節(jié)課究竟要解決什么問題,怎樣解決這是課堂的首要。貼近學(xué)生實(shí)際,層層深入,各個(gè)擊破,幫學(xué)生排憂解難,同時(shí)發(fā)揮他們的主觀能動(dòng)性,讓學(xué)感受到自己是課堂的主人,這是教師課堂的主旨。還有一點(diǎn)非常重要,老師必須要有很強(qiáng)的親和力。其實(shí)親和力的前提是要有愛心,有愛才會親。一個(gè)孩子在班上是六十分之一,但在一個(gè)家庭是百分百,所以我覺得我們應(yīng)該向愛我們自己的孩子一樣去愛他們,讓學(xué)生感受到我們的關(guān)懷,怎樣做到愛學(xué)生,我覺得自己以后可這樣努力 :記住每一個(gè)學(xué)生的名字,在路上和他們打招呼,下課和他們談?wù)勑?,說笑說笑,不 要說一些傷學(xué)生人 格的話語,適當(dāng)鼓勵(lì)他們,人心都是肉長的呀,他們會感覺得到的。成績差的學(xué)生其實(shí)是非常敏感的,也是很容易叛逆的,在任何時(shí)候老師都要想到自己是成年人,是長者,要站在一定的高度考慮我們的學(xué)生,設(shè)身處地為他們想象。這樣就不會有芥蒂,沖突,代溝。這節(jié)課我比較真實(shí)展現(xiàn)我的學(xué)生和我自己。無論從哪一方面,業(yè)務(wù)能力,管理能力,對學(xué)生的掌控能力,課堂的把握能力。我都有待學(xué)習(xí)提高。我會努力的!

不等式解法教案 篇3

高中數(shù)學(xué)《一元二次不等式的解法(2)》教案

一、教學(xué)目標(biāo)

【知識與技能】

掌握求解一元二次不等式的簡單方法,能正確求解一元二次不等式的解集。

【過程與方法】

在探究一元二次不等式的解法的過程中,提升邏輯推理能力。

【情感、態(tài)度與價(jià)值觀】

感受數(shù)學(xué)知識的前后聯(lián)系,提升學(xué)習(xí)數(shù)學(xué)的熱情。

二、教學(xué)重難點(diǎn)

【重點(diǎn)】一元二次不等式的解法。

【難點(diǎn)】一元二次不等式的解法的探究過程。

三、教學(xué)過程

(一)導(dǎo)入新課

回顧一元二次不等式的一般形式,組織學(xué)生舉例一些簡單的一元二次不等式。

提問:如何求解?引出課題。

(二)講解新知

結(jié)合課前回顧的一元二次不等式的一般形式,對比之前所學(xué)內(nèi)容,引導(dǎo)學(xué)生發(fā)現(xiàn)其與一元二次方程和二次函數(shù)的共同特點(diǎn)。

不等式解法教案 篇4

一元二次不等式及其解法(3課時(shí))

(一)教學(xué)目標(biāo)

1.知識與技能:從實(shí)際問題中建立一元二次不等式,解一元二次不等式;應(yīng)用一元二次不等式解決日常生活中的實(shí)際問題;能用一個(gè)程序框圖把求解一般一元二次不等式的過程表示出來;

2.過程與方法:通過學(xué)生感興趣的上網(wǎng)問題引入一元二次不等式的有關(guān)概念,通過讓學(xué)生比較兩種不同的收費(fèi)方式,抽象出不等關(guān)系;利用計(jì)算機(jī)將數(shù)學(xué)知識用程序表示出來;

3.情態(tài)與價(jià)值:培養(yǎng)學(xué)生通過日常生活中的例子,找到數(shù)學(xué)知識規(guī)率,從而在實(shí)際生活問題中數(shù)形結(jié)合的應(yīng)用以及計(jì)算機(jī)在數(shù)學(xué)中的應(yīng)用。

(二)教學(xué)重、難點(diǎn)

重點(diǎn):從實(shí)際問題中抽象出一元二次不等式模型,圍繞一元二次不等式的解法展開,突出體現(xiàn)數(shù)形結(jié)合的思想;

難點(diǎn):理解二次函數(shù)、一元二次方程與一元二次不等式解集的關(guān)系。

(四)教學(xué)設(shè)想

[創(chuàng)設(shè)情景] 通過讓學(xué)生閱讀第84頁的上網(wǎng)問題,得出一個(gè)關(guān)于x的一元二次不等式,即

x2?5x?0

[探索研究] 首先考察不等式x?5x?0與二次函數(shù)y?x2?5x以及一元二次方程x?5x?0的 關(guān)系。

容易知道,方程x?5x?0有兩個(gè)實(shí)根:x1?0,x2?5

由二次函數(shù)的零點(diǎn)與相應(yīng)的一元二次方程根的關(guān)系,知x1?0,x2?5是二次函數(shù)222y?x2?5x的兩個(gè)零點(diǎn)。通過學(xué)生畫出的二次函數(shù)y?x2?5x的圖象,觀察而知,當(dāng)x?0,x?5時(shí),函數(shù)圖象位于x軸上方,此時(shí)y?0,即x?5x?0;

2當(dāng)0?x?5時(shí),函數(shù)圖象位于x軸下方,此時(shí)y?0,即x?5x?0。

22所以,一元二次不等式x?5x?0的解集是x0?x?5

??從而解決了以上的上網(wǎng)問題。

[總結(jié)歸納] 上述方法可以推廣到求一般的一元二次不等式ax?bx?c?0或

2ax2?bx?c?0(a?0)的解集:可分??0,??0,??0三種情況來討論。

引導(dǎo)學(xué)生將第86頁的表格填充完整。

[例題分析]:

一.分析、講解例2和例3,練習(xí):第89頁1.(1)、(3)、(5);2.(1)、(3)二.分析、講解例1和例4 練習(xí):第90頁(A組)第5題,(B組)第4題。[知識拓展]:

下面利用計(jì)算器,用一個(gè)程序框圖把求解一般一元二次不等式的過程表示出來:

下面是具有一般形式ax?bx?c?0(a?0)對應(yīng)的一元二次方程

2ax2?bx?c?0(a?0)的求根程序:

input “a,b,c=”;a,b,c d=b*b-4*a*c p=-b/(2*a)q=sqr(abs(d))/(2*a)if d “;p,”}” else print “the result is {x/x> “;x2, “or x

1.從實(shí)際問題中建立一元二次不等式,解一元二次不等式; 2.應(yīng)用一元二次不等式解決日常生活中的實(shí)際問題;

3.能用一個(gè)程序框圖把求解一般一元二次不等式的過程表示出來:

[課后作業(yè)]:習(xí)題(A組)第1、2、6題;(B組)第1、2題。

不等式解法教案 篇5

《一元二次不等式及其解法(第1課時(shí))》教學(xué)設(shè)計(jì)

Eric 一 內(nèi)容分析

本節(jié)課內(nèi)容的地位體現(xiàn)在它的基礎(chǔ)性,作用體現(xiàn)在它的工具性。一元二次不等式的解法是初中一元一次不等式或一元一次不等式組的延續(xù)和深化,對已學(xué)習(xí)過的集合知識的鞏固和運(yùn)用具有重要的作用,也與后面的函數(shù)、數(shù)列、三角函數(shù)、線形規(guī)劃、直線與圓錐曲線以及導(dǎo)數(shù)等內(nèi)容密切相關(guān)。許多問題的解決都會借助一元二次不等式的解法。因此,一元二次不等式的解法在整個(gè)高中數(shù)學(xué)教學(xué)中具有很強(qiáng)的基礎(chǔ)性,體現(xiàn)出很大的工具作用。

二 學(xué)情分析

學(xué)生已經(jīng)掌握了高中所學(xué)的基本初等函數(shù)的圖象及其性質(zhì), 能利用函數(shù)的圖象及其性質(zhì)解決一些問題。學(xué)生知道不等關(guān)系, 掌握了不等式的性質(zhì), 通過這部分內(nèi)容的學(xué)習(xí), 學(xué)生將學(xué)會利用二次函數(shù)的圖象, 通過數(shù)形結(jié)合的思想, 掌握一元二次不等式的解法。

三 教學(xué)目標(biāo)

1.知識與技能目標(biāo):(1)熟練應(yīng)用二次函數(shù)圖象解一元二次不等式的方法(2)了解一元二次不等式與相應(yīng)函數(shù), 方程的聯(lián)系 2.過程與方法:(1)通過學(xué)生已學(xué)過的一元一次不等式為例引入一元二次不等式的有關(guān)概及解法(2)讓學(xué)生觀察二次函數(shù),在此基礎(chǔ)上, 找到一元二次不等式的解法并掌握此解法(3)在學(xué)生尋找一元二次不等式的過中程中培養(yǎng)學(xué)生數(shù)形結(jié)合的數(shù)學(xué)思想 3.情感與價(jià)值目標(biāo):(1)通過新舊知識的聯(lián)系獲取新知,使學(xué)生體會溫故而知新的道理

(2)通過對解不等式過程中等與不等對立統(tǒng)一關(guān)系的認(rèn)識,向?qū)W生逐步滲透辨證唯物主義思想。

(3)在教師的啟發(fā)引導(dǎo)下,學(xué)生自主探究,交流討論,培養(yǎng)學(xué)生的合作意識和創(chuàng)新精神。

四 教學(xué)重點(diǎn)、難點(diǎn) 1.重點(diǎn)

一元二次不等式的解法 2.難點(diǎn)

理解元二次方程與一元二次不等式解集的關(guān)系

五 教學(xué)方法

啟發(fā)式教學(xué)法,討論法,講授法

六 教學(xué)過程

1.創(chuàng)設(shè)情景,提出問題(約10分鐘)

師:在初中,我們解過一元一次不等式,如解不等式x – 1 > 0,現(xiàn)在請同學(xué)們先畫出函數(shù)y = x – 1 的圖象,并通過觀察圖象回答以下問題: 1)x 為何值時(shí),y = 0;2)x 為何值時(shí),y > 0;3)x 為何值時(shí),y 0的解集能從函數(shù)y = x – 1上看出來嗎?

學(xué)生畫圖,思考。先把問題交給學(xué)生自主探究,過一段時(shí)間,再小組交流,此間教師巡視并指導(dǎo)。提問學(xué)生代表。

通過對上述問題的探究,學(xué)生得出以下結(jié)論:

因?yàn)樯鲜龇匠蘹 – 1 = 0以及不等式x – 1 > 0的左邊恰好是上述函數(shù)y = x3x – 2 > 0;2)4x23x – 2 = 0的解是x1 =-1/2, x2 = 2.所以2x24x + 1 = 0 的解是x1 = x2 = 1/2, 所以不等式4x22x + 3

練習(xí):課本80頁練習(xí)第1題(1)-(3)【靈活掌握】.師:今天我們這節(jié)課的內(nèi)容有兩個(gè): 1)會一元二次不等式的解法 2)理解三個(gè)“二次”的關(guān)系

作業(yè):課本第80頁 習(xí)題 A

4.板書設(shè)計(jì)

§ 一元二次不等式及其解法

解不等式x2 – x – 6 > 0, 請先畫出二次函數(shù) y = x2 – x – 6的圖像,并回答以下問題: 1)x 為何值時(shí),y = 0;y > 0;y 0的解集呢?

七 教學(xué)反思

組1、2題 例,解不等式:

1)2x24x + 1 > 0;3)-x2 + 2x – 3

解:1)因?yàn)棣?=(-3)2 – 4×2×(-2)= 25 > 0, 方程的2x23x – 2 > 0的解集是{x| x1 2}.2)因?yàn)棣?= 0,方程4x24x + 1 > 0的解集是{x|x ≠ 1/2}.

不等式解法教案 篇6

《一元二次不等式及其解法》

教 學(xué) 設(shè) 計(jì) 說 明

《一元二次不等式及其解法》教學(xué)設(shè)計(jì)說明

一.教學(xué)內(nèi)容分析:

1.本節(jié)課內(nèi)容在整個(gè)教材中的地位和作用.

必修五第三章不等式第二節(jié)一元二次不等式及其解法共有三個(gè)課時(shí),本節(jié)課是第一課時(shí),教學(xué)內(nèi)容的地位體現(xiàn)在它的基礎(chǔ)性,作用體現(xiàn)在它的工具性.一元二次不等式的解法是初中一元一次不等式或一元一次不等式組的延續(xù)和深化,對已學(xué)習(xí)過的集合知識的鞏固和運(yùn)用具有重要的作用.許多問題的解決都會借助一元二次不等式的解法.因此,一元二次不等式的解法在整個(gè)高中數(shù)學(xué)教學(xué)中具有很強(qiáng)的基礎(chǔ)性,體現(xiàn)出很大的工具作用. 2.教學(xué)目標(biāo)定位.

根據(jù)教學(xué)大綱要求、高考考試大綱說明、新課程標(biāo)準(zhǔn)精神、高一學(xué)生已有的知識儲備狀況和學(xué)生心理認(rèn)知特征,我確定了四個(gè)層面的教學(xué)目標(biāo).第一層面是面向全體學(xué)生的知識目標(biāo):熟練掌握一元二次不等式的解法,正確理解一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系.第二層面是能力目標(biāo),培養(yǎng)學(xué)生運(yùn)用數(shù)形結(jié)合與分類討論等數(shù)學(xué)思想方法解決問題的能力,提高運(yùn)算和作圖能力.第三層面是德育目標(biāo),通過對解不等式過程中等與不等對立統(tǒng)一關(guān)系的認(rèn)識,向?qū)W生逐步滲透辨證唯物主義思想.第四層面是情感目標(biāo),在教師的啟發(fā)引導(dǎo)下,學(xué)生自主探究,交流討論,培養(yǎng)學(xué)生的合作意識和創(chuàng)新精神. 3.教學(xué)重點(diǎn)、難點(diǎn)確定.

本節(jié)課是在復(fù)習(xí)了一元二次方程和二次函數(shù)之后,利用二次函數(shù)的圖象研究一元二次不等式的解法.只要學(xué)生能夠理解一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系,并利用其關(guān)系解不等式即可.因此,我確定本節(jié)課的教學(xué)重點(diǎn)為一元二次不等式的解法,關(guān)鍵是一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系. 二.教法學(xué)法分析:

數(shù)學(xué)是發(fā)展學(xué)生思維、培養(yǎng)學(xué)生良好意志品質(zhì)和美好情感的重要學(xué)科,在教學(xué)中,我們不僅要使學(xué)生獲得知識、提高解題能力,還要讓學(xué)生在教師的啟發(fā)引導(dǎo)下學(xué)會學(xué)習(xí)、樂于學(xué)習(xí),感受數(shù)學(xué)學(xué)科的人文思想,使學(xué)生在學(xué)習(xí)中培養(yǎng)堅(jiān)強(qiáng)的意志品質(zhì)、形成良好的道德情感.為了更好地體現(xiàn)課堂教學(xué)中“教師為主導(dǎo),學(xué)生為主體”的教學(xué)關(guān)系和“以人為本,以學(xué)定教”的教學(xué)理念,在本節(jié)課的教學(xué)過程中,將緊緊圍繞教師組織——啟發(fā)引導(dǎo),學(xué)生探究——交流發(fā)現(xiàn),組織開展教學(xué)活動(dòng).我設(shè)計(jì)了①回憶舊知,服務(wù)新知,②創(chuàng)設(shè)情境,提出問題,③合作交流,探究新知,④數(shù)學(xué)運(yùn)用,深化認(rèn)知,⑤練習(xí)檢測,反饋新知,⑥談?wù)勈斋@,強(qiáng)化思想,⑦布置作業(yè),實(shí)踐新知,環(huán)環(huán)相扣、層層深入的教學(xué)環(huán)節(jié),在教學(xué)中注意關(guān)注整個(gè)過程和全體學(xué)生,充分調(diào)動(dòng)學(xué)生積極參與教學(xué)過程的每個(gè)環(huán)節(jié). 三.教學(xué)過程分析:

(一)聯(lián)系舊知,構(gòu)建新知

設(shè)置一系列的問題喚起學(xué)生對舊知識的回憶. 問題1:一元二次方程的解法有哪些呢?

(意圖:讓學(xué)生回顧一元二次方程的解法,為解一元二次不等式做準(zhǔn)備.)

問題2:同學(xué)們還記得二次函數(shù)嗎?二次函數(shù)的形式是怎樣的?你記得二次函數(shù)的性質(zhì)嗎?

(意圖:引導(dǎo)學(xué)生從圖象的角度出發(fā),并啟發(fā)學(xué)生二次函數(shù)的圖象是一條拋物線,其開口方向由二次項(xiàng)系數(shù)決定,為突出重點(diǎn)做準(zhǔn)備)

(二)創(chuàng)設(shè)情景,提出問題

1、讓學(xué)生動(dòng)手畫直角坐標(biāo)系,然后沿x軸方向上下對折這張紙,觀察它們的值有什么特點(diǎn)?

22、請?jiān)趧偛诺淖鴺?biāo)系中畫出y=x-7x+6的圖像 問題1:

(1)x軸上方有無圖像?若有請用紅線描出。這部分圖像對應(yīng)的y值如何?(2)x軸下方有無圖像?若有請用藍(lán)線描出。這部分圖像對應(yīng)的y值如何?(3)紅線與藍(lán)線有無交點(diǎn)?若有請用綠色標(biāo)出。

(4)你能找出上述各種情況的x的取值范圍嗎?請?jiān)趫D中寫出。

問題2:你能說一說這兩個(gè)不等式有何共同特點(diǎn)么?(1)含有一個(gè)未知數(shù)x;

(2)未知數(shù)的最高次數(shù)為2。通過兩問題得出一元二次不等式的概念:一般地,只含有一個(gè)未知數(shù),且未知數(shù)的最高次數(shù)為2的不等式,叫做一元二次不等式。

問題3:判斷下列式子是不是一元二次不等式?

問題4:一元二次函數(shù)、一元二次方程之間有何聯(lián)系呢?

一元二次方程的解即一元二次函數(shù)圖象與x軸交點(diǎn)的橫坐標(biāo),也就是說方程的解即對應(yīng)函數(shù)的零點(diǎn)。

問題5:一元二次不等式如何求解呢?

(三)合作交流,探究新知

1. 探究一元二次不等式x2?x?2?0的解.

容易知道:一元二次方程x2?x?2?0的有兩個(gè)實(shí)數(shù)根:x1??1或x2?2. 二次函數(shù)y?x2?x?2與x軸有兩個(gè)交點(diǎn):??1,0?和?2,0?. 思考1:觀察圖象一元二次方程的根與二次函數(shù)之間有什么關(guān)系? 思考2:觀察圖象,當(dāng)x為何值時(shí),y?0;

當(dāng)x為何值時(shí),y?0; 當(dāng)x為何值時(shí),y?0.

(設(shè)計(jì)意圖 : ①體現(xiàn)學(xué)生的主體性;②有利于加強(qiáng)對圖象的認(rèn)識,從而加強(qiáng)數(shù)形結(jié)合的數(shù)學(xué)思想 ;③有利于加強(qiáng)學(xué)生理解一元二次不等式的解相關(guān)的三個(gè)因素;④為歸納解一元二次不等式做好準(zhǔn)備.根據(jù)前面探討的問題引導(dǎo)學(xué)生歸納一元二次不等式的解.)

2. 探究一元二次不等式ax2?bx?c?0或ax2?bx?c?0?a?0?的解法. 組織討論:從上面的例子出發(fā),綜合學(xué)生的意見,可以歸納出確定一元二次不等式的解集,關(guān)鍵要考慮:

2拋物線y?ax?bx?c與x軸的相關(guān)位置的情況,也就是一元二次方程2ax2?bx?c=0的根的情況,而一元二次方程根的情況是由判別式??b?4ac三 3 種取值情況(??0,??0,??0)來確定.

(設(shè)計(jì)意圖:這里我將運(yùn)用多媒體圖標(biāo)的形式來展現(xiàn)出其解法思路,學(xué)生有一個(gè)完整的邏輯思維,讓學(xué)生在探究中建立知識間的聯(lián)系,體會數(shù)形結(jié)合,強(qiáng)調(diào)突出本節(jié)的難點(diǎn).)

(四)數(shù)學(xué)運(yùn)用,深化認(rèn)知.

2例1.求不等式2x?3x?2?0的解集. 2變式為:求不等式2x?3x?2?0的解集.

2例2.解不等式?x?2x?3?0.

(設(shè)計(jì)意圖:先讓學(xué)生來解答例題,若教師巡視、指導(dǎo),講評學(xué)生完成情況,尋找學(xué)生中的閃光點(diǎn),給予熱情表揚(yáng).)總結(jié):

解一元二次不等式的步驟:

一化:化二次項(xiàng)前的系數(shù)為正(a>0).二判:判斷對應(yīng)方程的根.三求:求對應(yīng)方程的根.四畫:畫出對應(yīng)函數(shù)的圖象.五解集:根據(jù)圖象寫出不等式的解集.(五)練習(xí)檢測,鞏固收獲

(設(shè)計(jì)意圖:為了鞏固和加深一元二次不等式的解法,讓學(xué)生學(xué)以致用,接下來及時(shí)組織學(xué)生進(jìn)行課堂練習(xí).然后就學(xué)生在解題中出現(xiàn)的問題共同糾正.)

(六)歸納小結(jié),強(qiáng)化思想

設(shè)計(jì)意圖:梳理本節(jié)課的知識點(diǎn),總結(jié)一元二次不等式解法的步驟:“一化,二判,三求根,四畫圖,五寫解集”的口訣來幫助學(xué)生記憶和歸納,讓學(xué)生掌握嚴(yán)謹(jǐn)?shù)淖鲱}方法,知曉本節(jié)課的重難點(diǎn).

(七)布置作業(yè),拓展延伸

必做題:課本第80頁習(xí)題A組 1,2.選做題:(1)若關(guān)于m的一元二次方程x

2?(m?1)x?m?0有兩個(gè)不相 等的實(shí)數(shù)根,求m的取值范圍.2(2)已知不等式x?ax?b?0的解集為x2?x?3?,求a,b的

?值.(設(shè)計(jì)意圖:以作業(yè)的鞏固性和發(fā)展性為出發(fā)點(diǎn),我設(shè)計(jì)了必做題和選做題,必做題是對本節(jié)課內(nèi)容的反饋,選做題是對本節(jié)課知識的延伸,整體的設(shè)計(jì)意圖是反饋教學(xué),鞏固提高.)四.教學(xué)總結(jié)

本節(jié)課的所有內(nèi)容以習(xí)題的形式展現(xiàn)給學(xué)生,學(xué)生始終在解題中探究,在解題中發(fā)現(xiàn),學(xué)生參與教學(xué)的全過程,成為課堂教學(xué)的主體和學(xué)習(xí)的主人,而老師只須時(shí)刻關(guān)注學(xué)生的活動(dòng)過程,不時(shí)給予引導(dǎo),及時(shí)糾正.

不等式解法教案 篇7

新課程理念下的教學(xué)更多的關(guān)注學(xué)生自主探究、關(guān)注學(xué)生的個(gè)性發(fā)展,鼓勵(lì)學(xué)生勇于提出問題,培養(yǎng)學(xué)生思維的批評性。在課堂上學(xué)生往往會提出讓老師感到“意外”的問題,我在平時(shí)的教學(xué)中重視對“課堂意外預(yù)案”的探索和思考,備課時(shí)盡量設(shè)想課堂中可能會出現(xiàn)的各種情況,做到有備無患,以免在課堂中學(xué)生提出讓自己出乎意料的問題,使自己陷入被動(dòng)尷尬境地。結(jié)合以往經(jīng)驗(yàn),在本節(jié)課,我提出兩個(gè)“意外預(yù)案”。

1、學(xué)生在做課本練習(xí)1(x+2)(x-3)>0時(shí),可能會問到轉(zhuǎn)化為不等式組{或{求解對不對。學(xué)生提出的問題,想法非常好,應(yīng)給予肯定和鼓勵(lì),這與下節(jié)簡單分式不等式和高次不等式的解法有關(guān),是解不等式的另一種解法——等價(jià)轉(zhuǎn)化法,不在本節(jié)課之列。

2、根據(jù)以往的經(jīng)驗(yàn),在解(x-1)(x+2)>1一類的不等式的時(shí)候,由于受方程(x+1)(x+2)=0可轉(zhuǎn)化為x-1=0或x+2=0求解的影響,有可能會出現(xiàn)將不等式轉(zhuǎn)化為不等式組{來求解的錯(cuò)誤做法,教師要關(guān)注學(xué)生,及時(shí)發(fā)現(xiàn)問題并給予糾正,指出上面的轉(zhuǎn)化不是等價(jià)轉(zhuǎn)化。

以上是我對本節(jié)課的一些粗淺的認(rèn)識和構(gòu)想,如有不妥之處,懇請各位專家、各位同仁批評指正。謝謝大家!

不等式解法教案 篇8

1、一元二次不等式解法的探索

[師] 你知道二次函數(shù)的草圖是怎樣畫出的嗎?(用"特殊點(diǎn)法"而非課本上的"列表描點(diǎn)法")你能回答以下問題嗎?二次函數(shù) y=x2-4x+3的圖象如下:

填表:方程x2-4x+3=0(即y=0)的解是

不等式x2-4x+3>0(即y>0)的解集是

不等式x2-4x+3

注:學(xué)生類比前面的知識,能根據(jù)二次函數(shù)的圖象確定與x軸的交點(diǎn),確定對應(yīng)的一元二次方程的根,從而確定一元二次不等式的解集。(邊說邊畫y>0,y

[師]現(xiàn)在如果我變動(dòng)這條拋物線,請大家觀察拋物線與x軸的交點(diǎn)有何變化?

注:引導(dǎo)學(xué)生發(fā)現(xiàn)一元二次方程的根有三種情況,其對應(yīng)的二次函數(shù)圖象與x軸的位置關(guān)系也有三種情況,是由 >0, =0,

2、講解例題

[師]接下來請同學(xué)們再來分析幾個(gè)具體例子

(板書)例:解下列各不等式

(1)2x2-3x-2>0;

(2) -3x2+6x>2;

(3)4x2-4x+1>0;

(4)-x2+2x-3>0.

注:跟學(xué)生共同詳細(xì)分析(1),強(qiáng)調(diào)解題規(guī)范性,其余(2)(3)(4)由學(xué)生完成,并小組討論。

解:(1)方程2x2-3x-2=0的兩根為x1=- 或 x2=2,(畫草圖,結(jié)合圖象)

所以原不等式的解集是{x| x2 }

注:問題要順利求解,應(yīng)先考慮對應(yīng)方程

的根的情況,然后畫出草圖,結(jié)合不等式寫出解集。

(以下學(xué)生試著解決,并回答)

(2)分析一:結(jié)合開口向下的拋物線求解。

分析二:引導(dǎo)學(xué)生能否轉(zhuǎn)化為熟知類型,與(1)中二次項(xiàng)系數(shù)作比較,只要不等式兩邊同乘以-1,并注意不等式要改變方向。

解:原不等式可變?yōu)?3x2-6x+2

方程3x2-6x+2=0的兩根為 x1=1- , x2=1+

原不等式解集為: {x | 1-

(3)方程 4x2-4x+1=0有兩等根 x1=x2=

所以原不等式的解集是{x |x }

變式訓(xùn)練:改成4x2-4x+1 0,請學(xué)生回答(使學(xué)生知道不等式的解也可能是一個(gè)值)。

(4)將原不等式變形為:x2-2x+3

方程x2-2x+3=0無實(shí)根

原不等式的解集是

變式訓(xùn)練: -x2+2x-3

[師]上述幾例都有各自的特點(diǎn),反映在哪兩方面呢?注:引導(dǎo)學(xué)生總結(jié):一是二次項(xiàng)系數(shù),二是判別式 ,一般要先將二次項(xiàng)系數(shù)轉(zhuǎn)化為正數(shù)。

不等式解法教案 篇9

一、教材分析

(一)教材的地位和作用

“一元二次不等式解法”既是初中一元一次不等式解法在知識上的延伸和發(fā)展,又是本章集合知識的運(yùn)用與鞏固,也為下一章函數(shù)的定義域和值域教學(xué)作鋪墊,起著鏈條的作用。同時(shí),這部分內(nèi)容較好地反映了方程、不等式、函數(shù)知識的內(nèi)在聯(lián)系和相互轉(zhuǎn)化,蘊(yùn)含著歸納、轉(zhuǎn)化、數(shù)形結(jié)合等豐富的數(shù)學(xué)思想方法,能較好地培養(yǎng)學(xué)生的觀察能力、概括能力、探究能力及創(chuàng)新意識。

(二)教學(xué)內(nèi)容

本節(jié)內(nèi)容分2課時(shí)學(xué)習(xí)。本課時(shí)通過二次函數(shù)的圖象探索一元二次不等式的解集。通過復(fù)習(xí)“三個(gè)一次”的關(guān)系,即一次函數(shù)與一元一次方程、一元一次不等式的關(guān)系;以舊帶新尋找“三個(gè)二次”的關(guān)系,即二次函數(shù)與一元二次方程、一元二次不等式的關(guān)系;采用“畫、看、說、用”的思維模式,得出一元二次不等式的解集,品味數(shù)學(xué)中的和諧美,體驗(yàn)成功的樂趣。

二、教學(xué)目標(biāo)分析

根據(jù)教學(xué)大綱的要求、本節(jié)教材的特點(diǎn)和高一學(xué)生的認(rèn)知規(guī)律,本節(jié)課的教學(xué)目標(biāo)確定為:

知識目標(biāo)——理解“三個(gè)二次”的關(guān)系;掌握看圖象找解集的方法,熟悉一元二次不等式的解法。

能力目標(biāo)——通過看圖象找解集,培養(yǎng)學(xué)生“從形到數(shù)”的轉(zhuǎn)化能力,“從具體到抽象”、“從特殊到一般”的歸納概括能力。

情感目標(biāo)——?jiǎng)?chuàng)設(shè)問題情景,激發(fā)學(xué)生觀察、分析、探求的學(xué)習(xí)激情、強(qiáng)化學(xué)生參與意識及主體作用。

三、重難點(diǎn)分析

一元二次不等式是高中數(shù)學(xué)中最基本的不等式之一,是解決許多數(shù)學(xué)問題的重要工具。本節(jié)課的重點(diǎn)確定為:一元二次不等式的解法。

要把握這個(gè)重點(diǎn)。關(guān)鍵在于理解并掌握利用二次函數(shù)的圖象確定一元二次不等式解集的方法——圖象法,其本質(zhì)就是要能利用數(shù)形結(jié)合的思想方法認(rèn)識方程的解,不等式的解集與函數(shù)圖象上對應(yīng)點(diǎn)的橫坐標(biāo)的內(nèi)在聯(lián)系。由于初中沒有專門研究過這類問題,高一學(xué)生比較陌生,要真正掌握有一定的難度。因此,本節(jié)課的難點(diǎn)確定為:“三個(gè)二次”的關(guān)系。要突破這個(gè)難點(diǎn),讓學(xué)生歸納“三個(gè)一次”的關(guān)系作鋪墊。

四、教法與學(xué)法分析

(一)學(xué)法指導(dǎo)

教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會學(xué)是目的。因此在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會學(xué)習(xí)。本節(jié)課主要是教給學(xué)生“動(dòng)手畫、動(dòng)眼看、動(dòng)腦想、動(dòng)口說、善提煉、勤鉆研”的研討式學(xué)習(xí)方法,這樣做增加了學(xué)生自主參與,合作交流的機(jī)會,教給了學(xué)生獲取知識的途徑、思考問題的方法,使學(xué)生真正成了教學(xué)的主體;只有這樣做,才能使學(xué)生“學(xué)”有新“思”,“思”有新“得”,“練”有新“獲”,學(xué)生也才會逐步感受到數(shù)學(xué)的美,會產(chǎn)生一種成功感,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;也只有這樣做,課堂教學(xué)才富有時(shí)代特色,才能適應(yīng)素質(zhì)教育下培養(yǎng)“創(chuàng)新型”人才的需要。

(二)教法分析

本節(jié)課設(shè)計(jì)的指導(dǎo)思想是:現(xiàn)代認(rèn)知心理學(xué)——建構(gòu)主義學(xué)習(xí)理論。

建構(gòu)主義學(xué)習(xí)理論認(rèn)為:應(yīng)把學(xué)習(xí)看成是學(xué)生主動(dòng)的建構(gòu)活動(dòng),學(xué)生應(yīng)與一定的知識背景即情景相聯(lián)系,在實(shí)際情景下進(jìn)行學(xué)習(xí),可以使學(xué)生利用已有知識與經(jīng)驗(yàn)同化和索引出當(dāng)前要學(xué)習(xí)的新知識,這樣獲取的知識,不但便于保持,而且易于遷移到陌生的問題情景中。

本節(jié)課采用“誘思引探教學(xué)法”。把問題作為出發(fā)點(diǎn),指導(dǎo)學(xué)生“畫、看、說、用”。較好地探求一元二次不等式的解法。

五、課堂設(shè)計(jì)

本節(jié)課的教學(xué)設(shè)計(jì)充分體現(xiàn)以學(xué)生發(fā)展為本,培養(yǎng)學(xué)生的觀察、概括和探究能力,遵循學(xué)生的認(rèn)知規(guī)律,體現(xiàn)理論聯(lián)系實(shí)際、循序漸進(jìn)和因材施教的教學(xué)原則,通過問題情境的創(chuàng)設(shè),激發(fā)興趣,使學(xué)生在問題解決的探索過程中,由學(xué)會走向會學(xué),由被動(dòng)答題走向主動(dòng)探究。

(一)創(chuàng)設(shè)情景,引出“三個(gè)一次”的關(guān)系

本節(jié)課開始,先讓學(xué)生解一元二次方程x2—x—6=0,如果我把“=”改成“>”則變成一元二次不等式x2—x—6>0讓學(xué)生解,學(xué)生肯定感到很突然。但是“思維往往是從驚奇和疑問開始”,這樣直奔主題,目的在于構(gòu)造懸念,激活學(xué)生的思維興趣。

為此,我設(shè)計(jì)了以下幾個(gè)問題:

1、請同學(xué)們解以下方程和不等式:

①2x—7=0;②2x—7>0;③2x—7

[薦]基本不等式教案8篇


依據(jù)您的要求,筆者檢索出《基本不等式教案》這篇文章。教師每節(jié)課都需要一份完整的教學(xué)課件,因此我們必須認(rèn)真地撰寫每份課題策劃和制作好每份教學(xué)課件。高質(zhì)量的教案和課件是能夠刺激學(xué)生的學(xué)習(xí)興趣的。我們希望這篇文章可以對您有所幫助!

基本不等式教案 篇1

《不等式的基本性質(zhì)》它是北師大版八年級下冊第二章第二節(jié)的內(nèi)容。今天我將從教材分析,教學(xué)目標(biāo),教學(xué)重難點(diǎn),教法學(xué)法,教學(xué)過程這五個(gè)方面談?wù)勎覍@節(jié)課處理的一些不成熟的看法:

本節(jié)內(nèi)容不等式的基本性質(zhì),它是刻畫現(xiàn)實(shí)世界中量與量之間關(guān)系的有效數(shù)學(xué)模型,在現(xiàn)實(shí)生活中有著廣泛的應(yīng)用,所以對不等式的學(xué)習(xí)有著重要的實(shí)際意義。同時(shí),不等式的基本性質(zhì)也為學(xué)生以后順利學(xué)習(xí)解一元一次不等式和解一元一次不等式組的有關(guān)內(nèi)容的理論基礎(chǔ),起到重要的奠基作用。

根據(jù)《新課程標(biāo)準(zhǔn)》的要求,教材的內(nèi)容兼顧我班學(xué)生的特點(diǎn),我制定了如下教學(xué)目標(biāo):

知識與技能:

1. 感受生活中存在的不等關(guān)系,了解不等式的意義。

2. 掌握不等式的基本性質(zhì)。

過程與方法:經(jīng)歷不等式的基本性質(zhì)的探索過程,初步體會不等式與等式的異同。

情感態(tài)度與價(jià)值觀:經(jīng)歷由具體實(shí)例建立不等式模型的過程,進(jìn)一步符號感與數(shù)學(xué)化的能力。

教學(xué)重難點(diǎn):

重點(diǎn):不等式概念及其基本性質(zhì)

難點(diǎn):不等式基本性質(zhì)3

教法與學(xué)法:

1. 教學(xué)理念: “ 人人學(xué)有用的數(shù)學(xué)”

2. 教學(xué)方法:觀察法、引導(dǎo)發(fā)現(xiàn)法、討論法.

3. 教學(xué)手段:多媒體應(yīng)用教學(xué)

4. 學(xué)法指導(dǎo):嘗試,猜想,歸納,總結(jié)

根據(jù)《數(shù)學(xué)課程標(biāo)準(zhǔn)》的要求,教材和學(xué)生的特點(diǎn),我制定了以下四個(gè)教學(xué)環(huán)節(jié)。下面我將具體的教學(xué)過程闡述一下:

一、復(fù)習(xí)導(dǎo)入新課

上課開始,我首先帶領(lǐng)學(xué)生學(xué)習(xí)本節(jié)課的教學(xué)目標(biāo),讓學(xué)生明白本節(jié)課學(xué)習(xí)的目標(biāo)。

1.探索并掌握不等式的基本性質(zhì),并運(yùn)用它對不等式進(jìn)行變形.

2.理解不等式性質(zhì)與等式性質(zhì)的聯(lián)系與區(qū)別.

3.提高觀察、比較、歸納的能力,滲透類比的思想方法.

二、探求新知,講授新課

第一部分:學(xué)前練習(xí)

1. -7 ≤ -5, 3+4>1+4

5+3≠12-5, x ≥ 8

a+2>a+1, x+3 <6

(1)上述式子有哪些表示數(shù)量關(guān)系的符號?這些符號表示什么關(guān)系?

(2)這些符號兩側(cè)的代數(shù)式可隨意交換位置嗎?

(3)什么叫不等式?

目的:設(shè)計(jì)該部分是為了讓學(xué)生上新課之前先回顧一下上節(jié)課學(xué)習(xí)的內(nèi)容。

第二部分:探究新知:

1.商場A種服裝的價(jià)格為60元,B種服裝的價(jià)格為80元

(1)兩種服裝都漲價(jià)10元,哪種服裝價(jià)格高?漲價(jià)15元呢?

(2)兩種服裝都降價(jià)5元,哪種服裝價(jià)格高?降價(jià)15元呢?

(3)兩種服裝都打8折出售,哪種服裝價(jià)格高?

2.已知 4 > 3,填空:

4×(-1)——3 ×(-1)

4×(-5)——3 ×(-5)

目的:設(shè)計(jì)該部分的目的是為了引出不等式的基本性質(zhì)做鋪墊。

第三部分:不等式的基本性質(zhì)的探究

1:填空: 60

60+10 80+10

60-5 80-5

60+a 80+a

性質(zhì)1,不等式的兩邊都加上(或減去)同一個(gè)整式,不等號的方向不變.

2:填空(1):60

60 ×0.8 80 ×0.8

填空(2): 4 > 3

4×5 3×5

4÷2 3÷2

性質(zhì)2,不等式的兩邊都乘以(或除以)同一個(gè)正數(shù),不等號的方向不變。

3:填空: 4 > 3

4×(-1) 3×(-1)

4×(-5) 3×(-5)

4÷(-2) 3÷(-2)

性質(zhì)3,不等式的兩邊都乘以(或除以)同一個(gè)負(fù)數(shù),不等號的方向改變。

三、小結(jié)不等式的三條基本性質(zhì)

1. 不等式兩邊都加上(或減去)同一個(gè)數(shù)或同一個(gè)整式,不等號的方向不變;

2. 不等式兩邊都乘(或除以)同一個(gè)正數(shù),不等號的方向不變;

3.*不等式兩邊都乘(或除以)同一個(gè)負(fù)數(shù),不等號的方向改變 ;

與等式的基本性質(zhì)有什么聯(lián)系與區(qū)別?

四、典型例題

例1.根據(jù)不等式的基本性質(zhì),把下列不等式化成x<a或x>a的形式:

(1) x-2< 3 (2) 6x< 5x-1

(3) 1/2 x>5 (4) -4x>3

解:(1)根據(jù)不等式基本性質(zhì)1,兩邊都加上2,

得: x-2+2<3+2

x<5

(2)根據(jù)不等式基本性質(zhì)1,兩邊都減去5x,

得: 6x-5x<5x-1-5x

x<-1

例2.設(shè)a>b,用“<”或“>”填空:

(1)a-3 b-3 (2) -4a -4b

解:(1) ∵a>b

∴兩邊都減去3,由不等式基本性質(zhì)1

得 a-3>b-3

(2) ∵a>b,并且-4<0

∴兩邊都乘以-4,由不等式基本性質(zhì)3

得 -4a<-4b

五、變式訓(xùn)練:

1、已知x<y,用“<”或“>”填空。

(1)x+2 y+2 (不等式的基本性質(zhì) )

(2) 3x 3y (不等式的基本性質(zhì) )

(3)-x -y (不等式的基本性質(zhì) )

(4)x-m y-m (不等式的基本性質(zhì) )

2、若a-b

A.a>b B.ab>0

C. D.-a>-b

3、若x是任意實(shí)數(shù),則下列不等式中,恒成立的是( )

A.3x>2x B.3x2>2x2

C.3+x>2 D.3+x2>2

六 、小結(jié)

七、作業(yè)的布置

八、 以上是我對這節(jié)課的教學(xué)的看法,希望各位專家指正。謝謝!

基本不等式教案 篇2

尊敬的各位評委、老師:

大家好!

很高興能把《不等式的基本性質(zhì)》一課的教學(xué)設(shè)計(jì)向大家作一展示。下面我將從教材分析、教學(xué)目標(biāo)、教學(xué)方法、教學(xué)流程、教學(xué)評價(jià)和教學(xué)反思幾個(gè)方面來闡述我對本節(jié)課的安排。

一、教材分析

1. 教材的地位和作用

不等式是初中代數(shù)的重要內(nèi)容之一,是已知量與未知量的矛盾統(tǒng)一體。數(shù)學(xué)關(guān)系中的相等與不等是事物運(yùn)動(dòng)和平衡的反映,學(xué)習(xí)研究數(shù)量的不等關(guān)系,可以更好地認(rèn)識和掌握事物運(yùn)動(dòng)變化的規(guī)律?!安坏仁降男再|(zhì)”是學(xué)生學(xué)習(xí)整個(gè)不等式知識的理論基礎(chǔ),為以后學(xué)習(xí)解不等式(組)起到奠基的作用。本課位于湖南教育出版社義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書七年級上冊第五章第一節(jié)的內(nèi)容,主要內(nèi)容是讓學(xué)生在充分感性認(rèn)識的基礎(chǔ)上體會不等式的性質(zhì),它是空間與圖形領(lǐng)域的基礎(chǔ)知識,是《不等式》的重點(diǎn),學(xué)習(xí)它會為后面的學(xué)習(xí)不等式解法、不等式的計(jì)算等知識打下堅(jiān)實(shí)的“基石”。同時(shí),本節(jié)學(xué)習(xí)將為加深“不等式”的認(rèn)識,建立空間觀念,發(fā)展思維,并能讓學(xué)生在活動(dòng)的過程中交流分享探索的成果,體驗(yàn)成功的樂趣,把代數(shù)轉(zhuǎn)化為數(shù)軸,提高運(yùn)用數(shù)學(xué)的能力。

2.教學(xué)重難點(diǎn)

重點(diǎn):不等式的概念和不等式的基本性質(zhì)1。

難點(diǎn):利用不等式的基本性質(zhì)1進(jìn)行簡單的變形。

二、教學(xué)目標(biāo)

知識目標(biāo):

在了解不等式的意義基礎(chǔ)上,掌握不等式的基本性質(zhì)1。

能力目標(biāo):

①通過觀察、思考探索等活動(dòng)歸納出不等式的性質(zhì),培養(yǎng)學(xué)生轉(zhuǎn)化的數(shù)學(xué)思想,培養(yǎng)學(xué)生動(dòng)手、分析、解決實(shí)際問題的能力。

②通過活動(dòng)及實(shí)際問題的研究引導(dǎo)學(xué)生從數(shù)學(xué)角度發(fā)現(xiàn)和提出問題,并用數(shù)學(xué)方法探索、研究和解決問題,培養(yǎng)學(xué)生的數(shù)感,滲透數(shù)形結(jié)合思想。

情感目標(biāo):

①感受數(shù)學(xué)與生活的緊密聯(lián)系,體會數(shù)學(xué)的價(jià)值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)敢想、敢說、敢解決實(shí)際問題的學(xué)習(xí)習(xí)慣。

②通過“轉(zhuǎn)化”數(shù)學(xué)思想方法的運(yùn)用,讓學(xué)生認(rèn)識事物之間是普遍聯(lián)系,相互轉(zhuǎn)化的辯證唯物主義思想。

通過學(xué)生體驗(yàn)、猜想并證明,讓學(xué)生體會數(shù)學(xué)充滿著探索和創(chuàng)造,培養(yǎng)學(xué)生團(tuán)結(jié)協(xié)作,勇于創(chuàng)新的精神。

三、教學(xué)方法

1、采用激趣——探究法進(jìn)行教學(xué),師生互動(dòng),共同探究不等式的性質(zhì)。通過知識類比,合理引導(dǎo)等突出學(xué)生主體地位,讓教師成為學(xué)生學(xué)習(xí)的組織者、引導(dǎo)者、合作者,讓學(xué)生親自動(dòng)手、動(dòng)腦、動(dòng)口參與數(shù)學(xué)活動(dòng),經(jīng)歷問題的發(fā)生、發(fā)展和解決過程,在解決問題的過程中完成教學(xué)目標(biāo)。

2、根據(jù)學(xué)生實(shí)際情況,整堂課圍繞“情景問題——學(xué)生體驗(yàn)——合作交流”模式,鼓勵(lì)學(xué)生積極合作,充分交流,既滿足了學(xué)生對新知識的強(qiáng)烈探索欲望,又排除學(xué)生學(xué)習(xí)數(shù)軸陌生和學(xué)無所用的思想顧慮。對學(xué)習(xí)有困難的學(xué)生及時(shí)給予幫助,讓他們在學(xué)習(xí)的過程中獲得愉快和進(jìn)步。

3、充分利用多媒體課件輔助教學(xué),突出重點(diǎn)、突破難點(diǎn),擴(kuò)大學(xué)生知識面,使每個(gè)學(xué)生穩(wěn)步提高。

四、教學(xué)流程

我的教學(xué)流程設(shè)計(jì)是:從創(chuàng)設(shè)情境、激發(fā)興趣開始,經(jīng)歷探究新知、總結(jié)規(guī)律;針對練習(xí)、學(xué)習(xí)例題;鞏固提高、拓展延伸;暢談收獲、分層作業(yè)等過程來完成教學(xué)。

(一)創(chuàng)設(shè)情境,激發(fā)興趣:

師生欣賞拔河比賽圖片,讓學(xué)生觀察、思考從人數(shù)上看有什么不同點(diǎn)。并預(yù)測比賽的結(jié)果。從而自然的引入本節(jié)課的學(xué)習(xí)。

設(shè)計(jì)意圖:通過圖片展示,貼近學(xué)生生活,激發(fā)學(xué)生的學(xué)習(xí)興趣。讓學(xué)生知道數(shù)學(xué)知識無處不在,應(yīng)用數(shù)學(xué)無時(shí)不有。符合“數(shù)學(xué)教學(xué)應(yīng)從生活經(jīng)驗(yàn)出發(fā)”的新課程標(biāo)準(zhǔn)要求。

學(xué)習(xí)目標(biāo):

1、 理解不等式的基本性質(zhì)1。

2、 會解簡單的不等式。

此時(shí)我出示本節(jié)課的學(xué)習(xí)目標(biāo)和歸納出不等式的概念:

歸納:用不等號“﹥”(或“﹤”、“≥”、“”)連接的式子叫做不等式。符號“≥”讀作“大于或等于”,也可讀作“不小于”;符號“”讀作“小于或等于”,也可讀作“不大于”讀如a≥0表示a>0或a=0,形如3≠4,a≠b的式子,也叫不等式。

(二)探究新知、總結(jié)規(guī)律

在這個(gè)環(huán)節(jié),我主要設(shè)計(jì)了以下二個(gè)活動(dòng)來完成教學(xué)任務(wù):

活動(dòng)1:1、你能用“﹤”或“﹥”填空嗎?

(1)5﹥3 (2)6﹥4

5+2﹥3+2 6+a﹥4+a

5-2﹥3-2 6-a﹥4-a

2、(1)自己寫一個(gè)不等式,在它的兩邊同時(shí)加上、減去同一個(gè)數(shù)或代數(shù)式,看看有什么結(jié)果?

(2)小組合作討論交流,大膽說出自己的“發(fā)現(xiàn)”。

本次活動(dòng)以2組精心設(shè)計(jì)的填空題,讓學(xué)生通過觀察有限個(gè)不等式的變化,發(fā)現(xiàn)并歸納不等式的性質(zhì),進(jìn)一步培養(yǎng)學(xué)生的抽象概括能力及合情推理能力。

活動(dòng)2:你能用自己的語言概括不等式的性質(zhì)嗎?

本活動(dòng)中,我出示直觀深刻的天平圖片,組織學(xué)生分組討論,給每個(gè)學(xué)生提供發(fā)言機(jī)會,讓每一個(gè)學(xué)生都嘗試用自己的語言概括結(jié)論,鍛煉學(xué)生語言表達(dá)能力及抽象概括能力,然后歸納指出不等式的基本性質(zhì)1:

不等式的兩邊同時(shí)都加上(或都減去)同一個(gè)數(shù)或同一個(gè)代數(shù)式,不等式的方向不變。

當(dāng)學(xué)生概括出結(jié)論后,為了使學(xué)生對不等式的基本性質(zhì)1有更全面深入的了解,我還可以提出以下問題,讓學(xué)生思考:

性質(zhì)中的“不等號方向不變”的含義是什么?

使學(xué)生經(jīng)一步明確:“不等號方向不變”是指如果原來是“﹤”,那么變化后仍是“﹤”。

在活動(dòng)中,我深入小組,引導(dǎo)學(xué)生通過類比等式性質(zhì)的表示方法,表示出不等式的性質(zhì),并注意規(guī)范學(xué)生的數(shù)學(xué)語言。

通過用符號語言表示不等式的性質(zhì),有助于讓學(xué)生體會到用字母表示數(shù)的優(yōu)越性,發(fā)展學(xué)生文字語言與符號語言相互轉(zhuǎn)化能力和符號感。

設(shè)計(jì)意圖:猜想、交流、歸納,符合知識的形成過程,培養(yǎng)學(xué)生轉(zhuǎn)化的數(shù)學(xué)思想,學(xué)會將陌生的轉(zhuǎn)化為熟悉的,將未知的轉(zhuǎn)化為已知的。并用練習(xí)及時(shí)鞏固,落實(shí)新知與方法,增強(qiáng)學(xué)生運(yùn)用數(shù)學(xué)的能力。加強(qiáng)學(xué)生運(yùn)用新知的意識,培養(yǎng)學(xué)生解決實(shí)際問題的能力和學(xué)習(xí)數(shù)學(xué)的興趣,讓學(xué)生鞏固所學(xué)內(nèi)容,并進(jìn)行自我評價(jià),既面向全體學(xué)生,又照顧個(gè)別學(xué)有余力的學(xué)生,體現(xiàn)因材施教的原則。

(三)針對練習(xí)、學(xué)習(xí)例題

1、在這個(gè)環(huán)節(jié)我先是設(shè)計(jì)了一個(gè)練習(xí)題,通過練習(xí),進(jìn)一步鞏固了學(xué)生的新知,又加深了他們的理解,為學(xué)習(xí)例題奠定了基礎(chǔ)。

如果x-5>4,那么兩邊都 ,可得到x>9

2、學(xué)習(xí)例題環(huán)節(jié)我采用了學(xué)生單獨(dú)完成的方法來進(jìn)行,因?yàn)橛辛饲懊娴幕A(chǔ),學(xué)生很容易的就可以完成例題的解題過程,教師只需強(qiáng)調(diào)注意的事項(xiàng)即可。

例1.用“>”或“

(1)已知a>b,a+3 b+3; (2)已知a>b,a-5 b-5。

解:

【小結(jié)】解此題的理論依據(jù)就是根據(jù)不等式的基本性質(zhì)1進(jìn)行變形。

例2.把下列不等式化為x>a或x

(1)x+6>5 (2)3x>2x+2

解:

【歸納】把不等式的某一項(xiàng)變號后移到另一邊,稱為移項(xiàng),這與解一元一次方程中的移項(xiàng)相類似。例題完成后,要求學(xué)生講解解題思路,以進(jìn)一步加深理解。

(四)鞏固提高、拓展延伸

在這個(gè)環(huán)節(jié)我呈梯度形式設(shè)計(jì)了不同層次的練習(xí)題,針對不同層次階段的學(xué)生,都要求他們完成符合自身實(shí)際的題目,以便獲得成功的體驗(yàn),進(jìn)一步提高學(xué)習(xí)興趣。

1、課本P133練習(xí)第1、2題;

2、判斷是非:

①若a>b,則a-3>b-3 ( )

②若m③若a-8④若x>7,則x-4(五)暢談收獲、分層作業(yè)回顧本節(jié)課不等式性質(zhì)的探索過程和解不等式的方法,談?wù)勀愕男牡皿w會。1.不等式的概念和基本性質(zhì)1.2.簡單不等式的變形.通過學(xué)生歸納本節(jié)課的主要內(nèi)容、交流學(xué)習(xí)過程中的心得體會,使學(xué)生對本節(jié)課的知識進(jìn)一步加深了理解,同時(shí)積累了學(xué)習(xí)經(jīng)驗(yàn),體會到了數(shù)學(xué)的思想方法。最后是作業(yè)設(shè)計(jì):1、看書P132—P133(補(bǔ)全書上留白,劃出重點(diǎn)內(nèi)容,完成讀書筆記);2、習(xí)題5.1A組第1題(1)(2),第3題(1)(2);3、選作:習(xí)題5.1B組第1題。五、教學(xué)評價(jià)本節(jié)課的教學(xué)設(shè)計(jì),依據(jù)《新課程標(biāo)準(zhǔn)》的要求,立足于學(xué)生的認(rèn)知基礎(chǔ)來確定適當(dāng)?shù)钠瘘c(diǎn)與目標(biāo),內(nèi)容安排從不等式的意義到不等式的性質(zhì)的發(fā)現(xiàn)、論證和運(yùn)用,逐步展示知識的過程,使學(xué)生的思維層層展開,逐步深入。在教學(xué)設(shè)計(jì)時(shí),利用多媒體輔助教學(xué),展示圖片和動(dòng)畫,使學(xué)生體會到數(shù)學(xué)無處不在,運(yùn)用數(shù)學(xué)無時(shí)不有。以動(dòng)代靜,使課堂氣氛活躍,面向全體學(xué)生,給基礎(chǔ)好的學(xué)生充分的空間,滿足他們的求知欲,同時(shí)注重利用學(xué)生的好奇心,培養(yǎng)學(xué)生的創(chuàng)新能力,引導(dǎo)學(xué)一從數(shù)學(xué)角度發(fā)現(xiàn)和提出問題,并用數(shù)學(xué)方法探索、研究和解決,體現(xiàn)《新課標(biāo)》的教學(xué)理念。六、教學(xué)反思1.本節(jié)課通過學(xué)生自主探討、小組合作得出不等式的概念和性質(zhì)1.2.本課設(shè)計(jì)以問題為載體,探究為主線,培養(yǎng)學(xué)生的自主、動(dòng)手、合作交流能力。謝謝大家!

基本不等式教案 篇3

《不等式的基本性質(zhì)》它是北師大版八年級下冊第一章第二節(jié)的內(nèi)容。今天我將從教材分析,教學(xué)目標(biāo),教學(xué)重難點(diǎn),教法學(xué)法,教學(xué)過程這五個(gè)方面談?wù)勎覍@節(jié)課處理的一些不成熟的看法:

本節(jié)內(nèi)容不等式,它是刻畫現(xiàn)實(shí)世界中量與量之間關(guān)系的有效數(shù)學(xué)模型,在現(xiàn)實(shí)生活中有著廣泛的應(yīng)用,所以對不等式的學(xué)習(xí)有著重要的實(shí)際意義。同時(shí),不等式的基本性質(zhì)也為學(xué)生以后順利學(xué)習(xí)解一元一次不等式和解一元一次不等式組的有關(guān)內(nèi)容的理論基礎(chǔ),起到重要的奠基作用。

根據(jù)《新課程標(biāo)準(zhǔn)》的要求,教材的內(nèi)容兼顧我校八年級學(xué)生的特點(diǎn),我制定了如下教學(xué)目標(biāo):

知識與技能:

1. 感受生活中存在的不等關(guān)系,了解不等式的意義。

2. 掌握不等式的基本性質(zhì)。

過程與方法:經(jīng)歷不等式的基本性質(zhì)的探索過程,初步體會不等式與等式的異同。

情感態(tài)度與價(jià)值觀:經(jīng)歷由具體實(shí)例建立不等式模型的過程,進(jìn)一步符號感與數(shù)學(xué)化的能力。

教學(xué)重難點(diǎn):

重點(diǎn):不等式概念及其基本性質(zhì)

難點(diǎn):不等式基本性質(zhì)3

教法與學(xué)法:

1. 教學(xué)理念: “ 人人學(xué)有用的數(shù)學(xué)”

2. 教學(xué)方法:觀察法、引導(dǎo)發(fā)現(xiàn)法、討論法.

3. 教學(xué)手段:多媒體應(yīng)用教學(xué)

4. 學(xué)法指導(dǎo):嘗試,猜想,歸納,總結(jié)

根據(jù)《數(shù)學(xué)課程標(biāo)準(zhǔn)》的要求,教材和學(xué)生的特點(diǎn),我制定了以下四個(gè)教學(xué)環(huán)節(jié)。

下面我將具體的教學(xué)過程闡述一下:

一、創(chuàng)設(shè)情境,導(dǎo)入新課

上課伊始,我將用一個(gè)公園買門票如何才劃算的例子導(dǎo)入課題。

世紀(jì)公園的票價(jià)是:每人5元;一次購票滿30張,每張可少收1元。某班有27名團(tuán)員去世紀(jì)公園進(jìn)行活動(dòng)。當(dāng)領(lǐng)隊(duì)王小華準(zhǔn)備好了零錢到售票處買27張票時(shí),愛動(dòng)腦筋的李敏同學(xué)喊住了王小華,提議買30張票。但有的同學(xué)不明白,明明我們只有27個(gè)人,買30張票,豈不是“浪費(fèi)”嗎?

(此處學(xué)生是很容易得出買30張門票需要4X30=120(元), 買27張門票需要5X27=135(元),由于120〈135,所以買30張門票比買27張還要?jiǎng)澦?。由此建立了一個(gè)數(shù)與數(shù)之間的不等關(guān)系式)

緊接著進(jìn)一步提問:若人數(shù)是x時(shí),又當(dāng)如何買票劃算?

二、探求新知,講授新課

引例列出了數(shù)與數(shù)之間的不等關(guān)系和含有未知量120

接下來我用一組例題來鞏固一下對不等式概念的認(rèn)知,把表示不等量關(guān)系的常用關(guān)鍵詞提出。

(1)a是負(fù)數(shù);

(2)a是非負(fù)數(shù);

(3) a與b的和小于5;

(4) x與2的差大于-1;

(5) x的4倍不大于7;

(6) 的一半不小于3

關(guān)鍵詞:非負(fù)數(shù),非正數(shù),不大于,不小于,不超過,至少

回到引入課題時(shí)的門票問題120

難點(diǎn)突破:通過上面三組算式,學(xué)生已經(jīng)嘗試著歸納出不等式的三條基本性質(zhì)了。不等式性質(zhì)3是本節(jié)的難點(diǎn)。在不等式性質(zhì)3用數(shù)探討出以后,換一個(gè)角度讓學(xué)生想一想,是否能在數(shù)軸上任取兩個(gè)點(diǎn),用相反數(shù)的相關(guān)知識挖掘一下,乘以或除以一個(gè)負(fù)數(shù)時(shí),任意兩個(gè)數(shù)比較是否性質(zhì)3都成立。通過“數(shù)形結(jié)合”的思想,使數(shù)的取值從特殊化到一般化,從對具體數(shù)的感知完成到字母代替數(shù)的升華。讓學(xué)生用實(shí)例對一些數(shù)學(xué)猜想作出檢驗(yàn),從而增加猜想的可信程度。同時(shí),讓學(xué)生嘗試從不同角度尋求解決問題的方法并能有效地解決問題。

反饋練習(xí):用一個(gè)小練習(xí)鞏固三條性質(zhì)。

如果a>b,那么

(1) a-3 b-3 (2) 2a 2b (3) -3a -3b

提出疑問,我們討論性質(zhì)2,3是好象遺忘了一個(gè)數(shù)0。

引出讓學(xué)生歸納,等式與不等式的區(qū)別與聯(lián)系

三、拓展訓(xùn)練

根據(jù)不等式基本性質(zhì),將下列不等式化為“”的形式

(1)x-13

再次回到開頭的門票問題,讓學(xué)生解出相應(yīng)的x的取值范圍

四、小結(jié)

1.新知識

一個(gè)數(shù)學(xué)概念;兩種數(shù)學(xué)思想;三條基本性質(zhì)

2.與舊知識的聯(lián)系

等式性質(zhì)與不等式性質(zhì)的異同

五、作業(yè)的布置

以上是我對這節(jié)課的教學(xué)的看法,希望各位專家指正。謝謝!

“讓學(xué)生主動(dòng)參與數(shù)學(xué)教學(xué)的全過程,真正成為學(xué)習(xí)的主人”

基本不等式教案 篇4

一、素質(zhì)教育目標(biāo)

(一)知識教學(xué)點(diǎn)

1.使學(xué)生理解掌握不等式的三條基本性質(zhì),尤其是不等式的基本性質(zhì)3.

2.靈活運(yùn)用不等式的基本性質(zhì)進(jìn)行不等式形.

(二)能力訓(xùn)練點(diǎn)

培養(yǎng)學(xué)生運(yùn)用類比方法觀察、分析、解決問題的能力及歸納總結(jié)概括的能力.

(三)德育滲透點(diǎn)

培養(yǎng)學(xué)生積極主動(dòng)的參與意識和勇敢嘗試、探索的精神.

(四)美育滲透點(diǎn)

通過不等式基本性質(zhì)的學(xué)習(xí),滲透不等式所具有的內(nèi)在同解變形的數(shù)學(xué)美,激發(fā)學(xué)生探究數(shù)學(xué)美的興趣與激情,從而陶治學(xué)生的數(shù)學(xué)情操。

二、學(xué)法引導(dǎo)

1.教學(xué)方法:觀察法、探究法、嘗試指導(dǎo)法、討論法.

2.學(xué)生學(xué)法:通過觀察、分析、討論,引導(dǎo)學(xué)生歸納小結(jié)出不等式的三條基本性質(zhì),從具體下升到理論,再由理論指導(dǎo)具體的練習(xí),從而強(qiáng)化學(xué)生對知識的理解與掌握.

三、重點(diǎn)·難點(diǎn)·疑點(diǎn)及解決辦法

(一)重點(diǎn)

掌握不等式的三條基本性質(zhì),尤其是不等式的基本性質(zhì)3.

(二)難點(diǎn)

正確應(yīng)用不等式的三條基本性質(zhì)進(jìn)行不等式變形.

(三)疑點(diǎn)

弄不清“不等號方向不變”與“所得結(jié)果仍是不等式”之間的關(guān)系是學(xué)生學(xué)習(xí)的疑點(diǎn).

(四)解決辦法

講清“不等式的基本性質(zhì)”與“等式的基本性質(zhì)”之間的區(qū)別與聯(lián)系是教好本節(jié)內(nèi)容的關(guān)鍵.

四、課時(shí)安排

一課時(shí)

五、教具學(xué)具準(zhǔn)備

投影儀或電腦、自制膠片.

六、師生互動(dòng)活動(dòng)設(shè)計(jì)

1.通過設(shè)計(jì)的一組比較大小問題,讓學(xué)生觀察并歸納出不等式的三條基本性質(zhì).

2.通過教師的講解及學(xué)生的質(zhì)疑,讓學(xué)生在與等式性質(zhì)的對比中更加深入、準(zhǔn)確地理解不等式的三條基本性質(zhì).

3.通過教師的板書及學(xué)生的互動(dòng)練習(xí),體現(xiàn)出以學(xué)生為主體,教師為主導(dǎo)的教學(xué)模式能更好地對學(xué)生實(shí)施素質(zhì)教育.

七、教學(xué)步驟

(-)明確目標(biāo)

本節(jié)課主要學(xué)習(xí)不等式的三條基本性質(zhì)并能熟練地加以應(yīng)用.

(二)整體感知

通過具體的事例觀察并歸納出不等式的三條基本性質(zhì),再反復(fù)比較三條性質(zhì)的異同,從而尋找出在實(shí)際應(yīng)用某條性質(zhì)時(shí)應(yīng)注意的使用條件,同時(shí)注意將不等式的三條基本性質(zhì)與等式的基本性質(zhì)1、2進(jìn)行比較:相同點(diǎn)為不管是對等式還是不等式,都可以在它的兩邊同加(或減)同一個(gè)數(shù)或同一個(gè)整式.不同點(diǎn)是對于等式來說,在等式的兩邊乘以(或除以)同一個(gè)正數(shù)(或同一個(gè)負(fù)數(shù))的情況下等式仍然對立.但對于不等式來說,卻不一樣,在用同一個(gè)正數(shù)去乘(或除)不等式兩邊時(shí),不等號方向不變;而在用同一個(gè)負(fù)數(shù)去乘(或除)不等式兩邊時(shí),不等號要改變方向.這是在不等式變形時(shí)應(yīng)特別注意的地方.

(三)教學(xué)過程

1.創(chuàng)設(shè)情境,復(fù)習(xí)引入

什么是等式?等式的基本性質(zhì)是什么?

學(xué)生活動(dòng):獨(dú)立思考,指名回答.

教師活動(dòng):注意強(qiáng)調(diào)等式兩邊都乘以或除以(除數(shù)不為0)同一個(gè)數(shù),所得結(jié)果仍是等式.

請同學(xué)們繼續(xù)觀察習(xí)題:

(1)用“>”或“<”填空.

①7+3____4+3 ②7+(-3)____4+(-3)

③7×3____4×3?、?×(-3)____4×(-3)

(2)上述不等式中哪題的不等號與7>4一致?

學(xué)生活動(dòng):觀察思考,兩個(gè)(或幾個(gè))學(xué)生回答問題,由其他學(xué)生判斷正誤.

【教法說明】設(shè)置上述習(xí)題是為了溫故而知新,為學(xué)習(xí)本節(jié)內(nèi)容提供必要的知識準(zhǔn)備.

不等式有哪些基本性質(zhì)呢?研究時(shí)要與等式的性質(zhì)進(jìn)行對比,大家知道,等式兩邊都加上(或減去)同一個(gè)數(shù)或同一個(gè)整式,所得結(jié)果仍是等式(實(shí)質(zhì)是移項(xiàng)法則),請同學(xué)們觀察①②題,并猜想出不等式的'性質(zhì).

學(xué)生活動(dòng):觀察思考,猜想出不等式的性質(zhì).

教師活動(dòng):及時(shí)糾正學(xué)生敘述中出現(xiàn)的問題,特別強(qiáng)調(diào)指出:“仍是不等式”包括兩種情況,說法不確切,一定要改為“不等號的方向不變或者不等號的方向改變.”

師生活動(dòng):師生共同敘述不等式的性質(zhì),同時(shí)教師板書.

不等式基本性質(zhì)1? 不等式兩邊都加上(或減去)同一個(gè)數(shù)或同一個(gè)整式,不等號的方向不變.

對比等式兩邊都乘(或除以)同一個(gè)數(shù)的性質(zhì)(強(qiáng)調(diào)所乘的數(shù)可正、可負(fù)、也可為0)請大家思考,不等式類似的性質(zhì)會怎樣?

學(xué)生活動(dòng):觀察③④題,并將題中的3換成5,-3換成一5,按題的要求再做一遍,并猜想討論出結(jié)論.

【教法說明】觀察時(shí),引導(dǎo)學(xué)生注意不等號的方向,用彩色粉筆標(biāo)出來,并設(shè)疑“原因何在?”兩邊都乘(或除以)同一個(gè)負(fù)數(shù)呢?0呢?為什么?

師生活動(dòng):由學(xué)生概括總結(jié)不等式的其他性質(zhì),同時(shí)教師板書.

不等式基本性質(zhì)2? 不等式兩邊都乘(或除以)同一個(gè)正數(shù),不等號的方向不變.

不等式基本性質(zhì)3? 不等式兩邊都乘(或除以)同一個(gè)負(fù)數(shù),不等號的方向改變.

師生活動(dòng):將不等式-2<6兩邊都加上7,-9,兩邊都乘3,-3試一試,進(jìn)一步驗(yàn)證上面得出的三條結(jié)論.

學(xué)生活動(dòng):看課本第57~58頁有關(guān)不等式性質(zhì)的敘述,理解字句并默記.

強(qiáng)調(diào):要特別注意不等式基本性質(zhì)3.

實(shí)質(zhì):不等式的三條基本性質(zhì)實(shí)質(zhì)上是對不等式兩邊進(jìn)行“+”、“-”、“×”、“÷”四則運(yùn)算,當(dāng)進(jìn)行“+”、“-”法時(shí),不等號方向不變;當(dāng)乘(或除以)同一個(gè)正數(shù)時(shí),不等號方向不變;只有當(dāng)乘(或除以)同一個(gè)負(fù)數(shù)時(shí),不等號的方向才改變.

不等式的基本性質(zhì)與等式的基本性質(zhì)有哪些區(qū)別、聯(lián)系?

學(xué)生活動(dòng):思考、同桌討論.

 歸納:只有乘(或除以)負(fù)數(shù)時(shí)不同,此外都類似.下面嘗試用數(shù)學(xué)式子表示不等式的三條基本性質(zhì).

①若 ,則 , ;

②若 ,且 ,則 , ;

③若 ,且 ,則 , .

師生活動(dòng):學(xué)生思考出答案,教師訂正,并強(qiáng)調(diào)不等式性質(zhì)3的應(yīng)用.

注意:不等式除了上述性質(zhì)外,還有以下性質(zhì):①若 ,則 .②若 ,且 ,則 ,這些先不要向?qū)W生說明.

2.嘗試反饋,鞏固知識

請學(xué)生先根據(jù)自己的理解,解答下面習(xí)題.

例1? 根據(jù)不等式的基本性質(zhì),把下列不等式化成 或 的形式.

(1) ?。?) ?。?)  (4)

學(xué)生活動(dòng):學(xué)生獨(dú)立思考完成,然后一個(gè)(或幾個(gè))學(xué)生回答結(jié)果.

教師板書(1)(2)題解題過程.(3)(4)題由學(xué)生在練習(xí)本上完成,指定兩個(gè)學(xué)生板演,然后師生共同判斷板演是否正確.

解:(l)根據(jù)不等式基本性質(zhì)1,不等式的兩邊都加上2,不等號的方向不變.

所以

(2)根據(jù)不等式基本性質(zhì)1,兩邊都減去 ,得

(3)根據(jù)不等式基本性質(zhì)2,兩邊都乘以2,得

(4)根據(jù)不等式基本性質(zhì)3,兩邊都除以-4得

【教法說明】解題時(shí)要引導(dǎo)學(xué)生與解一元一次方程的思路進(jìn)行對比,并將原題與 或 對照,看用哪條性質(zhì)能達(dá)到題目要求,要強(qiáng)調(diào)每步的理論依據(jù),尤其要注意不等式基本性質(zhì)3與基本性質(zhì)2的區(qū)別,解題時(shí)書寫要規(guī)范.

例2? 設(shè) ,用“<”或“>”填空.

(1) ?。?)  (3)

學(xué)生活動(dòng):在練習(xí)本上完成例2,由3個(gè)學(xué)生板演完成后,其他學(xué)生判斷板演是否正確,最后與書中正確解題格式對照.

解:(1)因?yàn)?,兩邊都減去3,由不等式性質(zhì)1,得

(2)因?yàn)?,且2>0,由不等式性質(zhì)2,得

(3)因?yàn)?,且-4<0,由不等式性質(zhì)3,得

教師活動(dòng):巡視輔導(dǎo),了解學(xué)生作題的實(shí)際情況,及時(shí)給予糾正或鼓勵(lì).

注意問題:例2(3)是根據(jù)不等式性質(zhì)3,不等號方向應(yīng)改變.這是學(xué)生做題時(shí)易出錯(cuò)誤之處.

【教法說明】要讓學(xué)生明白推理要有依據(jù),以后作類似的練習(xí)時(shí),都寫出根據(jù),逐步培養(yǎng)學(xué)生的邏輯思維能力.

3.變式訓(xùn)練,培養(yǎng)能力

(1)用“>”或“<”在橫線上填空,并在題后括號內(nèi)填寫理由.(不等式基本性質(zhì)1,2,3分別用A、B、C表示.)

①∵  ∴ (?。、凇? ∴ (?。?/p>

③∵ ∴(?。、堋摺 啵ā。?/p>

⑤∵  ∴ ⑥∵  ∴ (?。?/p>

學(xué)生活動(dòng):此練習(xí)以學(xué)生搶答方式完成,目的是訓(xùn)練學(xué)生思維能力,表達(dá)能力,烘托學(xué)習(xí)氣氛.

答案:

① (A)?、?(B)

③ (C) ④ (C)

⑤ (C)?、?(A)

【教法說明】做此練習(xí)題時(shí),應(yīng)啟發(fā)學(xué)生將所做習(xí)題與題中已知條件進(jìn)行對比,觀察它們是應(yīng)用不等式的哪條性質(zhì),是怎樣由已知變形得到的.注意應(yīng)用不等式性質(zhì)3時(shí),不等號要改變方向.

(2)單項(xiàng)選擇:

①由 得到 的條件是(?。?/p>

   A. B. C. D.

②由由 得到 的條件是(?。?/p>

   A. B. C. D.

③由 得到 的條件是(?。?/p>

   A. B. C. D. 是任意有理數(shù)

④若 ,則下列各式中錯(cuò)誤的是(?。?/p>

   A. B. C.  D.

師生活動(dòng):教師選出答案,學(xué)生判斷正誤并說明理由.

答案:①A②D③C④D

(3)判斷正誤,正確的打“√”,錯(cuò)誤的打“×”

①∵ ∴ ( )?、凇?∴ ( )

③∵ ∴ ( )?、苋?,則? ∴,( )

學(xué)生活動(dòng):一名學(xué)生說出答案,其他學(xué)生判斷正誤.

答案:①√?、凇痢、邸獭、堋?/p>

【教法說明】以多種形式處理習(xí)題可以激發(fā)學(xué)生學(xué)習(xí)熱情,提高課堂效率;(2)練習(xí)第③④題易出錯(cuò),教師應(yīng)講清楚.

(四)總結(jié)、擴(kuò)展

1.本節(jié)重點(diǎn):

(1)掌握不等式的三條基本性質(zhì),尤其是性質(zhì)3.

(2)能正確應(yīng)用性質(zhì)對不等式進(jìn)行變形.

2.注意事項(xiàng):

(1)要反復(fù)對比不等式性質(zhì)與等式性質(zhì)的異同點(diǎn).

(2)當(dāng)不等式兩邊同乘(或除以)同一個(gè)數(shù)時(shí),一定要看清是正數(shù)還是負(fù)數(shù),對于未給定范圍的字母,應(yīng)分情況討論.

3.考點(diǎn)剖析:

不等式的基本性質(zhì)是歷屆中考中的重要考點(diǎn),常見題型是選擇題和填空題.

八、布置作業(yè)

(一)必做題:P61? A組4,5.

(二)選做題:P62? B組1,2,3.

參考答案

(一)4.(1)  (2) ?。?)  (4)5.(1) ?。?)  (3) ?。?) (5)  (6)

(二)1.(1) ?。?) ?。?)

2.(1)  (2) ?。?)  (4)

3.(1) ?。?)  (3)

九、板書設(shè)計(jì)

6.1? 不等式和它的基本性質(zhì)(二)

一、不等式的基本性質(zhì)

1.不等式兩邊都加上或減去同一個(gè)數(shù)或同一個(gè)整式,不等號的方向不變.

若 ,則 , .

2.不等式兩邊都乘(或除以)同一個(gè)正數(shù),不等號方向不變,若 , ,則 .

3.不等式兩邊都乘(或除以)同一個(gè)負(fù)數(shù),不等號方向改變,若 , ,則 .

二、應(yīng)用

例1 解(1)(2)

(3)(4)

例2 解(1)(2)

?。?)

三、小結(jié)

注意不等式性質(zhì)3的應(yīng)用.

十、背景知識與課外閱讀

盒子里有紅、白、黑三種球,若白球的個(gè)數(shù)不少于黑球的一半,且不多于紅球的 ,又白球和黑球的和至少是55,問盒中紅球的個(gè)數(shù)最少是多少個(gè)?


基本不等式教案 篇5

本節(jié)課我采用從生活中創(chuàng)設(shè)問題情景的方法激發(fā)學(xué)生學(xué)習(xí)興趣,采用類比等式性質(zhì)創(chuàng)設(shè)問題情景的方法,引導(dǎo)學(xué)生的自主探究活動(dòng),教給學(xué)生類比,猜想,驗(yàn)證的問題研究方法,培養(yǎng)學(xué)生善于動(dòng)手、善于觀察、善于思考的學(xué)習(xí)習(xí)慣。利用學(xué)生的好奇心設(shè)疑、解疑,組織活潑互動(dòng)、有效的教學(xué)活動(dòng),鼓勵(lì)學(xué)生積極參與,大膽猜想,使學(xué)生在自主探索和合作交流中理解和掌握本節(jié)課的內(nèi)容。力求在整個(gè)探究學(xué)習(xí)的過程充滿師生之間,生生之間的交流和互動(dòng),體現(xiàn)教師是教學(xué)活動(dòng)的組織者、引導(dǎo)者、合作者,學(xué)生才是學(xué)習(xí)的主體。

課堂開始通過回顧舊知識,抓住新知識的切入點(diǎn),使學(xué)生進(jìn)入一種“心求通而未得,口欲言而未能”的境界,使他們有興趣的進(jìn)入數(shù)學(xué)課堂,為學(xué)習(xí)新知識做好準(zhǔn)備。在這一環(huán)節(jié)上,留給學(xué)生思考的時(shí)間有點(diǎn)少。

接下來出示的問題1從學(xué)生的生活經(jīng)驗(yàn)出發(fā),讓學(xué)生感受生活中數(shù)學(xué)的存在,不僅激發(fā)學(xué)生學(xué)習(xí)興趣,而且可以讓學(xué)生直觀地體會到在不等關(guān)系中存在的一些性質(zhì)。這一環(huán)節(jié)上展現(xiàn)給學(xué)生一個(gè)實(shí)物,使學(xué)生獲得直觀感受。

問題2、3的設(shè)計(jì)是為了類比等式的基本性質(zhì),研究不等式的性質(zhì),讓學(xué)生體會數(shù)學(xué)思想方法中類比思想的應(yīng)用,并訓(xùn)練學(xué)生從類比到猜想到驗(yàn)證的研究問題的方法,讓學(xué)生在合作交流中完成任務(wù),體會合作學(xué)習(xí)的樂趣。在這個(gè)環(huán)節(jié)上,我講得有點(diǎn)多,在體現(xiàn)學(xué)生主體上把握得不是很好,在引導(dǎo)學(xué)生探究的過程中時(shí)間控制的不緊湊,有點(diǎn)浪費(fèi)時(shí)間。還有就是給他們時(shí)間先記一下不等式的基本性質(zhì),便于后面的練習(xí)。

通過問題四讓學(xué)生比較不等式基本性質(zhì)與等式基本性質(zhì)的異同,這樣不僅有利于學(xué)生認(rèn)識不等式,而且可以使學(xué)生體會知識之間的內(nèi)在聯(lián)系,整體上把握知識、發(fā)展學(xué)生的辨證思維。

在運(yùn)用符號語言的過程中,學(xué)生會出現(xiàn)各種各樣的問題與錯(cuò)誤,因此在課堂上,我特別重視對學(xué)生的表現(xiàn)及時(shí)做出評價(jià),給予鼓勵(lì)。這樣既調(diào)動(dòng)了學(xué)生的學(xué)習(xí)興趣,也培養(yǎng)了學(xué)生的符號語言表達(dá)能力。

在練習(xí)的設(shè)計(jì)上兩道練習(xí)以別開生面的形式出現(xiàn),給學(xué)生一個(gè)充分展示自我的舞臺,在情感兩道練習(xí)以別開生面的形式出現(xiàn),給學(xué)生一個(gè)充分展示自我的舞臺,在情感態(tài)度和一般能力方面都得到充分發(fā)展,并從中了解數(shù)學(xué)的價(jià)值,增進(jìn)了對數(shù)學(xué)的理解。在這一環(huán)節(jié),讓學(xué)生起來回答問題的時(shí)候有點(diǎn)耽誤時(shí)間。

讓學(xué)生通過總結(jié)反思,一是進(jìn)一步引導(dǎo)學(xué)生反思自己的學(xué)習(xí)方式,有利于培養(yǎng)歸納,總結(jié)的習(xí)慣,讓學(xué)生自主構(gòu)建知識體系;二也是為了激起學(xué)生感受成功的喜悅,力爭用成功蘊(yùn)育成功,用自信蘊(yùn)育自信,激勵(lì)學(xué)生以更大的熱情投入到以后的學(xué)習(xí)中去。

本節(jié)課,我覺得基本上達(dá)到了教學(xué)目標(biāo),在重點(diǎn)的把握,難點(diǎn)的突破上也基本上把握得不錯(cuò)。在教學(xué)過程中,學(xué)生參與的積極性較高,課堂氣氛比較活躍。其中還存在不少問題,我會在以后的教學(xué)中,努力提高教學(xué)技巧,逐步的完善自己的課堂。

基本不等式教案 篇6

一、說教材

(一)、地位與作用:《不等式的基本性質(zhì)》是初中數(shù)學(xué)北師大版八年級下冊第一章第二節(jié)。在此之前,學(xué)生已學(xué)習(xí)了不等關(guān)系,這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。不等式的基本性質(zhì)在教材中起著承上啟下的作用。關(guān)于它的學(xué)習(xí)是以等式的基本性質(zhì)為基礎(chǔ),它是學(xué)生以后順利學(xué)習(xí)一元一次不等式和一元一次不等式組的解法的重要理論依據(jù),是學(xué)生后繼學(xué)習(xí)的重要基礎(chǔ)和必備技能。

(二)、教學(xué)目標(biāo):

根據(jù)上述教材分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征,我制定如下教學(xué)目標(biāo):

1、知識目標(biāo):掌握不等式的基本性質(zhì)。

2、能力目標(biāo):能準(zhǔn)確運(yùn)用不等式的三條性質(zhì)將不等式變形、化簡,培養(yǎng)學(xué)生的觀察、分析的能力。

3、情感目標(biāo):培養(yǎng)學(xué)生辨證唯物主義的觀點(diǎn)。

(三)、教學(xué)重點(diǎn)、難點(diǎn)

本著課程標(biāo)準(zhǔn),在吃透教材基礎(chǔ)上,我確立了如下的教學(xué)重點(diǎn)、難點(diǎn)

重點(diǎn):掌握并運(yùn)用不等式的基本性質(zhì)。

難點(diǎn):不等式基本性質(zhì)的發(fā)現(xiàn)過程。

根據(jù)本節(jié)課的特點(diǎn)和學(xué)生的知識能力水平,采用這樣的教學(xué)方法。

二、說學(xué)法:采用合作交流的學(xué)習(xí)方法。

三、說教法:啟發(fā)式的講解法。

四、說程序

基本不等式教案 篇7

一、教材

不等式基本性質(zhì)是八年級下冊第一章第二節(jié)內(nèi)容,本節(jié)課是建立在學(xué)生已認(rèn)識了不等關(guān)系基礎(chǔ)上來學(xué)習(xí)的,也是為進(jìn)一步學(xué)習(xí)解不等式及應(yīng)用不等關(guān)系解決實(shí)際問題的重要依據(jù),因此本節(jié)課內(nèi)容在不等關(guān)系這一章占有重要位置。由此本節(jié)重點(diǎn)內(nèi)容是不等式三條基本性質(zhì),難點(diǎn)是不等式第三條基本性質(zhì),在不等式兩端同時(shí)乘以(或除以)同一個(gè)負(fù)數(shù)不等號方向改變學(xué)生在這一點(diǎn)應(yīng)用上很難掌握。

另外,本節(jié)課在教材安排上意在通過等式基本性質(zhì)引入新課教學(xué),在新課教學(xué)中用不等式實(shí)例進(jìn)行操作,進(jìn)而推出不等式基本性質(zhì),學(xué)生通過觀察、質(zhì)疑、發(fā)問易于接受新知,根據(jù)新課程標(biāo)準(zhǔn)確定學(xué)習(xí)目標(biāo)如下:

(一)知識與技能目標(biāo)

掌握不等式基本性質(zhì),能熟練運(yùn)用不等式性質(zhì)解決簡單的不等式問題問題

(二)過程與方法目標(biāo)

1. 經(jīng)歷探索不等式基本性質(zhì)的過程,體驗(yàn)數(shù)學(xué)學(xué)習(xí)探究的方法

2.通過觀察、實(shí)驗(yàn)、猜想、推理等數(shù)學(xué)學(xué)習(xí)活動(dòng)過程,發(fā)展合理的推理和初步論證能力

(三)情感態(tài)度與價(jià)值觀目標(biāo)

1.學(xué)生在探索過程中感受成功、建立自信

2.體驗(yàn)在研究過程中創(chuàng)造的快樂,并學(xué)會與人交流合作形成良好的人格品質(zhì)

二、重點(diǎn)、難點(diǎn)

重點(diǎn):掌握不等式基本性質(zhì)及熟練應(yīng)用性質(zhì)解決實(shí)際問題

難點(diǎn):第三條性質(zhì)的應(yīng)用

三、教法

以引導(dǎo)發(fā)現(xiàn)、活動(dòng)參與、交流討論為主,學(xué)生自己舉出實(shí)際不等式例子,教師根據(jù)認(rèn)識規(guī)律引導(dǎo)學(xué)生由等式性質(zhì)向不等式知識的遷移,安排學(xué)生用一組數(shù)在不等式兩端參與四則運(yùn)算,學(xué)生通過與其他學(xué)生的交流討論,總結(jié)規(guī)律得出不等式基本性質(zhì)

在這一環(huán)節(jié)教師一方面不斷引導(dǎo)學(xué)生積極參與教學(xué)過程,為適應(yīng)學(xué)生思維發(fā)展水平有序引導(dǎo)學(xué)生觀察分析,由認(rèn)識到實(shí)踐再到認(rèn)識完成認(rèn)識上的飛躍,圓滿完成教學(xué)任務(wù),另一方面,教師根據(jù)練習(xí)情況設(shè)疑引導(dǎo),重在理解不等式性質(zhì)應(yīng)用,展開學(xué)生思維。

四、學(xué)情

一般說來,這個(gè)年齡段的學(xué)生開始有比較強(qiáng)烈的自我和自我發(fā)展的意識,對于與自己直觀相沖突的現(xiàn)象和“挑戰(zhàn)性“的任務(wù)很感興趣,要在教學(xué)過程中給學(xué)生探究問題這樣的做數(shù)學(xué)機(jī)會,學(xué)生能夠在這些活動(dòng)中 表現(xiàn)自我發(fā)展自我從而感到數(shù)學(xué)學(xué)習(xí)的重要性及其中的樂趣。

學(xué)生在學(xué)習(xí)本節(jié)內(nèi)容時(shí),可能會在應(yīng)用第三條性質(zhì)時(shí)遇到困難,盡可能引導(dǎo)學(xué)生多練習(xí)多總結(jié)最終完成學(xué)習(xí)過程,達(dá)到教學(xué)目標(biāo)。

五、教學(xué)過程

本節(jié)課我安排了四個(gè)教學(xué)過程:

(一)回憶舊知,引出新知

經(jīng)過以前的學(xué)習(xí)我們知道在等式的兩端同時(shí)加上(或減去)同一個(gè)整式依然成立,這是等式的性質(zhì)那么對于上節(jié)課我們所學(xué)的不等式又有哪些性質(zhì)呢?這就是今天我們要共同探討的問題——不等式基本性質(zhì)。

在這一環(huán)節(jié)通過對等式性質(zhì)的回憶進(jìn)而導(dǎo)出不等式的基本性質(zhì),

不僅對舊知的鞏固也激發(fā)了學(xué)生對新知的興趣。

(二)自主參與探索,交流討論總結(jié)性質(zhì)規(guī)律

教師安排學(xué)生自己舉出一個(gè)具體不等式,根據(jù)認(rèn)識規(guī)律有序引導(dǎo)學(xué)生在不等式兩端同時(shí)加上(或減去)同一個(gè)數(shù),學(xué)生會發(fā)現(xiàn)不等號兩端經(jīng)運(yùn)算比較大小后不等號方向沒有發(fā)生改變,由此推出不等式第一條性質(zhì)。

在引出第二條性質(zhì)時(shí),教師有意引導(dǎo)學(xué)生用正數(shù)參與兩端的乘法(或除法)的運(yùn)算,同學(xué)會發(fā)現(xiàn)不等號方向仍然沒改變,這時(shí)可能會有學(xué)生發(fā)問:用負(fù)數(shù)呢?這就引起了學(xué)生的好奇心和探究熱情,經(jīng)學(xué)生自己動(dòng)手實(shí)驗(yàn)與其他同學(xué)討論得出用負(fù)數(shù)不等號方向發(fā)生了改變,至此就得到不等式的第二三條性質(zhì)。

在這一環(huán)節(jié)教師運(yùn)用了“自主參與”和“交流討論”的教學(xué)方式,通過引導(dǎo)和質(zhì)疑,突出重點(diǎn),化解難點(diǎn),從而完成教學(xué)任務(wù),收到良好教學(xué)效果。

(三)應(yīng)用新知,解決問題

我將上節(jié)課沒圓滿完成的問題再次提出:通過一棵樹的樹圍可計(jì)算其生長年齡,某樹栽種時(shí)樹圍是5cm ,以后每年樹圍增長3cm ,問這棵樹至少生長多少年才能超過2.4m ?

上節(jié)課我們已經(jīng)列出不等關(guān)系

設(shè) 至少生長x 年才能超過2.4m 則有不等關(guān)系

0.03x 0.05 > 2.4

現(xiàn)我們根據(jù)這節(jié)課所學(xué)將這個(gè)問題徹底解決。(將不等式性質(zhì)應(yīng)用全過程在板書出來)

再在黑板上列出兩個(gè)例題 5x 3 3

要求學(xué)生仿照剛才不等式應(yīng)用過程將其表示“x a) ”形式,并找兩名同學(xué)板書。在這一環(huán)節(jié)根據(jù)初中學(xué)生開始對“有用”數(shù)學(xué)感興趣選取第一道例題,學(xué)生會感到數(shù)學(xué)就在身邊

在練習(xí)過程中教師根據(jù)普遍存在的問題加以強(qiáng)調(diào)并幫助學(xué)生改正,針對個(gè)別(較慢)學(xué)生再具體教學(xué)

(四)引導(dǎo)學(xué)生總結(jié)全課

在這節(jié)課我們知道了不等式三條基本性質(zhì),并能熟練應(yīng)用解決簡單的不等式問題

一元二次不等式課件(必備9篇)


經(jīng)過多次優(yōu)化我們?yōu)槟谱髁诉@份精選的“一元二次不等式課件”,本篇文章希望能夠?yàn)槟墓ぷ骱蜕钐峁椭?。每個(gè)老師需要在上課前弄好自己的教案課件,沒有寫的老師就需要抓緊完成了。設(shè)計(jì)教案需要關(guān)注課堂互動(dòng)和學(xué)生參與度的提高。

一元二次不等式課件(篇1)

教學(xué)內(nèi)容

3.2一元二次不等式及其解法

三維目標(biāo)

一、知識與技能

1.鞏固一元二次不等式的解法和解法與二次函數(shù)的關(guān)系、一元二次不等式解法的步驟、解法與二次函數(shù)的關(guān)系兩者之間的區(qū)別與聯(lián)系;

2.能熟練地將分式不等式轉(zhuǎn)化為整式不等式(組),正確地求出分式不等式的解集;

3.會用列表法,進(jìn)一步用數(shù)軸標(biāo)根法求解分式及高次不等式;

4.會利用一元二次不等式,對給定的與一元二次不等式有關(guān)的問題,嘗試用一元二次不等式解法與二次函數(shù)的有關(guān)知識解題.

二、過程與方法

1.采用探究法,按照思考、交流、實(shí)驗(yàn)、觀察、分析得出結(jié)論的方法進(jìn)行啟發(fā)式教學(xué);

2.發(fā)揮學(xué)生的主體作用,作好探究性教學(xué);

3.理論聯(lián)系實(shí)際,激發(fā)學(xué)生的學(xué)習(xí)積極性.

三、情感態(tài)度與價(jià)值觀

1.進(jìn)一步提高學(xué)生的運(yùn)算能力和思維能力;

2.培養(yǎng)學(xué)生分析問題和解決問題的能力;

3.強(qiáng)化學(xué)生應(yīng)用轉(zhuǎn)化的數(shù)學(xué)思想和分類討論的數(shù)學(xué)思想.

教學(xué)重點(diǎn)

1.從實(shí)際問題中抽象出一元二次不等式模型.

2.圍繞一元二次不等式的解法展開,突出體現(xiàn)數(shù)形結(jié)合的思想.

教學(xué)難點(diǎn)

1.深入理解二次函數(shù)、一元二次方程與一元二次不等式的關(guān)系.

教學(xué)方法

啟發(fā)、探究式教學(xué)

教學(xué)過程

復(fù)習(xí)引入

師:上一節(jié)課我們通過具體的問題情景,體會到現(xiàn)實(shí)世界存在大量的不等量關(guān)系,并且研究了用不等式或不等式組來表示實(shí)際問題中的不等關(guān)系?;仡櫹碌缺葦?shù)列的性質(zhì)。

生:略

師:某同學(xué)要把自己的計(jì)算機(jī)接入因特網(wǎng),現(xiàn)有兩種ISP公司可供選擇,公司A每小時(shí)收費(fèi)1.5元(不足1小時(shí)按1小時(shí)計(jì)算),公司B的收費(fèi)原則是第1小時(shí)內(nèi)(含恰好1小時(shí),下同)收費(fèi)1.7元,第2小時(shí)內(nèi)收費(fèi)1.6元以后每小時(shí)減少0.1元(若用戶一次上網(wǎng)時(shí)間超過17小時(shí),按17小時(shí)計(jì)算)那么,一次上網(wǎng)在多少時(shí)間以內(nèi)能夠保證選擇公司A的上網(wǎng)費(fèi)用小于等于選擇公司B所需費(fèi)用。

學(xué)生自己討論

點(diǎn)題,板書課題

新課學(xué)習(xí)

1.一元二次不等式

只有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是2的不等式。

2.三個(gè)“二次”之間的關(guān)系及一元二次不等式的解法

師在前面我們已經(jīng)學(xué)習(xí)過一元二次不等的解法,發(fā)現(xiàn)一元二次方程及對應(yīng)的二次函數(shù)有關(guān)系,那么同學(xué)們課本打開到p77填表格。

生略

師學(xué)生討論歸納出解一元二次不等式的步驟

一看:看二次項(xiàng)系數(shù)的正負(fù),并且變形為

二算:,判斷正負(fù),有根則求并畫出對應(yīng)的函數(shù)圖象

三寫:寫出原不等式的解集

練習(xí)反饋

[例題剖析]

例1解下列不等式

(1)(2)

(3)(4)

(5)(6)

課本80頁練習(xí)

例2已知不等式的解集為試解不等式

變式:

已知

課堂

小結(jié)

1.三個(gè)“二次的關(guān)系”

2.解二次不等式的步驟

作業(yè)布置

課本第80頁習(xí)題3.2A組第1.2.4題B組1

練習(xí)調(diào)配

設(shè)計(jì)42頁全做,43頁例1例2隨堂練習(xí)2.3,4,5測評1、3、4、5、6、7、8、

一元二次不等式課件(篇2)

解一元二次不等式化為標(biāo)準(zhǔn)型。判斷△的符號。若△<0,則不等式是在R上恒成立或恒不成立。

若△>0,則求出兩根,在數(shù)軸上標(biāo)出,每個(gè)根上畫一條豎線,再從右到左相間標(biāo)正負(fù)號,不等式大于0則取標(biāo)正的范圍,小于0則取標(biāo)負(fù)的范圍。

2.解簡單一元高次不等式

a.化為標(biāo)準(zhǔn)型。

b.將不等式分解成若干個(gè)因式的積。

c.求出各個(gè)根,在數(shù)軸上標(biāo)出,每個(gè)根上畫一條豎線,再從右到左相間標(biāo)正負(fù)號,不等式大于0則取標(biāo)正的范圍,小于0則取標(biāo)負(fù)的范圍。

3.解分式不等式的解

a.化為標(biāo)準(zhǔn)型。

b.可將分式化為整式,將整式分解成若干個(gè)因式的積。

c.求出各個(gè)根,在數(shù)軸上標(biāo)出,每個(gè)根上畫一條豎線,再從右到左相間標(biāo)正負(fù)號,不等式大于0則取標(biāo)正的范圍,小于0則取標(biāo)負(fù)的范圍。(如果不等式是非嚴(yán)格不等式,則要注意分式分母不等于0。)

4.解含參數(shù)的一元二次不等式

a.對二次項(xiàng)系數(shù)a的討論。

若二次項(xiàng)系數(shù)a中含有參數(shù),則須對a的符號進(jìn)行分類討論。分為a>0,a=0,a<0。

b.對判別式△的討論

若判別式△中含有參數(shù),則須對△的符號進(jìn)行分類討論。分為△>0,△=0,△<0。

c.對根大小的討論

若不等式對應(yīng)的方程的根x1、x2中含有參數(shù),則須對x1、x2的大小進(jìn)行分類討論。分為x1>x2,x1=x2,x1<x2。

5.一元二次方程的根的分布問題

a.將方程化為標(biāo)準(zhǔn)型。(a的符號)

b.畫圖觀察,若有區(qū)間端點(diǎn)對應(yīng)的函數(shù)值小于0,則只須討論區(qū)間端點(diǎn)的函數(shù)值。

若沒有區(qū)間端點(diǎn)對應(yīng)的函數(shù)值小于0,則須討論區(qū)間端點(diǎn)的函數(shù)值、△、軸。

6.一元二次不等式的應(yīng)用

⑴在R上恒成立問題(恒不成立問題相反,在某區(qū)間恒成立可轉(zhuǎn)化為實(shí)根分布問題)

a.對二次項(xiàng)系數(shù)a的符號進(jìn)行討論,分為a=0與a≠0。

b.a(chǎn)=0時(shí),把a(bǔ)=0帶入,檢驗(yàn)不等式是否成立,判斷a=0是否屬于不等式解集。

a≠0時(shí),則轉(zhuǎn)化為二次函數(shù)圖像全在x軸上方或下方。

若f(x)>0,則要求a>0,△<0。

若f(x)<0,則要求a<0,△<0。

⑵特殊題型:已知一不等式的解集(含有字母),求另一不等式的解集(與原不等式系數(shù)大小相同,位置不同)。a.寫出原不等式對應(yīng)的方程,由韋達(dá)定理得出解集字母與方程系數(shù)間的關(guān)系。

b.寫出變換后不等式對應(yīng)的方程,由由韋達(dá)定理得出解集字母與方程系數(shù)間的關(guān)系。

c.將a中得到的關(guān)系變化后帶入b的關(guān)系中,得到變換后方程的兩根。

d.判斷兩根的大小,變換后不等式二次項(xiàng)的系數(shù),從而寫出所求解集。

一元二次不等式課件(篇3)

《一元二次不等式及其解法》

教 學(xué) 設(shè) 計(jì) 說 明

《一元二次不等式及其解法》教學(xué)設(shè)計(jì)說明

一.教學(xué)內(nèi)容分析:

1.本節(jié)課內(nèi)容在整個(gè)教材中的地位和作用.

必修五第三章不等式第二節(jié)一元二次不等式及其解法共有三個(gè)課時(shí),本節(jié)課是第一課時(shí),教學(xué)內(nèi)容的地位體現(xiàn)在它的基礎(chǔ)性,作用體現(xiàn)在它的工具性.一元二次不等式的解法是初中一元一次不等式或一元一次不等式組的延續(xù)和深化,對已學(xué)習(xí)過的集合知識的鞏固和運(yùn)用具有重要的作用.許多問題的解決都會借助一元二次不等式的解法.因此,一元二次不等式的解法在整個(gè)高中數(shù)學(xué)教學(xué)中具有很強(qiáng)的基礎(chǔ)性,體現(xiàn)出很大的工具作用. 2.教學(xué)目標(biāo)定位.

根據(jù)教學(xué)大綱要求、高考考試大綱說明、新課程標(biāo)準(zhǔn)精神、高一學(xué)生已有的知識儲備狀況和學(xué)生心理認(rèn)知特征,我確定了四個(gè)層面的教學(xué)目標(biāo).第一層面是面向全體學(xué)生的知識目標(biāo):熟練掌握一元二次不等式的解法,正確理解一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系.第二層面是能力目標(biāo),培養(yǎng)學(xué)生運(yùn)用數(shù)形結(jié)合與分類討論等數(shù)學(xué)思想方法解決問題的能力,提高運(yùn)算和作圖能力.第三層面是德育目標(biāo),通過對解不等式過程中等與不等對立統(tǒng)一關(guān)系的認(rèn)識,向?qū)W生逐步滲透辨證唯物主義思想.第四層面是情感目標(biāo),在教師的啟發(fā)引導(dǎo)下,學(xué)生自主探究,交流討論,培養(yǎng)學(xué)生的合作意識和創(chuàng)新精神. 3.教學(xué)重點(diǎn)、難點(diǎn)確定.

本節(jié)課是在復(fù)習(xí)了一元二次方程和二次函數(shù)之后,利用二次函數(shù)的圖象研究一元二次不等式的解法.只要學(xué)生能夠理解一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系,并利用其關(guān)系解不等式即可.因此,我確定本節(jié)課的教學(xué)重點(diǎn)為一元二次不等式的解法,關(guān)鍵是一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系. 二.教法學(xué)法分析:

數(shù)學(xué)是發(fā)展學(xué)生思維、培養(yǎng)學(xué)生良好意志品質(zhì)和美好情感的重要學(xué)科,在教學(xué)中,我們不僅要使學(xué)生獲得知識、提高解題能力,還要讓學(xué)生在教師的啟發(fā)引導(dǎo)下學(xué)會學(xué)習(xí)、樂于學(xué)習(xí),感受數(shù)學(xué)學(xué)科的人文思想,使學(xué)生在學(xué)習(xí)中培養(yǎng)堅(jiān)強(qiáng)的意志品質(zhì)、形成良好的道德情感.為了更好地體現(xiàn)課堂教學(xué)中“教師為主導(dǎo),學(xué)生為主體”的教學(xué)關(guān)系和“以人為本,以學(xué)定教”的教學(xué)理念,在本節(jié)課的教學(xué)過程中,將緊緊圍繞教師組織——啟發(fā)引導(dǎo),學(xué)生探究——交流發(fā)現(xiàn),組織開展教學(xué)活動(dòng).我設(shè)計(jì)了①回憶舊知,服務(wù)新知,②創(chuàng)設(shè)情境,提出問題,③合作交流,探究新知,④數(shù)學(xué)運(yùn)用,深化認(rèn)知,⑤練習(xí)檢測,反饋新知,⑥談?wù)勈斋@,強(qiáng)化思想,⑦布置作業(yè),實(shí)踐新知,環(huán)環(huán)相扣、層層深入的教學(xué)環(huán)節(jié),在教學(xué)中注意關(guān)注整個(gè)過程和全體學(xué)生,充分調(diào)動(dòng)學(xué)生積極參與教學(xué)過程的每個(gè)環(huán)節(jié). 三.教學(xué)過程分析:

(一)聯(lián)系舊知,構(gòu)建新知

設(shè)置一系列的問題喚起學(xué)生對舊知識的回憶. 問題1:一元二次方程的解法有哪些呢?

(意圖:讓學(xué)生回顧一元二次方程的解法,為解一元二次不等式做準(zhǔn)備.)

問題2:同學(xué)們還記得二次函數(shù)嗎?二次函數(shù)的形式是怎樣的?你記得二次函數(shù)的性質(zhì)嗎?

(意圖:引導(dǎo)學(xué)生從圖象的角度出發(fā),并啟發(fā)學(xué)生二次函數(shù)的圖象是一條拋物線,其開口方向由二次項(xiàng)系數(shù)決定,為突出重點(diǎn)做準(zhǔn)備)

(二)創(chuàng)設(shè)情景,提出問題

1、讓學(xué)生動(dòng)手畫直角坐標(biāo)系,然后沿x軸方向上下對折這張紙,觀察它們的值有什么特點(diǎn)?

22、請?jiān)趧偛诺淖鴺?biāo)系中畫出y=x-7x+6的圖像 問題1:

(1)x軸上方有無圖像?若有請用紅線描出。這部分圖像對應(yīng)的y值如何?(2)x軸下方有無圖像?若有請用藍(lán)線描出。這部分圖像對應(yīng)的y值如何?(3)紅線與藍(lán)線有無交點(diǎn)?若有請用綠色標(biāo)出。

(4)你能找出上述各種情況的x的取值范圍嗎?請?jiān)趫D中寫出。

問題2:你能說一說這兩個(gè)不等式有何共同特點(diǎn)么?(1)含有一個(gè)未知數(shù)x;

(2)未知數(shù)的最高次數(shù)為2。通過兩問題得出一元二次不等式的概念:一般地,只含有一個(gè)未知數(shù),且未知數(shù)的最高次數(shù)為2的不等式,叫做一元二次不等式。

問題3:判斷下列式子是不是一元二次不等式?

問題4:一元二次函數(shù)、一元二次方程之間有何聯(lián)系呢?

一元二次方程的解即一元二次函數(shù)圖象與x軸交點(diǎn)的橫坐標(biāo),也就是說方程的解即對應(yīng)函數(shù)的零點(diǎn)。

問題5:一元二次不等式如何求解呢?

(三)合作交流,探究新知

1. 探究一元二次不等式x2?x?2?0的解.

容易知道:一元二次方程x2?x?2?0的有兩個(gè)實(shí)數(shù)根:x1??1或x2?2. 二次函數(shù)y?x2?x?2與x軸有兩個(gè)交點(diǎn):??1,0?和?2,0?. 思考1:觀察圖象一元二次方程的根與二次函數(shù)之間有什么關(guān)系? 思考2:觀察圖象,當(dāng)x為何值時(shí),y?0;

當(dāng)x為何值時(shí),y?0; 當(dāng)x為何值時(shí),y?0.

(設(shè)計(jì)意圖 : ①體現(xiàn)學(xué)生的主體性;②有利于加強(qiáng)對圖象的認(rèn)識,從而加強(qiáng)數(shù)形結(jié)合的數(shù)學(xué)思想 ;③有利于加強(qiáng)學(xué)生理解一元二次不等式的解相關(guān)的三個(gè)因素;④為歸納解一元二次不等式做好準(zhǔn)備.根據(jù)前面探討的問題引導(dǎo)學(xué)生歸納一元二次不等式的解.)

2. 探究一元二次不等式ax2?bx?c?0或ax2?bx?c?0?a?0?的解法. 組織討論:從上面的例子出發(fā),綜合學(xué)生的意見,可以歸納出確定一元二次不等式的解集,關(guān)鍵要考慮:

2拋物線y?ax?bx?c與x軸的相關(guān)位置的情況,也就是一元二次方程2ax2?bx?c=0的根的情況,而一元二次方程根的情況是由判別式??b?4ac三 3 種取值情況(??0,??0,??0)來確定.

(設(shè)計(jì)意圖:這里我將運(yùn)用多媒體圖標(biāo)的形式來展現(xiàn)出其解法思路,學(xué)生有一個(gè)完整的邏輯思維,讓學(xué)生在探究中建立知識間的聯(lián)系,體會數(shù)形結(jié)合,強(qiáng)調(diào)突出本節(jié)的難點(diǎn).)

(四)數(shù)學(xué)運(yùn)用,深化認(rèn)知.

2例1.求不等式2x?3x?2?0的解集. 2變式為:求不等式2x?3x?2?0的解集.

2例2.解不等式?x?2x?3?0.

(設(shè)計(jì)意圖:先讓學(xué)生來解答例題,若教師巡視、指導(dǎo),講評學(xué)生完成情況,尋找學(xué)生中的閃光點(diǎn),給予熱情表揚(yáng).)總結(jié):

解一元二次不等式的步驟:

一化:化二次項(xiàng)前的系數(shù)為正(a>0).二判:判斷對應(yīng)方程的根.三求:求對應(yīng)方程的根.四畫:畫出對應(yīng)函數(shù)的圖象.五解集:根據(jù)圖象寫出不等式的解集.(五)練習(xí)檢測,鞏固收獲

(設(shè)計(jì)意圖:為了鞏固和加深一元二次不等式的解法,讓學(xué)生學(xué)以致用,接下來及時(shí)組織學(xué)生進(jìn)行課堂練習(xí).然后就學(xué)生在解題中出現(xiàn)的問題共同糾正.)

(六)歸納小結(jié),強(qiáng)化思想

設(shè)計(jì)意圖:梳理本節(jié)課的知識點(diǎn),總結(jié)一元二次不等式解法的步驟:“一化,二判,三求根,四畫圖,五寫解集”的口訣來幫助學(xué)生記憶和歸納,讓學(xué)生掌握嚴(yán)謹(jǐn)?shù)淖鲱}方法,知曉本節(jié)課的重難點(diǎn).

(七)布置作業(yè),拓展延伸

必做題:課本第80頁習(xí)題A組 1,2.選做題:(1)若關(guān)于m的一元二次方程x

2?(m?1)x?m?0有兩個(gè)不相 等的實(shí)數(shù)根,求m的取值范圍.2(2)已知不等式x?ax?b?0的解集為x2?x?3?,求a,b的

?值.(設(shè)計(jì)意圖:以作業(yè)的鞏固性和發(fā)展性為出發(fā)點(diǎn),我設(shè)計(jì)了必做題和選做題,必做題是對本節(jié)課內(nèi)容的反饋,選做題是對本節(jié)課知識的延伸,整體的設(shè)計(jì)意圖是反饋教學(xué),鞏固提高.)四.教學(xué)總結(jié)

本節(jié)課的所有內(nèi)容以習(xí)題的形式展現(xiàn)給學(xué)生,學(xué)生始終在解題中探究,在解題中發(fā)現(xiàn),學(xué)生參與教學(xué)的全過程,成為課堂教學(xué)的主體和學(xué)習(xí)的主人,而老師只須時(shí)刻關(guān)注學(xué)生的活動(dòng)過程,不時(shí)給予引導(dǎo),及時(shí)糾正.

一元二次不等式課件(篇4)

《一元二次不等式及其解法(第1課時(shí))》教學(xué)設(shè)計(jì)

Eric 一 內(nèi)容分析

本節(jié)課內(nèi)容的地位體現(xiàn)在它的基礎(chǔ)性,作用體現(xiàn)在它的工具性。一元二次不等式的解法是初中一元一次不等式或一元一次不等式組的延續(xù)和深化,對已學(xué)習(xí)過的集合知識的鞏固和運(yùn)用具有重要的作用,也與后面的函數(shù)、數(shù)列、三角函數(shù)、線形規(guī)劃、直線與圓錐曲線以及導(dǎo)數(shù)等內(nèi)容密切相關(guān)。許多問題的解決都會借助一元二次不等式的解法。因此,一元二次不等式的解法在整個(gè)高中數(shù)學(xué)教學(xué)中具有很強(qiáng)的基礎(chǔ)性,體現(xiàn)出很大的工具作用。

二 學(xué)情分析

學(xué)生已經(jīng)掌握了高中所學(xué)的基本初等函數(shù)的圖象及其性質(zhì), 能利用函數(shù)的圖象及其性質(zhì)解決一些問題。學(xué)生知道不等關(guān)系, 掌握了不等式的性質(zhì), 通過這部分內(nèi)容的學(xué)習(xí), 學(xué)生將學(xué)會利用二次函數(shù)的圖象, 通過數(shù)形結(jié)合的思想, 掌握一元二次不等式的解法。

三 教學(xué)目標(biāo)

1.知識與技能目標(biāo):(1)熟練應(yīng)用二次函數(shù)圖象解一元二次不等式的方法(2)了解一元二次不等式與相應(yīng)函數(shù), 方程的聯(lián)系 2.過程與方法:(1)通過學(xué)生已學(xué)過的一元一次不等式為例引入一元二次不等式的有關(guān)概及解法(2)讓學(xué)生觀察二次函數(shù),在此基礎(chǔ)上, 找到一元二次不等式的解法并掌握此解法(3)在學(xué)生尋找一元二次不等式的過中程中培養(yǎng)學(xué)生數(shù)形結(jié)合的數(shù)學(xué)思想 3.情感與價(jià)值目標(biāo):(1)通過新舊知識的聯(lián)系獲取新知,使學(xué)生體會溫故而知新的道理

(2)通過對解不等式過程中等與不等對立統(tǒng)一關(guān)系的認(rèn)識,向?qū)W生逐步滲透辨證唯物主義思想。

(3)在教師的啟發(fā)引導(dǎo)下,學(xué)生自主探究,交流討論,培養(yǎng)學(xué)生的合作意識和創(chuàng)新精神。

四 教學(xué)重點(diǎn)、難點(diǎn) 1.重點(diǎn)

一元二次不等式的解法 2.難點(diǎn)

理解元二次方程與一元二次不等式解集的關(guān)系

五 教學(xué)方法

啟發(fā)式教學(xué)法,討論法,講授法

六 教學(xué)過程

1.創(chuàng)設(shè)情景,提出問題(約10分鐘)

師:在初中,我們解過一元一次不等式,如解不等式x – 1 > 0,現(xiàn)在請同學(xué)們先畫出函數(shù)y = x – 1 的圖象,并通過觀察圖象回答以下問題: 1)x 為何值時(shí),y = 0;2)x 為何值時(shí),y > 0;3)x 為何值時(shí),y 0的解集能從函數(shù)y = x – 1上看出來嗎?

學(xué)生畫圖,思考。先把問題交給學(xué)生自主探究,過一段時(shí)間,再小組交流,此間教師巡視并指導(dǎo)。提問學(xué)生代表。

通過對上述問題的探究,學(xué)生得出以下結(jié)論:

因?yàn)樯鲜龇匠蘹 – 1 = 0以及不等式x – 1 > 0的左邊恰好是上述函數(shù)y = x3x – 2 > 0;2)4x23x – 2 = 0的解是x1 =-1/2, x2 = 2.所以2x24x + 1 = 0 的解是x1 = x2 = 1/2, 所以不等式4x22x + 3

練習(xí):課本80頁練習(xí)第1題(1)-(3)【靈活掌握】.師:今天我們這節(jié)課的內(nèi)容有兩個(gè): 1)會一元二次不等式的解法 2)理解三個(gè)“二次”的關(guān)系

作業(yè):課本第80頁 習(xí)題 A

4.板書設(shè)計(jì)

§ 一元二次不等式及其解法

解不等式x2 – x – 6 > 0, 請先畫出二次函數(shù) y = x2 – x – 6的圖像,并回答以下問題: 1)x 為何值時(shí),y = 0;y > 0;y 0的解集呢?

七 教學(xué)反思

組1、2題 例,解不等式:

1)2x24x + 1 > 0;3)-x2 + 2x – 3

解:1)因?yàn)棣?=(-3)2 – 4×2×(-2)= 25 > 0, 方程的2x23x – 2 > 0的解集是{x| x1 2}.2)因?yàn)棣?= 0,方程4x24x + 1 > 0的解集是{x|x ≠ 1/2}.

一元二次不等式課件(篇5)

1、一元二次不等式解法的探索

[師] 你知道二次函數(shù)的草圖是怎樣畫出的嗎?(用"特殊點(diǎn)法"而非課本上的"列表描點(diǎn)法")你能回答以下問題嗎?二次函數(shù) y=x2-4x+3的圖象如下:

填表:方程x2-4x+3=0(即y=0)的解是

不等式x2-4x+3>0(即y>0)的解集是

不等式x2-4x+3

注:學(xué)生類比前面的知識,能根據(jù)二次函數(shù)的圖象確定與x軸的交點(diǎn),確定對應(yīng)的一元二次方程的根,從而確定一元二次不等式的解集。(邊說邊畫y>0,y

[師]現(xiàn)在如果我變動(dòng)這條拋物線,請大家觀察拋物線與x軸的交點(diǎn)有何變化?

注:引導(dǎo)學(xué)生發(fā)現(xiàn)一元二次方程的根有三種情況,其對應(yīng)的二次函數(shù)圖象與x軸的位置關(guān)系也有三種情況,是由 >0, =0,

2、講解例題

[師]接下來請同學(xué)們再來分析幾個(gè)具體例子

(板書)例:解下列各不等式

(1)2x2-3x-2>0;

(2) -3x2+6x>2;

(3)4x2-4x+1>0;

(4)-x2+2x-3>0.

注:跟學(xué)生共同詳細(xì)分析(1),強(qiáng)調(diào)解題規(guī)范性,其余(2)(3)(4)由學(xué)生完成,并小組討論。

解:(1)方程2x2-3x-2=0的兩根為x1=- 或 x2=2,(畫草圖,結(jié)合圖象)

所以原不等式的解集是{x| x2 }

注:問題要順利求解,應(yīng)先考慮對應(yīng)方程

的根的情況,然后畫出草圖,結(jié)合不等式寫出解集。

(以下學(xué)生試著解決,并回答)

(2)分析一:結(jié)合開口向下的拋物線求解。

分析二:引導(dǎo)學(xué)生能否轉(zhuǎn)化為熟知類型,與(1)中二次項(xiàng)系數(shù)作比較,只要不等式兩邊同乘以-1,并注意不等式要改變方向。

解:原不等式可變?yōu)?3x2-6x+2

方程3x2-6x+2=0的兩根為 x1=1- , x2=1+

原不等式解集為: {x | 1-

(3)方程 4x2-4x+1=0有兩等根 x1=x2=

所以原不等式的解集是{x |x }

變式訓(xùn)練:改成4x2-4x+1 0,請學(xué)生回答(使學(xué)生知道不等式的解也可能是一個(gè)值)。

(4)將原不等式變形為:x2-2x+3

方程x2-2x+3=0無實(shí)根

原不等式的解集是

變式訓(xùn)練: -x2+2x-3

[師]上述幾例都有各自的特點(diǎn),反映在哪兩方面呢?注:引導(dǎo)學(xué)生總結(jié):一是二次項(xiàng)系數(shù),二是判別式 ,一般要先將二次項(xiàng)系數(shù)轉(zhuǎn)化為正數(shù)。

一元二次不等式課件(篇6)

1.復(fù)習(xí)一元一次方程、一元一次不等式與一次函數(shù)的關(guān)系

[師]前面我們已經(jīng)學(xué)習(xí)了絕對值不等式的解法,今天開始研究一元二次不等式的解法。(板書課題)記得在初中我們已學(xué)習(xí)了一元一次不等式的解法,還記得是用什么方法解的嗎?

學(xué)生可能回答是代數(shù)方法,也可能說是利用直線圖象。

[師]初中學(xué)習(xí)了一次函數(shù)的圖象,使得我們對一元一次不等式的解法有了更深入的了解。首先請同學(xué)們畫出 y=2x-7

[師]請同學(xué)們畫出圖象,并回答問題。

一次函數(shù)y=2x-7的圖象如下:

填表:

當(dāng)x 時(shí),y = 0,即 2x-7 0;

當(dāng)x 時(shí),y

當(dāng)x 時(shí),y > 0,即 2x-7 0;

注:(1)引導(dǎo)學(xué)生由圖象得出結(jié)論(數(shù)形結(jié)合)

(2)由學(xué)生填空(一邊演示y0部分圖象)

從上例的特殊情形,你能得出什么結(jié)論?

注:教師引導(dǎo)下學(xué)生發(fā)現(xiàn)其結(jié)論,并由學(xué)生嘗試敘述:一元一次方程ax+b=0的根實(shí)質(zhì)上就是直線y=ax+b與x軸交點(diǎn)的橫坐標(biāo);一元一次不等式ax+b>0(或ax+b

2.新課導(dǎo)入

[師]我們可以利用一次函數(shù)的圖象快速準(zhǔn)確地求出一元一次不等式的解集,那能否也可以借助二次函數(shù)的圖象來解一元二次不等式呢?

一元二次不等式課件(篇7)

1.創(chuàng)設(shè)情景——引入新課。我們常說“興趣是最好的老師”,長期以來,學(xué)生對學(xué)習(xí)數(shù)學(xué)缺乏興趣,甚至失去信心,一個(gè)重要的原因,是老師在教學(xué)中不重視學(xué)生對學(xué)習(xí)的情感體驗(yàn),教學(xué)應(yīng)該充分考慮學(xué)生的情感和需要,想方設(shè)法讓學(xué)生在學(xué)習(xí)中樹立信心,感受學(xué)習(xí)的樂趣。根據(jù)教材內(nèi)容的安排,我以學(xué)生熟悉的畫一次函數(shù)圖象、求一次方程和一次不等式的解為背景知識切入,設(shè)置一個(gè)練習(xí)題組,一方面讓學(xué)生總結(jié)復(fù)習(xí)已有知識,為后面學(xué)習(xí)二次不等式的解法打下基礎(chǔ),做好鋪墊,另一方面,使學(xué)生在自己熟悉的問題中首先獲得解題成功的快樂體驗(yàn),然后以20xx年江蘇省的一道高考試題為引子,引入本節(jié)課的新授內(nèi)容。對于本題,引導(dǎo)學(xué)生,利用上面解練習(xí)題組1的方法,畫出二次函數(shù)圖象來解答。二次函數(shù)是初中數(shù)學(xué)的重要內(nèi)容,本題又給出了函數(shù)圖象上許多點(diǎn),相信學(xué)生畫出圖象應(yīng)該不成問題,只要教師適當(dāng)點(diǎn)撥,學(xué)生不難得到正確答案。以高考試題為背景引入新課,可以提高學(xué)生興趣,抓住學(xué)生眼球,吸引學(xué)生注意力,還可以讓學(xué)生實(shí)實(shí)在在感受到,高考題就在我們的課本中,就在我們平常的練習(xí)中。

2.探究交流——發(fā)現(xiàn)規(guī)律。從特殊到一般是我們發(fā)現(xiàn)問題、尋求規(guī)律、揭示問題本質(zhì)最常用的方法之一。我把課本例題1、2編為練習(xí)題組(一),交由學(xué)生用上面解高考題的方法——圖象法去解,學(xué)生由于熟知二次函數(shù)圖象,求解應(yīng)該不會有太大的問題。在這個(gè)過程中,教師要啟發(fā)引導(dǎo)學(xué)生注意對比兩題的異同,組織引導(dǎo)學(xué)生展開交流討論,探討第(2)題能不能先把二次項(xiàng)系數(shù)化正以后再構(gòu)造函數(shù)畫圖求解。然后達(dá)成共識,如果二次項(xiàng)系數(shù)為負(fù)數(shù)時(shí),先做等價(jià)轉(zhuǎn)化,把二次項(xiàng)系數(shù)化為正數(shù)再解,課本19頁例3、例4作為題組(二),繼續(xù)讓學(xué)生用上面的圖象法,由學(xué)生自己求解,這時(shí)我及時(shí)提示學(xué)生注意這兩題與題組(一)中兩題的不同(例1、例2對應(yīng)方程都有兩個(gè)不等實(shí)根,例3對應(yīng)方程有兩相等實(shí)根,例4對應(yīng)方程無實(shí)根)。兩個(gè)題組的練習(xí)之后,可以尋求解二次不等式的一般規(guī)律。

3.啟發(fā)引導(dǎo)——形成結(jié)論。前面兩個(gè)題組的四個(gè)小題,基本涵蓋了一般一元二次不等式解的各種情況,進(jìn)一步啟發(fā)引導(dǎo)學(xué)生將特殊、具體題目的結(jié)論做一般化總結(jié),與學(xué)生一起就△>0,△<0,△=0的三種情況,總結(jié)二次不等式ax2+bx+c>0或ax2+bx+c<0(a>0)的解的情況應(yīng)該水到渠成。至此,學(xué)生可以感受到,解二次不等式只須①將二次項(xiàng)系數(shù)化為正數(shù),②求解二次方程ax2+bx+c=0的.根。③根據(jù)①后的二次不等式的符號寫出解集即可,必要時(shí)也可以結(jié)合圖象寫解集。這樣我們就得到了二次不等式的另外一種解法(可稱為“三步曲”法)。

4.訓(xùn)練小結(jié)——鞏固深化。為了鞏固和加深二次不等式的兩種解法,接下來及時(shí)組織學(xué)生進(jìn)行課堂練習(xí),完成課本21頁練習(xí)1—4題。本環(huán)節(jié)請不同層次的學(xué)生在黑板上書寫解題過程,之后師生共同糾正問題,規(guī)范解題過程的書寫。

5.延伸拓寬——提高能力。課堂教學(xué)既要面向全體學(xué)生,又應(yīng)關(guān)注學(xué)生的個(gè)體差異。體現(xiàn)分類推進(jìn),分層教學(xué)的原則。為此,我又設(shè)計(jì)了一個(gè)提高練習(xí)題組,共有三道備選題目,以供程度較好學(xué)有余力的學(xué)生能夠更好的展示自己的解題能力,取得更進(jìn)一步的提高。

一元二次不等式課件(篇8)

教學(xué)目標(biāo):

(1)透徹理解、掌握一元二次方程、一元二次不等式與二次函數(shù)的內(nèi)在聯(lián)系,會解一元二次不等式;

(2)培養(yǎng)學(xué)生數(shù)學(xué)的數(shù)形結(jié)合思想和轉(zhuǎn)化能力,學(xué)會主動(dòng)探求問題和尋找解決問題的方法。

教學(xué)重點(diǎn):一元二次不等式的解法(圖象法)

教學(xué)難點(diǎn):

(1)一元二次方程、一元二次不等式與二次函數(shù)的關(guān)系;

(2)數(shù)形結(jié)合思想的滲透

教學(xué)方法與教學(xué)手段:

嘗試探索教學(xué)法、歸納概括。

教學(xué)過程:

一、復(fù)習(xí)引入

1.復(fù)習(xí)一元一次方程、一元一次不等式與一次函數(shù)的關(guān)系

[師]前面我們已經(jīng)學(xué)習(xí)了絕對值不等式的解法,今天開始研究一元二次不等式的解法。(板書課題)記得在初中我們已學(xué)習(xí)了一元一次不等式的解法,還記得是用什么方法解的'嗎?

學(xué)生可能回答是代數(shù)方法,也可能說是利用直線圖象。

[師]初中學(xué)習(xí)了一次函數(shù)的圖象,使得我們對一元一次不等式的解法有了更深入的了解。首先請同學(xué)們畫出 y=2x-7

[師]請同學(xué)們畫出圖象,并回答問題。

一次函數(shù)y=2x-7的圖象如下:

填表:

當(dāng)x 時(shí),y = 0,即 2x-7 0;

當(dāng)x 時(shí),y

當(dāng)x 時(shí),y > 0,即 2x-7 0;

注:(1)引導(dǎo)學(xué)生由圖象得出結(jié)論(數(shù)形結(jié)合)

(2)由學(xué)生填空(一邊演示y0部分圖象)

從上例的特殊情形,你能得出什么結(jié)論?

注:教師引導(dǎo)下學(xué)生發(fā)現(xiàn)其結(jié)論,并由學(xué)生嘗試敘述:一元一次方程ax+b=0的根實(shí)質(zhì)上就是直線y=ax+b與x軸交點(diǎn)的橫坐標(biāo);一元一次不等式ax+b>0(或ax+b

2.新課導(dǎo)入

[師]我們可以利用一次函數(shù)的圖象快速準(zhǔn)確地求出一元一次不等式的解集,那能否也可以借助二次函數(shù)的圖象來解一元二次不等式呢?

二、講解新課

1、一元二次不等式解法的探索

[師] 你知道二次函數(shù)的草圖是怎樣畫出的嗎?(用"特殊點(diǎn)法"而非課本上的"列表描點(diǎn)法")你能回答以下問題嗎?二次函數(shù) y=x2-4x+3的圖象如下:

填表:方程x2-4x+3=0(即y=0)的解是

不等式x2-4x+3>0(即y>0)的解集是

不等式x2-4x+3

注:學(xué)生類比前面的知識,能根據(jù)二次函數(shù)的圖象確定與x軸的交點(diǎn),確定對應(yīng)的一元二次方程的根,從而確定一元二次不等式的解集。(邊說邊畫y>0,y

[師]現(xiàn)在如果我變動(dòng)這條拋物線,請大家觀察拋物線與x軸的交點(diǎn)有何變化?

注:引導(dǎo)學(xué)生發(fā)現(xiàn)一元二次方程的根有三種情況,其對應(yīng)的二次函數(shù)圖象與x軸的位置關(guān)系也有三種情況,是由 >0, =0,

2、講解例題

[師]接下來請同學(xué)們再來分析幾個(gè)具體例子

(板書)例:解下列各不等式

(1)2x2-3x-2>0;

(2) -3x2+6x>2;

(3)4x2-4x+1>0;

(4)-x2+2x-3>0.

注:跟學(xué)生共同詳細(xì)分析(1),強(qiáng)調(diào)解題規(guī)范性,其余(2)(3)(4)由學(xué)生完成,并小組討論。

解:(1)方程2x2-3x-2=0的兩根為x1=- 或 x2=2,(畫草圖,結(jié)合圖象)

所以原不等式的解集是{x| x2 }

四、課后作業(yè):書P21/習(xí)題1.5/1.3.5.6

五、教學(xué)設(shè)計(jì)說明:

1、本節(jié)課教學(xué)設(shè)計(jì)力圖體現(xiàn)以學(xué)生發(fā)展為本,遵循學(xué)生的認(rèn)知規(guī)律,體現(xiàn)循序漸進(jìn)的教學(xué)原則,通過對原有知識的復(fù)習(xí),引導(dǎo)學(xué)生類比探索新的知識,激發(fā)學(xué)生的求知欲望,調(diào)動(dòng)學(xué)生的積極性。

2、本節(jié)課采用在教師引導(dǎo)下啟發(fā)學(xué)生探索發(fā)現(xiàn),體會解題過程中形結(jié)合思想方法,使之獲得內(nèi)心感受。

3、本節(jié)課的重點(diǎn)是利用圖象解一元二次不等式,讓學(xué)生明確一元二次方程、一元二次不等式與二次函數(shù)之間的聯(lián)系。在思維訓(xùn)練方面,注重從特殊到一般,從具體到抽象思維的培養(yǎng)。歸納總結(jié)可以訓(xùn)練學(xué)生的收斂思維,有助于完善學(xué)生的思維結(jié)構(gòu)。

4、本節(jié)課的例題及課堂練習(xí)是課本上的習(xí)題,其目的在于落實(shí)基礎(chǔ),提高運(yùn)算能力。

一元二次不等式課件(篇9)

一、教材分析

(一)教材的地位和作用

“一元二次不等式解法”既是初中一元一次不等式解法在知識上的延伸和發(fā)展,又是本章集合知識的運(yùn)用與鞏固,也為下一章函數(shù)的定義域和值域教學(xué)作鋪墊,起著鏈條的作用。同時(shí),這部分內(nèi)容較好地反映了方程、不等式、函數(shù)知識的內(nèi)在聯(lián)系和相互轉(zhuǎn)化,蘊(yùn)含著歸納、轉(zhuǎn)化、數(shù)形結(jié)合等豐富的數(shù)學(xué)思想方法,能較好地培養(yǎng)學(xué)生的觀察能力、概括能力、探究能力及創(chuàng)新意識。

(二)教學(xué)內(nèi)容

本節(jié)內(nèi)容分2課時(shí)學(xué)習(xí)。本課時(shí)通過二次函數(shù)的圖象探索一元二次不等式的解集。通過復(fù)習(xí)“三個(gè)一次”的關(guān)系,即一次函數(shù)與一元一次方程、一元一次不等式的關(guān)系;以舊帶新尋找“三個(gè)二次”的關(guān)系,即二次函數(shù)與一元二次方程、一元二次不等式的關(guān)系;采用“畫、看、說、用”的思維模式,得出一元二次不等式的解集,品味數(shù)學(xué)中的和諧美,體驗(yàn)成功的樂趣。

二、教學(xué)目標(biāo)分析

根據(jù)教學(xué)大綱的要求、本節(jié)教材的特點(diǎn)和高一學(xué)生的認(rèn)知規(guī)律,本節(jié)課的教學(xué)目標(biāo)確定為:

知識目標(biāo)——理解“三個(gè)二次”的關(guān)系;掌握看圖象找解集的方法,熟悉一元二次不等式的解法。

能力目標(biāo)——通過看圖象找解集,培養(yǎng)學(xué)生“從形到數(shù)”的轉(zhuǎn)化能力,“從具體到抽象”、“從特殊到一般”的歸納概括能力。

情感目標(biāo)——?jiǎng)?chuàng)設(shè)問題情景,激發(fā)學(xué)生觀察、分析、探求的學(xué)習(xí)激情、強(qiáng)化學(xué)生參與意識及主體作用。

三、重難點(diǎn)分析

一元二次不等式是高中數(shù)學(xué)中最基本的不等式之一,是解決許多數(shù)學(xué)問題的重要工具。本節(jié)課的重點(diǎn)確定為:一元二次不等式的解法。

要把握這個(gè)重點(diǎn)。關(guān)鍵在于理解并掌握利用二次函數(shù)的圖象確定一元二次不等式解集的方法——圖象法,其本質(zhì)就是要能利用數(shù)形結(jié)合的思想方法認(rèn)識方程的解,不等式的解集與函數(shù)圖象上對應(yīng)點(diǎn)的橫坐標(biāo)的內(nèi)在聯(lián)系。由于初中沒有專門研究過這類問題,高一學(xué)生比較陌生,要真正掌握有一定的難度。因此,本節(jié)課的難點(diǎn)確定為:“三個(gè)二次”的關(guān)系。要突破這個(gè)難點(diǎn),讓學(xué)生歸納“三個(gè)一次”的關(guān)系作鋪墊。

四、教法與學(xué)法分析

(一)學(xué)法指導(dǎo)

教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會學(xué)是目的。因此在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會學(xué)習(xí)。本節(jié)課主要是教給學(xué)生“動(dòng)手畫、動(dòng)眼看、動(dòng)腦想、動(dòng)口說、善提煉、勤鉆研”的研討式學(xué)習(xí)方法,這樣做增加了學(xué)生自主參與,合作交流的機(jī)會,教給了學(xué)生獲取知識的途徑、思考問題的方法,使學(xué)生真正成了教學(xué)的主體;只有這樣做,才能使學(xué)生“學(xué)”有新“思”,“思”有新“得”,“練”有新“獲”,學(xué)生也才會逐步感受到數(shù)學(xué)的美,會產(chǎn)生一種成功感,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;也只有這樣做,課堂教學(xué)才富有時(shí)代特色,才能適應(yīng)素質(zhì)教育下培養(yǎng)“創(chuàng)新型”人才的需要。

(二)教法分析

本節(jié)課設(shè)計(jì)的指導(dǎo)思想是:現(xiàn)代認(rèn)知心理學(xué)——建構(gòu)主義學(xué)習(xí)理論。

建構(gòu)主義學(xué)習(xí)理論認(rèn)為:應(yīng)把學(xué)習(xí)看成是學(xué)生主動(dòng)的建構(gòu)活動(dòng),學(xué)生應(yīng)與一定的知識背景即情景相聯(lián)系,在實(shí)際情景下進(jìn)行學(xué)習(xí),可以使學(xué)生利用已有知識與經(jīng)驗(yàn)同化和索引出當(dāng)前要學(xué)習(xí)的新知識,這樣獲取的知識,不但便于保持,而且易于遷移到陌生的問題情景中。

本節(jié)課采用“誘思引探教學(xué)法”。把問題作為出發(fā)點(diǎn),指導(dǎo)學(xué)生“畫、看、說、用”。較好地探求一元二次不等式的解法。

五、課堂設(shè)計(jì)

本節(jié)課的教學(xué)設(shè)計(jì)充分體現(xiàn)以學(xué)生發(fā)展為本,培養(yǎng)學(xué)生的觀察、概括和探究能力,遵循學(xué)生的認(rèn)知規(guī)律,體現(xiàn)理論聯(lián)系實(shí)際、循序漸進(jìn)和因材施教的教學(xué)原則,通過問題情境的創(chuàng)設(shè),激發(fā)興趣,使學(xué)生在問題解決的探索過程中,由學(xué)會走向會學(xué),由被動(dòng)答題走向主動(dòng)探究。

(一)創(chuàng)設(shè)情景,引出“三個(gè)一次”的關(guān)系

本節(jié)課開始,先讓學(xué)生解一元二次方程x2—x—6=0,如果我把“=”改成“>”則變成一元二次不等式x2—x—6>0讓學(xué)生解,學(xué)生肯定感到很突然。但是“思維往往是從驚奇和疑問開始”,這樣直奔主題,目的在于構(gòu)造懸念,激活學(xué)生的思維興趣。

為此,我設(shè)計(jì)了以下幾個(gè)問題:

1、請同學(xué)們解以下方程和不等式:

①2x—7=0;②2x—7>0;③2x—7

基本不等式課件


古人云,工欲善其事,必先利其器。在每學(xué)期開學(xué)之前,幼兒園的老師們都要為自己之后的教學(xué)做準(zhǔn)備。為了防止學(xué)生抓不住重點(diǎn),教案就顯得非常重要,有了教案上課才能夠?yàn)橥瑢W(xué)講更多的,更全面的知識。所以你在寫幼兒園教案時(shí)要注意些什么呢?以下內(nèi)容是小編特地整理的“基本不等式課件”,在此提醒你收藏本頁,以方便閱讀!

基本不等式課件 篇1

【學(xué)習(xí)目標(biāo)】

1.知識與技能:學(xué)會推導(dǎo)并掌握基本不等式,理解這個(gè)基本不等式的幾何意義,并掌握定理中的不等號“≥”取等號的條件是:當(dāng)且僅當(dāng)這兩個(gè)數(shù)相等;

2.過程與方法:通過實(shí)例探究抽象基本不等式;

3.情態(tài)與價(jià)值:通過本節(jié)的學(xué)習(xí),體會數(shù)學(xué)來源于生活,提高學(xué)習(xí)數(shù)學(xué)的興趣

【能力培養(yǎng)】

培養(yǎng)學(xué)生嚴(yán)謹(jǐn)、規(guī)范的學(xué)習(xí)能力,分析問題、解決問題的能力。

【教學(xué)重點(diǎn)】

應(yīng)用數(shù)形結(jié)合的思想理解不等式,并從不同角度探索不等式 的證明過程;及其在求最值時(shí)初步應(yīng)用

【教學(xué)難點(diǎn)】

基本不等式 等號成立條件

【教學(xué)過程】

一、課題導(dǎo)入

基本不等式 的幾何背景:如圖是在北京召開的第24界國際數(shù)學(xué)家大會的會標(biāo),教師引導(dǎo)學(xué)生從面積的關(guān)系去找不等關(guān)系。

二、講授新課

1.問題探究——探究圖形中的不等關(guān)系。

將圖中的“風(fēng)車”抽象成如圖,在正方形abcd中右個(gè)全等的直角三角形。設(shè)直角三角形的兩條直角邊長為a,b那么正方形的邊長為 。這樣,4個(gè)直角三角形的面積的和是2ab,正方形的面積為 。由于4個(gè)直角三角形的面積小于正方形的面積,我們就得到了一個(gè)不等式: 。

當(dāng)直角三角形變?yōu)榈妊苯侨切危碼=b時(shí),正方形efgh縮為一個(gè)點(diǎn),這時(shí)有 。

2.總結(jié)結(jié)論:一般的,如果

(結(jié)論的得出盡量發(fā)揮學(xué)生自主能動(dòng)性,讓學(xué)生總結(jié),教師適時(shí)點(diǎn)撥引導(dǎo))

3.思考證明:(讓學(xué)生嘗試給出它的證明)

4.特別的,如果a>0,b>0,我們用 分別代替a、b ,可得,

通常我們把上式寫作:

①從不等式的性質(zhì)推導(dǎo)基本不等式

用分析法證明:(略)

②理解基本不等式 的幾何意義

探究:對課本第98頁的“探究”( 幾何證明)

注:在數(shù)學(xué)中,我們稱 為a、b的算術(shù)平均數(shù),稱 為a、b的幾何平均數(shù)。本節(jié)定理還可敘述為:兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)。

5、例:當(dāng)時(shí),取什么值,的值最???最小值是多少?

6、課時(shí)小結(jié)

本節(jié)課,我們學(xué)習(xí)了重要不等式a2+b2≥2ab;兩正數(shù)a、b的算術(shù)平均數(shù)( ),幾何平均數(shù)( )及它們的關(guān)系( ≥ )。它們成立的條件不同,前者只要求a、b都是實(shí)數(shù),而后者要求a、b都是正數(shù)。它們既是不等式變形的基本工具,又是求函數(shù)最值的重要工具(下一節(jié)我們將進(jìn)一步學(xué)習(xí)它們的應(yīng)用)。

7、作業(yè):

課本第100頁習(xí)題[a]組的第1、2題

板書 設(shè) 計(jì)

課題: 3.4基本不等式

一、兩個(gè)不等式

二、例題及練習(xí)

基本不等式課件 篇2

基本不等式是初中數(shù)學(xué)中重要的一個(gè)知識點(diǎn)。通過學(xué)習(xí)基本不等式,可以幫助學(xué)生更深入地理解不等式的性質(zhì),掌握不等式的解法和應(yīng)用技巧,以及提高數(shù)學(xué)分析和推理能力。下面就從不等式的定義、基本不等式的證明、基本不等式的應(yīng)用等方面來詳細(xì)介紹基本不等式。

一、不等式的定義

不等式是數(shù)學(xué)中的一種基本概念,用來表示兩個(gè)數(shù)之間的大小關(guān)系。比如,如果a>b,則可以表示為a-b>0;如果a≥b,則可以表示為a-b≥0。在不等式中,我們常用符號“>”、“≥”、“

二、基本不等式的證明

基本不等式是指若a、b為正實(shí)數(shù),那么(a+b)2/4≥ab。這個(gè)不等式在解決很多數(shù)學(xué)問題時(shí)都有非常重要的作用,因此我們需要掌握基本不等式的證明方法。

證明方法1:

(a+b)2/4=(a2+2ab+b2)/4= [(a+b)2-2ab]/4

由于a、b為正實(shí)數(shù),所以(a+b)2和2ab一定是正實(shí)數(shù)。

因此,(a+b)2-2ab≥0,即(a+b)2/4≥ab。

證畢。

證明方法2:

由于a、b為正實(shí)數(shù),所以(a-b)2≥0。根據(jù)這個(gè)不等式,我們可以推導(dǎo)出:

a2+b2≥2ab

(a2+b2)/2≥ab

(a2+2ab+b2)/4≥ab

(a+b)2/4≥ab

證畢。

證明方法3:

設(shè)Δ=a2-2ab+b2=(a-b)2≥0

那么,a2-2ab+b2≥0,即a2+b2≥2ab

(a2+b2)/2≥ab,即(a+b)2/4≥ab

證畢。

通過上述三種證明方法,我們可以看到,基本不等式的證明方法可以有多種,但本質(zhì)上是一樣的。

三、基本不等式的應(yīng)用

1.求解最優(yōu)解

在某些問題中,需要求解若干變量的最大值或最小值,例如某個(gè)產(chǎn)品的利潤最大化問題、最短路徑問題等,這時(shí)我們可以將問題轉(zhuǎn)化為一個(gè)不等式問題,然后運(yùn)用基本不等式來簡化求解過程。

2.推導(dǎo)其他不等式

基本不等式可以作為其他不等式的推導(dǎo)依據(jù)。例如,在求證某個(gè)不等式時(shí),我們可以使用基本不等式將其轉(zhuǎn)化為更簡單的形式,從而更容易得到證明。

3.證明集合的包含關(guān)系

當(dāng)我們需要證明兩個(gè)集合的包含關(guān)系時(shí),可以通過基本不等式來構(gòu)造出一些包含于其中一個(gè)集合但不包含于另一個(gè)集合的數(shù)列,這樣就容易得出它們之間的包含關(guān)系。

總之,基本不等式在數(shù)學(xué)中有著非常重要的作用,深入了解和掌握基本不等式,不僅可以提高數(shù)學(xué)思維能力,也可以幫助我們更好地理解和應(yīng)用各種數(shù)學(xué)知識。

基本不等式課件 篇3

基本不等式是中學(xué)數(shù)學(xué)中的重要內(nèi)容,它們可以作用于多種數(shù)學(xué)領(lǐng)域,包括代數(shù)、幾何、概率等等。這種不等式是一個(gè)基本性質(zhì),它提供了一種有效地組織和比較數(shù)字和數(shù)學(xué)表達(dá)式的方式。本文將探討基本不等式,并解釋其重要性和應(yīng)用范圍。

基本不等式是指一個(gè)簡單的數(shù)學(xué)規(guī)律,即對于任何正實(shí)數(shù)a和b,有如下關(guān)系式:

(a + b)2 ≥ 4ab

當(dāng)a和b相等時(shí)等式被取得,此時(shí)有a = b = (a + b) / 2。

這個(gè)不等式看上去非常簡單,但它有它的特殊地位和應(yīng)用。它是所有不等式中最基本也是最重要的,它可以應(yīng)用到各種自然科學(xué)和社會科學(xué)領(lǐng)域中。例如,基本不等式可以用于優(yōu)化無線網(wǎng)絡(luò)傳輸速度和縮短計(jì)算機(jī)作業(yè)響應(yīng)時(shí)間,還可以在物理和金融領(lǐng)域中被用來研究變化率和波動(dòng)性等特征。

作為一個(gè)系統(tǒng)的理論工具,基本不等式的價(jià)值和應(yīng)用遠(yuǎn)不止于此。尤其是它的推廣版Sylvester不等式,將基本不等式引向了更復(fù)雜多樣的領(lǐng)域。Sylvester不等式是基本不等式在矩陣學(xué)科中的一個(gè)推廣。它是一個(gè)矩陣不等式,描述了不同形式的矩陣之間的比較規(guī)律。從線性代數(shù)、概率、統(tǒng)計(jì)以及其他領(lǐng)域中的應(yīng)用可以看出,矩陣不等式在各種學(xué)科中都有越來越廣泛的應(yīng)用。

基本不等式是解決一些數(shù)學(xué)難題的一個(gè)強(qiáng)大工具,在應(yīng)用中經(jīng)常運(yùn)用到。因此,學(xué)生無論是在數(shù)學(xué)課堂中還是考試中,都應(yīng)該掌握這個(gè)基本數(shù)學(xué)概念,并了解它的應(yīng)用。通過培養(yǎng)學(xué)生使用基本不等式和它的推廣Sylvester不等式的能力,可以幫助他們更好地掌握高等數(shù)學(xué)中更復(fù)雜的概念和算法。

因此,掌握和理解基本不等式以及它的推廣Sylvester不等式對數(shù)學(xué)學(xué)習(xí)者來說非常重要。通過對基本不等式的學(xué)習(xí)和掌握,可以幫助學(xué)生完成更復(fù)雜的數(shù)學(xué)問題,進(jìn)一步培養(yǎng)他們在數(shù)學(xué)領(lǐng)域的創(chuàng)造性和解決問題的能力。

基本不等式課件 篇4

基本不等式是初中數(shù)學(xué)中的一個(gè)重要內(nèi)容,也被稱為柯西-施瓦茨不等式。它的意義不僅限于初中數(shù)學(xué),在高中數(shù)學(xué)、大學(xué)數(shù)學(xué)等領(lǐng)域都有廣泛的應(yīng)用?;静坏仁绞菙?shù)學(xué)中非?;A(chǔ)的概念,我們可以通過以下的主題范文來深入了解。

主題一:基本不等式的概念及其應(yīng)用

基本不等式是初中數(shù)學(xué)中的基礎(chǔ)概念,它是數(shù)學(xué)不等式中的重要內(nèi)容。它起源于柯西-施瓦茨不等式,可以用于證明不等式以及優(yōu)化問題。基本不等式的本質(zhì)是數(shù)學(xué)中的向量內(nèi)積,具有非常廣泛的應(yīng)用,比如在概率論、統(tǒng)計(jì)學(xué)、矩陣論、函數(shù)論、微積分等方面都有應(yīng)用。

主題二:基本不等式的證明方法

基本不等式的證明方法主要有兩種。一種是基于二次函數(shù)的方法,另一種是基于向量內(nèi)積的方法。無論采用哪種方法,都需要通過簡單的代數(shù)變化、平方等方法,將式子變形成為已知的不等式形式。利用這種方法,我們就可以推出基本不等式,從而應(yīng)用到不等式證明等問題中。

主題三:基本不等式在函數(shù)極值問題中的應(yīng)用

基本不等式在函數(shù)極值問題中也有廣泛的應(yīng)用。函數(shù)的極值可以通過求導(dǎo)數(shù)和函數(shù)值來求解,而基本不等式可以在求解函數(shù)極值過程中起到優(yōu)化作用。通過基本不等式,可以很好地規(guī)避一些數(shù)學(xué)中的陷阱,從而獲得更精確的結(jié)果。因此,基本不等式在函數(shù)極值問題中的應(yīng)用是非常重要的。

主題四:基本不等式在概率論和統(tǒng)計(jì)學(xué)中的應(yīng)用

基本不等式在概率論和統(tǒng)計(jì)學(xué)中也有廣泛的應(yīng)用。概率論中的卡方分布、t分布等都是基于基本不等式的優(yōu)化結(jié)果。在統(tǒng)計(jì)學(xué)的研究中,基本不等式可以用于特征值的計(jì)算、回歸分析等方面。因此,基本不等式在概率論和統(tǒng)計(jì)學(xué)中的應(yīng)用也是非常重要的。

主題五:用基本不等式解決數(shù)學(xué)中的“熱點(diǎn)”問題

基本不等式是數(shù)學(xué)中的熱點(diǎn)問題之一,因?yàn)樗诮鉀Q很多復(fù)雜的數(shù)學(xué)問題中都起到了重要作用。比如,在組合數(shù)學(xué)中,基本不等式用于計(jì)算多重組合數(shù)。在三角函數(shù)中,基本不等式用于計(jì)算三角函數(shù)的冪的和。在數(shù)值分析中,基本不等式用于優(yōu)化函數(shù)逼近等方面。因此,我們可以用基本不等式解決數(shù)學(xué)中的一些“熱點(diǎn)”問題,從而獲得更深入的數(shù)學(xué)技巧。

總的來說,基本不等式是數(shù)學(xué)中一個(gè)非常重要的內(nèi)容,它可以用于解決不等式證明、函數(shù)極值、概率論和統(tǒng)計(jì)學(xué)等領(lǐng)域的問題。同時(shí),基本不等式也是數(shù)學(xué)中的“熱點(diǎn)”問題之一,它為我們提供了更深入的數(shù)學(xué)技巧和思維方式。掌握基本不等式不僅可以提高數(shù)學(xué)水平,而且可以在其他領(lǐng)域帶來更多的收獲。

基本不等式課件 篇5

一、基本不等式的簡介

基本不等式是初中數(shù)學(xué)中的一項(xiàng)重要內(nèi)容,是不等式的基礎(chǔ)。它可以幫助我們在學(xué)習(xí)不等式的過程中更加輕松的理解和掌握其他不等式的相關(guān)知識。它的基本形式是:

對于任意實(shí)數(shù)a1, a2, …, an,有

(a1^2 + a2^2 + … + an^2)×n ≥ (a1 + a2+ … + an)^2

二、基本不等式的證明

基本不等式的證明有多種方法,下面將以幾何證明法和數(shù)學(xué)歸納法為例進(jìn)行講解。

幾何證明法:

首先,我們根據(jù)勾股定理和三角形面積公式有:

a1^2=(a1 cos B1)^2+(a1 sin B1)^2

a2^2=(a2 cos B2)^2+(a2 sin B2)^2

……

an^2=(an cos Bn)^2+(an sin Bn)^2

因?yàn)檎嘞液瘮?shù)在第一象限內(nèi)單調(diào)遞增,所以有:

sinB1

sinB2

……

sinBn

把以上不等式累加起來并乘以n,則有:

n(a1^2+a2^2+…+an^2)>=〖(a1cosB1+a2cosB2+…+an cosBn)〗^2+n(a1^2sin^2 B1+…..+an^2sin^2 Bn)

顯然,n(a1^2sin^2B1+….+an^2sin^2Bn)=n(a1sinB1+…+ansinBn)^2

因此,原不等式即證。

數(shù)學(xué)歸納法:

當(dāng)n = 2時(shí),有

a^2 + b^2 >= 2ab

(a - b)^2 >= 0

顯然成立。

假設(shè)n = k - 1時(shí)原不等式成立,即

(a1^2 + a2^2 + … + ak-1^2) × (k - 1) >= (a1 + a2 + … + ak-1)^2

當(dāng)n = k時(shí),原不等式變?yōu)椋?/p>

(a1^2 + a2^2 + … + ak-1^2 + ak^2) × k >= (a1 + a2 + … + ak-1 + ak)^2

因?yàn)?a1^2 + a2^2 + … + ak-1^2) × (k - 1) >= (a1 + a2 + … + ak-1)^2

又因?yàn)?a1^2 + a2^2 + … + ak^2) × 1 >= ak^2

因此有:

(a1^2 + a2^2 + … + ak-1^2) × (k - 1) + (a1^2 + a2^2 + … + ak^2) × 1 >= (a1 + a2 + … + ak-1)^2 + ak^2

(a1^2 + a2^2 + … + ak^2) × k >= (a1 + a2 + … + ak)^2

因此,當(dāng)n = k時(shí),原不等式也成立。

綜合上述兩種證明方法,我們可知,基本不等式是正確的。

三、應(yīng)用基本不等式需要注意的問題

1. 基本不等式只適用于a1, a2, …, an均為實(shí)數(shù)的情形,不適用于其中有虛數(shù)的情形。

2. 如果不等式兩側(cè)都除以n的話,可以得到一個(gè)均值不等式:

(a1 + a2 + … + an) / n >= √(a1^2 + a2^2 + … + an^2)

這就是均值不等式的形式。

3. 基本不等式是一個(gè)有力的數(shù)學(xué)工具,它可以用于解決許多數(shù)學(xué)問題。 但在應(yīng)用時(shí),我們需要注意題目的條件,判斷是否可以應(yīng)用,以免掉進(jìn)錯(cuò)誤的陷阱。

四、結(jié)語

綜上所述,基本不等式在初中數(shù)學(xué)中是一項(xiàng)基礎(chǔ)性的內(nèi)容,它的正確性是數(shù)學(xué)歸納法和幾何證明法所證明的。應(yīng)用時(shí)需要注意題目的條件,判斷是否可以應(yīng)用。相信通過學(xué)習(xí)和掌握基本不等式,我們可以更加輕松的掌握其他不等式的相關(guān)知識。

基本不等式課件 篇6

教學(xué)目的

掌握不等式的基本性質(zhì),會用不等式的基本性質(zhì)進(jìn)行不等式的變形。

教學(xué)過程

師:我們已學(xué)過等式,不等式,現(xiàn)在我們來看兩組式子(教師出示小黑板中的兩組式子),請同學(xué)們觀察,哪些是等式?哪些是不等式?

第一組:1+2=3; a+b=b+a; S =ab; 4+x =7。

第二組:-7 1+4; 2x ≤6, a+2 ≥0; 3≠4。

生:第一組都是等式,第二組都是不等式。

師:那么,什么叫做等式?什么叫做不等式?

生:表示相等關(guān)系的式子叫做等式;表示不等式的式子叫做不等式。

師:在數(shù)學(xué)熾,我們用等號“=”來表示相等關(guān)系,用不等式號“〈”、“〉”或“≠”表示不等關(guān)系,其中“>”和“<”表示大小關(guān)系。表示大小關(guān)系的不等式是我們中學(xué)教學(xué)所要研究的。

前面我們學(xué)過了等式,同學(xué)們還記得等式的性質(zhì)嗎?

生:等式有這樣的性質(zhì):等式兩邊都加上,或都減去,或都乘以,或都除以( 除數(shù)不為零)同一個(gè)數(shù),所得到的仍是等式。

師:很好!當(dāng)我們開始研究不等式的時(shí)候,自然會聯(lián)想到,是否有與等式相類似的性質(zhì),也就是說,如果在不等式的兩邊都加上,或都減去,或都乘以,或都除經(jīng)(除數(shù)不為零)同一個(gè)數(shù),結(jié)果將會如何呢?讓我們先做一些試驗(yàn)練習(xí)。

練習(xí)1 (回答)用小于號“”填空。

(1)7 ___ 4;

(2)- 2____6;

(3)- 3_____ -2;

(4)- 4_____-6

練習(xí)2(口答)分別從練習(xí)1中四個(gè)不等式出發(fā),進(jìn)行下面的運(yùn)算。

(1)兩邊都加上(或都減去)5,結(jié)果怎樣?不等號的方向改變了嗎?

(2)兩邊都乘以(或都除以)5,結(jié)果怎樣?不等號的方向改變了嗎?

(3)兩邊都乘以(或都除以)(-5),結(jié)果怎樣?不等號的方向改變了嗎?

生:我們發(fā)現(xiàn):在練習(xí)2中,第(1)、(2)題的結(jié)果是不等號的方向不變;在第(3)題中,結(jié)果是不等號的方向改變了!

師:同學(xué)們觀察得很認(rèn)真,大家再進(jìn)一步探討一下,在什么情況下不等號的方向就會發(fā)生改變呢?

生甲:在原不等式的兩邊都乘以(或除以)一個(gè)負(fù)數(shù)的情況下,不等號的方向要改變。

師:有沒有不同的意見?大家都同意他的看法嗎?可能還有同學(xué)不放心,讓我們再做一些試驗(yàn)。

練習(xí)3(口答)分別在下面四個(gè)不等式的兩邊都以乘以(可除以)-2,看看不等號的方向是否改變:

7>4;-2<6;-3<-2;-4>-6。

師:現(xiàn)在我們可以歸納出不等式的基本性質(zhì),一般地說,不等式的基本性質(zhì)有三條:

性質(zhì)1:不等式的兩邊都加上(或都減去)同一個(gè)數(shù),不等號的方向 。

(讓同學(xué)回答。)

性質(zhì)2:不等式的兩邊都乘以(或都除以)同一個(gè)正數(shù),不等號的方向 。(讓同學(xué)回答。)

性質(zhì)3:不等式的兩邊都乘以(或都除以)同一個(gè)負(fù)數(shù),不等號的方向 。(讓同學(xué)回答。)

現(xiàn)在請大家翻開課本,一起朗讀用黑體字寫的三條基本性質(zhì)。

不等式的這三條基本性質(zhì),都可以用數(shù)學(xué)語言表達(dá)出來,先請一位同學(xué)說一說第一條基本性質(zhì)。

生:如果a<b。那么a+c<b+c(或a-c<b-c;如果a>b,那么a+c>b+c(或a-c>b-c)。

師:對a和b有什么要求嗎?對c有什么要求?

生:沒有什么要求。

師:哪位同學(xué)來回答第二、三條性質(zhì)?

生甲:如果a0, 那么acb,且c>0,那么ac>bc(或

生乙:如果abc(或 );如果a>b,且cb,且c>0,那么ac>bd;(2)如果a>b,那么ac2>bc2;(3)如果ac2>bc2,那么a>b;(4)如果a>b,那么a-b>0;(5)如果ax>b,且a≠0,那么xa;生甲:(1)不對,當(dāng)c=d≤0時(shí),ac>bd不成立。生乙:(2)也不對,因?yàn)閏2是一個(gè)非負(fù)數(shù),當(dāng)c=0時(shí),ac2>bc2不成立。生丙:(3)對,因?yàn)閍c2>bc2成立,則c2一定大于零,根據(jù)不等式基本性質(zhì)2,得a>b出。(4)對,根據(jù)不等式基本性質(zhì),由a>b,兩邊減去b得a-b>0。(5)不對,當(dāng)a<0時(shí),根據(jù)不等式基本性質(zhì)3,得。(6)不對,因?yàn)楫?dāng)b<0時(shí),根據(jù)不等式基本性質(zhì)1,得a+b<a;而當(dāng)b=0時(shí),則有a+b=a。師:同學(xué)們回答得很好。今天我們學(xué)習(xí)了不等式的基本性質(zhì),我們不僅要理解這三條性質(zhì),還要能靈活運(yùn)用。課外做以下作業(yè):略。教案說明(1) 不等式的基本性質(zhì)的教學(xué),是分成兩個(gè)階段進(jìn)行的。在初中階段,對不等式的基本性質(zhì),并不作證明,只引導(dǎo)學(xué)生用試驗(yàn)的方法,歸納出三條基本性質(zhì)。通過試驗(yàn),由特殊到一般,由具體到抽象,這是一種認(rèn)識事物規(guī)律的重要方法。科學(xué)上的許多發(fā)現(xiàn),大多離不開試驗(yàn)和觀察。大數(shù)學(xué)家歐拉說過:“數(shù)學(xué)這門科學(xué),需要觀察,也需要試驗(yàn)。”通過教學(xué)培養(yǎng)學(xué)生掌握由試驗(yàn)發(fā)現(xiàn)規(guī)律的方法,具有重要的意義。當(dāng)然通過幾個(gè)特殊的試驗(yàn),就得出一般的結(jié)論,是不嚴(yán)密的。但對初中學(xué)生來說,初次接觸不等式,是不能要求那么嚴(yán)密的。(2) 不等式的基本性質(zhì)的教學(xué),還應(yīng)采用對比的方法。學(xué)生已學(xué)過等式和等式的性質(zhì),為了便于和加深對不等式基本性質(zhì)的理解,在教學(xué)過程中,應(yīng)將不等式的性質(zhì)與等式的性質(zhì)加以比較:強(qiáng)調(diào)等式的兩邊都加上或減去,都乘以或除以(除數(shù)不能為零)同一個(gè)數(shù),所得到的仍是等式,這個(gè)數(shù)可以是正數(shù)、負(fù)數(shù)或零;而在不等式的兩邊都加上或減去,都乘以或除以(除數(shù)不能為零)同一個(gè)數(shù),當(dāng)這個(gè)數(shù)是正數(shù)、負(fù)數(shù)或零時(shí),對不等式的方向,有什么不同的影響。通過這樣的對比,不但可以復(fù)習(xí)已學(xué)過的等式有關(guān)知識,便于引入新課,而且也有利于掌握不等式的基本性質(zhì)。對比的方法,也是學(xué)習(xí)數(shù)學(xué)的一種重要方法。(3) 在應(yīng)用不等式的基本性質(zhì)對不等式進(jìn)行變形時(shí),學(xué)生對不等式兩邊是具體數(shù),判定大小關(guān)系比較容易。因?yàn)檫@實(shí)際上是有理數(shù)大小的比較。對于不等式兩邊是含字母的代數(shù)式時(shí),根據(jù)題給的條件,運(yùn)用不等式基本性質(zhì)判別大小關(guān)系或不等號方向,就比較困難。因?yàn)樗容^抽象,特別是在運(yùn)用不等式的基本性質(zhì)2和性質(zhì)3時(shí),學(xué)生必須考慮不等式兩邊同乘(或同除)的這個(gè)用字母表示的數(shù)的符號是什么,或者還要對這個(gè)用字母表示的數(shù),按正數(shù)、負(fù)數(shù)或零三種情況加以討論。在教學(xué)過程中,對于這類題目,采用討論法是比較好的。因?yàn)樵谟懻摃r(shí),學(xué)生可以充分發(fā)表各種見解。對于正確的見解,教師可以讓學(xué)生說出解題的依據(jù);對于錯(cuò)誤的見解,教師可以進(jìn)行啟發(fā)引導(dǎo),發(fā)動(dòng)學(xué)生自己找出錯(cuò)誤的原因,自己修正見解。這樣,有利于發(fā)現(xiàn)問題,有的放矢地解決問題,有利于深化對不等式基本性質(zhì)的認(rèn)識。

基本不等式課件 篇7

基本不等式教學(xué)設(shè)計(jì)

數(shù)學(xué)與應(yīng)用數(shù)學(xué) 鐘林

課題:人教A版必修5第3章4節(jié),基本不等式

【教學(xué)目標(biāo)】

1.通過兩個(gè)探究實(shí)例,引導(dǎo)學(xué)生從幾何圖形中獲得兩個(gè)基本不等式,了解基本不等式的幾何背景,體會數(shù)形結(jié)合的思想。

2.進(jìn)一步提煉、完善基本不等式,并從代數(shù)角度給出不等式的證明,組織學(xué)生分析證明方法,加深對基本不等式的認(rèn)識,提高邏輯推理論證能力。 3.結(jié)合課本的探究圖形,引導(dǎo)學(xué)生進(jìn)一步探究基本不等式的幾何解釋,強(qiáng)化數(shù)形結(jié)合的思想。

4.借助例1嘗試用基本不等式解決簡單的最值問題,通過例2及其變式引導(dǎo)學(xué)生

a?b領(lǐng)會運(yùn)用基本不等式ab?的三個(gè)限制條件(一正二定三相等)在解決最

2值中的作用,提升解決問題的能力,體會方法與策略。

【重點(diǎn)難點(diǎn)】

重點(diǎn):應(yīng)用數(shù)形結(jié)合的思想理解基本不等式,并從不同角度探索不等式a?bab?的證明過程。

2難點(diǎn):在幾何背景下抽象出基本不等式,并理解基本不等式。

【教學(xué)設(shè)計(jì)】

(一)問題導(dǎo)入

欣賞2002年國際數(shù)學(xué)家大會會徽,會徽是根據(jù)中國古代數(shù)學(xué)家趙爽的弦圖設(shè)計(jì)的,顏色的明暗使它看上去象一個(gè)風(fēng)車,代表中國人民熱情好客。你能發(fā)現(xiàn)它是什么圖形構(gòu)成的嗎?請根據(jù)會徽探索一些常見相等或不等關(guān)系。

探究一:在這張“弦圖”中能找出一些相等關(guān)系和不等關(guān)系嗎? 在正方形ABCD中有4個(gè)全等的直角三角形.設(shè)直角三角形兩條直角邊長為,a,b。

22a?b那么正方形的邊長為。

于是,4個(gè)直角三角形的面積之和S1?2ab。 正方形的面積S2?a2?b2。 由圖可知S2?S1,即a2?b2?2ab。

當(dāng)直角三角形變?yōu)榈妊苯侨切?,即時(shí),正方形EFGH縮為一個(gè)點(diǎn),這時(shí) a2?b2?2ab

所以a2?b2?2ab。

探究二:如下圖所示的梯形中,EF是梯形ABCD的中位線,梯形ABGH相似于梯 形GHDC。

梯形ABCD的上底是a,下底是b。讓同學(xué)們自主研究GH和EF的大小關(guān)系。

a?b因?yàn)镋F是中位線,所以EF?,

2由相似,可以得出GH?ab, 同樣因?yàn)橄嗨?,?/p>

AGABa, ??GDGHb又因?yàn)閍?b,所以AG?GD,即AG?AE,

a?b。 2顯然,當(dāng)AB逐漸趨近CD的時(shí)候,GH也逐漸向EF靠近, 當(dāng)AB=CD的時(shí)候,即ABCD是矩形的時(shí)候,GH與EF重合。

a?b即,當(dāng)且僅當(dāng)a?b時(shí),ab?。

2a?b所以,ab?,當(dāng)且僅當(dāng)a?b時(shí),等號成立。

2所以GH?EF,即ab?

(二)概念深入

根據(jù)上述兩個(gè)幾何背景,初步形成不等式結(jié)論:

若a,b?R?,則a2?b2?2ab。(當(dāng)且僅當(dāng)a=b時(shí),等號成立)

a?b。(當(dāng)且僅當(dāng)a=b時(shí),等號成立) 2請同學(xué)們運(yùn)用代數(shù)法證明: 作法一(作差法): 若a,b?R?,則ab?a2?b2?2ab?(a?b)2?0a?b?2ab22

當(dāng)且僅當(dāng)a=b時(shí),等號成立。且發(fā)現(xiàn)這里且a和b可以是全體實(shí)數(shù)、單項(xiàng)式、多項(xiàng)式。

作法二(分析法):

要證明a?b?ab, 2只需證明a?b?2ab, 即證a?b-2ab?0, 即為?a-b?2?0,該式顯然成立,所以,當(dāng)a?b時(shí)取等號。

于是有這樣的結(jié)論:

稱ab為a,b的幾何平均數(shù);稱基本不等式ab?a?b為a,b的算術(shù)平均數(shù), 2a?b又可敘述為: 2兩個(gè)正數(shù)的幾何平均數(shù)不大于它們的算術(shù)平均數(shù)

作法三(幾何法):

如圖,AB是圓O的直徑,點(diǎn)C是AB上一點(diǎn),AC=a,BC=b.過點(diǎn)C作 垂直于AB的弦DE,連接AD,BD。 從而有CD?ab,OD?a?b。 2a?b。 2a?b當(dāng)且僅當(dāng)C點(diǎn)與圓心O點(diǎn)重合時(shí),即a=b時(shí),ab?

2故再次證明:

a?ba?0,b?0,ab?,當(dāng)且僅當(dāng)a=b時(shí),等號成立。

2a?b也說明了ab?的幾何意義:半徑不小于半弦。

2由于直角三角形COD中,直角邊CD

(三)例題講解

例1.(1)用籬笆圍一個(gè)面積為100平方米的矩形菜園,問這個(gè)矩形的長、寬各為多少時(shí),所用籬笆最短,最短的籬笆是多少?

(2)一段長為36米的籬笆圍成一個(gè)矩形菜園,問這個(gè)矩形的長、寬為多少時(shí),菜園的面積最大,最大面積是多少?

(通過例1的講解,總結(jié)歸納利用基本不等式求最值問題的特征,實(shí)現(xiàn)積與和的轉(zhuǎn)化)

對于x,y?R?,

(1)若xy?p(定值),則當(dāng)且僅當(dāng)x?y時(shí),x?y有最小值2p;

s2(2)若x?y?s(定值),則當(dāng)且僅當(dāng)x?y時(shí),xy有最大值。

4(鼓勵(lì)學(xué)生自己探索推導(dǎo),不但可使他們加深基本不等式的理解,還鍛煉了他們的思維,培養(yǎng)了勇于探索的精神。)

1例2.求y?x?(x?0)的值域。

x1變式1.若x?2,求x?的最小值.

x?21在運(yùn)用基本不等式解題的基礎(chǔ)上,利用幾何畫板展示y?x?(x?0)的函數(shù)

x圖象,使學(xué)生再次感受數(shù)形結(jié)合的數(shù)學(xué)思想。

a?b并通過例2及其變式引導(dǎo)學(xué)生領(lǐng)會運(yùn)用基本不等式ab?的三個(gè)限制

2條件(一正二定三相等)在解決最值問題中的作用,提升解決問題的能力,體會方法與策略。

(四)歸納小結(jié)&課后作業(yè) 基本不等式:

若a,b?R?,則a2?b2?2ab。(當(dāng)且僅當(dāng)a=b時(shí),等號成立)

a?b。(當(dāng)且僅當(dāng)a=b時(shí),等號成立) 2(1)基本不等式的幾何解釋(數(shù)形結(jié)合思想); (2)運(yùn)用基本不等式解決簡單最值問題的基本方法。

作業(yè):A組第4題,B組第1題,第2題

若a,b?R?,則ab?

基本不等式課件 篇8

基本不等式課件

基本不等式是初中數(shù)學(xué)中的重要知識點(diǎn)之一,在學(xué)習(xí)這個(gè)知識點(diǎn)之前,我們先來了解下基本不等式的定義和公式:

定義:若a1,a2,...,an是n個(gè)非負(fù)實(shí)數(shù),則有

(a1+a2+...+an)/n≥(a1×a2×...×an)的n次方根。

公式:(a1+a2+...+an)/n≥(a1×a2×...×an)的n次方根。

這個(gè)公式的意義是,當(dāng)n個(gè)數(shù)的平均值不小于這n個(gè)數(shù)的相乘積的n次方根時(shí),我們就稱這個(gè)不等式為基本不等式。

基本不等式的意義很重要,它是一種實(shí)用的數(shù)學(xué)工具,能夠結(jié)合實(shí)際問題進(jìn)行運(yùn)用。在統(tǒng)計(jì)學(xué)中,我們經(jīng)常需要對數(shù)據(jù)進(jìn)行分析,計(jì)算某一組數(shù)的平均值。基本不等式告訴我們,對于一組非負(fù)實(shí)數(shù),它們的平均值一定不小于它們的幾何平均數(shù)。

下面我們來看一個(gè)簡單的實(shí)例:

假設(shè)有兩組數(shù),分別為2,3,4和1,2,8,現(xiàn)在我們需要比較這兩組數(shù)哪一組平均值較大。

我們可用基本不等式進(jìn)行求解:

對于2,3,4,有(2+3+4)/3=3,(2×3×4)的1/3次方≈2.83,所以有3≥2.83。

對于1,2,8,有(1+2+8)/3=3.67,(1×2×8)的1/3次方≈2.19,所以有3.67≥2.19。

通過比較,我們可以發(fā)現(xiàn),第一組數(shù)的平均值是小于第二組數(shù)的平均值的。

基本不等式雖然簡單,但是在實(shí)際應(yīng)用中有著廣泛的應(yīng)用。例如在金融學(xué)、經(jīng)濟(jì)學(xué)、醫(yī)學(xué)等領(lǐng)域中,我們需要對數(shù)據(jù)進(jìn)行分析,計(jì)算平均值?;静坏仁侥軌驇椭覀冞M(jìn)行更加精確的計(jì)算,從而提高研究的準(zhǔn)確性和可靠性。

在數(shù)學(xué)競賽中,基本不等式也是一道基礎(chǔ)題,掌握好它的原理和應(yīng)用方法,就能夠輕松應(yīng)對數(shù)學(xué)競賽中的各種不等式題,提升自己的數(shù)學(xué)能力。

綜上所述,基本不等式是一項(xiàng)非常實(shí)用的數(shù)學(xué)工具,它能夠幫助我們進(jìn)行數(shù)據(jù)分析和計(jì)算,提高研究的準(zhǔn)確性和可靠性。在數(shù)學(xué)的應(yīng)用和研究中,掌握好基本不等式的原理和應(yīng)用方法非常重要。

基本不等式課件 篇9

課題:3.4.3 基本不等式 的應(yīng)用(二) 科目:數(shù)學(xué) 教學(xué)對象:高二(290)學(xué)生 課時(shí):1課時(shí) 提供者:劉和安 單位: 姚安一中 一、教學(xué)內(nèi)容分析 本節(jié)課的研究是起到了對學(xué)生以前所學(xué)知識與方法的復(fù)習(xí)、應(yīng)用,進(jìn)而構(gòu)建他們更完善的知識網(wǎng)絡(luò)。數(shù)學(xué)建模能力的培養(yǎng)與鍛煉是數(shù)學(xué)教學(xué)的一項(xiàng)長期而艱苦的任務(wù),這一點(diǎn),在本節(jié)課是真正得到了體現(xiàn)和落實(shí)。?

根據(jù)本節(jié)課的教學(xué)內(nèi)容,應(yīng)用觀察、閱讀、歸納、邏輯分析、思考、合作交流、探究,對基本不等式展開實(shí)際應(yīng)用,進(jìn)行啟發(fā)、探究式教學(xué)并使用投影儀輔助。? 二、教學(xué)目標(biāo) (一)知識目標(biāo):構(gòu)建基本不等式解決函數(shù)的值域、最值問題;

(二)能力目標(biāo):讓學(xué)生探究用基本不等式解決實(shí)際問題

(三)情感、態(tài)度和價(jià)值觀目標(biāo):

通過具體問題的解決,讓學(xué)生去感受、體驗(yàn)現(xiàn)實(shí)世界和日常生活中存在著大量的不等量關(guān)系并需要從理性的角度去思考,鼓勵(lì)學(xué)生用數(shù)學(xué)觀點(diǎn)進(jìn)行類比、歸納、抽象,使學(xué)生感受數(shù) 學(xué)、走進(jìn)數(shù)學(xué)、培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)學(xué)習(xí)習(xí)慣和良好的思維習(xí)慣;? 三、學(xué)習(xí)者特征分析 在本節(jié)課的教學(xué)過程中,仍應(yīng)強(qiáng)調(diào)不等式的現(xiàn)實(shí)背景和實(shí)際應(yīng)用,真正地把不等式作為刻畫現(xiàn)實(shí)世界中不等關(guān)系的工具。通過實(shí)際問題的分析解決,讓學(xué)生去體會基本不等式所具有的廣泛的實(shí)用價(jià)值,同時(shí),也讓學(xué)生去感受數(shù)學(xué)的應(yīng)用價(jià)值,從而激發(fā)學(xué)生去熱愛數(shù)學(xué)、研究數(shù)學(xué)。而不是覺得數(shù)學(xué)只是一門枯燥無味的推理學(xué)科。在解決實(shí)際問題的過程中,既要求學(xué)生能用數(shù)學(xué)的眼光、觀點(diǎn)去看待現(xiàn)實(shí)生活中的許多問題,又會涉及與函數(shù)、方程、三角等許多數(shù)學(xué)本身的知識與方法的處理 四、教學(xué)策略選擇與設(shè)計(jì) 1.采用探究法,按照觀察、閱讀、歸納、思考、交流、邏輯分析、抽象應(yīng)用的方法進(jìn)行啟發(fā)式教學(xué);?

2.教師提供問題、素材,并及時(shí)點(diǎn)撥,發(fā)揮老師的主導(dǎo)作用和學(xué)生的主體作用;?

3.設(shè)計(jì)較典型的具有挑戰(zhàn)性的問題,激發(fā)學(xué)生去積極思考,從而培養(yǎng)他們的數(shù)學(xué)學(xué)習(xí)興趣。?? 五、教學(xué)重點(diǎn)及難點(diǎn) 教學(xué)重點(diǎn):1.構(gòu)建基本不等式解決函數(shù)的值域、最值問題。?

2.讓學(xué)生探究用基本不等式解決實(shí)際問題;?

教學(xué)難點(diǎn):1.讓學(xué)生探究用基本不等式解決實(shí)際問題;?

2.基本不等式應(yīng)用時(shí)等號成立條件的考查;?

六、教學(xué)過程 教師活動(dòng) 學(xué)生活動(dòng) 設(shè)計(jì)意圖 (一)導(dǎo)入新課

(二)推進(jìn)新課

已知 ,若ab為常數(shù)k,那么a+b的值如何變化?

若a+b為常數(shù)s,那么ab的值如何變化?

老師用投影儀給出本節(jié)課的第一組問題

(1)求函數(shù)y=2x2+ (x>0)的最小值。?

(2)求函數(shù)y=x2+ (x>0)的最小值。?

(3)求函數(shù)y=3x2-2x3(0

(4)求函數(shù)y=x(1-x2)(0

(5)設(shè)a>0,b>0,且a2+ =1,求 的最大值。?

(三)合作探究 我們來考慮運(yùn)用正數(shù)的算術(shù)平均數(shù)與幾何平均數(shù)之間的關(guān)系來解答這些問題。根據(jù)函數(shù)最值的含義,我們不難發(fā)現(xiàn)若平均值不等式的某一端為常數(shù),則當(dāng)?shù)忍柲軌蛉〉綍r(shí),這個(gè)常數(shù)即為另一端的一個(gè)最值。 ?

(四)例題精析?

【例】某工廠要建造一個(gè)長方體形無蓋貯水池,其容積為4 800 m3,深為 3 m.如果池底每平方米的造價(jià)為150元,池壁每平方米的造價(jià)為120元,怎樣設(shè)計(jì)水池能使總造價(jià)最低?最低總造價(jià)是多少?

當(dāng)且僅當(dāng)a=b時(shí),a+b就有最小值為2k.?

當(dāng)且僅當(dāng)a=b時(shí),ab就有最大值 (或ab有 最大值 ).?

學(xué)生完成

留五分鐘的時(shí)間讓學(xué)生思考,合作交流

(根據(jù)學(xué)生完成的典型情況,找五位學(xué)生到黑板板演,然后老師根據(jù)學(xué)生到黑板板演的完成情況再一次作點(diǎn)評)?

學(xué)生思考、回答,

相關(guān)推薦

  • 不等式課件 不為明天做好準(zhǔn)備的人是沒有未來的,當(dāng)幼兒園教師的工作遇到難題時(shí),我們經(jīng)常會用提前準(zhǔn)備好的資料進(jìn)行參考。資料通常是指書籍、報(bào)刊、圖表、圖片等。有了資料才能更好的在接下來的工作輕裝上陣!所以,關(guān)于幼師資料你究竟了解多少呢?在這里,你不妨讀讀不等式課件,歡迎閱讀,希望對你有幫助。教學(xué)目標(biāo):了解一元...
    2023-04-23 閱讀全文
  • 不等式解法教案9篇 老師會對課本中的主要教學(xué)內(nèi)容整理到教案課件中,所以老師寫教案可不能隨便對待。制作合理充分的教案是鞏固學(xué)生知識的有效途徑,老師應(yīng)該從什么方面去寫教案課件?幼兒教師教育網(wǎng)編輯深度評估了這篇“不等式解法教案”強(qiáng)烈推薦給大家,如果您對這個(gè)話題有所興趣請跟進(jìn)我們的官網(wǎng)!...
    2024-06-29 閱讀全文
  • 不等式的課件 老師在開學(xué)前需要把教案課件準(zhǔn)備好,每個(gè)人都要計(jì)劃自己的教案課件了。教案是實(shí)現(xiàn)高效教學(xué)的不可或缺要素之一。如果您想深入理解這一話題不妨看看“不等式的課件”,本文的內(nèi)容必將給您帶來很多有用的收獲!...
    2024-05-15 閱讀全文
  • [薦]基本不等式教案8篇 依據(jù)您的要求,筆者檢索出《基本不等式教案》這篇文章。教師每節(jié)課都需要一份完整的教學(xué)課件,因此我們必須認(rèn)真地撰寫每份課題策劃和制作好每份教學(xué)課件。高質(zhì)量的教案和課件是能夠刺激學(xué)生的學(xué)習(xí)興趣的。我們希望這篇文章可以對您有所幫助!...
    2023-07-12 閱讀全文
  • 一元二次不等式課件(必備9篇) 經(jīng)過多次優(yōu)化我們?yōu)槟谱髁诉@份精選的“一元二次不等式課件”,本篇文章希望能夠?yàn)槟墓ぷ骱蜕钐峁椭C總€(gè)老師需要在上課前弄好自己的教案課件,沒有寫的老師就需要抓緊完成了。設(shè)計(jì)教案需要關(guān)注課堂互動(dòng)和學(xué)生參與度的提高。...
    2024-07-30 閱讀全文

不為明天做好準(zhǔn)備的人是沒有未來的,當(dāng)幼兒園教師的工作遇到難題時(shí),我們經(jīng)常會用提前準(zhǔn)備好的資料進(jìn)行參考。資料通常是指書籍、報(bào)刊、圖表、圖片等。有了資料才能更好的在接下來的工作輕裝上陣!所以,關(guān)于幼師資料你究竟了解多少呢?在這里,你不妨讀讀不等式課件,歡迎閱讀,希望對你有幫助。教學(xué)目標(biāo):了解一元...

2023-04-23 閱讀全文

老師會對課本中的主要教學(xué)內(nèi)容整理到教案課件中,所以老師寫教案可不能隨便對待。制作合理充分的教案是鞏固學(xué)生知識的有效途徑,老師應(yīng)該從什么方面去寫教案課件?幼兒教師教育網(wǎng)編輯深度評估了這篇“不等式解法教案”強(qiáng)烈推薦給大家,如果您對這個(gè)話題有所興趣請跟進(jìn)我們的官網(wǎng)!...

2024-06-29 閱讀全文

老師在開學(xué)前需要把教案課件準(zhǔn)備好,每個(gè)人都要計(jì)劃自己的教案課件了。教案是實(shí)現(xiàn)高效教學(xué)的不可或缺要素之一。如果您想深入理解這一話題不妨看看“不等式的課件”,本文的內(nèi)容必將給您帶來很多有用的收獲!...

2024-05-15 閱讀全文

依據(jù)您的要求,筆者檢索出《基本不等式教案》這篇文章。教師每節(jié)課都需要一份完整的教學(xué)課件,因此我們必須認(rèn)真地撰寫每份課題策劃和制作好每份教學(xué)課件。高質(zhì)量的教案和課件是能夠刺激學(xué)生的學(xué)習(xí)興趣的。我們希望這篇文章可以對您有所幫助!...

2023-07-12 閱讀全文

經(jīng)過多次優(yōu)化我們?yōu)槟谱髁诉@份精選的“一元二次不等式課件”,本篇文章希望能夠?yàn)槟墓ぷ骱蜕钐峁椭?。每個(gè)老師需要在上課前弄好自己的教案課件,沒有寫的老師就需要抓緊完成了。設(shè)計(jì)教案需要關(guān)注課堂互動(dòng)和學(xué)生參與度的提高。...

2024-07-30 閱讀全文