幼兒教師教育網(wǎng),為您提供優(yōu)質(zhì)的幼兒相關(guān)資訊

等比數(shù)列課件合集

發(fā)布時間:2024-08-30

俗話說,做什么事都要有計劃和準備。身為一位優(yōu)秀的幼兒園的老師我們都希望自己能教孩子們學到一些知識,最好的解決辦法就是準備好教案來加強學習效率,。教案對教學過程進行預測和推演,從而更好地實現(xiàn)教學目標。幼兒園教案的內(nèi)容具體要怎樣寫呢?于是,小編為你收集整理了等比數(shù)列課件合集。歡迎閱讀,希望大家能夠喜歡!

等比數(shù)列課件(篇1)

所以Sn = a1+a1*q^1+...+a1*q^(n-1) (1)

qSn =a1*q^1+a1q^2+...+a1*q^n (2)

(1)-(2)注意(1)式的第一項不變。

把(1)式的第二項減去(2)式的第一項。

把(1)式的第三項減去(2)式的第二項。

以此類推,把(1)式的第n項減去(2)式的第n-1項。

(2)式的.第n項不變,這叫錯位相減,其目的就是消去這此公共項。

即Sn =a1(1-q^n)/(1-q)。

①若 m、n、p、q∈N*,且m+n=p+q,則am*an=ap*aq;

②在等比數(shù)列中,依次每 k項之和仍成zhi等比數(shù)列.

“G是a、b的等比中項”dao“G^2=ab(G≠0)”.

③若(an)是等比數(shù)列,公比為q1,(bn)也是等比數(shù)列,公比是q2,則

(a2n),(a3n)…是等比數(shù)列,公比為q1^2,q1^3…

(can),c是常數(shù),(an*bn),(an/bn)是等比數(shù)列,公比為q1,q1q2,q1/q2。

(5) 等比數(shù)列前n項之和Sn=A1(1-q^n)/(1-q)=A1(q^n-1)/(q-1)=(A1q^n)/(q-1)-A1/(q-1)

在等比數(shù)列中,首項A1與公比q都不為零.

(6)由于首項為a1,公比為q的等比數(shù)列的通向公式可以寫成an*q/a1=q^n,它的指數(shù)函數(shù)y=a^x有著密切的聯(lián)系,從而可以利用指數(shù)函數(shù)的性質(zhì)來研究等比數(shù)列

等比數(shù)列課件(篇2)

一、教材分析

1.從在教材中的地位與作用來看

《等比數(shù)列的前n項和》是數(shù)列這一章中的一個重要內(nèi)容,從教材的編寫順序上來看,等比數(shù)列的前n項和是第一章“數(shù)列”第六節(jié)的內(nèi)容,它是“等差數(shù)列的前n項和”與“等比數(shù)列”內(nèi)容的延續(xù)、與前面學習的函數(shù)等知識也有著密切的聯(lián)系。就知識的應用價值上來看,它不僅在現(xiàn)實生活中有著廣泛的實際應用,如儲蓄、分期付款的有關(guān)計算等等,而且公式推導過程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學生今后學習和工作中必備的數(shù)學素養(yǎng)。就內(nèi)容的人文價值上來看,等比數(shù)列的前n項和公式的探究與推導需要學生觀察、分析、歸納、猜想,有助于培養(yǎng)學生的創(chuàng)新思維和探索精神,是培養(yǎng)學生應用意識和數(shù)學能力的良好載體。

2.從學生認知角度來看

從學生的思維特點看,很容易把本節(jié)內(nèi)容與等差數(shù)列前n項和從公式的形成、特點等方面進行類比,這是積極因素,應因勢利導.不利因素是:本節(jié)公式的推導與等差數(shù)列前n項和公式的推導有著本質(zhì)的不同,這對學生的思維是一個突破,另外,對于q = 1這一特殊情況,學生往往容易忽視,尤其是在后面使用的過程中容易出錯。

3. 學情分析

教學對象是剛進入高二的學生,雖然具有一定的分析問題和解決問題的能力,邏輯思維能力也初步形成,但對問題的分析缺乏深刻性和嚴謹性。

4. 重點、難點

教學重點:公式的推導、公式的特點和公式的運用.

教學難點:公式的推導方法和公式的靈活運用.

公式推導所使用的“錯位相減法”是高中數(shù)學數(shù)列求和方法中最常用的方法之一,它蘊含了重要的數(shù)學思想,所以既是重點也是難點。

二、目標分析

1.知識與技能目標:理解等比數(shù)列的前n項和公式的推導方法;掌握等比數(shù)列的前n項和公式并能運用公式解決一些簡單問題。

2.過程與方法目標:通過公式的推導過程,培養(yǎng)學生猜想、分析、綜合的思維能力,提高學生的建模意識及探究問題、分析與解決問題的能力,體會公式探求過程中從特殊到一般的思維方法,滲透方程思想、分類討論思想及轉(zhuǎn)化思想,優(yōu)化思維品質(zhì)。

3.情感態(tài)度與價值觀:通過經(jīng)歷對公式的探索,激發(fā)學生的求知欲,鼓勵學生大膽嘗試、勇于探索、敢于創(chuàng)新,磨練思維品質(zhì),從中獲得成功的體驗,感受思維的奇異美、結(jié)構(gòu)的對稱美、形式的簡潔美、數(shù)學的嚴謹美。用數(shù)學的觀點看問題,一些所謂不可理解的事就可以給出合理的解釋,從而幫助我們用科學的態(tài)度認識世界。

三、教學方法與教學手段

本節(jié)課屬于新授課型,主要利用計算機輔助教學,

采用啟發(fā)探究,合作學習,自主學習等的教學模式.

四、教學過程分析

學生是認知的主體,也是教學活動的主體,設計教學過程必須遵循學生的認知規(guī)律,引導學生去經(jīng)歷知識的形成與發(fā)展過程,結(jié)合本節(jié)課的特點,我按照自主學習的教學模式來設計如下的教學過程,目的是在教學過程中促使學生自主學習,培養(yǎng)自主學習的習慣和意識,形成自主學習的能力。

1.創(chuàng)設情境,提出問題

一個窮人到富人那里去借錢,原以為富人不愿意,哪知富人一口答應了下來,但提出了如下條件:在30天中,富人第一天借給窮人1萬元,第二天借給窮人2萬元,以后每天所借的錢數(shù)都比上一天多1萬;但借錢第一天,窮人還1分錢,第二天還2分錢,以后每天所還的錢數(shù)都是上一天的兩倍,30天后互不相欠.窮人聽后覺得挺劃算,本想定下來,但又想到此富人是吝嗇出了名的,怕上當受騙,所以很為難?!闭堅谧耐瑢W思考討論一下,窮人能否向富人借錢?

啟發(fā)引導學生數(shù)學地觀察問題,構(gòu)建數(shù)學模型。

學生直覺認為窮人可以向富人借錢,教師引導學生自主探求,得出:

窮人30天借到的錢:(萬元)

窮人需要還的錢:?

2.學生探究,解決情境

(2)教師緊接著把如何求?的問題讓學生探究,

①若用公比2乘以上面等式的兩邊,得到

若②式減去①式,可以消去相同的項,得到:

(分) ≈1073(萬元) > 465(萬元)

由此得出窮人不能向富人借錢

【設計意圖】留出時間讓學生充分地比較,等比數(shù)列前n項和的公式推導關(guān)鍵是變“加”為“減”,在教師看來這是很顯然的事,但在學生看來卻是“不可思議”的,因此教學中應著力在這兒做文章,從而培養(yǎng)學生的辯證思維能力.

解決情境問題:經(jīng)過比較、研究,學生發(fā)現(xiàn):(1)、(2)兩式有許多相同的'項,把兩式相減,相同的項就可以消去了,得到: ≈1073(萬元) > 465(萬元) 。老師強調(diào)指出:這就是錯位相減法,并要求學生縱觀全過程,反思:為什么(1)式兩邊要同乘以2呢?

【設計意圖】經(jīng)過繁難的計算之苦后,突然發(fā)現(xiàn)上述解法,不禁驚呼:真是太簡潔了,讓學生在探索過程中,充分感受到成功的情感體驗,從而增強學習數(shù)學的興趣和學好數(shù) 學的信心,同時也為推導一般等比數(shù)列前n項和提供了方法。

3.類比聯(lián)想,解決問題

這時我再順勢引導學生將結(jié)論一般化,設等比數(shù)列為,公比為q,如何求它的前n項和?讓學生自主完成,然后對個別學生進行指導。

一般等比數(shù)列前n項和:

方法:錯位相減法

這里的q能不能等于1?等比數(shù)列中的公比能不能為1?q=1時是什么數(shù)列?此時sn=?

在學生推導完成之后,我再問:由得

【設計意圖】在教師的指導下,讓學生從特殊到一般,從已知到未知,步步深入,讓學生自己探究公式,從而體驗到學習的愉快和成就感。

4.小組合作,交流展示

探究1.求和

探究2.求等比數(shù)列的第5項到第10項的和.

方法1: 觀察、發(fā)現(xiàn):.

方法2:此等比數(shù)列的連續(xù)項從第5項到第10項構(gòu)成一個新的等比數(shù)列。

探究3:求的前n項和.

【設計意圖】采用變式教學設計題組,深化學生對公式的認識和理解,通過直接套用公式、變式運用公式、研究公式特點這三個層次的問題解決,促進學生新的數(shù)學認知結(jié)構(gòu)的形成.通過以上形式,讓全體學生都參與教學,以此培養(yǎng)學生自主學習的意識.解題時,以學生分析為主,教師適時給予點撥。

5.總結(jié)歸納,加深理解

以問題的形式出現(xiàn),引導學生回顧公式、推導方法,鼓勵學生積極回答,然后老師再從知識點及數(shù)學思想方法兩方面總結(jié)。

1.等比數(shù)列的前n項和公式

2. 數(shù)學思想: (1)分類討論 (2)方程思想

3.數(shù)學方法: 錯位相減法

【設計意圖】以此培養(yǎng)學生的口頭表達能力,歸納概括能力。

6.當堂檢測

(1)口答:

在公比為q的等比數(shù)列中

若,則________,若,則________

若=3,=81,求q及 ,

若 ,求及q.

(2)判斷是非:

① ( )

② ( )

③若③且,則

( )

【設計意圖】對公式的再認識,剖析公式中的基本量及結(jié)構(gòu)特征,識記公式,并加強計算能力的訓練。

7.課后作業(yè),分層練習

必做: P30習題 1—3 A組 第1題,

選作題1:求的前n項和

(2)思考題:能否用其他方法推導等比數(shù)列前n項和公式

【設計意圖】布置彈性作業(yè)以使各個層次的學生都有所發(fā)展. 讓學有余力的學生有思考的空間,便于學生開展自主學習。

五、評價分析

本節(jié)課通過推導方法的研究,使學生掌握了等比數(shù)列前n項和公式.錯位相減:變加為減,等價轉(zhuǎn)化;遞推思想:縱橫聯(lián)系,揭示本質(zhì);學生從中深刻地領(lǐng)會到推導過程中所蘊含的數(shù)學思想,培養(yǎng)了學生思維的深刻性、敏銳性、廣闊性、批判性.同時通過展示交流,學生點評,教師總結(jié),使學生既鞏固了知識,又形成了技能,在此基礎(chǔ)上,通過民主和諧的課堂氛圍,培養(yǎng)了學生自主學習、合作交流的學習習慣,也培養(yǎng)了學生勇于探索、不斷創(chuàng)新的思維品質(zhì),形成學習能力。

六、教學設計說明

1.情境設置生活化.

本著新課程的教學理念,考慮到高二學生的心理特點,讓學生學生初步了解“數(shù)學來源于生活”,采用故事的形式創(chuàng)設問題情景,意在營造和諧、積極的學習氣氛,激發(fā)學生主動探究的欲望。

2.問題探究活動化.

教學中本著以學生發(fā)展為本的理念,充分給學生想的時間、說的機會以及展示思維過程的舞臺,通過他們自主學習、合作探究,展示學生解決問題的思想方法,共享學習成果,體驗數(shù)學學習成功的喜悅.通過師生之間不斷合作和交流,發(fā)展學生的數(shù)學觀察能力和語言表達能力,培養(yǎng)學生思維的發(fā)散性和嚴謹性。

3.辨析質(zhì)疑結(jié)構(gòu)化.

在理解公式的基礎(chǔ)上,及時進行正反兩方面的“短、平、快”填空和判斷是非練習.通過總結(jié)、辨析和反思,強化了公式的結(jié)構(gòu)特征,促進學生主動建構(gòu),有助于學生形成知識模塊,優(yōu)化知識體系。

4.鞏固提高梯度化.

例題通過公式的正用和逆用進一步提高學生運用知識的能力;由教科書中的例題改編而成,并進行適當?shù)淖兪?可以提高學生的模式識別的能力,培養(yǎng)學生思維的深刻性和靈活性。

5.思路拓廣數(shù)學化.

從整理知識提升到強化方法,由課內(nèi)鞏固延伸到課外思考,變“知識本位”為“學生本位”,使數(shù)學學習成為提高學生素質(zhì)的有效途徑。以生活中的實例作為思考,讓學生認識到數(shù)學來源于生活并應用于生活,生活中處處有數(shù)學.

6.作業(yè)布置彈性化.

通過布置彈性作業(yè),為學有余力的學生提供進一步發(fā)展的空間,有利于豐富學生的知識,拓展學生的視野,提高學生的數(shù)學素養(yǎng).

七.教學反思

學生的根據(jù)高二學生心理特點、教材內(nèi)容、遵循因材施教原則和啟發(fā)性教學思想,本節(jié)課的教學策略與方法我采用規(guī)則學習和問題解決策略,即“案例—公式—應用”,案例為淺層次要求,使學生有概括印象。公式為中層次要求,由淺入深,重難點集中推導講解,便于突破。應用為綜合要求,多角度、多情境中消化鞏固所學,反饋驗證本節(jié)教學目標的落實。

其中,案例是基礎(chǔ),使學生感知教材;公式為關(guān)鍵,使學生理解教材;練習為應用,使學生鞏固知識,舉一反三。

在這三步教學中,以啟發(fā)性強的小設問層層推導,輔之以學生的分組小討論并充分運用直觀完整的板書和計算機課件等教輔用具、手段,改變教師講、學生聽的填鴨式教學模式,充分體現(xiàn)學生是主體,教師教學服務于學生的思路,而且學生通過“案例—公式—應用”,由淺入深,由感性到理性,由直觀到抽象,不僅加深了學生理解鞏固與應用,也培養(yǎng)了

思維能力。

這節(jié)課總體上感覺備課比較充分,各個環(huán)節(jié)相銜接,能夠形成一節(jié)完整就為系統(tǒng)的課。本節(jié)課教學過程分為導入新課、公式推導、合作探究、課堂小結(jié)、當堂檢測、布置作業(yè)。本節(jié)課總體上講對于內(nèi)容的把握基本到位,對學生的定位準確,教學過程中留給學生思考的時間,以學生為主體。

.亮點之處:

學生成為課堂的主體,教師要甘當學生的綠葉

由于數(shù)學的抽象、思維嚴謹?shù)忍攸c,學生往往對于一些較為復雜或者變化多樣的題目容易望而生畏,出現(xiàn)懶得動腦思考、動筆去做的現(xiàn)象。教師也常因為時間的限制不可能給學生過多的時間去做“無用功”。在本節(jié)課上我放手讓學生去思考,讓學生去摸索。不怕學生出錯,就是讓學生能夠在摸索中增強思維能力、解題技能和計算經(jīng)驗。特別是在例3中,教師針對題目做了簡要的分析和提示,讓學生去嘗試著解題。張漫同學的板書詳盡,將思路方法概括表述出來,過程完整。只是結(jié)果出現(xiàn)了一個小錯誤,教師在點評過程中給予指出,同時也個結(jié)果錯誤也是學生經(jīng)常犯的。

等比數(shù)列課件(篇3)

《等比數(shù)列的前n項和》是數(shù)列這一章中的一個重要內(nèi)容,從教材的編寫順序上來看,等比數(shù)列的前n項和是第一章“數(shù)列”第六節(jié)的內(nèi)容,它是“等差數(shù)列的前n項和”與“等比數(shù)列”內(nèi)容的延續(xù)、與前面學習的函數(shù)等知識也有著密切的聯(lián)系。就知識的應用價值上來看,它不僅在現(xiàn)實生活中有著廣泛的實際應用,如儲蓄、分期付款的有關(guān)計算等等,而且公式推導過程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學生今后學習和工作中必備的數(shù)學素養(yǎng)。就內(nèi)容的人文價值上來看,等比數(shù)列的前n項和公式的探究與推導需要學生觀察、分析、歸納、猜想,有助于培養(yǎng)學生的創(chuàng)新思維和探索精神,是培養(yǎng)學生應用意識和數(shù)學能力的良好載體。

從學生的思維特點看,很容易把本節(jié)內(nèi)容與等差數(shù)列前n項和從公式的形成、特點等方面進行類比,這是積極因素,應因勢利導.不利因素是:本節(jié)公式的推導與等差數(shù)列前n項和公式的推導有著本質(zhì)的不同,這對學生的思維是一個突破,另外,對于q=1這一特殊情況,學生往往容易忽視,尤其是在后面使用的過程中容易出錯。

教學對象是剛進入高二的學生,雖然具有一定的分析問題和解決問題的能力,邏輯思維能力也初步形成,但對問題的分析缺乏深刻性和嚴謹性。

公式推導所使用的“錯位相減法”是高中數(shù)學數(shù)列求和方法中最常用的方法之一,它蘊含了重要的數(shù)學思想,所以既是重點也是難點。

1.知識與技能目標:理解等比數(shù)列的前n項和公式的推導方法;掌握等比數(shù)列的前n項和公式并能運用公式解決一些簡單問題。

2、過程與方法目標:通過公式的推導過程,培養(yǎng)學生猜想、分析、綜合的思維能力,提高學生的建模意識及探究問題、分析與解決問題的能力,體會公式探求過程中從特殊到一般的思維方法,滲透方程思想、分類討論思想及轉(zhuǎn)化思想,優(yōu)化思維品質(zhì)。

3、情感態(tài)度與價值觀:通過經(jīng)歷對公式的探索,激發(fā)學生的求知欲,鼓勵學生大膽嘗試、勇于探索、敢于創(chuàng)新,磨練思維品質(zhì),從中獲得成功的體驗,感受思維的奇異美、結(jié)構(gòu)的對稱美、形式的簡潔美、數(shù)學的嚴謹美。用數(shù)學的觀點看問題,一些所謂不可理解的事就可以給出合理的解釋,從而幫助我們用科學的態(tài)度認識世界。

本節(jié)課屬于新授課型,主要利用計算機輔助教學,

采用啟發(fā)探究,合作學習,自主學習等的教學模式、

學生是認知的主體,也是教學活動的主體,設計教學過程必須遵循學生的認知規(guī)律,引導學生去經(jīng)歷知識的形成與發(fā)展過程,結(jié)合本節(jié)課的特點,我按照自主學習的教學模式來設計如下的教學過程,目的是在教學過程中促使學生自主學習,培養(yǎng)自主學習的習慣和意識,形成自主學習的能力。

一個窮人到富人那里去借錢,原以為富人不愿意,哪知富人一口答應了下來,但提出了如下條件:在30天中,富人第一天借給窮人1萬元,第二天借給窮人2萬元,以后每天所借的錢數(shù)都比上一天多1萬;但借錢第一天,窮人還1分錢,第二天還2分錢,以后每天所還的錢數(shù)都是上一天的兩倍,30天后互不相欠、窮人聽后覺得挺劃算,本想定下來,但又想到此富人是吝嗇出了名的,怕上當受騙,所以很為難?!闭堅谧耐瑢W思考討論一下,窮人能否向富人借錢?

啟發(fā)引導學生數(shù)學地觀察問題,構(gòu)建數(shù)學模型。

學生直覺認為窮人可以向富人借錢,教師引導學生自主探求,得出:

(2)教師緊接著把如何求?的問題讓學生探究,

②若②式減去①式,可以消去相同的項,得到:

【設計意圖】留出時間讓學生充分地比較,等比數(shù)列前n項和的公式推導關(guān)鍵是變“加”為“減”,在教師看來這是很顯然的事,但在學生看來卻是“不可思議”的,因此教學中應著力在這兒做文章,從而培養(yǎng)學生的辯證思維能力。

解決情境問題:經(jīng)過比較、研究,學生發(fā)現(xiàn):(1)、(2)兩式有許多相同的項,把兩式相減,相同的項就可以消去了,得到:≈1073(萬元)>465(萬元)。老師強調(diào)指出:這就是錯位相減法,并要求學生縱觀全過程,反思:為什么(1)式兩邊要同乘以2呢?

【設計意圖】經(jīng)過繁難的計算之苦后,突然發(fā)現(xiàn)上述解法,不禁驚呼:真是太簡潔了,讓學生在探索過程中,充分感受到成功的情感體驗,從而增強學習數(shù)學的興趣和學好數(shù)學的信心,同時也為推導一般等比數(shù)列前n項和提供了方法。

這時我再順勢引導學生將結(jié)論一般化,設等比數(shù)列為,公比為q,如何求它的前n項和?讓學生自主完成,然后對個別學生進行指導。

這里的q能不能等于1?等比數(shù)列中的公比能不能為1?q=1時是什么數(shù)列?此時sn=?

【設計意圖】在教師的指導下,讓學生從特殊到一般,從已知到未知,步步深入,讓學生自己探究公式,從而體驗到學習的愉快和成就感。

探究2.求等比數(shù)列的.第5項到第10項的和.

方法2:此等比數(shù)列的連續(xù)項從第5項到第10項構(gòu)成一個新的等比數(shù)列。

【設計意圖】采用變式教學設計題組,深化學生對公式的認識和理解,通過直接套用公式、變式運用公式、研究公式特點這三個層次的問題解決,促進學生新的數(shù)學認知結(jié)構(gòu)的形成.通過以上形式,讓全體學生都參與教學,以此培養(yǎng)學生自主學習的意識.解題時,以學生分析為主,教師適時給予點撥。

以問題的形式出現(xiàn),引導學生回顧公式、推導方法,鼓勵學生積極回答,然后老師再從知識點及數(shù)學思想方法兩方面總結(jié)。

【設計意圖】以此培養(yǎng)學生的口頭表達能力,歸納概括能力。

若=3,=81,求q及,若,求及q。

【設計意圖】對公式的再認識,剖析公式中的基本量及結(jié)構(gòu)特征,識記公式,并加強計算能力的訓練。

【設計意圖】布置彈性作業(yè)以使各個層次的學生都有所發(fā)展、讓學有余力的學生有思考的空間,便于學生開展自主學習。

本節(jié)課通過推導方法的研究,使學生掌握了等比數(shù)列前n項和公式.錯位相減:變加為減,等價轉(zhuǎn)化;遞推思想:縱橫聯(lián)系,揭示本質(zhì);學生從中深刻地領(lǐng)會到推導過程中所蘊含的數(shù)學思想,培養(yǎng)了學生思維的深刻性、敏銳性、廣闊性、批判性.同時通過展示交流,學生點評,教師總結(jié),使學生既鞏固了知識,又形成了技能,在此基礎(chǔ)上,通過民主和諧的課堂氛圍,培養(yǎng)了學生自主學習、合作交流的學習習慣,也培養(yǎng)了學生勇于探索、不斷創(chuàng)新的思維品質(zhì),形成學習能力。

1.情境設置生活化、

本著新課程的教學理念,考慮到高二學生的心理特點,讓學生學生初步了解“數(shù)學來源于生活”,采用故事的形式創(chuàng)設問題情景,意在營造和諧、積極的學習氣氛,激發(fā)學生主動探究的欲望。

2.問題探究活動化.

教學中本著以學生發(fā)展為本的理念,充分給學生想的時間、說的機會以及展示思維過程的舞臺,通過他們自主學習、合作探究,展示學生解決問題的思想方法,共享學習成果,體驗數(shù)學學習成功的喜悅、通過師生之間不斷合作和交流,發(fā)展學生的數(shù)學觀察能力和語言表達能力,培養(yǎng)學生思維的發(fā)散性和嚴謹性。

3.辨析質(zhì)疑結(jié)構(gòu)化.

在理解公式的基礎(chǔ)上,及時進行正反兩方面的“短、平、快”填空和判斷是非練習、通過總結(jié)、辨析和反思,強化了公式的結(jié)構(gòu)特征,促進學生主動建構(gòu),有助于學生形成知識模塊,優(yōu)化知識體系。

4.鞏固提高梯度化.

例題通過公式的正用和逆用進一步提高學生運用知識的能力;由教科書中的例題改編而成,并進行適當?shù)淖兪?可以提高學生的模式識別的能力,培養(yǎng)學生思維的深刻性和靈活性。

5.思路拓廣數(shù)學化.

從整理知識提升到強化方法,由課內(nèi)鞏固延伸到課外思考,變“知識本位”為“學生本位”,使數(shù)學學習成為提高學生素質(zhì)的有效途徑。以生活中的實例作為思考,讓學生認識到數(shù)學來源于生活并應用于生活,生活中處處有數(shù)學.

6.作業(yè)布置彈性化.

通過布置彈性作業(yè),為學有余力的學生提供進一步發(fā)展的空間,有利于豐富學生的知識,拓展學生的視野,提高學生的數(shù)學素養(yǎng).

學生的根據(jù)高二學生心理特點、教材內(nèi)容、遵循因材施教原則和啟發(fā)性教學思想,本節(jié)課的教學策略與方法我采用規(guī)則學習和問題解決策略,即“案例—公式—應用”,案例為淺層次要求,使學生有概括印象。公式為中層次要求,由淺入深,重難點集中推導講解,便于突破。應用為綜合要求,多角度、多情境中消化鞏固所學,反饋驗證本節(jié)教學目標的落實。

其中,案例是基礎(chǔ),使學生感知教材;公式為關(guān)鍵,使學生理解教材;練習為應用,使學生鞏固知識,舉一反三。

在這三步教學中,以啟發(fā)性強的小設問層層推導,輔之以學生的分組小討論并充分運用直觀完整的板書和計算機課件等教輔用具、手段,改變教師講、學生聽的填鴨式教學模式,充分體現(xiàn)學生是主體,教師教學服務于學生的思路,而且學生通過“案例—公式—應用”,由淺入深,由感性到理性,由直觀到抽象,不僅加深了學生理解鞏固與應用,也培養(yǎng)了思維能力。

這節(jié)課總體上感覺備課比較充分,各個環(huán)節(jié)相銜接,能夠形成一節(jié)完整就為系統(tǒng)的課。本節(jié)課教學過程分為導入新課、公式推導、合作探究、課堂小結(jié)、當堂檢測、布置作業(yè)。本節(jié)課總體上講對于內(nèi)容的把握基本到位,對學生的定位準確,教學過程中留給學生思考的時間,以學生為主體。

亮點之處:

學生成為課堂的主體,教師要甘當學生的綠葉由于數(shù)學的抽象、思維嚴謹?shù)忍攸c,學生往往對于一些較為復雜或者變化多樣的題目容易望而生畏,出現(xiàn)懶得動腦思考、動筆去做的現(xiàn)象。教師也常因為時間的限制不可能給學生過多的時間去做“無用功”。在本節(jié)課上我放手讓學生去思考,讓學生去摸索。不怕學生出錯,就是讓學生能夠在摸索中增強思維能力、解題技能和計算經(jīng)驗。特別是在例3中,教師針對題目做了簡要的分析和提示,讓學生去嘗試著解題。張漫同學的板書詳盡,將思路方法概括表述出來,過程完整。只是結(jié)果出現(xiàn)了一個小錯誤,教師在點評過程中給予指出,同時也個結(jié)果錯誤也是學生經(jīng)常犯的。

等比數(shù)列課件(篇4)

1.通過教學使學生理解等比數(shù)列的概念,推導并掌握通項公式.

2.使學生進一步體會類比、歸納的思想,培養(yǎng)學生的觀察、概括能力.

3.培養(yǎng)學生勤于思考,實事求是的精神,及嚴謹?shù)目茖W態(tài)度.

重點、難點是等比數(shù)列的定義的歸納及通項公式的推導.

①-2,1,4,7,10,13,16,19,…

②8,16,32,64,128,256,…

③1,1,1,1,1,1,1,…

④243,81,27,9,3,1, , ,…

⑤31,29,27,25,23,21,19,…

⑥1,-1,1,-1,1,-1,1,-1,…

⑦1,-10,100,-1000,10000,-100000,…

⑧0,0,0,0,0,0,0,…

由學生發(fā)表意見(可能按項與項之間的關(guān)系分為遞增數(shù)列、遞減數(shù)列、常數(shù)數(shù)列、擺動數(shù)列,也可能分為等差、等比兩類),統(tǒng)一一種分法,其中②③④⑥⑦為有共同性質(zhì)的一類數(shù)列(學生看不出③的情況也無妨,得出定義后再考察③是否為等比數(shù)列).

請學生說出數(shù)列②③④⑥⑦的共同特性,教師指出實際生活中也有許多類似的例子,如變形蟲分裂問題.假設每經(jīng)過一個單位時間每個變形蟲都分裂為兩個變形蟲,再假設開始有一個變形蟲,經(jīng)過一個單位時間它分裂為兩個變形蟲,經(jīng)過兩個單位時間就有了四個變形蟲,…,一直進行下去,記錄下每個單位時間的變形蟲個數(shù)得到了一列數(shù) 這個數(shù)列也具有前面的幾個數(shù)列的共同特性,這是我們將要研究的另一類數(shù)列——等比數(shù)列. (這里播放變形蟲分裂的多媒體軟件的第一步)

等比數(shù)列課件(篇5)

一般地,如果一個數(shù)列從第二項起,每一項與它的前一項的比都等于同一個常數(shù),那么這個數(shù)列就叫做等比數(shù)列,這個常數(shù)叫做等比數(shù)列的公比,通常用q表示.數(shù)學表達式: an?1

知曉定義的基礎(chǔ)上,帶領(lǐng)學生看書p29頁,書上前面出現(xiàn)的關(guān)于等比數(shù)列的實

例。讓學生了解等比數(shù)列在實際生活中的應用很廣泛,要認真學好。

在學生對等比數(shù)列的定義有了初步了解的基礎(chǔ)上,講解例一。給出具體的數(shù)列,會利用定義判斷是否為等比數(shù)列。對(1)(5)兩小題著重分析.

判斷下列數(shù)列是否為等比數(shù)列?若是,找出公比;不是,請說明理由.

(1) 1, 4, 16, 32.

(2) 0, 2, 4, 6, 8.

(3) 1,-10,100,-1000,10000.

(4) 81, 27, 9, 3, 1.

(5) a, a, a, a, a.

講解例二,進一步熟悉定義,根據(jù)定義求數(shù)列未知項。最后的小例一為了由利

用定義的求解轉(zhuǎn)到利用定義證明,二為了讓學生發(fā)現(xiàn)等比數(shù)列隔項同號的規(guī)律。 例題二

(2) -4, b, c, ?;

①證明數(shù)列2, d, 8.仍是等比數(shù)列.

②求未知項d.

通過兩道例題的講解,讓學生有個緩沖,做個鞏固練習。當然此練習的安排,

也是為了進一步挖掘等比數(shù)列定義的本質(zhì),辨析找尋等差數(shù)列與等比數(shù)列的關(guān)系,將具體問題再推廣到一般,并要求學生理解并掌握等比數(shù)列的判斷證明方法。

判斷下列數(shù)列是等差數(shù)列還是等比數(shù)列?

(1) 22 , 2 , 1 , 2-1, 2-2 .

(2) 3 , 34 , 37, 310 .

證明數(shù)列{bn}是等比數(shù)列.

由最后一例的證明,說明給出通項公式后可由定義判斷該數(shù)列是否為等比數(shù)

列。反過來若數(shù)列已經(jīng)是等比數(shù)列了,能否由定義導出數(shù)列通項公式呢?為下節(jié)課做鋪墊。

由學生通過一堂課的學習,做個簡單的歸納小結(jié)。

1理解.等比數(shù)列的定義,判斷或證明數(shù)列是否為等比數(shù)列要用定義判斷

2.等比數(shù)列公比q≠0,任意一項都不為零.

3.學習等比數(shù)列可以對照等差數(shù)列類比做研究.

感謝您閱讀“幼兒教師教育網(wǎng)”的《等比數(shù)列課件合集》一文,希望能解決您找不到幼兒園教案時遇到的問題和疑惑,同時,yjs21.com編輯還為您精選準備了等比數(shù)列課件專題,希望您能喜歡!

相關(guān)推薦

  • 等差數(shù)列課件10篇 教案課件是老師不可缺少的課件,我們需要靜下心來寫教案課件。制定好教案需要教師有穩(wěn)定的教學基礎(chǔ)。以下是我們?yōu)槟淼囊幌盗信c“等差數(shù)列課件”有關(guān)的內(nèi)容,請您認真閱讀本文并考慮收藏保存!...
    2024-06-27 閱讀全文
  • 等比數(shù)列教案 跟幼兒教師教育網(wǎng)小編一起來了解關(guān)于“等比數(shù)列教案”的內(nèi)容吧。學生們有一個生動有趣的課堂,離不開老師辛苦準備的教案,需要大家認真編寫每份教案課件。教案是幫助教師組織教學活動的重要工具。希望您覺得本文是有價值的閱讀!...
    2024-08-26 閱讀全文
  • 等比數(shù)列教案匯編 俗話說,磨刀不誤砍柴工。作為一幼兒園的老師,我們需要讓小朋友們學到知識,為了提升學生的學習效率,準備教案是一個很好的選擇,教案可以幫助學生更好地進入課堂環(huán)境中來。怎么才能讓幼兒園教案寫的更加全面呢?小編為此仔細地整理了以下內(nèi)容《等比數(shù)列教案匯編》,希望對你有所幫助,動動手指請收藏一下!所以Sn = ...
    2023-05-22 閱讀全文
  • 高等數(shù)學課件系列七篇 每個老師都需要在課前準備好自己的教案課件,本學期又到了寫教案課件的時候了。?教師應該在教案課件中充分展示,讓學生理解和掌握知識。我在教育網(wǎng)上找到一篇關(guān)于“高等數(shù)學課件”的文章內(nèi)容很詳盡,希望這些知識能夠?qū)δ阌兴鶐椭?..
    2024-03-29 閱讀全文
  • 等比數(shù)列教案范文 教案課件也是教師工作的一部分,需要我們認真對待。編寫教案課件的內(nèi)容應具備科學性和可操作性,你是否為此而困擾呢?為了讓您滿意,我特別準備了一篇“等比數(shù)列教案”,如果覺得對你有幫助,請分享給你的朋友和家人們!...
    2023-12-02 閱讀全文

教案課件是老師不可缺少的課件,我們需要靜下心來寫教案課件。制定好教案需要教師有穩(wěn)定的教學基礎(chǔ)。以下是我們?yōu)槟淼囊幌盗信c“等差數(shù)列課件”有關(guān)的內(nèi)容,請您認真閱讀本文并考慮收藏保存!...

2024-06-27 閱讀全文

跟幼兒教師教育網(wǎng)小編一起來了解關(guān)于“等比數(shù)列教案”的內(nèi)容吧。學生們有一個生動有趣的課堂,離不開老師辛苦準備的教案,需要大家認真編寫每份教案課件。教案是幫助教師組織教學活動的重要工具。希望您覺得本文是有價值的閱讀!...

2024-08-26 閱讀全文

俗話說,磨刀不誤砍柴工。作為一幼兒園的老師,我們需要讓小朋友們學到知識,為了提升學生的學習效率,準備教案是一個很好的選擇,教案可以幫助學生更好地進入課堂環(huán)境中來。怎么才能讓幼兒園教案寫的更加全面呢?小編為此仔細地整理了以下內(nèi)容《等比數(shù)列教案匯編》,希望對你有所幫助,動動手指請收藏一下!所以Sn = ...

2023-05-22 閱讀全文

每個老師都需要在課前準備好自己的教案課件,本學期又到了寫教案課件的時候了。?教師應該在教案課件中充分展示,讓學生理解和掌握知識。我在教育網(wǎng)上找到一篇關(guān)于“高等數(shù)學課件”的文章內(nèi)容很詳盡,希望這些知識能夠?qū)δ阌兴鶐椭?..

2024-03-29 閱讀全文

教案課件也是教師工作的一部分,需要我們認真對待。編寫教案課件的內(nèi)容應具備科學性和可操作性,你是否為此而困擾呢?為了讓您滿意,我特別準備了一篇“等比數(shù)列教案”,如果覺得對你有幫助,請分享給你的朋友和家人們!...

2023-12-02 閱讀全文