幼兒教師教育網(wǎng),為您提供優(yōu)質(zhì)的幼兒相關(guān)資訊

高中數(shù)學(xué)課件

發(fā)布時(shí)間:2024-06-09 高中數(shù)學(xué)課件

高中數(shù)學(xué)課件系列。

下面是我們?yōu)槟峁┑挠嘘P(guān)“高中數(shù)學(xué)課件”的重要資訊。教案課件既關(guān)系到教學(xué)步驟,也關(guān)系到教學(xué)的課程標(biāo)準(zhǔn),每位老師應(yīng)該設(shè)計(jì)好自己的教案課件。教案是提高學(xué)生思維能力的有效途徑。強(qiáng)烈建議您將此頁(yè)面收藏以備不時(shí)之需!

高中數(shù)學(xué)課件【篇1】

說課稿模板

關(guān)于 的說課稿

各位老師你們好!今天我要為大家講的課題是

首先,我對(duì)本節(jié)教材進(jìn)行一些分析:

一、教材分析(說教材):

1. 教材所處的地位和作用:

本節(jié)內(nèi)容在全書和章節(jié)中的作用是:《 》是 中數(shù)學(xué)教材第 冊(cè)第 章第 節(jié)內(nèi)容。在此之前學(xué)生已學(xué)習(xí)了 基礎(chǔ),這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。本節(jié)內(nèi)容是在 中,占據(jù) 的地位。以及為其他學(xué)科和今后的學(xué)習(xí)打下基礎(chǔ)。

2. 教育教學(xué)目標(biāo):

根據(jù)上述教材分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征,制定如下教學(xué)目標(biāo):

(1)知識(shí)目標(biāo): (2)能力目標(biāo):通過教學(xué)初步培養(yǎng)學(xué)生分析問題,解決實(shí)際問題,讀圖分析,收集處理信息,團(tuán)結(jié)協(xié)作,語(yǔ)言表達(dá)能力以及通過師生雙邊活動(dòng),初步培養(yǎng)學(xué)生運(yùn)用知識(shí)的能力,培養(yǎng)學(xué)生加強(qiáng)理論聯(lián)系實(shí)際的能力,(3)情感目標(biāo):通過 的教學(xué)引導(dǎo)學(xué)生從現(xiàn)實(shí)的生活經(jīng)歷與體驗(yàn)出發(fā),激發(fā)學(xué)生學(xué)習(xí)興趣。

3. 重點(diǎn),難點(diǎn)以及確定依據(jù):

本著課程標(biāo)準(zhǔn),在吃透教材基礎(chǔ)上,我確立了如下的教學(xué)重點(diǎn)、難點(diǎn)

重點(diǎn): 通過 突出重點(diǎn)

難點(diǎn): 通過 突破難點(diǎn)

關(guān)鍵:

下面,為了講清重難上點(diǎn),使學(xué)生能達(dá)到本節(jié)課設(shè)定的目標(biāo),再?gòu)慕谭ê蛯W(xué)法上談?wù)劊?/p>

二、教學(xué)策略(說教法)

1. 教學(xué)手段:

如何突出重點(diǎn),突破難點(diǎn),從而實(shí)現(xiàn)教學(xué)目標(biāo)。在教學(xué)過程中擬計(jì)劃進(jìn)行如下操作:教學(xué)方法?;诒竟?jié)課的特點(diǎn): 應(yīng)著重采用 的教學(xué)方法。

2. 教學(xué)方法及其理論依據(jù):堅(jiān)持“以學(xué)生為主體,以教師為主導(dǎo)”的原則,根據(jù)學(xué)生的心理發(fā)展規(guī)律,采用學(xué)生參與程度高的學(xué)導(dǎo)式討論教學(xué)法。在學(xué)生看書,討論的基礎(chǔ)上,在老師啟發(fā)引導(dǎo)下,運(yùn)用問題解決式教法,師生交談法,圖像信號(hào)法,問答式,課堂討論法。在采用問答法時(shí),特別注重不同難度的問題,提問不同層次的學(xué)生,面向全體,使基礎(chǔ)差的學(xué)生也能有表現(xiàn)機(jī)會(huì),培養(yǎng)其自信心,激發(fā)其學(xué)習(xí)熱情。有效的開發(fā)各層次學(xué)生的潛在智能,力求使學(xué)生能在原有的基礎(chǔ)上得到發(fā)展。同時(shí)通過課堂練習(xí)和課后作業(yè),啟發(fā)學(xué)生從書本知識(shí)回到社會(huì)實(shí)踐。提供給學(xué)生與其生活和周圍世界密切相關(guān)的數(shù)學(xué)知識(shí),學(xué)習(xí)基礎(chǔ)性的知識(shí)和技能,在教學(xué)中積極培養(yǎng)學(xué)生學(xué)習(xí)興趣和動(dòng)機(jī),明確的學(xué)習(xí)目的,老師應(yīng)在課堂上充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,激發(fā)來自學(xué)生主體的最有力的動(dòng)力。

3. 學(xué)情分析:(說學(xué)法)

我們常說:“現(xiàn)代的文盲不是不識(shí)字的人,而是沒有掌握學(xué)習(xí)方法的人”,因而在教學(xué)中要特別重視學(xué)法的指導(dǎo)。

(1) 學(xué)生特點(diǎn)分析:中學(xué)生心理學(xué)研究指出,高中階段是(查同中學(xué)生心發(fā)展情況)抓住學(xué)生特點(diǎn),積極采用形象生動(dòng),形式多樣的教學(xué)方法和學(xué)生廣泛的積極主動(dòng)參與的學(xué)習(xí)方式,定能激發(fā)學(xué)生興趣,有效地培養(yǎng)學(xué)生能力,促進(jìn)學(xué)生個(gè)性發(fā)展。生理上表少年好動(dòng),注意力易分散

(2) 知識(shí)障礙上:知識(shí)掌握上,學(xué)生原有的知識(shí) ,許多學(xué)生出現(xiàn)知識(shí)遺忘,所以應(yīng)全面系統(tǒng)的去講述;學(xué)生學(xué)習(xí)本節(jié)課的知識(shí)障礙, 知識(shí) 學(xué)生不易理解,所以教學(xué)中老師應(yīng)予以簡(jiǎn)單明白,深入淺出的分析。

最后我來具體談?wù)勥@一堂課的教學(xué)過程:

4. 教學(xué)程序及設(shè)想:

(1)由 引入:把教學(xué)內(nèi)容轉(zhuǎn)化為具有潛在意義的問題,讓學(xué)生產(chǎn)生強(qiáng)烈的問題意識(shí),使學(xué)生的整個(gè)學(xué)習(xí)過程成為“猜想”繼而緊張的沉思,期待錄找理由和證明過程。在實(shí)際情況下學(xué)習(xí)可以使學(xué)生利用已有的知識(shí)與經(jīng)驗(yàn),同化和索引出當(dāng)肖學(xué)習(xí)的新知識(shí),這樣獲取知識(shí),不但易于保持,而且易于遷移到陌生的問題情境中。

(2)由實(shí)例得出本課新的知識(shí)點(diǎn)

(3)講解例題。在講例題時(shí),不僅在于怎樣解,更在于為什么這樣解,而及時(shí)對(duì)解題方法和規(guī)律進(jìn)行概括,有利于學(xué)生的思維能力。

(4)能力訓(xùn)練。課后練習(xí)使學(xué)生能鞏固羨慕自覺運(yùn)用所學(xué)知識(shí)與解題思想方法。

(5)總結(jié)結(jié)論,強(qiáng)化認(rèn)識(shí)。知識(shí)性的內(nèi)容小結(jié),可把課堂教學(xué)傳授的知識(shí)盡快化為學(xué)生的素質(zhì),數(shù)學(xué)思想方法的小結(jié),可使學(xué)生更深刻地理解數(shù)學(xué)思想方法在解題中的地位和應(yīng)用,并且逐步培養(yǎng)學(xué)生良好的個(gè)性品質(zhì)目標(biāo)。

(6)變式延伸,進(jìn)行重構(gòu),重視課本例題,適當(dāng)對(duì)題目進(jìn)行引申,使例題的作用更加突出,有利于學(xué)生對(duì)知識(shí)的串聯(lián),累積,加工,從而達(dá)到舉一反三的效果。

(7)板書

(8)布置作業(yè)。

針對(duì)學(xué)生素質(zhì)的差異進(jìn)行分層訓(xùn)練,既使學(xué)生掌握基礎(chǔ)知識(shí),又使學(xué)有余力的學(xué)生有所提高, 教學(xué)程序:

課堂結(jié)構(gòu):復(fù)習(xí)提問,導(dǎo)入講授課,課堂練習(xí),鞏固新課,布置作業(yè)等五部分

高一數(shù)學(xué)《函數(shù)圖象的平移》說課稿

一.說教材

1.1 教材結(jié)構(gòu)與內(nèi)容簡(jiǎn)析

本節(jié)課為《江蘇省中等職業(yè)學(xué)校試用教材數(shù)學(xué)(第二冊(cè))》5.6函數(shù)圖象的定位作圖法的第一課時(shí),主要內(nèi)容為基本函數(shù) 與一般函數(shù) 間的圖象平移變換規(guī)律。

函數(shù)圖象的平移,既是前階段函數(shù)性質(zhì)及具體函數(shù)研究的延續(xù)和深化,也是后階段定位作圖法以至解析幾何中移軸化簡(jiǎn)的基礎(chǔ)和滲透,在教材中起著重要的承上啟下作用。更為重要的是,這段內(nèi)容還蘊(yùn)涵著重要的數(shù)學(xué)思想方法,如化歸思想、映射與對(duì)應(yīng)思想、換元方法等。

1.2 教學(xué)目標(biāo)

1.2.1知識(shí)目標(biāo)

⑴、給定平移前后函數(shù)解析式,能熟練敘述相應(yīng)的平移變換,正確掌握平移方向與 、 符號(hào)的關(guān)系。

⑵、能較熟練地化簡(jiǎn)較復(fù)雜的函數(shù)解析式,找出對(duì)應(yīng)的基本函數(shù)模型(如一次函數(shù),反比例函數(shù)、指數(shù)函數(shù)等)。

⑶、初步學(xué)會(huì)應(yīng)用平移變換規(guī)律研究較復(fù)雜的函數(shù)的具體性質(zhì)(如值域、單調(diào)性等)。

1.2.2能力目標(biāo)

⑴、在數(shù)學(xué)實(shí)驗(yàn)平臺(tái)上,能自主探究,改變相應(yīng)參數(shù)和函數(shù)解析式,觀察相應(yīng)圖象變化,經(jīng)歷命題探索發(fā)現(xiàn)的過程,提高觀察、歸納、概括能力。

⑵、結(jié)合學(xué)習(xí)中發(fā)現(xiàn)的問題,學(xué)會(huì)借助于數(shù)學(xué)軟件等工具研究、探索和解決問題,學(xué)會(huì)數(shù)學(xué)

地解決問題。

⑶、滲透數(shù)學(xué)思想與方法(如化歸、映射的思想,換元的方法)的學(xué)習(xí),發(fā)展學(xué)生的非邏輯思維能力(合情推理、直覺等)。

1.2.3情感目標(biāo)

培養(yǎng)學(xué)生積極參與、合作交流的主體意識(shí),在知識(shí)的探索和發(fā)現(xiàn)的過程中,使學(xué)生感受數(shù)學(xué)學(xué)習(xí)的意義,改善學(xué)生的數(shù)學(xué)學(xué)習(xí)信念(態(tài)度、興趣等)。

1.3 教材重點(diǎn)和難點(diǎn)處理思路

重點(diǎn):函數(shù)圖象的平移變換規(guī)律及應(yīng)用

難點(diǎn):經(jīng)歷數(shù)學(xué)實(shí)驗(yàn)方法探索平移對(duì)函數(shù)解析式的影響及如何利用平移變換規(guī)律化簡(jiǎn)函數(shù)解析式、研究復(fù)雜函數(shù)

教材在這段內(nèi)容的處理上,注重直觀性背景,注重學(xué)生豐富感性知識(shí)的獲得,淡化形式化的邏輯推導(dǎo)和形式化的結(jié)果即平移公式。實(shí)際教學(xué)中,我們發(fā)現(xiàn)如果學(xué)生不經(jīng)受足夠的親身體驗(yàn)而簡(jiǎn)單的記住結(jié)論的.話,往往很難在形式化的解析式與具體的圖象平移之間建立聯(lián)系,并且移軸與移圖象之間也容易搞混,說明這段內(nèi)容不能采取簡(jiǎn)單的“告訴”方式,須讓學(xué)生自主發(fā)現(xiàn)命題、發(fā)現(xiàn)規(guī)律,讓他們“知其然,更要知其所以然。”

為了突出重點(diǎn)、突破難點(diǎn),在教學(xué)中采取了以下策略:

⑴、從學(xué)生已有知識(shí)出發(fā),精心設(shè)計(jì)一些適合學(xué)生學(xué)力的數(shù)學(xué)實(shí)驗(yàn)平臺(tái),分層次逐步引導(dǎo)學(xué)生觀察圖象的平移方向與函數(shù)解析式中 、 符號(hào)的關(guān)系,抽象、歸納出平移變換規(guī)律。 ⑵、創(chuàng)設(shè)情境,引發(fā)學(xué)生認(rèn)知沖突,激發(fā)學(xué)生求知欲,能借助于數(shù)學(xué)軟件多角度積極探求錯(cuò)誤原因,使學(xué)生認(rèn)識(shí)到形如 的函數(shù)須提取 前的系數(shù)化為 的形式,從而真正認(rèn)識(shí)解析式形式化的特點(diǎn)。

⑶、數(shù)學(xué)實(shí)驗(yàn)采取小組合作研究共同完成簡(jiǎn)單實(shí)驗(yàn)報(bào)告的形式,通過學(xué)生的自主探究、合作交流,從而實(shí)現(xiàn)對(duì)平移變換規(guī)律知識(shí)的建構(gòu)。

二.說教法

針對(duì)職高一年級(jí)學(xué)生的認(rèn)知特點(diǎn)和心理特征,在遵循啟發(fā)式教學(xué)原則的基礎(chǔ)上,本節(jié)課我主要采取以實(shí)驗(yàn)發(fā)現(xiàn)法為主,以討論法、練習(xí)法為輔的教學(xué)方法,引導(dǎo)學(xué)生通過實(shí)驗(yàn)手段,從直觀、想象到發(fā)現(xiàn)、猜想,親歷數(shù)學(xué)知識(shí)建構(gòu)過程,體驗(yàn)數(shù)學(xué)發(fā)現(xiàn)的喜悅。

本節(jié)課的設(shè)計(jì)一方面重視學(xué)生數(shù)學(xué)學(xué)習(xí)過程是活動(dòng)的過程,因此不是按照已形式化了的現(xiàn)成的數(shù)學(xué)規(guī)則去操作數(shù)學(xué),而是采取數(shù)學(xué)實(shí)驗(yàn)的方式,使學(xué)生有機(jī)會(huì)經(jīng)受足夠的親身體驗(yàn),親歷知識(shí)的自主建構(gòu)過程;使學(xué)生學(xué)會(huì)從具體情境中提取適當(dāng)?shù)母拍睿瑥挠^察到的實(shí)例中進(jìn)行概括,進(jìn)行合理的數(shù)學(xué)猜想與數(shù)學(xué)驗(yàn)證,并作更高層次的數(shù)學(xué)概括與抽象;從而學(xué)會(huì)數(shù)學(xué)地思考。

另一方面,注重創(chuàng)設(shè)機(jī)會(huì)使學(xué)生有機(jī)會(huì)看到數(shù)學(xué)的全貌,體會(huì)數(shù)學(xué)的全過程。整堂課的設(shè)計(jì)圍繞研究較復(fù)雜函數(shù)的性質(zhì)展開,以問題“函數(shù) 的性質(zhì)如何”為主線,既讓學(xué)生清楚研究函數(shù)圖象平移的必要性,明確學(xué)習(xí)目標(biāo),又讓學(xué)生初步學(xué)會(huì)如何應(yīng)用規(guī)律解決問題,體會(huì)知識(shí)的價(jià)值,增強(qiáng)求知欲。

總之,本節(jié)課采用數(shù)學(xué)實(shí)驗(yàn)發(fā)現(xiàn)教學(xué),學(xué)生采取小組合作的形式自主探究;利用實(shí)物投影進(jìn)行集體交流,及時(shí)反饋相關(guān)信息。

三.說學(xué)法

“學(xué)之道在于悟,教之道在于度。”學(xué)生是學(xué)習(xí)的主體,教師在教學(xué)過程中須將學(xué)習(xí)的主動(dòng)權(quán)交給學(xué)生。

美國(guó)某大學(xué)有一句名言:“讓我聽見的,我會(huì)忘記;讓我看見的,我就領(lǐng)會(huì)了;讓我做過的,我就理解了。”通過學(xué)生的自主實(shí)驗(yàn),在探索新知的經(jīng)歷和獲得新知的體驗(yàn)的基礎(chǔ)之上,真正正確掌握平移方向。

教師的“教”不僅要讓學(xué)生“學(xué)會(huì)知識(shí)”,更主要的是要讓學(xué)生“會(huì)學(xué)知識(shí)”。正如荷蘭數(shù)學(xué)教育家弗賴登塔爾所指出,“數(shù)學(xué)知識(shí)既不是教出來的,也不是學(xué)出來的,而是研究出來的。”本節(jié)課的教學(xué)中創(chuàng)設(shè)利于學(xué)生發(fā)現(xiàn)數(shù)學(xué)的實(shí)驗(yàn)情境,讓學(xué)生自主地“做數(shù)學(xué)”,將傳統(tǒng)意義下的“學(xué)習(xí)”數(shù)學(xué)改變?yōu)椤把芯俊睌?shù)學(xué)。從而,使傳授知識(shí)與培養(yǎng)能力融為一體,在轉(zhuǎn)變學(xué)習(xí)方式的同時(shí)學(xué)會(huì)數(shù)學(xué)地思考。

四.說程序

4.1創(chuàng)設(shè)情境,引入課題

在簡(jiǎn)要回顧前面研究的具體函數(shù)(指數(shù)函數(shù)、冪函數(shù)、三角函數(shù)等)性質(zhì)后,提出問題“如何研究 的性質(zhì)?”

引導(dǎo)學(xué)生討論后,總結(jié)出兩種思路,即:思路1、通過描點(diǎn)法作出函數(shù)的圖象,借助于圖象研究相關(guān)性質(zhì);思路2、將 的性質(zhì)問題化歸為 的問題,借助于基本函數(shù) 的性質(zhì)解決新問題。

從而自然地引出課題,關(guān)鍵是找出 與 的關(guān)系,尤其是圖象間的聯(lián)系。更一般地,就是基本函數(shù) 與 間的聯(lián)系。

4.2數(shù)學(xué)實(shí)驗(yàn),自主探索

這一環(huán)節(jié)主要分兩階段。

1、嘗試初探

引例、函數(shù) 與 圖象間的關(guān)系

這一階段主要由教師講解,學(xué)生觀察發(fā)現(xiàn),意在突出兩函數(shù)圖象形狀相同、位置不同,后者可以由前者平移得到。

講解時(shí),利用幾何畫板的度量功能,給出兩個(gè)對(duì)應(yīng)點(diǎn)的坐標(biāo),易于學(xué)生發(fā)現(xiàn)點(diǎn)的坐標(biāo)關(guān)系,并給出相應(yīng)的輔助線,一方面便于學(xué)生發(fā)現(xiàn)規(guī)律,另一方面也是為后面定位作圖法的學(xué)習(xí)作好鋪墊。

2、實(shí)驗(yàn)發(fā)現(xiàn)

本階段由學(xué)生以小組合作探索的形式完成,通過填寫實(shí)驗(yàn)報(bào)告的形式完成探索規(guī)律的任務(wù)。 實(shí)驗(yàn)1、試改變實(shí)驗(yàn)平臺(tái)1中的參數(shù) 、 ,觀察由 的圖象到 的變換現(xiàn)象,依照給出的樣例填寫下表,并總結(jié)其中的平移變換規(guī)律。

函數(shù) 解析式平移變換規(guī)律12向左平移2個(gè)單位,向上平移1個(gè)單位 實(shí)驗(yàn)結(jié)論

高中數(shù)學(xué)課件【篇2】

前言

為了更好地貫徹落實(shí)和科課程標(biāo)準(zhǔn)有關(guān)要求,促進(jìn)廣大教師學(xué)習(xí)現(xiàn)代教學(xué)理論,進(jìn)一步激發(fā)廣大教師課堂教學(xué)的創(chuàng)新意識(shí),切實(shí)轉(zhuǎn)變教學(xué)觀念,積極探索新課程理念下的教與學(xué),有效解決教學(xué)實(shí)踐中存在的問題,促進(jìn)課堂教學(xué)質(zhì)量的全面提高,在公正的原則,經(jīng)過認(rèn)真的評(píng)審,全部作品均評(píng)出了相應(yīng)的獎(jiǎng)項(xiàng);專家組還為獲得一、二等獎(jiǎng)的作品撰寫了點(diǎn)評(píng)。本稿收錄的作品全部是參加此次福建省教學(xué)設(shè)計(jì)競(jìng)賽獲獎(jiǎng)作者的文章。按照征文的規(guī)則,我們對(duì)入選作品的格式作了一些修飾,并經(jīng)過適當(dāng)?shù)恼?,以饗讀者。

在此還需要說明的是,為了方便閱讀,獲獎(jiǎng)文章的排序原則,并非按照獲獎(jiǎng)名次的前后順序,而是按照高中數(shù)學(xué)新課程必修1—5的內(nèi)容順序,進(jìn)行編排的。部分體現(xiàn)大綱教材內(nèi)容的文章則排在后面。

不管你獲得的是哪個(gè)級(jí)別的獎(jiǎng)項(xiàng),你們都可以有成就感,因?yàn)槟鞘悄銈冇眯摹⒂煤節(jié)补喑龅墓麑?shí),它記錄了你們奉獻(xiàn)于數(shù)學(xué)教育事業(yè)的心路歷程.書中每一篇的教學(xué)設(shè)計(jì)都耐人尋味,都能帶給我們?cè)S多遐想和啟迪.你們是優(yōu)秀的,在你們未來悠遠(yuǎn)的職業(yè)里程中,只要努力,將有更多的輝煌在等待著大家。謝謝你們!

1、集合與函數(shù)概念實(shí)習(xí)作業(yè)

一、教學(xué)內(nèi)容分析

《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書·數(shù)學(xué)(第整理資料信息的過程中,對(duì)函數(shù)的概念有更深刻的理解;感受新的學(xué)習(xí)方式帶給他們的學(xué)習(xí)數(shù)學(xué)的樂趣。

二、學(xué)生學(xué)習(xí)情況分析

該內(nèi)容在《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書·數(shù)學(xué)(第,選題時(shí),各組之間盡量不要重復(fù),盡量多地選不同的題目,可以讓所有的學(xué)生在學(xué)習(xí)共享的過程中受到更多的數(shù)學(xué)文化的熏陶。

三、設(shè)計(jì)思想

《標(biāo)準(zhǔn)》強(qiáng)調(diào)數(shù)學(xué)文化的重要作用,體現(xiàn)數(shù)學(xué)的文化的價(jià)值。數(shù)學(xué)教育不僅應(yīng)該幫助學(xué)生學(xué)習(xí)和掌握數(shù)學(xué)知識(shí)和技能,還應(yīng)該有助于學(xué)生了解數(shù)學(xué)的價(jià)值。讓學(xué)生逐步了解數(shù)學(xué)的思想方法、理性精神,體會(huì)數(shù)學(xué)家的創(chuàng)新精神,以及數(shù)學(xué)文明的深刻內(nèi)涵。

四、教學(xué)目標(biāo)

發(fā)展的歷史以及在這個(gè)過程中起重大作用的歷史事件和人物;

2.體驗(yàn)合作學(xué)習(xí)的方式,通過合作學(xué)習(xí)品嘗分享獲得知識(shí)的快樂;

社會(huì)實(shí)踐技能和民主價(jià)值觀。

五、教學(xué)重點(diǎn)和難點(diǎn)

重點(diǎn):了解函數(shù)在數(shù)學(xué)中的核心地位,以及在生活里的廣泛應(yīng)用;

難點(diǎn):培養(yǎng)學(xué)生合作交流的能力以及收集和處理信息的能力。

六、教學(xué)過程設(shè)計(jì)

【課堂準(zhǔn)備】

1.分組:4~6人為一個(gè)實(shí)習(xí)小組,確定一人為組長(zhǎng)。教師需要做好協(xié)調(diào)工作,確保每位學(xué)生都參加。

2.選題:根據(jù)個(gè)人興趣初步確定實(shí)習(xí)作業(yè)的題目。教師應(yīng)該到各組中去了解選題情況,盡量多地選擇不同的題目。

高中數(shù)學(xué)課件【篇3】

一、本節(jié)資料的地位與重要性

"分類計(jì)數(shù)原理與分步計(jì)數(shù)原理"是《高中數(shù)學(xué)》一節(jié)獨(dú)特資料。這一節(jié)課與排列、組合的基本概念有著緊密的聯(lián)系,經(jīng)過對(duì)這一節(jié)課的學(xué)習(xí),既能夠讓學(xué)生理解、理解分類計(jì)數(shù)原理與分步計(jì)數(shù)原理,還為日后排列、組合和二項(xiàng)式定理的教學(xué)做好準(zhǔn)備,起到奠基的重要作用。

二、關(guān)于教學(xué)目標(biāo)的確定

根據(jù)兩個(gè)基本原理的地位和作用,我認(rèn)為本節(jié)課的教學(xué)目標(biāo)是:

(1)使學(xué)生正確理解兩個(gè)基本原理的概念;

(2)使學(xué)生能夠正確運(yùn)用兩個(gè)基本原理分析、解決一些簡(jiǎn)單問題;

(3)提高分析、解決問題的本事

(4)使學(xué)生樹立"由個(gè)別到一般,由一般到個(gè)別"的認(rèn)識(shí)事物的辯證唯物主義哲學(xué)思想觀點(diǎn)。

三、關(guān)于教學(xué)重點(diǎn)、難點(diǎn)的選擇和處理

中學(xué)數(shù)學(xué)課程中引進(jìn)的關(guān)于排列、組合的計(jì)算公式都是以兩個(gè)計(jì)數(shù)原理為基礎(chǔ)的,而一些較復(fù)雜的排列、組合應(yīng)用題的求解,更是離不開兩個(gè)基本原理,所以正確理解兩個(gè)基本原理并能解決實(shí)際問題是學(xué)習(xí)本章的重點(diǎn)資料。

正確使用兩個(gè)基本原理的前提是要學(xué)生清楚兩個(gè)基本原理使用的條件。而原理中提到的分步和分類,學(xué)生不是一下子就能理解深刻的,應(yīng)對(duì)復(fù)雜的事物和現(xiàn)象學(xué)生對(duì)分類和分步的選擇容易產(chǎn)生錯(cuò)誤的認(rèn)識(shí),所以分類計(jì)數(shù)原理和分步計(jì)數(shù)原理的準(zhǔn)確應(yīng)用是本節(jié)課的教學(xué)難點(diǎn)。必需使學(xué)生認(rèn)清兩個(gè)基本原理的實(shí)質(zhì)就是完成一件事需要分類還是分步,才能使學(xué)生理解概念并對(duì)如何運(yùn)用這兩個(gè)基本原理有正確清楚的認(rèn)識(shí)。教學(xué)中兩個(gè)基本問題的引用及引伸,就是為突破難點(diǎn)做準(zhǔn)備。

四、關(guān)于教學(xué)方法和教學(xué)手段的選用

根據(jù)本節(jié)課的資料及學(xué)生的實(shí)際水平,我采取啟發(fā)引導(dǎo)式教學(xué)方法并充分發(fā)揮電腦多媒體的輔助教學(xué)作用。

啟發(fā)引導(dǎo)式作為一種啟發(fā)式教學(xué)方法,體現(xiàn)了認(rèn)知心理學(xué)的基本理論。貼合教學(xué)論中的自覺性和進(jìn)取性、鞏固性、可理解性、教學(xué)與發(fā)展相結(jié)合、教師的主導(dǎo)作用與學(xué)生的主體地位相統(tǒng)一等原則,教學(xué)過程中,教師采用點(diǎn)撥的方法,啟發(fā)學(xué)生經(jīng)過主動(dòng)思考、動(dòng)手操作來到達(dá)對(duì)知識(shí)的"發(fā)現(xiàn)"和理解,進(jìn)而完成知識(shí)的內(nèi)化,使書本的知識(shí)成為自我的知識(shí)。

電腦多媒體以聲音、動(dòng)畫、影像等多種形式強(qiáng)化對(duì)學(xué)生感觀的刺激,這一點(diǎn)是粉筆和黑板所不能比擬的,采取這種形式,能夠極大提高學(xué)生的學(xué)習(xí)興趣,加大一堂課的信息容量,使教學(xué)目標(biāo)更完美地體現(xiàn)。另外,電腦軟件具有良好的交互性,能夠?qū)⒔處煹乃悸泛筒呗砸攒浖男问絹眢w現(xiàn),更好地為教學(xué)服務(wù)。

五、關(guān)于學(xué)法的指導(dǎo)

"授人以魚,不如授人以漁",在教學(xué)過程中,不但要傳授學(xué)生課本知識(shí),還要培養(yǎng)學(xué)生主動(dòng)觀察、主動(dòng)思考、自我發(fā)現(xiàn)的學(xué)習(xí)本事,增強(qiáng)學(xué)生的綜合素質(zhì),從而到達(dá)教學(xué)的目標(biāo)。教學(xué)中,教師創(chuàng)設(shè)疑問,學(xué)生想辦法解決疑問,經(jīng)過教師的啟發(fā)點(diǎn)撥,類比推理,在進(jìn)取的雙邊活動(dòng)中,學(xué)生找到了解決疑難的方法。整個(gè)過程貫穿"設(shè)疑"——"思索"——"發(fā)現(xiàn)"——"解惑"四個(gè)環(huán)節(jié),學(xué)生隨時(shí)對(duì)所學(xué)知識(shí)產(chǎn)生有意注意,思想上經(jīng)歷了從肯定到否定、又從否定到肯定的辨證思維過程,貼合學(xué)生認(rèn)知水平,培養(yǎng)了學(xué)習(xí)本事。

六、關(guān)于教學(xué)程序的設(shè)計(jì)

(一)課題導(dǎo)入

這是本章的第一節(jié)課,是起始課,講起始課時(shí),把這一學(xué)科的資料作一個(gè)大概的介紹,能使學(xué)生從一開始就對(duì)將要學(xué)習(xí)的知識(shí)有一個(gè)初步的了解,并為下頭的學(xué)習(xí)打下思想基礎(chǔ)。所以,首先閱讀引言,明確任務(wù),激發(fā)興趣。由學(xué)生感興趣的乒乓球比賽提出問題,引出學(xué)習(xí)本節(jié)的必要性,明確研究計(jì)數(shù)方法是本章資料的獨(dú)特性,從應(yīng)用的廣泛看學(xué)習(xí)本章資料的重要性。同時(shí)板書課題(分類計(jì)數(shù)原理與分步計(jì)數(shù)原理)

這樣做,能使學(xué)生明白本節(jié)資料的地位和作用,激發(fā)其學(xué)習(xí)新知識(shí)的欲望,為順利完成教學(xué)任務(wù)做好思維上的準(zhǔn)備。

(二)新課講授

經(jīng)過幻燈片給出問題,配圖分析,講清坐火車與坐汽車兩類方法均可,每類中任一種辦法都能夠獨(dú)立地把從甲地到乙地這件事辦好。

緊跟著給出:

引申1:若甲地到乙地一天中還有4班輪船可乘,那么一天中,坐這些交通工具從甲地到一點(diǎn)共有多少種不一樣的走法?

引伸2:若完成一件事,有類辦法。在第1類辦法中有種不一樣方法,在第2類辦法中有種不一樣的方法,……,在第類辦法中有種不一樣方法,每一類中的每一種方法均可完成這件事,那么完成這件事共有多少種不一樣方法?

這個(gè)問題的兩個(gè)引申由漸入深、循序漸進(jìn)為學(xué)生理解分類計(jì)數(shù)原理做好了準(zhǔn)備。

板書分類計(jì)數(shù)原理資料:

完成一件事,有類辦法。在第1類辦法中有種不一樣方法,在第2類辦法中有種不一樣的方法,……,在第類辦法中有種不一樣方法,那么完成這件事共有種不一樣的方法。(也稱加法原理)

此時(shí),趁學(xué)生對(duì)于原理有了一個(gè)較清晰的認(rèn)識(shí),引導(dǎo)學(xué)生分析分類計(jì)數(shù)原理資料,啟發(fā)總結(jié)得下頭三點(diǎn)注意:(出示幻燈片)

(1)各分類之間相互獨(dú)立,都能完成這件事;

(2)根據(jù)問題的特點(diǎn)在確定的分類標(biāo)準(zhǔn)下進(jìn)行分類;

(3)完成這件事的任何一種方法必屬于某一類,并且分別屬于不一樣兩類的兩種方法都是不一樣的方法。

這樣做加深學(xué)生對(duì)分類計(jì)數(shù)原理的正確理解,突出了重點(diǎn),突破了難點(diǎn)。

接下來給出問題2:(出示幻燈片)

由A村去B村的道路有3條,由B村去C村的道路有2條(見圖9-1),從A村經(jīng)B村去C村,共有多少種不一樣的走法?

提出問題:?jiǎn)栴}1與問題2同是研究從甲地到乙地的不一樣走法,請(qǐng)找出這兩個(gè)問題的不之處?學(xué)生會(huì)發(fā)現(xiàn)問題1中采用乘火車或乘汽車都能夠從甲地到乙地,而問題2中必須經(jīng)過先乘火車后乘汽車兩個(gè)步驟才能完成從甲地到乙地這件事。

問題2的講授采用給出問題,配圖分析,組織討論,強(qiáng)調(diào)分步。用多媒體配不一樣的顏色閃現(xiàn)出六種不一樣的走法,讓學(xué)生列式求出不一樣走法數(shù),并列舉所有走法。

歸納得出:分步計(jì)數(shù)原理(板書原理資料)

分步計(jì)數(shù)原理:做一件事,完成它需要分成n個(gè)步驟,做第一步有m1種不一樣的方法,做第二步有m2種不一樣的方法,……,做第n步有mn種不一樣的方法。那么,完成這件事共有

N=m1×m2×…×mn

種不一樣的方法。

同樣趁學(xué)生對(duì)定理有必須的認(rèn)識(shí),引導(dǎo)學(xué)生分析分步計(jì)數(shù)原理資料,啟發(fā)總結(jié)得下頭三點(diǎn)注意:(出示幻燈片)

(1)各步驟相互依存,僅有各個(gè)步驟完成了,這件事才算完成;

(2)根據(jù)問題的特點(diǎn)在確定的分步標(biāo)準(zhǔn)下分步;

(3)分步時(shí)要注意滿足完成一件事必須并且只需連續(xù)完成這N個(gè)步驟這件事才算完成。

(三)應(yīng)用舉例

教材例1:(書架取書問題)引導(dǎo)學(xué)生分析解答,注意區(qū)分是分類還是分步。

例2:由數(shù)字0,1,2,3,4能夠組成多少個(gè)三位整數(shù)(各位上的數(shù)字允許重復(fù))?本題設(shè)置了4個(gè)問題:

(1)每一個(gè)三位數(shù)是由什么構(gòu)成的?(三個(gè)整數(shù)字)

(2)023是一個(gè)三位數(shù)嗎?(百位上不能是0)

(3)組成一個(gè)三位數(shù)需要怎樣做?(分成三個(gè)步驟來完成:第一步確定百位上的數(shù)字;第二步確定十位上的數(shù)字;第三步確定個(gè)位上的數(shù)字)

(4)怎樣表述?

教師巡視指導(dǎo)、并歸納

解:要組成一個(gè)三位數(shù),需要分成三個(gè)步驟:第一步確定百位上的數(shù)字,從1~4這4個(gè)數(shù)字中任選一個(gè)數(shù)字,有4種選法;第二步確定十位上的數(shù)字,由于數(shù)字允許重復(fù),共有5種選法;第三步確定個(gè)位上的數(shù)字,仍有5種選法。根據(jù)分步計(jì)數(shù)原理,得到能夠組成的三位整數(shù)的個(gè)數(shù)是N=4×5×5=100.

答:能夠組成100個(gè)三位整數(shù)。

(教師的連續(xù)發(fā)問、啟發(fā)、引導(dǎo),幫忙學(xué)生找到正確的解題思路和計(jì)算方法,使學(xué)生的分析問題本事有所提高。

教師在第二個(gè)例題中給出板書示范,能幫忙學(xué)生進(jìn)一步加深對(duì)兩個(gè)基本原理實(shí)質(zhì)的理解,周密的研究,準(zhǔn)確的表達(dá)、規(guī)范的書寫,對(duì)于學(xué)生周密思考、準(zhǔn)確表達(dá)、規(guī)范書寫良好習(xí)慣的構(gòu)成有著進(jìn)取的促進(jìn)作用,也能夠?yàn)閷W(xué)生后面應(yīng)用兩個(gè)基本原理解排列、組合綜合題打下基礎(chǔ))

(四)歸納小結(jié)

師:什么時(shí)候用分類計(jì)數(shù)原理、什么時(shí)候用分步計(jì)數(shù)原理呢?

生:分類時(shí)用分類計(jì)數(shù)原理,分步時(shí)用分步計(jì)數(shù)原理。

師:應(yīng)用兩個(gè)基本原理時(shí)需要注意什么呢?

生:分類時(shí)要求各類辦法彼此之間相互排斥;分步時(shí)要求各步是相互獨(dú)立的。

(五)課堂練習(xí)

P222:練習(xí)1~4.學(xué)生板演第4題

(對(duì)于題4,教師有必要對(duì)三個(gè)多項(xiàng)式乘積展開后各項(xiàng)的構(gòu)成給以提示)

(六)布置作業(yè)

P222:練習(xí)5,6,7.

補(bǔ)充題:

1.在所有的兩位數(shù)中,個(gè)位數(shù)字小于十位數(shù)字的共有多少個(gè)?

(提示:按十位上數(shù)字的大小能夠分為9類,共有9+8+7+…+2+1=45個(gè)個(gè)位數(shù)字小于十位數(shù)字的兩位數(shù))

2.某學(xué)生填報(bào)高考志愿,有m個(gè)不一樣的志愿可供選擇,若只能按第一、二、三志愿依次填寫3個(gè)不一樣的志愿,求該生填寫志愿的方式的種數(shù)。

(提示:需要按三個(gè)志愿分成三步。共有m(m-1)(m-2)種填寫方式)

3.在所有的三位數(shù)中,有且僅有兩個(gè)數(shù)字相同的三位數(shù)共有多少個(gè)?

(提示:能夠用下頭方法來求解:(1)△△□,(2)△□△,(3)□△□,(1),(2),(3)類中每類都是9×9種,共有9×9+9×9+9×9=3×9×9=243個(gè)僅有兩個(gè)數(shù)字相同的三位數(shù))

4.某小組有10人,每人至少會(huì)英語(yǔ)和日語(yǔ)中的一門,其中8人會(huì)英語(yǔ),5人會(huì)日語(yǔ),(1)從中任選一個(gè)會(huì)外語(yǔ)的人,有多少種選法?(2)從中選出會(huì)英語(yǔ)與會(huì)日語(yǔ)的各1人,有多少種不一樣的選法?

(提示:由于8+5=13》10,所以10人中必有3人既會(huì)英語(yǔ)又會(huì)日語(yǔ)。(1)N=5+2+3;(2)N=5×2+5×3+2×3)

只要大家用心學(xué)習(xí),認(rèn)真復(fù)習(xí),就有可能在高中的戰(zhàn)場(chǎng)上考取自我夢(mèng)想的成績(jī)。

高中數(shù)學(xué)課件【篇4】

數(shù)列是高中數(shù)學(xué)重要內(nèi)容之一,它不僅有著廣泛的實(shí)際應(yīng)用,而且起著承前啟后的作用。一方面數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面學(xué)習(xí)數(shù)列也為進(jìn)一步學(xué)習(xí)數(shù)列的極限等內(nèi)容做好準(zhǔn)備。而等差數(shù)列是在學(xué)生學(xué)習(xí)了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項(xiàng)公式和遞推公式的基礎(chǔ)上,對(duì)數(shù)列的知識(shí)進(jìn)一步深入和拓廣。同時(shí)等差數(shù)列也為今后學(xué)習(xí)等比數(shù)列提供了學(xué)習(xí)對(duì)比的依據(jù)。

(1)學(xué)生已熟練掌握_________________。

(2)學(xué)生的知識(shí)經(jīng)驗(yàn)較為豐富,具備了教強(qiáng)的抽象思維能力和演繹推理能力。

(3)學(xué)生思維活潑,積極性高,已初步形成對(duì)數(shù)學(xué)問題的合作探究能力。

(4)學(xué)生層次參次不齊,個(gè)體差異比較明顯。

新課標(biāo)指出“三維目標(biāo)”是一個(gè)密切聯(lián)系的有機(jī)整體,應(yīng)該以獲得知識(shí)與技能的過程,同時(shí)成為學(xué)會(huì)學(xué)習(xí)和正確價(jià)值觀。這要求我們?cè)诮虒W(xué)中以知識(shí)技能的培養(yǎng)為主線,透情感態(tài)度與價(jià)值觀,并把這兩者充分體現(xiàn)在教學(xué)過程中,新課標(biāo)指出教學(xué)的主體是學(xué)生,因此目標(biāo)的制定和設(shè)計(jì)必須從學(xué)生的角度出發(fā),根據(jù)____在教材內(nèi)容中的地位與作用,結(jié)合學(xué)情分析,本節(jié)課教學(xué)應(yīng)實(shí)現(xiàn)如下教學(xué)目標(biāo):

使學(xué)生理解函數(shù)單調(diào)性的概念,初步掌握判別函數(shù)單調(diào)性的方法;。

引導(dǎo)學(xué)生通過觀察、歸納、抽象、概括,自主建構(gòu)單調(diào)增函數(shù)、單調(diào)減函數(shù)等概念;能運(yùn)用函數(shù)單調(diào)性概念解決簡(jiǎn)單的問題;使學(xué)生領(lǐng)會(huì)數(shù)形結(jié)合的數(shù)學(xué)思想方法,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題、解決問題的能力。

在函數(shù)單調(diào)性的學(xué)習(xí)過程中,使學(xué)生體驗(yàn)數(shù)學(xué)的科學(xué)價(jià)值和應(yīng)用價(jià)值,培養(yǎng)學(xué)生善于觀察、勇于探索的良好習(xí)慣和嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度。

本節(jié)課的教學(xué)重點(diǎn)是________________________,教學(xué)難點(diǎn)是_____________________。

基于本節(jié)課的內(nèi)容特點(diǎn)和高二學(xué)生的年齡特征,按照臨沂市高中數(shù)學(xué)“三五四”課堂教學(xué)策略,采用探究――體驗(yàn)教學(xué)法為主來完成教學(xué),為了實(shí)現(xiàn)本節(jié)課的教學(xué)目標(biāo),在教法上我采取了:

1、通過學(xué)生熟悉的實(shí)際生活問題引入課題,為概念學(xué)習(xí)創(chuàng)設(shè)情境,拉近數(shù)學(xué)與現(xiàn)實(shí)的距離,激發(fā)學(xué)生求知欲,調(diào)動(dòng)學(xué)生主體參與的積極性.

2、在形成概念的過程中,緊扣概念中的關(guān)鍵語(yǔ)句,通過學(xué)生的主體參與,正確地形成概念.

3、在鼓勵(lì)學(xué)生主體參與的同時(shí),不可忽視教師的主導(dǎo)作用,要教會(huì)學(xué)生清晰的思維、嚴(yán)謹(jǐn)?shù)耐评?,并順利地完成書面表達(dá).

在學(xué)法上我重視了:

1、讓學(xué)生利用圖形直觀啟迪思維,并通過正、反例的構(gòu)造,來完成從感性認(rèn)識(shí)到理性思維的質(zhì)的飛躍。

2、讓學(xué)生從問題中質(zhì)疑、嘗試、歸納、總結(jié)、運(yùn)用,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、研究問題和分析解決問題的能力。

教學(xué)是一個(gè)教師的“導(dǎo)”,學(xué)生的“學(xué)”以及教學(xué)過程中的“悟”構(gòu)成的和諧整體。教師的“導(dǎo)”也就是教師啟發(fā)、誘導(dǎo)、激勵(lì)、評(píng)價(jià)等為學(xué)生的學(xué)習(xí)搭建支架,把學(xué)習(xí)的任務(wù)轉(zhuǎn)移給學(xué)生,學(xué)生就是接受任務(wù),探究問題、完成任務(wù)。如果在教學(xué)過程中把“教與學(xué)”完美的結(jié)合也就是以“問題”為核心,通過對(duì)知識(shí)的發(fā)生、發(fā)展和運(yùn)用過程的演繹、解釋和探究來組織和推動(dòng)教學(xué)。

(1)創(chuàng)設(shè)情境,提出問題。

新課標(biāo)指出:“應(yīng)該讓學(xué)生在具體生動(dòng)的情境中學(xué)習(xí)數(shù)學(xué)”。在本節(jié)課的教學(xué)中,從我們熟悉的生活情境中提出問題,問題的設(shè)計(jì)改變了傳統(tǒng)目的明確的設(shè)計(jì)方式,給學(xué)生的思考空間,充分體現(xiàn)學(xué)生主體地位。

(2)引導(dǎo)探究,建構(gòu)概念。

數(shù)學(xué)概念的形成來自解決實(shí)際問題和數(shù)學(xué)自身發(fā)展的需要.但概念的高度抽象,造成了難懂、難教和難學(xué),這就需要讓學(xué)生置身于符合自身實(shí)際的學(xué)習(xí)活動(dòng)中去,從自己的經(jīng)驗(yàn)和已有的知識(shí)基礎(chǔ)出發(fā),經(jīng)歷“數(shù)學(xué)化”、“再創(chuàng)造”的活動(dòng)過過程.

(3)自我嘗試,初步應(yīng)用。

有效的數(shù)學(xué)學(xué)習(xí)過程,不能單純的模仿與記憶,數(shù)學(xué)思想的領(lǐng)悟和學(xué)習(xí)過程更是如此。讓學(xué)生在解題過程中親身經(jīng)歷和實(shí)踐體驗(yàn),師生互動(dòng)學(xué)習(xí),生生合作交流,共同探究.

(4)當(dāng)堂訓(xùn)練,鞏固深化。

通過學(xué)生的主體參與,使學(xué)生深切體會(huì)到本節(jié)課的主要內(nèi)容和思想方法,從而實(shí)現(xiàn)對(duì)知識(shí)識(shí)的再次深化。

(5)小結(jié)歸納,回顧反思。

小結(jié)歸納不僅是對(duì)知識(shí)的簡(jiǎn)單回顧,還要發(fā)揮學(xué)生的主體地位,從知識(shí)、方法、經(jīng)驗(yàn)等方面進(jìn)行總結(jié)。我設(shè)計(jì)了三個(gè)問題:(1)通過本節(jié)課的學(xué)習(xí),你學(xué)到了哪些知識(shí)?(2)通過本節(jié)課的學(xué)習(xí),你的體驗(yàn)是什么?(3)通過本節(jié)課的學(xué)習(xí),你掌握了哪些技能?

作業(yè)分為必做題和選做題,必做題對(duì)本節(jié)課學(xué)生知識(shí)水平的反饋,選做題是對(duì)本節(jié)課內(nèi)容的延伸與,注重知識(shí)的延伸與連貫,強(qiáng)調(diào)學(xué)以致用。通過作業(yè)設(shè)置,使不同層次的學(xué)生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學(xué)生飽滿的學(xué)習(xí)興趣,促進(jìn)學(xué)生自主發(fā)展、合作探究的學(xué)習(xí)氛圍的形成.

高中數(shù)學(xué)課件【篇5】

高中數(shù)學(xué)教學(xué)應(yīng)鼓勵(lì)學(xué)生用數(shù)學(xué)去解決問題,甚至去探索一些數(shù)學(xué)本身的問題。教學(xué)中,教師不僅要培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)倪壿嬐评砟芰?、空間想象能力和運(yùn)算能力,還要培養(yǎng)學(xué)生數(shù)學(xué)建模能力與數(shù)據(jù)處理能力,加強(qiáng)在“用數(shù)學(xué)”方面的教育。最好的方式就是用多媒體電腦和諸如《幾何畫板》、《幾何畫王》、《幾何專家》等工具軟件,為學(xué)生創(chuàng)設(shè)數(shù)學(xué)實(shí)驗(yàn)情境。例如,在上“棱柱和異面直線”課時(shí),我們指導(dǎo)學(xué)生用硬紙制作“長(zhǎng)方體”和“正三棱柱”等模型。教師用《幾何畫板》設(shè)計(jì)并創(chuàng)作“長(zhǎng)方體中的異面直線”課件,引導(dǎo)學(xué)生利用自己制作的“長(zhǎng)方體”模型和上述課件,思考以下問題:“長(zhǎng)方體中所有體對(duì)角線(4條)與所有面對(duì)角線(12條)共組成多少對(duì)異面直線?”、“長(zhǎng)方體中所有體對(duì)角線(4條)與所有棱(12條)共組成多少對(duì)異面直線?”、“長(zhǎng)方體中所有棱(12條)之間相互組成多少對(duì)異面直線?”、“長(zhǎng)方體所有面對(duì)角線(12條)與所有棱(12條)共組成多少對(duì)異面直線?”、“長(zhǎng)方體中所有面對(duì)角線(12條)之間相互組成多少對(duì)異面直線?”。然后由學(xué)生獨(dú)立進(jìn)行數(shù)學(xué)實(shí)驗(yàn),探討上述問題。

此外,教師還要根據(jù)數(shù)學(xué)思想發(fā)展脈絡(luò),充分利用實(shí)驗(yàn)手段尤其是運(yùn)用現(xiàn)代教育技術(shù),創(chuàng)設(shè)教學(xué)實(shí)驗(yàn)情景、設(shè)計(jì)系列問題、增加輔助環(huán)節(jié),有助于引導(dǎo)學(xué)生通過操作、實(shí)踐,探索數(shù)學(xué)定理的證明和數(shù)學(xué)問題的解決方法,讓學(xué)生親自體驗(yàn)數(shù)學(xué)建模過程,培養(yǎng)學(xué)生的數(shù)學(xué)創(chuàng)新能力和實(shí)踐能力,提高數(shù)學(xué)素養(yǎng)。

為了構(gòu)建生動(dòng)活潑富有個(gè)性的數(shù)學(xué)課堂,我把創(chuàng)設(shè)情境,激發(fā)學(xué)生的學(xué)習(xí)興趣當(dāng)成數(shù)學(xué)教學(xué)的重頭戲,使之成為數(shù)學(xué)課的一道亮麗的風(fēng)景。 《數(shù)學(xué)課程標(biāo)準(zhǔn)》強(qiáng)調(diào)數(shù)學(xué)課堂教學(xué)必須注意從學(xué)生熟悉的生活情境和感興趣的事物出發(fā),使學(xué)生有更多的機(jī)會(huì)從周圍熟悉的事物中學(xué)習(xí)數(shù)學(xué),理解數(shù)學(xué),讓學(xué)生感受到數(shù)學(xué)就在他們周圍。因此,我從學(xué)生已有的生活經(jīng)驗(yàn)出發(fā),創(chuàng)設(shè)有趣的教學(xué)情境,強(qiáng)化學(xué)生的感性認(rèn)識(shí),豐富學(xué)生的學(xué)習(xí)過程,引導(dǎo)學(xué)生在情境中觀察、操作、交流,感受數(shù)學(xué)與日常生活的密切聯(lián)系,感受數(shù)學(xué)在生活中的作用,加深對(duì)數(shù)學(xué)的理解,并運(yùn)用數(shù)學(xué)知識(shí)解決現(xiàn)實(shí)生活中的問題。如《課程標(biāo)準(zhǔn)》在綜合實(shí)踐的教學(xué)建議部分提供了這樣一個(gè)案例:

要求學(xué)生統(tǒng)計(jì)自己家庭一周內(nèi)丟棄的塑料袋個(gè)數(shù),并依據(jù)所收集的數(shù)據(jù)展開討論。其程序是:(1)作為家庭作業(yè)提出此問題;(2)學(xué)生自主進(jìn)行統(tǒng)計(jì)活動(dòng);(3)請(qǐng)某學(xué)生在課堂上對(duì)結(jié)果做現(xiàn)場(chǎng)統(tǒng)計(jì)(列出統(tǒng)計(jì)表,老師也把自己的統(tǒng)計(jì)結(jié)果融入其中);(4)統(tǒng)計(jì)分析(引導(dǎo)學(xué)生根據(jù)數(shù)據(jù)對(duì)全班一周丟棄塑料袋情況用不同的算法進(jìn)行描述和評(píng)價(jià));(5)結(jié)合問題情境深入領(lǐng)會(huì)有關(guān)概念(如平均數(shù)、中位數(shù)、眾數(shù)等)的含義,并通過問題的層層深入讓學(xué)生進(jìn)一步感受不同統(tǒng)計(jì)量來表示同一問題的必要性;(6)問題自然延伸(計(jì)算這些袋對(duì)土地造成的污染,先估計(jì)一個(gè)袋的污染,然后通過多種方式計(jì)算推及到一周呢?一年呢?全校同學(xué)的家庭呢?照此速度要多久就會(huì)污染整個(gè)學(xué)校呢?)。由此例可以看出,這種模式的一個(gè)關(guān)鍵點(diǎn)就是圍繞著學(xué)生日常生活來展開的,由學(xué)生身邊的事所引出的數(shù)學(xué)問題,使學(xué)生體會(huì)到數(shù)學(xué)與生活的緊密和諧關(guān)系,樸素的問題情境自然讓學(xué)生產(chǎn)生一種情感上的親和力和感召力,可以讓他們真正應(yīng)用數(shù)學(xué),并引導(dǎo)他們學(xué)會(huì)做事。

高中數(shù)學(xué)課件【篇6】

高中數(shù)學(xué)《等差數(shù)列》試講答辯

為幫助各位考生備戰(zhàn)教師資格面試,中公教師網(wǎng)整理了各學(xué)科教師資格面試試講答辯語(yǔ)音示范,以下是高中數(shù)學(xué)《等差數(shù)列》試講答辯,希望對(duì)各位考生有所幫助!【面試備課紙】

3.基本要求: (1)要有板書;(2)試講十分鐘左右;(3)條理清晰,重點(diǎn)突出;

(4)學(xué)生掌握等差數(shù)列的特點(diǎn)與性質(zhì)。【教學(xué)設(shè)計(jì)】

一、教學(xué)目標(biāo) 【知識(shí)與技能】能夠復(fù)述等差數(shù)列的概念,能夠?qū)W會(huì)等差數(shù)列的通項(xiàng)公式的推導(dǎo)過程及蘊(yùn)含的數(shù)學(xué)思想。

【過程與方法】在領(lǐng)會(huì)函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來研究數(shù)列,提高知識(shí)、方法遷移能力;通過階梯性練習(xí),提高分析問題和解決問題的能力。

【情感態(tài)度與價(jià)值觀】通過對(duì)等差數(shù)列的研究,具備主動(dòng)探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好思維習(xí)慣。

二、教學(xué)重難點(diǎn) 【教學(xué)重點(diǎn)】

等差數(shù)列的概念、等差數(shù)列的通項(xiàng)公式的推導(dǎo)過程及應(yīng)用?!窘虒W(xué)難點(diǎn)】

等差數(shù)列通項(xiàng)公式的推導(dǎo)。

三、教學(xué)過程 環(huán)節(jié)一:導(dǎo)入新課 教師PPT展示幾道題目:

1.我們經(jīng)常這樣數(shù)數(shù),從0開始,每隔5一個(gè)數(shù),可以得到數(shù)列:0,5,15,20,25 2.小明目前會(huì)100個(gè)單詞,他她打算從今天起不再背單詞了,結(jié)果不知不覺地每天忘掉2個(gè)單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞減為:100,98,96,94,92。

年,在澳大利亞悉尼舉行的奧運(yùn)會(huì)上,女子舉重正式列為比賽項(xiàng)目,該項(xiàng)目共設(shè)置了7個(gè)級(jí)別,其中交情的4個(gè)級(jí)別體重組成數(shù)列(單位:kg):48,53,58,63。

教師提問學(xué)生這幾組數(shù)有什么特點(diǎn)?學(xué)生回答從第二項(xiàng)開始,每一項(xiàng)與前一項(xiàng)的差都等于一個(gè)常數(shù),教師引出等差數(shù)列。

環(huán)節(jié)二:探索新知 1.等差數(shù)列的概念

學(xué)生閱讀教材,同桌討論,類比等比數(shù)列總結(jié)出等差數(shù)列的概念

如果一個(gè)數(shù)列,從第二項(xiàng)開始它的每一項(xiàng)與前一項(xiàng)之差都等于同一常數(shù),這個(gè)數(shù)列就叫等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。

問題1:等差數(shù)列的概念中,我們應(yīng)該注意哪些細(xì)節(jié)呢?

環(huán)節(jié)三:課堂練習(xí)

搶答:下列數(shù)列是否為等差數(shù)列?(1)1,2,4,6,8,10,12,……(2)0,1,2,3,4,5,6,……(3)3,3,3,3,3,3,3,……(4)-8,-6,-4,-2,0,2,4,……(5)3,0,-3,-6,-9,…… 環(huán)節(jié)四:小結(jié)作業(yè)

小結(jié):1.等差數(shù)列的概念及數(shù)學(xué)表達(dá)式。

關(guān)鍵字:從第二項(xiàng)開始它的每一項(xiàng)與前一項(xiàng)之差都等于同一常數(shù)。

作業(yè):現(xiàn)實(shí)生活中還有哪些等差數(shù)列的實(shí)際應(yīng)用呢?根據(jù)實(shí)際問題自己編寫兩道等差數(shù)列的題目并進(jìn)行求解。

高中數(shù)學(xué)課件【篇7】

【知識(shí)與能力】1. 掌握數(shù)軸的三要素,能正確畫出數(shù)軸。

2、會(huì)用數(shù)軸上的點(diǎn)表示有理數(shù);;會(huì)求一個(gè)有理數(shù)的相反數(shù);能利用數(shù)軸比較有理數(shù)的大小。

【過程與方法】 經(jīng)歷從現(xiàn)實(shí)情景抽象出數(shù)軸的過程,體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系

【情感態(tài)度與價(jià)值觀】 感受數(shù)形結(jié)合的思想方法;

【教學(xué)重點(diǎn)】會(huì)說出數(shù)軸上已知點(diǎn)所表示的數(shù),能將已知數(shù)在數(shù)軸上表示出來。

【教學(xué)難點(diǎn)】利用數(shù)軸比較有理數(shù)的大小。

學(xué)生回答.

(2)在一條東西向的馬路上,有一個(gè)汽車站,汽車站東3m和7.5m處分別有一棵柳樹和一棵楊樹,汽車站西3m和4.8m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情境.

思考:怎樣用數(shù)簡(jiǎn)明地表示這些樹、電線桿與汽車站的相對(duì)位置關(guān)系 (方向、距離)? 老師引導(dǎo)學(xué)生完成,注意講解思路和方法

與溫度計(jì)類似,我們也可以在一條直線上畫出刻度,標(biāo)上讀數(shù),用直線上的點(diǎn)表示正數(shù)、負(fù)數(shù)和零.具體方法如下(教師示范畫數(shù)軸,邊說邊畫):

概念:規(guī)定了原點(diǎn)、正方向和單位長(zhǎng)度的直線叫做數(shù)軸。

1、下列圖形哪些是數(shù)軸,哪些不是,為什么?

學(xué)生回答,相互糾正,理解數(shù)軸三要素,鞏固數(shù)軸概念。

1、在數(shù)軸上的點(diǎn)表示有理數(shù)。

一個(gè)學(xué)生在黑板上完成,其他同學(xué)在自己所畫數(shù)軸上完成。

明確“任何一個(gè)有理數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來表示”

(1)在數(shù)軸上表示的兩個(gè)數(shù),(右 ) 邊的數(shù)總比 ( 左)邊的數(shù)大;

(2)正數(shù)都(大于 )0,負(fù)數(shù)都(小于)0;正數(shù)(大于)一切負(fù)數(shù)。

高中數(shù)學(xué)課件【篇8】

首先,可以聯(lián)系實(shí)際生活。數(shù)學(xué)知識(shí)在生活中有著廣泛的應(yīng)用,與實(shí)際生活有著廣泛的聯(lián)系,在進(jìn)行課堂導(dǎo)入設(shè)計(jì)時(shí),教師可以聯(lián)系學(xué)生的實(shí)際生活,激發(fā)學(xué)生的好奇心。例如在學(xué)習(xí)拋物線的知識(shí)時(shí),可以這樣導(dǎo)入:讓學(xué)生回想一下打籃球的情景,由于場(chǎng)地限制,在課堂上可以用乒乓球代替籃球,做投籃動(dòng)作,讓學(xué)生仔細(xì)觀察籃球(乒乓球)落地時(shí)的軌跡,在學(xué)生積極參討論時(shí),引入拋物線的知識(shí)。在導(dǎo)入中聯(lián)系實(shí)際生活,不僅能夠激發(fā)學(xué)生的興趣,并且能夠拉近學(xué)生與數(shù)學(xué)之間的距離。

其次,教師可以利用數(shù)學(xué)史進(jìn)行導(dǎo)入。數(shù)學(xué)教材中很多知識(shí)都與數(shù)學(xué)史相關(guān),學(xué)生對(duì)這部分知識(shí)充滿興趣,因此在教學(xué)過程中,教師設(shè)計(jì)課堂導(dǎo)入時(shí)可以從這一點(diǎn)入手,先通過提問或者介紹的方式,讓學(xué)生了解數(shù)學(xué)史上的重大事件和重要人物等,引起學(xué)生的敬佩和仰慕之情,然后引入相關(guān)的數(shù)學(xué)知識(shí)。興趣是最好的老師,在學(xué)生的期待下展開數(shù)學(xué)教學(xué),無疑會(huì)提高課堂教學(xué)效率。課堂導(dǎo)入的方式有很多種,在具體的操作環(huán)節(jié),教師要注意導(dǎo)入方式的多樣性,才能更好地激發(fā)學(xué)生的興趣,在高中數(shù)學(xué)教學(xué)中教師要根據(jù)實(shí)際情況進(jìn)行合理選擇使用。

首先,教師要精心設(shè)計(jì)問題。提問的目的是為了激發(fā)學(xué)生的興趣和思維,因此,教師提問的問題不能是單調(diào)、重復(fù)的,而應(yīng)該是具有啟發(fā)性和針對(duì)性,能夠激發(fā)學(xué)生的思考,引導(dǎo)學(xué)生進(jìn)行步步深入。最重要的是,教師提出的問題要符合學(xué)生的知識(shí)水平和認(rèn)知能力,教師不僅應(yīng)該了解教材,并且要全面了解學(xué)生,這樣才能使提出的問題符合學(xué)生的需要。學(xué)生的數(shù)學(xué)水平是不同的,接受能力也有差異,因此教師要注意提出問題的層次性,并針對(duì)不同水平的學(xué)生設(shè)計(jì)不同難度的問題,促進(jìn)每個(gè)學(xué)生獲得進(jìn)步和發(fā)展。

其次,課堂提問的方式要多樣化。如同教學(xué)方式需要多樣化一樣,提問的方式也要具有多樣化的特點(diǎn),這樣才能更好地激發(fā)學(xué)生興趣,達(dá)到教學(xué)目的,否則,無論教師設(shè)計(jì)的問題多么巧妙,學(xué)生也會(huì)感到厭煩。根據(jù)問題的內(nèi)容和學(xué)生實(shí)際情況,提問可以是直接問答;可以是導(dǎo)思式;可以教師提問、學(xué)生回答;也可以是學(xué)生提問、教師回答。在教學(xué)過程中教師要注意培養(yǎng)學(xué)生的問題意識(shí),鼓勵(lì)學(xué)生自己提出問題,問題是思考的開端,對(duì)于學(xué)生來說提出問題比解決問題更重要,因此,教師要為學(xué)生創(chuàng)造機(jī)會(huì),讓學(xué)生在認(rèn)真閱讀教材的基礎(chǔ)上,根據(jù)自己的理解提出不懂的問題。提出的問題教師可以進(jìn)行點(diǎn)撥,讓學(xué)生思考,也可以組織學(xué)生進(jìn)行討論,培養(yǎng)學(xué)生分析問題和解決問題的能力。

高中數(shù)學(xué)課件【篇9】

1、在初中學(xué)過原命題、逆命題知識(shí)的基礎(chǔ)上,初步理解四種命題。

2、給一個(gè)比較簡(jiǎn)單的命題(原命題),可以寫出它的逆命題、否命題和逆否命題。

1、本小節(jié)首先從初中數(shù)學(xué)的命題知識(shí),給出四種命題的概念,接著,講述四種命題的關(guān)系,最后,在初中的基礎(chǔ)上,結(jié)合四種命題的知識(shí),進(jìn)一步講解反證法。

2、教學(xué)時(shí),要注意控制教學(xué)要求。本小節(jié)的內(nèi)容,只涉及比較簡(jiǎn)單的命題,不研究含有邏輯聯(lián)結(jié)詞“或”、“且”、“非”的命題的逆命題、否命題和逆否命題,

3、“若p則q”形式的命題,也是一種復(fù)合命題,并且,其中的p與q,可以是命題也可以是開語(yǔ)句,例如,命題“若,則x,y全為0”,其中的p與q,就是開語(yǔ)句。對(duì)學(xué)生,只要求能分清命題“若p則q”中的條件與結(jié)論就可以了,不必考慮p與q是命題,還是開語(yǔ)句。

(一)引入:一個(gè)生活中有趣的與命題有關(guān)的笑話:某人要請(qǐng)甲乙丙丁吃飯,時(shí)間到了,只有甲乙丙三人按時(shí)赴約。丁卻打電話說“有事不能參加”主人聽了隨口說了句“該來的沒來”甲聽了臉色一沉,一聲不吭的走了,主人愣了一下又說了一句“哎,不該走的走了”乙聽了大怒,拂袖即去。主人這時(shí)還沒意識(shí)到又順口說了一句:“俺說的又不是你”。這時(shí)丙怒火中燒不辭而別。四個(gè)客人沒來的沒來,來的又走了。主人請(qǐng)客不成還得罪了三家。大家肯定都覺得這個(gè)人不會(huì)說話,但是你想過這里面所蘊(yùn)涵的數(shù)學(xué)思想嗎?通過這節(jié)課的學(xué)習(xí)我們就能揭開它的廬山真面,學(xué)生的興奮點(diǎn)被緊緊抓住,躍躍欲試!

(二)復(fù)習(xí)提問:

1.命題“同位角相等,兩直線平行”的條件與結(jié)論各是什么?

2.把“同位角相等,兩直線平行”看作原命題,它的逆命題是什么?

3.原命題真,逆命題一定真嗎?

“同位角相等,兩直線平行”這個(gè)原命題真,逆命題也真.但“正方形的四條邊相等”的原命題真,逆命題就不真,所以原命題真,逆命題不一定真.

學(xué)生活動(dòng):

口答:(1)若同位角相等,則兩直線平行;(2)若一個(gè)四邊形是正方形,則它的四條邊相等.

設(shè)計(jì)意圖:通過復(fù)習(xí)舊知識(shí),打下學(xué)習(xí)否命題、逆否命題的基礎(chǔ).

(三)新課講解:

1.命題“同位角相等,兩直線平行”的條件是“同位角相等”,結(jié)論是“兩直線平行”;如果把“同位角相等,兩直線平行”看作原命題,它的逆命題就是“兩直線平行,同位角相等”。也就是說,把原命題的結(jié)論作為條件,條件作為結(jié)論,得到的命題就叫做原命題的逆命題。

2.把命題“同位角相等,兩直線平行”的條件與結(jié)論同時(shí)否定,就得到新命題“同位角不相等,兩直線不平行”,這個(gè)新命題就叫做原命題的否命題。

3.把命題“同位角相等,兩直線平行”的條件與結(jié)論互相交換并同時(shí)否定,就得到新命題“兩直線不平行,同位角不相等”,這個(gè)新命題就叫做原命題的逆否命題。

(四)組織討論:

讓學(xué)生歸納什么是否命題,什么是逆否命題。

(五)課堂探究:“兩條直線不平行,則同位角不相等”是否真?“若一個(gè)四邊形的四條邊不相等,則不是正方形”是否真?若原命題真,逆否命題是否也真?

假有什么關(guān)系?舉例加以說明,同學(xué)們踴躍發(fā)言。

(六)課堂小結(jié):

1、一般地,用p和q分別表示原命題的條件和結(jié)論,用Vp和Vq分別表示p和q否定時(shí),四種命題的形式就是:

原命題若p則q;

(1).原命題為真,它的逆命題不一定為真.

(2).原命題為真,它的否命題不一定為真.

其逆否命題是“不該來的來了”,甲認(rèn)為自己是不該來的,所以甲走了。

第二句:“不該走的走了”,其逆否命題為“該走的沒走”,乙認(rèn)為自己該走,所以乙也走了。

第三句:“俺說的不是你(指乙)”其值為真其非命題:“俺說的是你”為假,則說的是他(指丙)為真。所以,丙認(rèn)為說的是自己,所以丙也走了。

斷它們的真假.,則”,寫出它的逆命題、否命題與逆否命題,并分別判

2.設(shè)原命題是“當(dāng)時(shí),若,則”,寫出它的逆命題、否定命與逆否命題,并分別判斷它們的真假.

高中數(shù)學(xué)課件【篇10】

各位領(lǐng)導(dǎo)、專家、同仁:您們好!

我說課的內(nèi)容是高中數(shù)學(xué)第二冊(cè)(上冊(cè))第七章《直線和圓的方程》中的第六節(jié)“曲線和方程”的第一課時(shí),下面我的說課將從以下幾個(gè)方面進(jìn)行闡述:

一、教材分析

教材的地位和作用

“曲線和方程”這節(jié)教材揭示了幾何中的形與代數(shù)中的數(shù)相統(tǒng)一的關(guān)系,為“作形判數(shù)”與“就數(shù)論形”的相互轉(zhuǎn)化開辟了途徑,這正體現(xiàn)了解析幾何這門課的基本思想,對(duì)全部解析幾何教學(xué)有著深遠(yuǎn)的影響。學(xué)生只有透徹理解了曲線和方程的意義,才算是尋得了解析幾何學(xué)習(xí)的入門之徑。如果以為學(xué)生不真正領(lǐng)悟曲線和方程的關(guān)系,照樣能求出方程、照樣能計(jì)算某些難題,因而可以忽視這個(gè)基本概念的教學(xué),這不能不說是一種“舍本逐題”的偏見,應(yīng)該認(rèn)識(shí)到這節(jié)“曲線和方程”的開頭課是解析幾何教學(xué)的“重頭戲”!

根據(jù)以上分析,確立教學(xué)重點(diǎn)是:“曲線的方程”與“方程的曲線”的概念;難點(diǎn)是:怎樣利用定義驗(yàn)證曲線是方程的曲線,方程是曲線的方程。

二、教學(xué)目標(biāo)

根據(jù)教學(xué)大綱的要求以及本教材的地位和作用,結(jié)合高二學(xué)生的認(rèn)知特點(diǎn)確定教學(xué)目標(biāo)如下:

知識(shí)目標(biāo):

1、了解曲線上的點(diǎn)與方程的解之間的一一對(duì)應(yīng)關(guān)系;

2、初步領(lǐng)會(huì)“曲線的方程”與“方程的曲線”的概念;

3、學(xué)會(huì)根據(jù)已有的情景資料找規(guī)律,進(jìn)而分析、判斷、歸納結(jié)論;

4、強(qiáng)化“形”與“數(shù)”一致并相互轉(zhuǎn)化的思想方法。

能力目標(biāo):

1、通過直線方程的引入,加強(qiáng)學(xué)生對(duì)方程的解和曲線上的點(diǎn)的一一對(duì)應(yīng)關(guān)系的認(rèn)識(shí);

2、在形成曲線和方程的概念的教學(xué)中,學(xué)生經(jīng)歷觀察、分析、討論等數(shù)學(xué)活動(dòng)過程,探索出結(jié)論,并能有條理的闡述自己的觀點(diǎn);

3、能用所學(xué)知識(shí)理解新的概念,并能運(yùn)用概念解決實(shí)際問題,從中體會(huì)轉(zhuǎn)化化歸的思想方法,提高思維品質(zhì),發(fā)展應(yīng)用意識(shí)。

情感目標(biāo):

1、通過概念的引入,讓學(xué)生感受從特殊到一般的認(rèn)知規(guī)律;

2、通過反例辨析和問題解決,培養(yǎng)合作交流、獨(dú)立思考等良好的個(gè)性品質(zhì),以及勇于批判、敢于創(chuàng)新的科學(xué)精神。

三、重難點(diǎn)突破

“曲線的方程”與“方程的曲線”的概念是本節(jié)的重點(diǎn),這是由于本節(jié)課是由直觀表象上升到抽象概念的過程,學(xué)生容易對(duì)定義中為什么要規(guī)定兩個(gè)關(guān)系產(chǎn)生困惑,原因是不理解兩者缺一都將擴(kuò)大概念的外延。由于學(xué)生已經(jīng)具備了用方程表示直線、拋物線等實(shí)際模型,積累了感性認(rèn)識(shí)的基礎(chǔ),所以可用舉反例的方法來解決困惑,通過反例揭示“兩者缺一”與直覺的矛盾,從而又促使學(xué)生對(duì)概念表述的嚴(yán)密性進(jìn)行探索,自然地得出定義。為了強(qiáng)化其認(rèn)識(shí),又決定用集合相等的概念來解釋曲線和方程的對(duì)應(yīng)關(guān)系,并以此為工具來分析實(shí)例,這將有助于學(xué)生的理解,有助于學(xué)生通其法,知其理。

怎樣利用定義驗(yàn)證曲線是方程的曲線,方程是曲線的方程是本節(jié)的難點(diǎn)。因?yàn)閷W(xué)生在作業(yè)中容易犯想當(dāng)然的錯(cuò)誤,通常在由已知曲線建立方程的時(shí)候,不驗(yàn)證方程的解為坐標(biāo)的點(diǎn)在曲線上,就斷然得出所求的是曲線方程。這種現(xiàn)象在高考中也屢見不鮮。為了突破難點(diǎn),本節(jié)課設(shè)計(jì)了三種層次的問題,幻燈片9是概念的直接運(yùn)用,幻燈片10是概念的逆向運(yùn)用,幻燈片11是證明曲線的方程。通過這些例題讓學(xué)生再一次體會(huì)“二者”缺一不可。

四、學(xué)情分析

此前,學(xué)生已知,在建立了直角坐標(biāo)系后平面內(nèi)的點(diǎn)和有序?qū)崝?shù)對(duì)之間建立了一一對(duì)應(yīng)關(guān)系,已有了用方程(有時(shí)以函數(shù)式的形式出現(xiàn))表示曲線的感性認(rèn)識(shí)(特別是二元一次方程表示直線),現(xiàn)在要進(jìn)一步研究平面內(nèi)的曲線和含有兩個(gè)變數(shù)的方程之間的關(guān)系,是由直觀表象上升到抽象概念的過程,對(duì)學(xué)生有相當(dāng)大的難度。學(xué)生在學(xué)習(xí)時(shí)容易產(chǎn)生的問題是,不理解“曲線上的點(diǎn)的坐標(biāo)都是方程的解”和“以這個(gè)方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn)”這兩句話在揭示“曲線和方程”關(guān)系時(shí)各自所起的作用。本節(jié)課的教學(xué)目標(biāo)也只能是初步領(lǐng)會(huì),要求學(xué)生能答出曲線和方程間必須滿足兩個(gè)關(guān)系時(shí)才能稱作“曲線的方程”和“方程的曲線”,兩者缺一不可,并能借助實(shí)例指出兩個(gè)關(guān)系的區(qū)別。

五、教法分析

新課程強(qiáng)調(diào)教師要調(diào)整自己的角色,改變傳統(tǒng)的教育方式,教師要由傳統(tǒng)意義上的知識(shí)的傳授者和學(xué)生的管理者,轉(zhuǎn)變?yōu)閷W(xué)生發(fā)展的促進(jìn)者和幫助者,簡(jiǎn)單的教書匠轉(zhuǎn)變?yōu)閷?shí)踐的研究者,或研究的實(shí)踐者,在教育方式上,也要體現(xiàn)出以人為本,以學(xué)生為中心,讓學(xué)生真正成為學(xué)習(xí)的主人而不是知識(shí)的奴隸,基于此,本節(jié)課遵循了概念學(xué)習(xí)的四個(gè)基本步驟,重點(diǎn)采用了問題探究和啟發(fā)式相結(jié)合的教學(xué)方法。

從實(shí)例、到類比、到推廣的問題探究,它對(duì)激發(fā)學(xué)生學(xué)習(xí)興趣,培養(yǎng)學(xué)習(xí)能力都十分有利。啟發(fā)引導(dǎo)學(xué)生得出概念,深化概念,并應(yīng)用它去討論、研究和解決問題。在生生合作,師生互動(dòng)中解決問題,為提高學(xué)生分析問題、解決問題的能力打下了基礎(chǔ)。

利用多媒體輔助教學(xué),節(jié)省了時(shí)間,增大了信息量,增強(qiáng)了直觀形象性。

六、學(xué)法分析

基礎(chǔ)教育課程改革要求加強(qiáng)學(xué)習(xí)方式的改變,提倡學(xué)習(xí)方式的多樣化,各學(xué)科課程通過引導(dǎo)學(xué)生主動(dòng)參與,親身實(shí)踐,獨(dú)立思考,合作探究,發(fā)展學(xué)生搜集處理信息的能力,獲取新知識(shí)的能力,分析和解決問題的能力,以及交流合作的能力,基于此,本節(jié)課從實(shí)例引入→類比→推廣→得概念→概念挖掘深化→具體應(yīng)用→作業(yè)中的研究性問題的思考,始終讓學(xué)生主動(dòng)參與,親身實(shí)踐,獨(dú)立思考,與合作探究相結(jié)合,在生生合作,師生互動(dòng)中,使學(xué)生真正成為知識(shí)的發(fā)現(xiàn)者和知識(shí)的研究者。

七、教學(xué)過程分析

1、感性認(rèn)識(shí)階段——以舊帶新、提出課題

高中數(shù)學(xué)課件【篇11】

對(duì)于學(xué)生來說,學(xué)習(xí)數(shù)學(xué)的一個(gè)重要目的是要學(xué)會(huì)數(shù)學(xué)的思考,用數(shù)學(xué)的眼光去看世界去了解世界。而對(duì)于數(shù)學(xué)教師來說,他還要從“教”的角度去看數(shù)學(xué)去挖掘數(shù)學(xué),他不僅要能“做”、“會(huì)理解”,還應(yīng)當(dāng)能夠教會(huì)別人去“做”、去“理解”,因此教師對(duì)教學(xué)概念的反思應(yīng)當(dāng)從邏輯的、歷史的、關(guān)系、辨證等方面去展開。

以函數(shù)為例:

● 從邏輯的角度看,函數(shù)概念主要包含定義域、值域、對(duì)應(yīng)法則三要素,以及函數(shù)的單調(diào)性、奇偶性、周期性、對(duì)稱性等性質(zhì)和一些具體的特殊函數(shù),如:指數(shù)函數(shù)、對(duì)數(shù)函數(shù)等這些內(nèi)容是函數(shù)教學(xué)的基礎(chǔ),但不是函數(shù)的全部。

● 從關(guān)系的角度來看,不僅函數(shù)的主要內(nèi)容之間存在著種種實(shí)質(zhì)性的聯(lián)系,函數(shù)與其他中學(xué)數(shù)學(xué)內(nèi)容也有著密切的聯(lián)系。

方程的根可以作為函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo);

不等式的解就是函數(shù)的圖象在軸上方的那一部分所對(duì)應(yīng)的橫坐標(biāo)的集合;

數(shù)列也就是定義在自然數(shù)集合上的函數(shù);

……

同樣的幾何內(nèi)容也與函數(shù)有著密切的聯(lián)系。

教師在教學(xué)生是不能把他們看著“空的容器”,按照自己的意思往這些“空的容器”里“灌輸數(shù)學(xué)”這樣常常會(huì)進(jìn)入誤區(qū),因?yàn)閹熒g在數(shù)學(xué)知識(shí)、數(shù)學(xué)活動(dòng)經(jīng)驗(yàn)、興趣愛好、社會(huì)生活閱歷等方面存在很大的差異,這些差異使得他們對(duì)同一個(gè)教學(xué)活動(dòng)的感覺通常是不一樣的。

要想多“制造”一些供課后反思的數(shù)學(xué)學(xué)習(xí)素材,一個(gè)比較有效的方式就是在教學(xué)過程中盡可能多的把學(xué)生頭腦中問題“擠”出來,使他們解決問題的思維過程暴露出來。

教得好本質(zhì)上是為了促進(jìn)學(xué)得好。但在實(shí)際教學(xué)過程中是否能夠合乎我們的意愿呢?

我們?cè)谏险n、評(píng)卷、答疑解難時(shí),我們自以為講清楚明白了,學(xué)生受到了一定的啟發(fā),但反思后發(fā)現(xiàn),自己的講解并沒有很好的針對(duì)學(xué)生原有的知識(shí)水平,從根本上解決學(xué)生存在的問題,只是一味的想要他們按照某個(gè)固定的程序去解決某一類問題,學(xué)生當(dāng)時(shí)也許明白了,但并沒有理解問題的本質(zhì)性的東西。

在教學(xué)中,我們常常把自己學(xué)習(xí)數(shù)學(xué)的經(jīng)歷作為選擇教學(xué)方法的一個(gè)重要參照,我們每一個(gè)人都做過學(xué)生,我們每一個(gè)人都學(xué)過數(shù)學(xué),在學(xué)習(xí)過程中所品嘗過的喜怒哀樂,緊張、痛苦和歡樂的經(jīng)歷對(duì)我們今天的學(xué)生仍有一定的啟迪。

當(dāng)然,我們已有的數(shù)學(xué)學(xué)習(xí)經(jīng)歷還不夠給自己提供更多、更有價(jià)值、可用作反思的素材,那么我們可以“重新做一次學(xué)生”以學(xué)習(xí)者的身份從事一些探索性的活動(dòng),并有意識(shí)的對(duì)活動(dòng)過程的有關(guān)行為做出反思。

教學(xué)行為的本質(zhì)在于使學(xué)生受益,教得好是為了促進(jìn)學(xué)得好。我們教師在備課時(shí)把要講的問題設(shè)計(jì)的十分精巧,連板書都設(shè)計(jì)好了,表面上看天衣無縫,其實(shí),任何人都會(huì)遭遇失敗,教師把自己思維過程中失敗的部分隱瞞了,最有意義,最有啟發(fā)的東西抽掉了,學(xué)生除了贊嘆我們教師的高超的解題能力以外,又有什么收獲呢?所以貝爾納說“構(gòu)成我們學(xué)習(xí)上最大障礙的是已知的東西,而不是未知的東西”

大數(shù)學(xué)家希爾伯特的老師富士在講課時(shí)就常把自己置于困境中,并再現(xiàn)自己從中走出來的過程,讓學(xué)生看到老師的真實(shí)思維過程是怎樣的。人的能力只有在逆境中才能得到最好的鍛煉。經(jīng)常去問問學(xué)生,對(duì)數(shù)學(xué)學(xué)習(xí)的感受,借助學(xué)生的眼睛看一看自己的教學(xué)行為,是促進(jìn)教學(xué)的必要手段。

●同事之間長(zhǎng)期相處,彼此之間形成了可以討論教學(xué)問題的共同語(yǔ)言、溝通方式和寬松氛圍,便于展開有意義的討論。

● 由于所處的教學(xué)環(huán)境相似、所面對(duì)的教學(xué)對(duì)象知識(shí)和能力水平相近,因此容易找到共同關(guān)注的教學(xué)問題展開對(duì)彼此都有成效的交流。

● 交流的方式很多,比如:共同設(shè)計(jì)教學(xué)活動(dòng)、相互聽課、做課后分析等等。交流的話題包括:

我覺得這堂課的地方是……,我覺得這堂課糟糕的地方是……;這個(gè)地方的處理不知道怎么樣?如果是你會(huì)怎么處理?

我本想在這里“放一放”學(xué)生,但怕收不回來,你覺得該怎么做?

合作解決問題——共同從事教學(xué)設(shè)計(jì),從設(shè)計(jì)的依據(jù)、出發(fā)點(diǎn),到教學(xué)重心、基本教學(xué)過程,甚至富有創(chuàng)意的素材或問題。更為重要的是這樣的設(shè)計(jì)要為其后的教學(xué)反思留下空間。

學(xué)習(xí)相關(guān)的數(shù)學(xué)教育理論,我們能夠?qū)υS多實(shí)踐中感到疑惑的現(xiàn)象做出解釋;能夠?qū)Υ嬖谂c現(xiàn)象背后的問題有比較清楚的認(rèn)識(shí);能夠更加理智的看待自己和他人教學(xué)經(jīng)驗(yàn);能夠更大限度的做出有效的教學(xué)決策。

閱讀數(shù)學(xué)教學(xué)理論可以開闊我們教學(xué)反思行為的思路,不在總是局限在經(jīng)驗(yàn)的小天地,我們能夠看到自己的教學(xué)實(shí)踐行為有哪些與特定的教學(xué)情境有關(guān)、哪些更帶有普遍的意義,從而對(duì)這些行為有較為客觀的評(píng)價(jià)。能夠使我們更加理性的從事教學(xué)反思活動(dòng)并對(duì)反思得到的結(jié)論更加有信心。

更為重要的是,閱讀教學(xué)理論,可以使我們理智的看待自己教學(xué)活動(dòng)中“熟悉的”、“習(xí)慣性”的行為,能夠從更深刻的層面反思題目進(jìn)而使自己的專業(yè)發(fā)展走上良性發(fā)展的軌道。

教師的職業(yè)需要專門化,教師的專業(yè)發(fā)展是不可或缺的,它的最為便利而又十分有效的途徑是教學(xué)反思。沒有反思,專業(yè)能力不可能有實(shí)質(zhì)性的提高,而教學(xué)反思的對(duì)象和機(jī)會(huì)就在每一個(gè)教師的身邊.

對(duì)于學(xué)生來說,學(xué)習(xí)數(shù)學(xué)的一個(gè)重要目的是要學(xué)會(huì)數(shù)學(xué)的思考,用數(shù)學(xué)的眼光去看世界,去了解世界。而對(duì)于數(shù)學(xué)教師來說,他還要從“教”的角度去看數(shù)學(xué)去挖掘數(shù)學(xué),他不僅要能“做”、“會(huì)理解”,還應(yīng)當(dāng)能夠教會(huì)別人去“做”、去“理解”,因此教師對(duì)教學(xué)概念的反思應(yīng)當(dāng)從邏輯的、歷史的、辨證的等方面去展開。

下面以函數(shù)為例:

1。從邏輯的角度看,函數(shù)概念主要包含定義域、值域、對(duì)應(yīng)法則三要素,以及函數(shù)的單調(diào)性、奇偶性、周期性、對(duì)稱性等性質(zhì)和一些具體的特殊函數(shù),如:指數(shù)函數(shù)、對(duì)數(shù)函數(shù)等這些內(nèi)容是函數(shù)教學(xué)的基礎(chǔ),但不是函數(shù)的全部。

2。從關(guān)系的角度來看,不僅函數(shù)的主要內(nèi)容之間存在著種種實(shí)質(zhì)性的聯(lián)系,函數(shù)與其他中學(xué)數(shù)學(xué)內(nèi)容也有著密切的聯(lián)系。

方程的根可以作為函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo);

不等式的解就是函數(shù)的圖象在軸上方的那一部分所對(duì)應(yīng)的橫坐標(biāo)的集合;數(shù)列也就是定義在自然數(shù)集合上的函數(shù);

同樣的幾何內(nèi)容也與函數(shù)有著密切的聯(lián)系。

……

教師在教學(xué)生是不能把他們看著“空的容器”,按照自己的意思往這些“空的容器”里“灌輸數(shù)學(xué)”這樣常常會(huì)進(jìn)入誤區(qū),因?yàn)閹熒g在數(shù)學(xué)知識(shí)、數(shù)學(xué)活動(dòng)經(jīng)驗(yàn)、興趣愛好、社會(huì)生活閱歷等方面存在很大的差異,這些差異使得他們對(duì)同一個(gè)教學(xué)活動(dòng)的感覺通常是不一樣的。

要想多“制造”一些供課后反思的數(shù)學(xué)學(xué)習(xí)素材,一個(gè)比較有效的方式就是在教學(xué)過程中盡可能多的把學(xué)生頭腦中問題“擠”出來,使他們解決問題的思維過程暴露出來。

本人從事高中數(shù)學(xué)教學(xué)工作將近30年的時(shí)間了。在新課程背景下,如何有效利用課堂教學(xué)時(shí)間,如何盡可能地提高學(xué)生的學(xué)習(xí)興趣,提高學(xué)生在課堂上40分鐘的學(xué)習(xí)效率,這對(duì)于剛接觸高中新課改教學(xué)的我來說,也是一個(gè)很重要的課題。要搞好高中數(shù)學(xué)新課改,首先要對(duì)新課標(biāo)和新教材有整體的把握和認(rèn)識(shí),這樣才能將知識(shí)系統(tǒng)化,注意知識(shí)前后的聯(lián)系,形成知識(shí)框架;其次要了解學(xué)生的現(xiàn)狀和認(rèn)知結(jié)構(gòu),了解學(xué)生此階段的知識(shí)水平,以便因材施教;再次要處理好課堂教學(xué)中教師的教和學(xué)生的學(xué)的關(guān)系。課堂教學(xué)是實(shí)施高中新課程教學(xué)的主陣地,也是對(duì)學(xué)生進(jìn)行思想品德教育和素質(zhì)教育的主渠道。課堂教學(xué)不但要加強(qiáng)雙基而且要提高智力,要發(fā)展學(xué)生的創(chuàng)造力;不但要讓學(xué)生學(xué)會(huì),而且要讓學(xué)生會(huì)學(xué),特別是自學(xué)。尤其是在課堂上,不但要發(fā)展學(xué)生的智力因素,而且要提高學(xué)生在課堂40分鐘的學(xué)習(xí)效率,在有限的時(shí)間里,出色地完成教學(xué)任務(wù),不能穿新鞋走老路。

教學(xué)目標(biāo)分為三大目標(biāo),即認(rèn)知目標(biāo)、情感目標(biāo)和動(dòng)作技能目標(biāo)。因此,在備課時(shí)要圍繞這些目標(biāo)選擇教學(xué)的策略、方法和媒體,把內(nèi)容進(jìn)行必要的重組。備課時(shí)要依據(jù)教材,但又不拘泥于教材,靈活運(yùn)用教材。在數(shù)學(xué)教學(xué)中,要通過師生的共同努力,使學(xué)生在知識(shí)、能力、技能、心理、思想品德等方面達(dá)到預(yù)定的目標(biāo),以提高學(xué)生的綜合素質(zhì)。

每一堂課都要有教學(xué)重點(diǎn),而整堂的教學(xué)都是圍繞著教學(xué)重點(diǎn)來逐步展開的。為了讓學(xué)生明確本堂課的重點(diǎn)、難點(diǎn),教師在上課開始時(shí),可以在黑板的一角將這些內(nèi)容簡(jiǎn)短地寫出來,以便引起學(xué)生的重視。講授重點(diǎn)內(nèi)容,是整堂課的教學(xué)高潮。教師要通過聲音、手勢(shì)、板書等的變化或應(yīng)用模型、投影儀等直觀教具,刺激學(xué)生的大腦,使學(xué)生能夠興奮起來,適當(dāng)?shù)剡€可以插入與此類知識(shí)有關(guān)的笑話,對(duì)所學(xué)內(nèi)容在大腦中刻下強(qiáng)烈的印象,激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生對(duì)新知識(shí)的接受能力。尤其是在選擇例題時(shí),例題最好是呈階梯式展現(xiàn),我在準(zhǔn)備一堂課時(shí),通常是將一節(jié)或一章的題目先做完,再針對(duì)本節(jié)的知識(shí)內(nèi)容選擇相關(guān)題目,往往每節(jié)課都涉及好幾種題型。

在新課標(biāo)和新教材的背景下,教師掌握現(xiàn)代化的多媒體教學(xué)手段顯得尤為重要和迫切?,F(xiàn)代化教學(xué)手段的顯著特點(diǎn):一是能有效地增大每一堂課的課容量,從而把原來40分鐘的內(nèi)容在35分鐘中就加以解決;二是減輕教師板書的工作量,使教師能有精力講深講透所舉例子,提高講解效率;三是直觀性強(qiáng),容易激發(fā)起學(xué)生的學(xué)習(xí)興趣,有利于提高學(xué)生的學(xué)習(xí)主動(dòng)性;四是有利于對(duì)整堂課所學(xué)內(nèi)容進(jìn)行回顧和小結(jié)。在課堂教學(xué)結(jié)束時(shí),教師引導(dǎo)學(xué)生總結(jié)本堂課的內(nèi)容,學(xué)習(xí)的重點(diǎn)和難點(diǎn)。同時(shí)通過投影儀,同步地將內(nèi)容在瞬間躍然“幕”上,使學(xué)生進(jìn)一步理解和掌握本堂課的內(nèi)容。在課堂教學(xué)中,對(duì)于板演量大的內(nèi)容,如立體幾何中的一些幾何圖形、一些簡(jiǎn)單但數(shù)量較多的小問答題、文字量較多應(yīng)用題,復(fù)習(xí)課中章節(jié)內(nèi)容的總結(jié)、選擇題的訓(xùn)練等等都可以借助于投影儀來完成??赡艿脑?,教學(xué)可以自編電腦課件,借助電腦來生動(dòng)形象地展示所教內(nèi)容。如講授正弦曲線、余弦曲線的圖形、棱錐體積公式的推導(dǎo)過程都可以用電腦來演示。

每一堂課都有規(guī)定的教學(xué)任務(wù)和目標(biāo)要求。所謂“教學(xué)有法,但無定法”,教師要能隨著教學(xué)內(nèi)容的變化,教學(xué)對(duì)象的變化,教學(xué)設(shè)備的變化,靈活應(yīng)用教學(xué)方法。數(shù)學(xué)教學(xué)的方法很多,對(duì)于新授課,我們往往采用講授法來向?qū)W生傳授新知識(shí)。而在立體幾何中,我們還時(shí)常穿插演示法,來向?qū)W生展示幾何模型,或者驗(yàn)證幾何結(jié)論。如在教授立體幾何之前,要求學(xué)生每人用鉛絲做一個(gè)立方體的幾何模型,觀察其各條棱之間的相對(duì)位置關(guān)系,各條棱與正方體對(duì)角線之間、各個(gè)側(cè)面的對(duì)角線之間所形成的角度。這樣在講授空間兩條直線之間的位置關(guān)系時(shí),就可以通過這些幾何模型,直觀地加以說明。此外,我們還可以結(jié)合課堂內(nèi)容,靈活采用談話、讀書指導(dǎo)、作業(yè)、練習(xí)等多種教學(xué)方法。在一堂課上,有時(shí)要同時(shí)使用多種教學(xué)方法。“教無定法,貴要得法”。只要能激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生的學(xué)習(xí)積極性,有助于學(xué)生思維能力的培養(yǎng),有利于所學(xué)知識(shí)的掌握和運(yùn)用,都是好的教學(xué)方法。

高中新課程的宗旨是著眼于學(xué)生的發(fā)展。對(duì)學(xué)生在課堂上的表現(xiàn),要及時(shí)加以總結(jié),適當(dāng)給予鼓勵(lì),并處理好課堂的偶發(fā)事件,及時(shí)調(diào)整課堂教學(xué)。在教學(xué)過程中,教師要隨時(shí)了解學(xué)生對(duì)所講內(nèi)容的掌握情況。如在講完一個(gè)概念后,讓學(xué)生復(fù)述;講完一個(gè)例題后,將解答擦掉,請(qǐng)中等水平學(xué)生上臺(tái)板演。有時(shí),對(duì)于基礎(chǔ)差的學(xué)生,可以對(duì)他們多提問,讓他們有較多的鍛煉機(jī)會(huì),同時(shí)教師根據(jù)學(xué)生的表現(xiàn),及時(shí)進(jìn)行鼓勵(lì),培養(yǎng)他們的自信心,讓他們能熱愛數(shù)學(xué),學(xué)習(xí)數(shù)學(xué)。

學(xué)生是學(xué)習(xí)的主體,教師要圍繞著學(xué)生展開教學(xué)。在教學(xué)過程中,自始至終讓學(xué)生唱主角,使學(xué)生變被動(dòng)學(xué)習(xí)為主動(dòng)學(xué)習(xí),讓學(xué)生成為學(xué)習(xí)的主人,教師成為學(xué)習(xí)的領(lǐng)路人。

在一堂課中,教師盡量少講,讓學(xué)生多動(dòng)手,動(dòng)腦操作,剛畢業(yè)那會(huì),每次上課,看到學(xué)生一道題目往往要思考很久才能探究出答案,我就有點(diǎn)心急,每次都忍不住在他們即將做出答案的時(shí)候?qū)⒎椒ǜ嬖V他們。這樣容易造成學(xué)生對(duì)老師的依賴,不利于培養(yǎng)學(xué)生獨(dú)立思考的能力和新方法的形成。學(xué)生的思維本身就是一個(gè)資源庫(kù),學(xué)生往往會(huì)想出我意想不到的好方法來。

眾所周知,近年來數(shù)學(xué)試題的新穎性、靈活性越來越強(qiáng),不少師生把主要精力放在難度較大的綜合題上,認(rèn)為只有通過解決難題才能培養(yǎng)能力,因而相對(duì)地忽視了基礎(chǔ)知識(shí)、基本技能、基本方法的教學(xué)。教學(xué)中急急忙忙把公式、定理推證拿出來,或草草講一道例題就通過大量的題目來訓(xùn)練學(xué)生。其實(shí)定理、公式推證的過程就蘊(yùn)含著重要的解題方法和規(guī)律,教師沒有充分暴露思維過程,沒有發(fā)掘其內(nèi)在的規(guī)律,就讓學(xué)生去做題,試圖通過讓學(xué)生大量地做題去“悟”出某些道理。結(jié)果是多數(shù)學(xué)生“悟”不出方法、規(guī)律,理解浮淺,記憶不牢,只會(huì)機(jī)械地模仿,思維水平較低,有時(shí)甚至生搬硬套;照葫蘆畫瓢,將簡(jiǎn)單問題復(fù)雜化。如果教師在教學(xué)中過于粗疏或?qū)W生在學(xué)習(xí)中對(duì)基本知識(shí)不求甚解,都會(huì)導(dǎo)致在考試中判斷錯(cuò)誤。不少學(xué)生說:現(xiàn)在的試題量過大,他們往往無法完成全部試卷的解答,而解題速度的快慢主要取決于基本技能、基本方法的熟練程度及能力的高低。可見,在切實(shí)重視基礎(chǔ)知識(shí)的落實(shí)中同時(shí)應(yīng)重視基本技能和基本方法的培養(yǎng)。

常用的數(shù)學(xué)思想方法有:轉(zhuǎn)化的思想,類比歸納與類比聯(lián)想的思想,分類討論的思想,數(shù)形結(jié)合的思想以及配方法、換元法、待定系數(shù)法、反證法等。這些基本思想和方法分散地滲透在中學(xué)數(shù)學(xué)教材的條章節(jié)之中。在平時(shí)的教學(xué)中,教師要在傳授基礎(chǔ)知識(shí)的同時(shí),有意識(shí)地、恰當(dāng)在講解與滲透基本數(shù)學(xué)思想和方法,幫助學(xué)生掌握科學(xué)的方法,從而達(dá)到傳授知識(shí),培養(yǎng)能力的目的。只有這樣,學(xué)生才能靈活運(yùn)用和綜合運(yùn)用所學(xué)的知識(shí)。

總之,在新課程背景下的數(shù)學(xué)課堂教學(xué)中,要提高學(xué)生在課堂40分鐘的學(xué)習(xí)效率,要提高教學(xué)質(zhì)量,我們就應(yīng)該多思考、多準(zhǔn)備,充分做到備教材、備學(xué)生、備教法,提高自身的教學(xué)機(jī)智,發(fā)揮自身的主導(dǎo)作用。

本人任教高中數(shù)學(xué)新課程已有三年,通過實(shí)踐,對(duì)高中新課程的教學(xué)理念有了進(jìn)一步的了解,對(duì)新課標(biāo)下的具體教學(xué)實(shí)施有了一些經(jīng)驗(yàn)或想法。以下就是自己在新課改背景下,對(duì)一些教學(xué)內(nèi)容所做的思考與體會(huì)。

一、將數(shù)學(xué)教學(xué)內(nèi)容的學(xué)術(shù)形態(tài)轉(zhuǎn)化為學(xué)生易于接受的教育形態(tài) [案例1]弧度制的教學(xué)

在弧度制的教學(xué)中,教材在介紹了弧度制的概念時(shí),直接給出“1弧度的角” 的定義,然而學(xué)生難以接受,常常不解地問:“怎么想到要把長(zhǎng)度等于半徑的弧所對(duì)的圓心角叫做1弧度的角?”如果老師照本宣科,學(xué)生便更加感到乏味:“弧度,弧度,越學(xué)越糊涂。”“弧度制”這類學(xué)生在生活與社會(huì)實(shí)踐中從未碰到過的概念,直接給出它的定義,學(xué)生會(huì)很難理解。在課堂教學(xué)中,可采用如下設(shè)計(jì)的教學(xué)過程。

一個(gè)生病的小男孩得知自己的體溫是“102”時(shí),十分憂傷地獨(dú)自一個(gè)人躺在床上“等死”。而他的爸爸對(duì)此卻一無所知,他以為兒子是想休息,所以才沒有陪伴他,等他從外面打獵回來,發(fā)現(xiàn)兒子不見好轉(zhuǎn)時(shí),才發(fā)現(xiàn)兒子沒有吃藥。一問才知道,他兒子在學(xué)校里聽同學(xué)說一個(gè)人的體溫是“44”度時(shí)就不能活。當(dāng)爸爸告訴他就像英里和千米一樣,有兩種不同的體溫測(cè)量標(biāo)準(zhǔn),一種37度是正常,而另一種98度是正常時(shí),他才一下子放松下來,委屈的淚水嘩嘩地流下來。 在生活、生產(chǎn)和科學(xué)研究中,一個(gè)量可以有幾種不同的計(jì)量單位(老師可以讓學(xué)生說出如長(zhǎng)度、面積、質(zhì)量等一些量的不同計(jì)量單位),并指出對(duì)于“角”僅用“度”做單位就很不方便。因此,我們要學(xué)習(xí)角的另一種計(jì)量單位——弧度。如此引入很.自然引出或鼓勵(lì)學(xué)生猜測(cè)“角”還有沒有其他度量方式,從而開啟思維的閘門。

可從兩種度量實(shí)質(zhì)上的一致之處開始探索:拿兩個(gè)量角器拼成一個(gè)圓,可以看出圓周被分成360份,其中每一份所對(duì)的圓心角的度數(shù)就是1度,然后提出問題“拿”圓上不同的圓弧,度量圓周時(shí),得到的數(shù)值是否一樣? 為了探索這個(gè)問題,把學(xué)生分成若干小組,思考下列問題:

① 1度的角是如何規(guī)定的?

② 用一個(gè)圓心角所對(duì)的弧長(zhǎng)來度量一個(gè)圓心角的大小是否可行?同一個(gè)圓心角在半徑不等的圓中所對(duì)弧長(zhǎng)相等嗎?

③ 用一個(gè)圓的半徑來度量該圓一個(gè)圓心角的大小是否可行?其值會(huì)不會(huì)由于圓半徑的變化而變化?

④ 如何定義圓心角的大小?說明這種度量的好處。

高中數(shù)學(xué)教學(xué)案例反思精選4篇教學(xué)反思要求學(xué)生分組討論以上問題,寫出結(jié)果,在班內(nèi)交流結(jié)果,師生共同確定答案。

這樣處理可將弧度概念與度量有機(jī)結(jié)合起來,有效化解難點(diǎn),在探索中又注重課堂交流能力的培養(yǎng),使學(xué)生在不斷的交流中逐漸明晰自己的思路。

新的課程標(biāo)準(zhǔn)不僅強(qiáng)調(diào)基礎(chǔ)知識(shí)與基本技能的獲得,更強(qiáng)調(diào)讓學(xué)生經(jīng)歷知識(shí) 的形成過程,以及伴隨這一過程產(chǎn)生的積極的情感體驗(yàn)和正確的價(jià)值觀。

[案例2] 等比數(shù)列的前n項(xiàng)和公式的探求。

為了求得一般的等比數(shù)列的前n項(xiàng)和,先用一個(gè)簡(jiǎn)捷公式來表示。

已知等比數(shù)列{ an}的公比為q,求這個(gè)數(shù)列的前n項(xiàng)和Sn。即Sn=a1+a2+a3+、、、+an 。

(1)知識(shí)回顧。

類比學(xué)過的等差數(shù)列的前n項(xiàng)和公式,不難想到等比數(shù)列前n項(xiàng)和Sn也希望能用a1、an,n或q來表示。

聯(lián)想等差數(shù)列的前n項(xiàng)和推導(dǎo)方法,問:等比數(shù)列前n項(xiàng)的和是否也能用一個(gè)公式來表示?

(這是學(xué)生完成知識(shí)形成過程的重要一步,應(yīng)留出充分的時(shí)間讓學(xué)生研究和討論。)

要用a1、n、q來表示Sn=a1+a2+a3+、、、+an應(yīng)先將a2,a3, ···,an用a1、n、q來表示。

注意觀察每項(xiàng)的結(jié)構(gòu):每項(xiàng)都是它前面一項(xiàng)的q倍,能否利用這個(gè)q倍,對(duì)Sn化簡(jiǎn)求和?

(經(jīng)過一番思考)對(duì)Sn兩邊分別乘以q,再與原式相減。經(jīng)師生共同努力,完成推導(dǎo)過程.

這樣設(shè)計(jì)推導(dǎo)方法加強(qiáng)了知識(shí)形成過程的教學(xué),培養(yǎng)了學(xué)生的發(fā)散思維,既關(guān)注了學(xué)生知識(shí)與技能的理解和掌握,更關(guān)注了學(xué)生情感與態(tài)度的形成和發(fā)展。而傳統(tǒng)教學(xué)往往以最快的速度給出公式,然后通過例題演練學(xué)生,這樣教學(xué)結(jié)果往往使學(xué)生死背公式,而不能靈活運(yùn)用公式解決問題。

高中數(shù)學(xué)課件【篇12】

教學(xué)目標(biāo)

(1)理解四種命題的概念;

(2)理解四種命題之間的相互關(guān)系,能由原命題寫出其他三種形式;

(3)理解一個(gè)命題的真假與其他三個(gè)命題真假間的關(guān)系;

(4)初步掌握反證法的概念及反證法證題的基本步驟;

(5)通過對(duì)四種命題之間關(guān)系的學(xué)習(xí),培養(yǎng)學(xué)生邏輯推理能力;

(6)通過對(duì)四種命題的存在性和相對(duì)性的認(rèn)識(shí),進(jìn)行辯證唯物主義觀點(diǎn)教育;

(7)培養(yǎng)學(xué)生用反證法簡(jiǎn)單推理的技能,從而發(fā)展學(xué)生的思維能力。

教學(xué)重點(diǎn)和難點(diǎn)

重點(diǎn):四種命題之間的關(guān)系;

難點(diǎn):反證法的運(yùn)用。

教學(xué)過程設(shè)計(jì)

一、導(dǎo)入新課

【練習(xí)】

1、把下列命題改寫成“若p則q”的形式:

(1)同位角相等,兩直線平行;

(2)正方形的四條邊相等。

2、什么叫互逆命題?上述命題的逆命題是什么?

將命題寫成“若p則q”的形式,關(guān)鍵是找到命題的條件p與q結(jié)論。

如果第一個(gè)命題的條件是第二個(gè)命題的結(jié)論,且第一個(gè)命題的結(jié)論是第二個(gè)命題的條件,那么這兩個(gè)命題叫做互道命題。

上述命題的道命題是“若一個(gè)四邊形的四條邊相等,則它是正方形”和“若兩條直線平行,則同位角相等”。

值得指出的是原命題和逆命題是相對(duì)的。我們也可以把逆命題當(dāng)成原命題,去求它的逆命題。

3、原命題真,逆命題一定真嗎?

“同位角相等,兩直線平行”這個(gè)原命題真,逆命題也真。但“正方形的四條邊相等”的原命題真,逆命題就不真,所以原命題真,逆命題不一定真。

學(xué)生活動(dòng):

口答:

(1)若同位角相等,則兩直線平行;[趣祝福 Www.Zfw152.COm]

(2)若一個(gè)四邊形是正方形,則它的四條邊相等。

設(shè)計(jì)意圖:

通過復(fù)習(xí)舊知識(shí),打下學(xué)習(xí)否命題、逆否命題的基礎(chǔ)。

二、新課

【設(shè)問】命題“同位角相等,兩條直線平行”除了能構(gòu)成它的逆命題外,是否還可以構(gòu)成其它形式的命題?

【講述】可以將原命題的條件和結(jié)論分別否定,構(gòu)成“同位角不相等,則兩直線不平行”,這個(gè)命題叫原命題的否命題。

【提問】你能由原命題“正方形的四條邊相等”構(gòu)成它的否命題嗎?

學(xué)生活動(dòng):

口答:若一個(gè)四邊形不是正方形,則它的四條邊不相等。

教師活動(dòng):

【講述】一個(gè)命題的條件和結(jié)論分別是另一個(gè)命題的條件的否定和結(jié)論的否定,這樣的兩個(gè)命題叫做互否命題。把其中一個(gè)命題叫做原命題,另一個(gè)命題叫做原命題的否命題。

若用p和q分別表示原命題的條件和結(jié)論,用┐p和┐q分別表示p和q的否定。

【板書】原命題:若p則q;

否命題:若┐p則q┐。

【提問】原命題真,否命題一定真嗎?舉例說明?

學(xué)生活動(dòng):

講論后回答:

原命題“同位角相等,兩直線平行”真,它的否命題“同位角不相等,兩直線不平行”不真。

原命題“正方形的四條邊相等”真,它的否命題“若一個(gè)四邊形不是正方形,則它的四條邊不相等”不真。

由此可以得原命題真,它的否命題不一定真。

設(shè)計(jì)意圖:

通過設(shè)問和討論,讓學(xué)生在自己舉例中研究如何由原命題構(gòu)成否命題及判斷它們的`真假,調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性。

教師活動(dòng):

【提問】命題“同位角相等,兩條直線平行”除了能構(gòu)成它的逆命題和否命題外,還可以不可以構(gòu)成別的命題?

學(xué)生活動(dòng):

討論后回答

【總結(jié)】可以將這個(gè)命題的條件和結(jié)論互換后再分別將新的條件和結(jié)論分別否定構(gòu)成命題“兩條直線不平行,則同位角不相等”,這個(gè)命題叫原命題的逆否命題。

教師活動(dòng):

【提問】原命題“正方形的四條邊相等”的逆否命題是什么?

學(xué)生活動(dòng):

口答:若一個(gè)四邊形的四條邊不相等,則不是正方形。

教師活動(dòng):

【講述】一個(gè)命題的條件和結(jié)論分別是另一個(gè)命題的結(jié)論的否定和條件的否定,這樣的兩個(gè)命題叫做互為逆否命題。把其中一個(gè)命題叫做原命題,另一個(gè)命題就叫做原命題的逆否命題。

原命題是“若p則q”,則逆否命題為“若┐q則┐p。

【提問】“兩條直線不平行,則同位角不相等”是否真?“若一個(gè)四邊形的四條邊不相等,則不是正方形”是否真?若原命題真,逆否命題是否也真?

學(xué)生活動(dòng):

討論后回答

這兩個(gè)逆否命題都真。

原命題真,逆否命題也真。

教師活動(dòng):

【提問】原命題的真假與其他三種命題的真

假有什么關(guān)系?舉例加以說明?

【總結(jié)】

1、原命題為真,它的逆命題不一定為真。

2、原命題為真,它的否命題不一定為真。

3、原命題為真,它的逆否命題一定為真。

設(shè)計(jì)意圖:

通過設(shè)問和討論,讓學(xué)生在自己舉例中研究如何由原命題構(gòu)成逆否命題及判斷它們的真假,調(diào)動(dòng)學(xué)生學(xué)的積極性。

教師活動(dòng)總結(jié)。

PF2|2.P為等軸雙曲線x2y2a2上一點(diǎn), F1、F2為兩焦點(diǎn),O為雙曲線的中心,求的|PO|取值范圍。

3.在拋物線y22px上有一點(diǎn)A(4,m),A點(diǎn)到拋物線的焦點(diǎn)F的距離為5,求拋物線的方程和點(diǎn)A的坐標(biāo)。

4.(1)已知點(diǎn)F是橢圓1的右焦點(diǎn),M是這橢圓上的動(dòng)點(diǎn),A(2,2)是一個(gè)定點(diǎn),求|MA|+|MF|的最小值。

x2y211(2)已知A(,3)為一定點(diǎn),F(xiàn)為雙曲線1的右焦點(diǎn),M在雙曲線右支上移動(dòng),當(dāng)|AM平面bcd。

變式一:空間四邊形abcd中,e、f、g、h分別是邊ab、bc、cd、da中點(diǎn),連結(jié)ef、fg、gh、he、ac、bd請(qǐng)分別找出圖中滿足線面平行位置關(guān)系的所有情況。(共6組線面平行)

變式二:在變式一的圖中如作pq?ef,使p點(diǎn)在線段ae上、q點(diǎn)在線段fc上,連結(jié)ph、qg,并繼續(xù)探究圖中所具有的線面平行位置關(guān)系?(在變式一的基礎(chǔ)上增加了4組線面平行),并判斷四邊形efgh、pqgh分別是怎樣的四邊形,說明理由。

[設(shè)計(jì)意圖:設(shè)計(jì)二個(gè)變式訓(xùn)練,目的是通過問題探究、討論,思辨,及時(shí)鞏固定理,運(yùn)用定理,培養(yǎng)學(xué)生的識(shí)圖能力與邏輯推理能力。]例2:如圖,在正方體abcd—a1b1c1d1中,e、f分別是棱bc與c1d1中點(diǎn),求證:ef

Yjs21.Com更多幼師資料擴(kuò)展閱讀

高等數(shù)學(xué)課件系列七篇


每個(gè)老師都需要在課前準(zhǔn)備好自己的教案課件,本學(xué)期又到了寫教案課件的時(shí)候了。?教師應(yīng)該在教案課件中充分展示,讓學(xué)生理解和掌握知識(shí)。我在教育網(wǎng)上找到一篇關(guān)于“高等數(shù)學(xué)課件”的文章內(nèi)容很詳盡,希望這些知識(shí)能夠?qū)δ阌兴鶐椭?/p>

高等數(shù)學(xué)課件 篇1

高等數(shù)學(xué)課程是大學(xué)數(shù)學(xué)課程的一種,通常包括微積分、線性代數(shù)等內(nèi)容。它為學(xué)生提供了更深入的數(shù)學(xué)知識(shí),為他們?cè)跀?shù)學(xué)領(lǐng)域的研究和專業(yè)發(fā)展打下了堅(jiān)實(shí)的基礎(chǔ)。以下是關(guān)于高等數(shù)學(xué)的主題范文。

一、微積分是高等數(shù)學(xué)的重要組成部分,其應(yīng)用范圍非常廣泛。通過學(xué)習(xí)微積分,學(xué)生可以更深入地理解數(shù)學(xué)對(duì)于自然科學(xué)和工程科學(xué)的重要性,以及數(shù)學(xué)在經(jīng)濟(jì)學(xué)和金融學(xué)等領(lǐng)域的應(yīng)用。此外,微積分也是理解人類歷史上最偉大的數(shù)學(xué)要素之一,如牛頓與萊布尼茨的發(fā)現(xiàn)和應(yīng)用。隨著時(shí)代的變化和數(shù)學(xué)的發(fā)展,現(xiàn)代微積分也經(jīng)歷了很多新的變化和應(yīng)用,如微分方程和復(fù)變函數(shù)。

二、線性代數(shù)是另一個(gè)重要的高等數(shù)學(xué)領(lǐng)域,它將數(shù)學(xué)的概念與實(shí)際的科學(xué)和工程應(yīng)用結(jié)合起來。學(xué)生學(xué)習(xí)線性代數(shù)的過程中,他們將會(huì)掌握矩陣的基本概念,矩陣方程,向量空間,線性變換,歐幾里得空間等重要概念。線性代數(shù)也是現(xiàn)代計(jì)算機(jī)科學(xué)領(lǐng)域中應(yīng)用廣泛的領(lǐng)域,因?yàn)樗鼘?duì)于處理大量復(fù)雜和抽象的數(shù)據(jù)有著重要的方法和工具。

三、高等數(shù)學(xué)的Calculus(微積分)和Linear Algebra(線性代數(shù))是現(xiàn)代科學(xué)和工程的基礎(chǔ)。這些數(shù)學(xué)思想和方法的理解和掌握將使得學(xué)生們?cè)诳茖W(xué)領(lǐng)域中更加成功。學(xué)生不僅要掌握計(jì)算技能,更重要的是理解概念和理論的物理和幾何意義。在應(yīng)用和計(jì)算方面,學(xué)生還需要熟練掌握數(shù)學(xué)軟件和工具,如MATLAB, Maple等。

四、高等數(shù)學(xué)教育是大學(xué)教育中最重要的組成部分之一,它不僅為自然科學(xué)和工程學(xué)科的發(fā)展做出了重要貢獻(xiàn),而且也為其他領(lǐng)域的理論和應(yīng)用提供了強(qiáng)有力的工具。高等數(shù)學(xué)不僅為理解和探究自然界和人類文化提供了基礎(chǔ),而且還為學(xué)生的個(gè)人發(fā)展和成就提供了堅(jiān)實(shí)的數(shù)學(xué)知識(shí)基礎(chǔ)。因此,高等數(shù)學(xué)教育的重要性在當(dāng)今社會(huì)中變得越來越明顯,我們應(yīng)該重視數(shù)學(xué)教育,并為學(xué)生提供更好的數(shù)學(xué)教育資源和機(jī)會(huì)。

五、高等數(shù)學(xué)教育應(yīng)強(qiáng)調(diào)學(xué)生們對(duì)數(shù)學(xué)知識(shí)的理解和應(yīng)用能力的培養(yǎng)。要實(shí)現(xiàn)這一目的,教育者應(yīng)該采用更多的探究式學(xué)習(xí)方法和應(yīng)用例子來讓學(xué)生發(fā)現(xiàn)數(shù)學(xué)概念的重要性。同時(shí),教育者應(yīng)該鼓勵(lì)學(xué)生們利用數(shù)學(xué)知識(shí),為社會(huì)做出更大的貢獻(xiàn)。

總而言之,高等數(shù)學(xué)教育是大學(xué)教育的重要組成部分。學(xué)生通過學(xué)習(xí)微積分和線性代數(shù)等數(shù)學(xué)知識(shí),將會(huì)掌握更深入的數(shù)學(xué)理解和應(yīng)用,從而對(duì)自然科學(xué)和工程學(xué)科的發(fā)展做出更大的貢獻(xiàn)。教育者應(yīng)該注重學(xué)生對(duì)數(shù)學(xué)知識(shí)的理解和應(yīng)用能力的培養(yǎng),同時(shí)鼓勵(lì)學(xué)生利用數(shù)學(xué)知識(shí)為社會(huì)創(chuàng)造更大的價(jià)值。

高等數(shù)學(xué)課件 篇2

高等數(shù)學(xué)課件是一種重要的教學(xué)資源,能夠幫助學(xué)生更好地理解和掌握數(shù)學(xué)知識(shí),提高數(shù)學(xué)能力。在現(xiàn)代教育中,教育技術(shù)的發(fā)展和應(yīng)用,使得教師能夠使用多種形式的教學(xué)資源,包括課件等。因此,高等數(shù)學(xué)課件的編寫和使用已經(jīng)成為了現(xiàn)代高等數(shù)學(xué)教學(xué)的重要課題。

高等數(shù)學(xué)課件的編寫需要考慮到學(xué)生的學(xué)習(xí)需求和教學(xué)目標(biāo)。在編寫課件時(shí),應(yīng)當(dāng)根據(jù)課程內(nèi)容、學(xué)生的知識(shí)水平、教學(xué)目標(biāo)等因素進(jìn)行分析和設(shè)計(jì),以達(dá)到最好的教學(xué)效果。由于高等數(shù)學(xué)的知識(shí)層次較為復(fù)雜,因此編寫高等數(shù)學(xué)課件時(shí)需要充分考慮到學(xué)生的認(rèn)知模式和學(xué)習(xí)習(xí)慣,力求讓學(xué)生更好地理解和掌握數(shù)學(xué)知識(shí)。

高等數(shù)學(xué)課件應(yīng)具備以下幾個(gè)方面的要求:

一、準(zhǔn)確性。高等數(shù)學(xué)知識(shí)的準(zhǔn)確性是基本要求,因?yàn)槿魏我粋€(gè)錯(cuò)誤的公式或概念,都會(huì)對(duì)學(xué)生成長(zhǎng)和知識(shí)的累積產(chǎn)生負(fù)面影響。因此在編寫和使用高等數(shù)學(xué)課件時(shí),應(yīng)嚴(yán)格控制內(nèi)容的準(zhǔn)確性,確保學(xué)生能夠掌握正確的知識(shí)和技能。

二、清晰性。高等數(shù)學(xué)是一門較為抽象的學(xué)科,對(duì)于學(xué)生來說,掌握數(shù)學(xué)知識(shí)本身就需要花費(fèi)較大的認(rèn)知代價(jià)。因此,在編寫和使用高等數(shù)學(xué)課件時(shí),應(yīng)力求將知識(shí)的概念和原理表達(dá)得盡可能清晰和易懂,避免出現(xiàn)模糊或難以理解的語(yǔ)言和表達(dá)方式。

三、實(shí)用性。高等數(shù)學(xué)課件的編寫和使用應(yīng)力求貼近實(shí)際問題和應(yīng)用情境,幫助學(xué)生理解知識(shí)的實(shí)際應(yīng)用場(chǎng)景和方法,培養(yǎng)學(xué)生的解決實(shí)際問題的能力。

四、適用性。高等數(shù)學(xué)課件的設(shè)計(jì)應(yīng)當(dāng)考慮到不同年級(jí)、不同層次、不同專業(yè)學(xué)生的不同需求,盡可能做到適用性的設(shè)計(jì),以便保持高效和靈活性。

在高等數(shù)學(xué)課件的編寫和使用中,應(yīng)盡可能滿足學(xué)生的學(xué)習(xí)需求和教學(xué)目標(biāo),強(qiáng)化課程知識(shí)的建設(shè)和教學(xué)策略的完善,以提高數(shù)學(xué)教育的質(zhì)量和水平。同時(shí),高等數(shù)學(xué)課件的編寫和使用應(yīng)在保持教學(xué)質(zhì)量和效果的同時(shí),適應(yīng)教育技術(shù)的不斷創(chuàng)新和進(jìn)步,推動(dòng)教學(xué)模式和教學(xué)流程的優(yōu)化和升華。

高等數(shù)學(xué)課件 篇3

高等數(shù)學(xué)課件

高等數(shù)學(xué)課程對(duì)于大多數(shù)理工科學(xué)生來說,是必修課程中的一門重要課程。這門課程的學(xué)習(xí)內(nèi)容極其豐富,包括了微積分、線性代數(shù)、常微分方程等方面的知識(shí)。為了幫助學(xué)生更好地學(xué)習(xí)高等數(shù)學(xué)課程,課件是一個(gè)非常有效的學(xué)習(xí)工具。

一、高等數(shù)學(xué)課程概述

高等數(shù)學(xué)課程是大多數(shù)理科學(xué)生必修的一門學(xué)科,主要包括微積分、線性代數(shù)、概率與統(tǒng)計(jì)、數(shù)學(xué)分析等內(nèi)容,是研究各種現(xiàn)代科學(xué)問題所必需的一種重要工具。高等數(shù)學(xué)的學(xué)習(xí)對(duì)于提高學(xué)生的數(shù)學(xué)素養(yǎng)、加強(qiáng)數(shù)學(xué)思維能力、提高科學(xué)研究能力、提高綜合素質(zhì)都具有重要的作用。

二、高等數(shù)學(xué)課件設(shè)計(jì)

針對(duì)高等數(shù)學(xué)課程的課件設(shè)計(jì),應(yīng)該根據(jù)課程大綱進(jìn)行設(shè)計(jì),使其能夠幫助學(xué)生更好地掌握重點(diǎn)難點(diǎn)知識(shí),同時(shí)使學(xué)生能夠通過課件進(jìn)行自主學(xué)習(xí)。以下是高等數(shù)學(xué)課件設(shè)計(jì)的幾個(gè)方面:

1.內(nèi)容分析:對(duì)于高等數(shù)學(xué)課程的內(nèi)容進(jìn)行分析,并提取重點(diǎn)難點(diǎn)知識(shí)點(diǎn),為學(xué)生學(xué)習(xí)提供有針對(duì)性的指導(dǎo)。

2.教學(xué)方法:針對(duì)不同的知識(shí)點(diǎn),采用不同的教學(xué)方法,如實(shí)例分析、問題導(dǎo)向、知識(shí)鏈接等。

3.學(xué)習(xí)工具:為學(xué)生提供學(xué)習(xí)工具,如習(xí)題集、在線視頻、強(qiáng)化訓(xùn)練等,使學(xué)生能夠更好地進(jìn)行練習(xí)、鞏固知識(shí)點(diǎn)。

4.互動(dòng)方式:采用互動(dòng)方式,使學(xué)生與教師之間、學(xué)生與學(xué)生之間能夠進(jìn)行有效溝通,交流經(jīng)驗(yàn),靈活開展學(xué)習(xí)。

三、高等數(shù)學(xué)課件的優(yōu)點(diǎn)

高等數(shù)學(xué)課件的優(yōu)點(diǎn)主要表現(xiàn)在以下幾個(gè)方面:

1. 圖像直觀:高等數(shù)學(xué)中的許多數(shù)學(xué)模型,通過課件能夠通過圖表等形式進(jìn)行展現(xiàn),使學(xué)生能夠直觀地理解相關(guān)內(nèi)容,加深對(duì)概念的理解。

2. 動(dòng)態(tài)演示:高等數(shù)學(xué)涉及到的許多計(jì)算過程和公式,通過課件進(jìn)行動(dòng)態(tài)演示,使學(xué)生能夠更加深入理解相關(guān)內(nèi)容。

3. 學(xué)習(xí)效率高:通過課件,學(xué)生能夠自主選擇學(xué)習(xí)時(shí)間和地點(diǎn),以及自主選擇學(xué)習(xí)內(nèi)容,靈活性較大,學(xué)習(xí)效率能夠得到極大提高。

4. 綜合性強(qiáng):高等數(shù)學(xué)課件能夠?qū)⒉煌鹿?jié)的內(nèi)容連接在一起,形成一個(gè)完整的知識(shí)體系,使學(xué)生能夠更好地進(jìn)行全面學(xué)習(xí)。

高等數(shù)學(xué)課件的設(shè)計(jì)和應(yīng)用對(duì)于學(xué)生的自主學(xué)習(xí)、知識(shí)掌握和綜合能力的提升都具有重要意義。針對(duì)高等數(shù)學(xué)課程的特點(diǎn)和學(xué)生的需求,需要有相應(yīng)的課件設(shè)計(jì)方案,能夠滿足學(xué)生的學(xué)習(xí)需要,提高學(xué)生的學(xué)習(xí)效率和課程質(zhì)量。

高等數(shù)學(xué)課件 篇4

高等數(shù)學(xué)課程是大學(xué)數(shù)學(xué)教學(xué)中的重要組成部分,包含微積分、線性代數(shù)、概率論與數(shù)理統(tǒng)計(jì)等模塊。學(xué)生們通過上這門課,能夠系統(tǒng)地學(xué)習(xí)和掌握高等數(shù)學(xué)的基礎(chǔ)理論、方法和技能,為未來的學(xué)術(shù)研究和職場(chǎng)實(shí)踐打下堅(jiān)實(shí)的數(shù)學(xué)基礎(chǔ)。

一、微積分模塊

微積分是高等數(shù)學(xué)的核心內(nèi)容之一,由導(dǎo)數(shù)、微分、積分三部分組成。學(xué)生們需要掌握函數(shù)的導(dǎo)數(shù)、極值、凹凸性等概念,了解微分的意義、性質(zhì)和應(yīng)用,學(xué)會(huì)積分方法和應(yīng)用。除此之外,微積分還與其他學(xué)科緊密相關(guān),在物理、工程、計(jì)算機(jī)等領(lǐng)域都有廣泛應(yīng)用。

二、線性代數(shù)模塊

線性代數(shù)是研究向量空間、線性變換、矩陣、行列式等數(shù)學(xué)對(duì)象的學(xué)科。它在數(shù)學(xué)和工程學(xué)科中有廣泛應(yīng)用,如圖像處理、信號(hào)處理、電路設(shè)計(jì)、計(jì)算機(jī)圖形學(xué)等。在線性代數(shù)的學(xué)習(xí)過程中,學(xué)生們需要理解向量空間的含義和性質(zhì),了解線性變換和矩陣的運(yùn)算規(guī)律,掌握行列式計(jì)算和線性方程組的求解等基礎(chǔ)知識(shí)和技能。

三、概率論與數(shù)理統(tǒng)計(jì)模塊

概率論和數(shù)理統(tǒng)計(jì)是研究隨機(jī)現(xiàn)象的規(guī)律和統(tǒng)計(jì)規(guī)律的學(xué)科。概率論研究事件的可能性和發(fā)生規(guī)律,數(shù)理統(tǒng)計(jì)研究數(shù)據(jù)的收集、整理和分析。這兩個(gè)學(xué)科廣泛應(yīng)用于社會(huì)、經(jīng)濟(jì)、科學(xué)、工程等領(lǐng)域。學(xué)生們需要理解基本概率概念和概率公式,掌握概率分布和隨機(jī)變量的性質(zhì),以及數(shù)理統(tǒng)計(jì)的基本方法和應(yīng)用。

四、高等數(shù)學(xué)課程的教學(xué)方法和教材

高等數(shù)學(xué)課程教學(xué)方法和教材的選擇對(duì)學(xué)生的學(xué)習(xí)效果和興趣培養(yǎng)都有重要影響。一般來說,高等數(shù)學(xué)課程的教學(xué)應(yīng)該以理論與實(shí)踐相結(jié)合為原則,加強(qiáng)計(jì)算和分析能力的訓(xùn)練,增加實(shí)例和案例的引入,激發(fā)學(xué)生對(duì)數(shù)學(xué)學(xué)科的興趣。教材要選擇權(quán)威、系統(tǒng)、具有實(shí)用價(jià)值和啟迪性的作品,如《高等數(shù)學(xué)》、《線性代數(shù)及其應(yīng)用》、《概率論與數(shù)理統(tǒng)計(jì)》等。

總之,高等數(shù)學(xué)課程是大學(xué)數(shù)學(xué)教育中的重要內(nèi)容,學(xué)生們需要全面學(xué)習(xí)微積分、線性代數(shù)、概率論與數(shù)理統(tǒng)計(jì)等內(nèi)容,掌握數(shù)學(xué)基礎(chǔ)理論和方法,為將來的學(xué)術(shù)研究和職場(chǎng)實(shí)踐打下堅(jiān)實(shí)的數(shù)學(xué)基礎(chǔ)。

高等數(shù)學(xué)課件 篇5

高等數(shù)學(xué)教案

課程的性質(zhì)與任務(wù)

高等數(shù)學(xué)是計(jì)算機(jī)科學(xué)與技術(shù);信息管理與信息系統(tǒng)兩個(gè)專業(yè)的一門重要的基礎(chǔ)理論課,通過本課程的學(xué)習(xí),也是該專業(yè)的核心課程。要使學(xué)生獲得“向量代數(shù)”與“空間解析幾何”,“微積分”,“常微分方程與無窮級(jí)數(shù)”等方面的基本概論、基本理論與基本運(yùn)算;同時(shí)要通過各個(gè)教學(xué)環(huán)節(jié)逐步培訓(xùn)學(xué)生的抽象概括能力、邏輯推理能力、空間想象能力和自學(xué)能力。在傳授知識(shí)的同時(shí),要著眼于提高學(xué)生的數(shù)學(xué)素質(zhì),培養(yǎng)學(xué)生用數(shù)學(xué)的方法去解決實(shí)際問題的意識(shí)、興趣和能力。

第一章:函數(shù)與極限

教學(xué)目的與要求

18學(xué)時(shí)

1.解函數(shù)的概念,掌握函數(shù)的表示方法,并會(huì)建立簡(jiǎn)單應(yīng)用問題中的函數(shù)關(guān)系式。2.解函數(shù)的奇偶性、單調(diào)性、周期性和有界性。

3.理解復(fù)合函數(shù)及分段函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念。4.掌握基本初等函數(shù)的性質(zhì)及其圖形。

5.理解極限的概念,理解函數(shù)左極限與右極限的概念,以及極限存在與左、右極限之間的關(guān)系。

6.掌握極限的性質(zhì)及四則運(yùn)算法則。

7.了解極限存在的兩個(gè)準(zhǔn)則,并會(huì)利用它們求極限,掌握利用兩個(gè)重要極限求極限的方法。8.理解無窮小、無窮大的概念,掌握無窮小的比較方法,會(huì)用等價(jià)無窮小求極限。9.理解函數(shù)連續(xù)性的概念(含左連續(xù)與右連續(xù)),會(huì)判別函數(shù)間斷點(diǎn)的類型。

10.了解連續(xù)函數(shù)的性質(zhì)和初等函數(shù)的連續(xù)性,了解閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(有界性、最大值和最小值定理、介值定理),并會(huì)應(yīng)用這些性質(zhì)。

第一節(jié):映射與函數(shù)

一、集合

1、集合概念

具有某種特定性質(zhì)的事物的總體叫做集合。組成這個(gè)集合的事物稱為該集合的元素 表示方法:用A,B,C,D表示集合;用a,b,c,d表示集合中的元素

1)A?{a1,a2,a3,??} 2)A?{xx的性質(zhì)P}

元素與集合的關(guān)系:a?A

a?A

一個(gè)集合,若它只含有有限個(gè)元素,則稱為有限集;不是有限集的集合稱為無限集。常見的數(shù)集:N,Z,Q,R,N+

元素與集合的關(guān)系:

A、B是兩個(gè)集合,如果集合A的元素都是集合B的元素,則稱A是B的子集,記作A?B。

如果集合A與集合B互為子集,則稱A與B相等,記作A?B 若作A?B且A?B則稱A是B的真子集??占?: ??A2、集合的運(yùn)算

并集A?B :A?B?{x|x?A或x?B} 交集A?B :A?B?{x|x?A且x?B}

差集

AB:AB?{x|x?A且x?B

全集I、E

補(bǔ)集AC:

集合的并、交、余運(yùn)算滿足下列法則: 交換律、A?B?B?A

A?B?B?A 結(jié)合律、(A?B)?C?A?(B?C)

(A?B)?C?A?(B?C)分配律

(A?B)?C?(A?C)?(B?C)

(A?B)?C?(A?C)?(B?C)

對(duì)偶律

(A?B)?A?B

(A?B)?A?B 笛卡兒積A×B?{(x,y)|x?A且y?B}

3、區(qū)間和鄰域

開區(qū)間

(a,b)閉區(qū)間

?a,b? 半開半閉區(qū)間

?a,b?有限、無限區(qū)間 cccccc?a,b?

鄰域:U(a)

U(a,?)?{xa???x?a??}

a 鄰域的中心

?鄰域的半徑

?

去心鄰域

U(a,?)

左、右鄰域

二、映射 1.映射概念

定義

設(shè)X,Y是兩個(gè)非空集合,如果存在一個(gè)法則f,使得對(duì)X中的每一個(gè)元素x,按法則f,在Y中有唯一確定的元素y與之對(duì)應(yīng),則稱f為從X到Y(jié)的映射,記作

f:X?Y

其中y 稱為元素x的像,并記作f(x),即

y?f(x)

注意:1)集合X;集合Y;對(duì)應(yīng)法則f

2)每個(gè)X有唯一的像;每個(gè)Y的原像不唯一

3)單射、滿射、雙射

2、映射、復(fù)合映射

三、函數(shù)

1、函數(shù)的概念:

定義:設(shè)數(shù)集D?R,則稱映射f:D?R為定義在D上的函數(shù)

記為

y?f(x)x?D

自變量、因變量、定義域、值域、函數(shù)值

用f、g、?

函數(shù)相等:定義域、對(duì)應(yīng)法則相等

自然定義函數(shù);單值函數(shù);多值函數(shù)、單值分枝.例:1)y=2

2)y=x

3)符號(hào)函數(shù)

?1?y??0??1?x?0x?0x?04)取整函數(shù) y??x?

(階梯曲線)

?2x0?x?1x?15)分段函數(shù) y??

2、函數(shù)的幾種特性

?1?x1)函數(shù)的有界性(上界、下界;有界、無界)有界的充要條件:既有上界又有下界。注:不同函數(shù)、不同定義域,有界性變化。

2)函數(shù)的單調(diào)性(單增、單減)在x1、x2點(diǎn)比較函數(shù)值

f(x1)與f(x2)的大?。ㄗⅲ号c區(qū)間有關(guān))3)函數(shù)的奇偶性(定義域?qū)ΨQ、f(x)與f(?x)關(guān)系決定)

圖形特點(diǎn)(關(guān)于原點(diǎn)、Y軸對(duì)稱)

4)函數(shù)的周期性(定義域中成立:f(x?l)?f(x))

3、反函數(shù)與復(fù)合函數(shù)

反函數(shù):函數(shù)f:D?f(D)是單射,則有逆映射f反函數(shù)

函數(shù)與反函數(shù)的圖像關(guān)y?x于對(duì)稱

復(fù)合函數(shù):函數(shù)u?g(y)定義域?yàn)镈1,函數(shù)y?f(x)在D上有定義、且f(D)?D1。則u?g(f(x))?g?f(x)為復(fù)合函數(shù)。(注意:構(gòu)成條件)

4、函數(shù)的運(yùn)算

和、差、積、商(注:只有定義域相同的函數(shù)才能運(yùn)算)

5、初等函數(shù):

?1(y)?x,稱此映射f?1為f函數(shù)的

1)冪函數(shù):y?xa

2)指數(shù)函數(shù):y?ax

3)對(duì)數(shù)函數(shù) y?loga(x)

4)三角函數(shù)

()

y?sin(x),y?cos(x),y?tan(x),y?cotx

5)反三角函數(shù)

y?arcsin(x),y?arccoxs)(y?arctan(x)以上五種函數(shù)為基本初等函數(shù)

6)雙曲函數(shù)

e?e2x?xy?arccot(x)

shx?

chx?xx?x?xe?e2x?x

thx?shxchx?e?ee?e

注:雙曲函數(shù)的單調(diào)性、奇偶性。

雙曲函數(shù)公式

sh(x?y)?shx?chy?chx?shysh(x?y)?shx?chy?chx?shych(x?y)?chx?chy?shx?shy ch(x?y)?chx?chy?shx?shyy?arshx反雙曲函數(shù):y?archxy?arthx

作業(yè): 同步練習(xí)冊(cè)練習(xí)一

第二節(jié):數(shù)列的極限

一、數(shù)列

數(shù)列就是由數(shù)組成的序列。

1)這個(gè)序列中的每個(gè)數(shù)都編了號(hào)。

2)序列中有無限多個(gè)成員。一般寫成:a1縮寫為?un?

例 1 數(shù)列??是這樣一個(gè)數(shù)列?xn?,其中

?n??1?a2a3a4??an??

xn?也可寫為:

1121n,n?1,2,3,4,5???

131415????

1n?0 可發(fā)現(xiàn):這個(gè)數(shù)列有個(gè)趨勢(shì),數(shù)值越來越小,無限接近0,記為lim1、極限的??N定義:

???0?N?n?Nn??xn?a??則稱數(shù)列?xn?的極限為a,記成

limxn?a

n??也可等價(jià)表述:

1)???0

2)???0?N?N?n?N?n?N?(xna)??

xn?O(a?)

極限是數(shù)列中數(shù)的變化總趨勢(shì),因此與數(shù)列中某個(gè)、前幾個(gè)的值沒有關(guān)系。

二、收斂數(shù)列的性質(zhì)

定理1:如果數(shù)列?xn?收斂,那么它的極限是唯一 定理2 如果數(shù)列?xn?收斂,那么數(shù)列?xn?一定有界

定理3:如果limxn?a且a>0(a0,當(dāng)n>N時(shí),xn?0x??(xn?0)

定理

4、如果數(shù)列{xn}收斂于a那么它的任一子 數(shù)列也收斂,且收斂于a。

第三節(jié):函數(shù)的極限

一、極限的定義

1、在x0點(diǎn)的極限

1)x0可在函數(shù)的定義域內(nèi),也可不在,不涉及f在x0有沒有定義,以及函數(shù)值f(x0)的大小。只要滿足:存在某個(gè)??0使:(x0??,x0)?(x0,x0??)?D。2)如果自變量x趨于x0時(shí),相應(yīng)的函數(shù)值 f(x)有一個(gè)總趨勢(shì)-----以某個(gè)實(shí)數(shù)A為極限,則記為 :limf(x)?A。

x?x0形式定義為:

???0?????x(0?x?x0??)注:左、右極限。單側(cè)極限、極限的關(guān)系

2、x??的極限

設(shè):y?f(x)x?(??,??)如果當(dāng)時(shí)函數(shù)值 有一個(gè)總趨勢(shì)------該曲線有一條水平漸近

f(x)?A??

線y?A-----則稱函數(shù)在無限遠(yuǎn)點(diǎn)?有極限。記為:limf(x)?A

x??

在無窮遠(yuǎn)點(diǎn)?的左右極限:

f(??)?lim關(guān)系為: x???f(x)

f(??)?limf(x)

x???limf(x)?A?limf(x)?A?limf(x)

x??x???x???

二、函數(shù)極限的性質(zhì)

1、極限的唯一性

2、函數(shù)極限的局部有界性

3、函數(shù)極限的局部保號(hào)性

4、函數(shù)極限與數(shù)列極限的關(guān)系

第四節(jié):無窮小與無窮大

一、無窮小定義

定義:對(duì)一個(gè)數(shù)列?xn?,如果成立如下的命題: ???0??N??n?N?xn?注:

1、??? 則稱它為無窮小量,即limxn?0

x???的意義;

2、xn??可寫成xn?0??;?(0,xn)??

3、上述命題可翻譯成:對(duì)于任意小的正數(shù)?,存在一個(gè)號(hào)碼N,使在這個(gè)號(hào)碼以后的所有的號(hào)碼n,相應(yīng)的xn與極限0的距離比這個(gè)給定的?還小。它是我們?cè)谥庇^上對(duì)于一個(gè)數(shù)列趨于0的認(rèn)識(shí)。

定理1 在自變量的同一變化過程x?x0(或x??)中,函數(shù)f?x?具有極限A的充分必要條件是f(x)?A??,其中?是無窮小。

二、無窮大定義

一個(gè)數(shù)列?xn?,如果成立:

?G?0??N??n?N?xn?G那么稱它為無窮大量。記成:limxn??。

x?? 特別地,如果?G?0??N??n?N?xn?G,則稱為正無窮大,記成limxn???

x??特別地,如果?G?0??N??n?N?xn??G,則稱為負(fù)無窮大,記成limxn??? x??注:無法區(qū)分正負(fù)無窮大時(shí)就籠統(tǒng)地稱之為無窮大量。

三、無窮小和無窮大的關(guān)系

定理2 在自變量的同一變化過程中,如果f(x)為無窮大,則

1f(x)為無窮??;反之,如果f(x)為無窮小,且f(x)?0則

1f(x)為無窮大

即:非零的無窮小量與無窮大量是倒數(shù)關(guān)系:當(dāng)xn?0時(shí):有

lim?0?limx??1xnx????

lim???limx??1xnx???0

注意是在自變量的同一個(gè)變化過程中

第五節(jié):極限運(yùn)算法則

1、無窮小的性質(zhì)

設(shè)?xn?和?yn?是無窮小量于是:(1)兩個(gè)無窮小量的和差也是無窮小量:

limxn?0x??limyn?0?lim(xn?yn)?0

x??x??(2)對(duì)于任意常數(shù)C,數(shù)列?c?xn?也是無窮小量:

limxn?0?lim(c?xn)?0 x??x??(3)xn?yn也是無窮小量,兩個(gè)無窮小量的積是一個(gè)無窮小量。

limxn?0x????limyn?0?lim(xn?yn)?0

x??x??(4)?xn?也是無窮小量:

x?x0limxn?0?limxn?0

x?x0(5)無窮小與有界函數(shù)的積為無窮小。

2、函數(shù)極限的四則運(yùn)算

1、若函數(shù)f和g在點(diǎn)x0有極限,則

lim(f(x)?g(x))?limf(x)?limg(x)

x?x0x?x0x?x0

2、函數(shù)f在點(diǎn)x0有極限,則對(duì)任何常數(shù)a成立

lim(a?f(x))?a?limx?x0x?x0f(x)

3、若函數(shù)f和g在點(diǎn)x0有極限,則

lim(f(x)?g(x))?limf(x)?limg(x)

x?x0x?x0x?x03、若函數(shù)f和g在點(diǎn)x0有極限,并且limg(x)???0,則

x?x0limf(x)?f(x)?x?x0????

lim?

x?x0?g(x)?limg(x)???x?x0極限的四則運(yùn)算成立的條件是若函數(shù)f和g在點(diǎn)x0有極限 例:求下述極限

lim

x?3x?3x?92limx?12x?3x?5x?42limx??3x?2x?12x?x?5322

4、limx??3x?4x?27x?5x?33232limx??sinxxlimx??2x?x?53x?2x?1232復(fù)合函數(shù)的極限運(yùn)算法則

定理6 設(shè)函數(shù)y?f[g(x)}是由函數(shù)y?f(u)與u?g(x)復(fù)合而成,f[g(x)]在點(diǎn)x0的 某去心鄰域內(nèi)有定義,若limg(x)?u0,x?x00u?u0limf(u)?A,且存在?0?0,當(dāng)x?u(x0,?0)時(shí),有

g(x)?u0,則

x?x0limf[g(x)]?limf(u)?Au?u0第六節(jié):極限存在準(zhǔn)則

兩個(gè)重要極限

定理1 夾逼定理 :三數(shù)列?xn?、?yn?和?zn?,如果從某個(gè)號(hào)碼起成立:1)xn?yn?zn,并且已知?xn?和?zn?收斂,2)limxn?a?limzn,則有結(jié)論:

x??x??limyn?a

x??

定理2 單調(diào)有界數(shù)列一定收斂。

單調(diào)增加有上界的數(shù)列一定收斂;單調(diào)減少有下界的數(shù)列一定收斂。

例:證明:limx?0sinxx?1

例:

limx?0

例:證明:lim(1?x??tanxx

limx?01?cosxxlimx?0arcsinxx

1x)有界。求 lim(1?)x的極限

x??x1x

第七節(jié):無窮小的比較

定義:若?,?為無窮小

limlim????????0???c?0?c?0?1且

limlimlim

?K??高階、低階、同階、k階、等價(jià)?~?

1、若?,?為等價(jià)無窮小,則?????(?)

2、若?~?1、?~?1且

lim??11??11存在,則: lim???lim

例:

limx?0tan2xsin5x limx?0sinxx?3xlimx?0(1?x)3?1cosx?12

第八節(jié):函數(shù)的連續(xù)性與間斷點(diǎn)

一、函數(shù)在一點(diǎn)的連續(xù)性

函數(shù)f在點(diǎn)x0連續(xù),當(dāng)且僅當(dāng)該點(diǎn)的函數(shù)值f(x0)、左極限f(x0?0)與右極限f(x0?0)三者相等:

f(x0?0)?f(x0)?f(x0?0)

或者:當(dāng)且僅當(dāng)函數(shù)f在點(diǎn)x0有極限且此極限等于該點(diǎn)的函數(shù)值。

limf(x)?f(x0)

其形式定義如下:

x?x0???0???x(x?x0??)f(x)?f(x0)??

函數(shù)在區(qū)間(a,b)連續(xù)指:區(qū)間中每一點(diǎn)都連續(xù)。函數(shù)在區(qū)間[a,b]連續(xù)時(shí)裝意端點(diǎn)。注:左右連續(xù),在區(qū)間上連續(xù)(注意端點(diǎn))

連續(xù)函數(shù)的圖像是一條連續(xù)且不間斷的曲線

二、間斷點(diǎn)

若:f(x0?0)?f(x0)?f(x0?0)中有某一個(gè)等式不成立,就間斷,分為:

1、第一類間斷點(diǎn):

f(x0?0)?f(x0?0)

即函數(shù)在點(diǎn)的左右極限皆存在但不相等,曲線段上出現(xiàn)一個(gè)跳躍。、第二類間斷點(diǎn)x0:左極限f(x0?0)與右極限f(x0?0)兩者之中至少有一個(gè)不存在

例:見教材

第九節(jié):連續(xù)函數(shù)的運(yùn)算與初等函數(shù)的連續(xù)性

一、連續(xù)函數(shù)的四則運(yùn)算

1.limf(x)?f(x0)且limg(x)?g(x0),x?x0x?x0?lim???f(x)???g(x)????f(x0)???g(x0)

x?x02limf(x)?f(x0)且limg(x)?g(x0),x?x0x?x0?limx?x0?f(x)?g(x)??x?x0f(x0)?g(x0)

3.limf(x)?f(x0)且limg(x)?g(x0)?0,x?x0?limx?xf(x)0g(x)?f(x0)g(x0)

x?Df是嚴(yán)格單調(diào)增加(減少)并且連續(xù)

反函數(shù)連續(xù)定理:如果函數(shù)f:y?f(x)的,則存在它的反函數(shù)f并且連續(xù)的。

注: 1)反函數(shù)的定義域就是原來的值域。

?1:x?f?1(y)y?Df并且f?1也是嚴(yán)格單調(diào)增加(減少)2)通常慣用X表示自變量,Y表示因變量。反函數(shù)也可表成

y?f?1(x)x?Df?1

復(fù)合函數(shù)的連續(xù)性定理:

設(shè)函數(shù)f和g滿足復(fù)合條件?g?Df,若函數(shù)g在點(diǎn)x0連續(xù);g(x0)?u0,又若f函數(shù)在點(diǎn)u0連續(xù),則復(fù)合函數(shù)f?g在點(diǎn)x0連續(xù)。

注:復(fù)合函數(shù)的連續(xù)性可以保證極限號(hào)與函數(shù)符號(hào)的交換:

x?x0limf(g(x))?f(limg(x))

x?x0從這些基本初等函數(shù)出,通過若干次四則運(yùn)算以及復(fù)合,得到的種種函數(shù)統(tǒng)稱為初等函數(shù),并且:初等函數(shù)在其定義區(qū)間內(nèi)連續(xù)。

第十節(jié):閉區(qū)間上連續(xù)函數(shù)的性質(zhì)

一、最大、最小值

設(shè)函數(shù):y?f(x),x?D在上有界,現(xiàn)在問在值域

D1??yy?f(x),x?D?

中是否有一個(gè)最大的實(shí)數(shù)?如果存在,譬如說它是某個(gè)點(diǎn)x0?D的函數(shù)值 y0?f(x0),則記y0?max?f(x)?叫做函數(shù)在D上的最大值。

x?D

類似地,如果 Df中有一個(gè)最小實(shí)數(shù),譬如說它是某個(gè)點(diǎn)x2?Df的函數(shù)值y2?f(x2),則記y2?min

二、有界性

x?Df?f(x)?稱為函數(shù)在上的最小值。

有界性定理:如果函數(shù)f在閉區(qū)間?a,b?上連續(xù),則它在?a,b?上有界。

三、零點(diǎn)、介值定理

最大值和最小值定理:如果函數(shù) f在閉區(qū)間?a,b?上連續(xù)則它在?a,b?上有最大值和最小值,也就是說存在兩個(gè)點(diǎn)?和?,使得

f(?)?f(x)?f(?),亦即

x??a,b?

f(?)?min x??a,b??f(x)?

f(?)?max?f(x)?

x??a,b? 若x0使f(x0)?0,則稱x0為函數(shù)的零點(diǎn)

零點(diǎn)定理:

如果函數(shù)f在閉區(qū)間?a,b?上連續(xù),且f在區(qū)間?a,b?的兩個(gè)端點(diǎn)異號(hào):f(a)*f(b)?0則至少有一個(gè)零點(diǎn)??(a,b),使f(?)?0

中值定理:

如果函數(shù)f在閉區(qū)間?a,b?上連續(xù),則f在?a,b?上能取到它的最大值和最小值之間的任何一個(gè)中間值。

作業(yè):見課后各章節(jié)練習(xí)。

高等數(shù)學(xué)課件 篇6

§8? 4 多元復(fù)合函數(shù)的求導(dǎo)法則

設(shè)z?f(u? v)? 而u??(t)? v??(t)? 如何求dz?

dt

設(shè)z?f(u? v)? 而u??(x? y)? v??(x? y)? 如何求?z和?z?

?x?y

1? 復(fù)合函數(shù)的中間變量均為一元函數(shù)的情形

定理1 如果函數(shù)u??(t)及v??(t)都在點(diǎn)t可導(dǎo)? 函數(shù)z?f(u? v)在對(duì)應(yīng)點(diǎn)(u? v)具有連續(xù)偏導(dǎo)數(shù)? 則復(fù)合函數(shù)z?f[?(t)? ?(t)]在點(diǎn)t可導(dǎo)? 且有

dz??z?du??z?dv?

dt?udt?vdt

簡(jiǎn)要證明1? 因?yàn)閦?f(u? v)具有連續(xù)的偏導(dǎo)數(shù)? 所以它是可微的? 即有

dz??zdu??zdv?

?u?v又因?yàn)閡??(t)及v??(t)都可導(dǎo)? 因而可微? 即有

du?dudt? dv?dvdt?

dtdt代入上式得

dz??z?dudt??z?dvdt?(?z?du??z?dv)dt?

?udt?vdt?udt?vdt從而

dz??z?du??z?dv?

dt?udt?vdt

簡(jiǎn)要證明2? 當(dāng)t取得增量?t時(shí)? u、v及z相應(yīng)地也取得增量?u、?v及?z ? 由z?f(u? v)、u??(t)及v??(t)的可微性? 有

?z??z?u??z?v?o(?)??z[du?t?o(?t)]??z[dv?t?o(?t)]?o(?)

?u?v?udt?vdt

?(?z?du??z?dv)?t?(?z??z)o(?t)?o(?)?

?udt?vdt?u?v?z??z?du??z?dv?(?z??z)o(?t)?o(?)

?

?t?udt?vdt?u?v?t?t令?t?0? 上式兩邊取極限? 即得

dz??z?du??z?dv?

dt?udt?vdto(?)o(?)(?u)2?(?v)2注?lim?lim??0?(du)2?(dv)2?0?

?tdtdt?t?0?t?t?0?推廣? 設(shè)z?f(u? v? w)? u??(t)? v??(t)? w??(t)? 則z?f[?(t)? ?(t)? ?(t)]對(duì)t 的導(dǎo)數(shù)為?

dz??zdu??zdv??zdw?

dt?udt?vdt?wdt上述dz稱為全導(dǎo)數(shù)?

dt

2? 復(fù)合函數(shù)的中間變量均為多元函數(shù)的情形

定理2 如果函數(shù)u??(x? y)? v??(x? y)都在點(diǎn)(x? y)具有對(duì)x及y的偏導(dǎo)數(shù)? 函數(shù)z?f(u? v)在對(duì)應(yīng)點(diǎn)(u? v)具有連續(xù)偏導(dǎo)數(shù)? 則復(fù)合函數(shù)z?f [?(x? y)? ?(x? y)]在點(diǎn)(x? y)的兩個(gè)偏導(dǎo)數(shù)存在? 且有

?z??z??u??z??v? ?z??z??u??z??v?

?x?u?x?v?x?y?u?y?v?y

推廣? 設(shè)z?f(u? v? w)? u??(x? y)? v??(x? y)? w??(x? y)? 則

?z??z??u??z??v??z??w

?z??z??u??z??v??z??w? ?

?x?u?x?v?x?w?x?y?u?y?v?y?w?y

討論?

(1)設(shè)z?f(u? v)? u??(x? y)? v??(y)? 則?z???z??

?y?x

提示? ?z??z??u? ?z??z??u??z?dv?

?x?u?x?y?u?y?vdy?z

(2)設(shè)z?f(u? x? y)? 且u??(x? y)? 則?z????

?y?x?f?f?f?f

提示? ?z??u?? ?z??u??

?x?u?x?x?y?u?y?y?f這里?z與是不同的? ?z是把復(fù)合函數(shù)z?f[?(x? y)? x? y]中的y看作不變而對(duì)x的?x?x?x?f?f?z偏導(dǎo)數(shù)? 是把f(u? x? y)中的u及y看作不變而 對(duì)x的偏導(dǎo)數(shù)? 與也朋類似

?y?y?x的區(qū)別?

3.復(fù)合函數(shù)的中間變量既有一元函數(shù)? 又有多元函數(shù)的情形

定理3 如果函數(shù)u??(x? y)在點(diǎn)(x? y)具有對(duì)x及對(duì)y的偏導(dǎo)數(shù)? 函數(shù)v??(y)在點(diǎn)y可導(dǎo)? 函數(shù)z?f(u? v)在對(duì)應(yīng)點(diǎn)(u? v)具有連續(xù)偏導(dǎo)數(shù)? 則復(fù)合函數(shù)z?f[?(x? y)? ?(y)]在點(diǎn)(x? y)的兩個(gè)偏導(dǎo)數(shù)存在? 且有

?z??z??u??z?dv

?z??z??u? ?

?x?u?x?y?u?y?vdy

?z

例1 設(shè)z?eusin v? u?xy? v?x?y? 求?z和?

?x?y

解 ?z??z??u??z??v

?x?u?x?v?x

?eusin v?y?eucos v?1

?ex y[y sin(x?y)?cos(x?y)]?

?z??z??u??z??v

?y?u?y?v?y

?eusin v?x?eucos v?1

?exy[x sin(x?y)?cos(x?y)]?

例2 設(shè)u?f(x,y,z)?ex?f?f

解 ?u????z

?x?x?z?x2?y2?z2? 而z?x2siny? 求?u和?u?

?y?x

?2xex2?y2?z2?2zex2?y2?z2?2xsiny

? ?2x?(1?2x2siny)ex2?y2?x4si2ny?f?f

?u????z

?y?y?z?y

?2yex2?y2?z2?2zex2?y2?z2?x2cosy

?2(y?x4sinycoys)ex2?y2?x4si2ny?

例3 設(shè)z?uv?sin t ? 而u?et? v?cos t? 求全導(dǎo)數(shù)dz?

dt

解 dz??z?du??z?dv??z

dt?udt?vdt?t

?v?et?u?(?sin t)?cos t

?etcos t?e tsin t?cos t

?et(cos t?sin t)?cos t ?

?2w?w

例4 設(shè)w?f(x?y?z? xyz)? f具有二階連續(xù)偏導(dǎo)數(shù)? 求及? ?x?z?x

解 令u?x?y?z? v?xyz ? 則w?f(u? v)?

?f(u,v)?f(u,v)?????f22??等?

引入記號(hào)? f1??? f12? 同理有f2??f11?u?u?v?w??f??u??f??v?f??yzf?

2?

?x?u?x?v?x12?f??f?

?w??(f1??yzf2?)?1?yf2??yz2

?x?z?z?z?z???xyf12???yf2??yzf21???xy2zf22??

?f11???y(x?z)f12???yf2??xy2zf22???

?f11?f1??f1??u?f1??v?f??f??f????xyf12??? 2?2??u?2??v?f21???xyf22??? ?????f11?z?u?z?v?z?z?u?z?v?z

例5 設(shè)u?f(x? y)的所有二階偏導(dǎo)數(shù)連續(xù)? 把下列表達(dá)式轉(zhuǎn)換成極坐標(biāo)系中的形式?

注?

2?2u?

?(1)(?u)2?(?u)2?

(2)?u?x?y?x2?y2解 由直角坐標(biāo)與極坐標(biāo)間的關(guān)系式得

u?f(x? y)?f(?cosθ? ?sinθ)?F(?? θ)?

其中x??cosθ? y??sinθ? ??x2?y2? ??arctan應(yīng)用復(fù)合函數(shù)求導(dǎo)法則? 得

???u???ux?uy?u??uysin??co?s???

?u??u?

?x???x???x??????2????????u???uy?ux?u?uco?s?sin?????

?u??u?

????y???y???y??????2??y? x兩式平方后相加? 得

(?u)2?(?u)2?(?u)2?12(?u)2?

?x?y?????再求二階偏導(dǎo)數(shù)? 得

2??(?u)?????(?u)??? ?

u?x2???x?x???x?x??u?)?co??)?sin? s??usins??(?uco?s??usin

?(co????????????????22222?u?usin?co?s?usin??u2sin?co?s?usin?? 2??2?2??

?2cos???????????????2?2同理可得 222222?u?u?usin?co?s?uco?s?u2sin?co?s?ucos?? 2?2sin??2?2??22???????????y??????兩式相加? 得

22222?u?u?u11?u1??u?

2?2?2???22?2[?(?)?u]?

??????2?x?y???????

全微分形式不變性?

設(shè)z?f(u? v)具有連續(xù)偏導(dǎo)數(shù)? 則有全微分

dz??zdu??zdv?

?u?v如果z?f(u? v)具有連續(xù)偏導(dǎo)數(shù)? 而u??(x? y)? v??(x? y)也具有連續(xù)偏導(dǎo)數(shù)? 則

?z?z

dz?dx?dy

?x?y?z?u??z?v)dx?(?z?u??z?v)dy

?(?u?x?v?x?u?y?v?y?z?u?u?z?v?v

?(dx?dy)?(dx?dy)

?u?x?y?v?x?y

??zdu??zdv?

?u?v由此可見? 無論z 是自變量u、v的函數(shù)或中間變量u、v的函數(shù)? 它的全微分形式是一樣的? 這個(gè)性質(zhì)叫做全微分形式不變性?

例6 設(shè)z?e usin v? u?x y? v?x?y? 利用全微分形式不變性求全微分?

解 dz??zdu??zdv? e usin vdu? e ucos v dv ?u?v

? e usin v(y dx?x dy)? e ucos v(dx?dy)

?(ye usin v? e ucos v)dx?(xe usin v? e ucos v)dy

?e xy [y sin(x?y)?cos(x?y)]dx? e xy [x sin(x?y)?cos(x?y)]dy ?

§8? 5

隱函數(shù)的求導(dǎo)法則 一、一個(gè)方程的情形

隱函數(shù)存在定理1

設(shè)函數(shù)F(x? y)在點(diǎn)P(x0? y0)的某一鄰域內(nèi)具有連續(xù)偏導(dǎo)數(shù)? F(x0? y0)?0? Fy(x0? y0)?0? 則方程F(x? y)?0在點(diǎn)(x0? y0)的某一鄰域內(nèi)恒能唯一確定一個(gè)連續(xù)且具有連續(xù)導(dǎo)數(shù)的函數(shù)y?f(x)? 它滿足條件y0?f(x0)? 并有

Fdy??x?

?dxFy

求導(dǎo)公式證明? 將y?f(x)代入F(x? y)?0? 得恒等式 F(x? f(x))?0?

dy等式兩邊對(duì)x求導(dǎo)得 ?F??F??0?

?x?ydx由于F y連續(xù)? 且Fy(x0? y0)?0? 所以存在(x0? y0)的一個(gè)鄰域? 在這個(gè)鄰域同F(xiàn)y ?0? 于是得 Fdy??x?

dxFy

例1 驗(yàn)證方程x2?y2?1?0在點(diǎn)(0? 1)的某一鄰域內(nèi)能唯一確定一個(gè)有連續(xù)導(dǎo)數(shù)、當(dāng)x?0時(shí)y?1的隱函數(shù)y?f(x)? 并求這函數(shù)的一階與二階導(dǎo)數(shù)在x?0的值?

解 設(shè)F(x? y)?x2?y2?1? 則Fx?2x? Fy?2y? F(0? 1)?0? Fy(0? 1)?2?0? 因此由定理1可知? 方程x2?y2?1?0在點(diǎn)(0? 1)的某一鄰域內(nèi)能唯一確定一個(gè)有連續(xù)導(dǎo)數(shù)、當(dāng)x?0時(shí)y?1的隱函數(shù)y?f(x)?

Fdydy??x??x? ?0?

dxFyydxx?0y?x(?x)dyy?xy?yy2?x2d2y1????????3; ??1?

dx2y2y2y3ydx2x?0

2隱函數(shù)存在定理還可以推廣到多元函數(shù)? 一個(gè)二元方程F(x? y)?0可以確定一個(gè)一元隱函數(shù)? 一個(gè)三元方程F(x? y? z)?0可以確定一個(gè)二元隱函數(shù)?

隱函數(shù)存在定理2

設(shè)函數(shù)F(x? y? z)在點(diǎn)P(x0? y0? z0)的某一鄰域內(nèi)具有連續(xù)的偏導(dǎo)數(shù)? 且F(x0? y0? z0)?0? Fz(x0? y0? z0)?0 ? 則方程F(x? y? z)?0在點(diǎn)(x0? y0? z0)的某一鄰域內(nèi)恒能唯一確定一個(gè)連續(xù)且具有連續(xù)偏導(dǎo)數(shù)的函數(shù)z?f(x? y)? 它滿足條件z0?f(x0? y0)? 并有

FF

?z??x? ?z??y?

?

?xFz?yFz

公式的證明? 將z?f(x? y)代入F(x? y? z)?0? 得F(x? y? f(x? y))?0?

將上式兩端分別對(duì)x和y求導(dǎo)? 得

Fx?Fz??z?0? Fy?Fz??z?0? ?

?y?x因?yàn)镕 z連續(xù)且F z(x0? y0? z0)?0? 所以存在點(diǎn)(x0? y0? z0)的一個(gè)鄰域? 使F z?0? 于是得

FF

?z??x? ?z??y?

?xFz?yFz?2z

例2.設(shè)x?y?z?4z?0? 求2?

?x

設(shè)F(x? y? z)? x2?y2?z2?4z? 則Fx?2x? Fy?2z?4? 222

?z??Fx??2x?x?

?xFz2z?42?z

?z(2?x)?x(x)(2?x)?x22?2z??x?2?z?(2?x)?x?

?x2(2?z)2(2?z)2(2?z)

3二、方程組的情形

在一定條件下? 由個(gè)方程組F(x? y? u? v)?0? G(x? y? u? v)?0可以確定一對(duì)二元函數(shù)u?u(x? y)? v?v(x? y)? 例如方程xu?yv?0和yu?xv?1可以確定兩個(gè)二元函數(shù)u?yx?

v??

x2?y2x2?y2y 事實(shí)上?

xu?yv?0 ?v?xu?yu?x?xu?1?u?22? ?

yyx?yyv?x?22?2x2?

yx?yx?y

如何根據(jù)原方程組求u? v的偏導(dǎo)數(shù)?

隱函數(shù)存在定理設(shè)F(x? y? u? v)、G(x? y? u? v)在點(diǎn)P(x0? y0? u0? v0)的某一鄰域內(nèi)具有對(duì)各個(gè)變量的連續(xù)偏導(dǎo)數(shù)? 又F(x0? y0? u0? v0)?0? G(x0? y0? u0? v0)?0? 且偏導(dǎo)數(shù)所組成的函數(shù)行列

?F?(F,G)?u式:

J???(u,v)?G?u?F?v ?G?v在點(diǎn)P(x0? y0? u0? v0)不等于零? 則方程組F(x? y? u? v)?0? G(x? y? u? v)?0在點(diǎn)P(x0? y0? u0? v0)的某一鄰域內(nèi)恒能唯一確定一組連續(xù)且具有連續(xù)偏導(dǎo)數(shù)的函數(shù)u?u(x? y)? v?v(x? y)? 它們滿足條件u0?u(x0? y0)? v0?v(x0? y0)? 并有

FxFvFuFxGGGG?(F,G)?(F,G)

?u??1??xv?

?v??1??ux?

?xJ?(x,v)?xJ?(u,x)FuFvFuFvGuGvGuGv?(F,G)?(F,G)????

?u??1?

?v??1?

?yJ?(y,v)?yJ?(u,y)FuFvFuFvGuGvGuGvFyFvGyGvFuFyGuGy

隱函數(shù)的偏導(dǎo)數(shù): 設(shè)方程組F(x? y? u? v)?0? G(x? y? u? v)?0確定一對(duì)具有連續(xù)偏導(dǎo)數(shù)的 二元函數(shù)u?u(x? y)? v?v(x? y)? 則

?F?F?u?F?v?0,?xu?xv?x?u?v 偏導(dǎo)數(shù)? 由方程組?確定?

?u?v?x?x?Gx?Gu?Gv?0.?x?x??F?F?u?F?v?0,?yu?yv?y?u?v 偏導(dǎo)數(shù)? 由方程組?確定?

?u?v?y?y?Gy?Gu?Gv?0.?y?y??v 例3 設(shè)xu?yv?0? yu?xv?1? 求?u? ?v? ?u和?

?y?x?x?y 解 兩個(gè)方程兩邊分別對(duì)x 求偏導(dǎo)? 得關(guān)于?u和?v的方程組

?x?x?u?x?u?y?v?0??x?x? ??u?v?y?v?x?0?x??xyu?xvxu?yv當(dāng)x2?y2 ?0時(shí)? 解之得?u??22? ?v?22?

?xx?y?xx?y

兩個(gè)方程兩邊分別對(duì)x 求偏導(dǎo)? 得關(guān)于?u和?v的方程組

?y?y?x?u?v?y?v?0??y?y? ??u?v?u?y?x?0?y?y?xv?yuxu?yv當(dāng)x2?y2 ?0時(shí)? 解之得?u?22? ?v??22?

?yx?y?yx?y

另解 將兩個(gè)方程的兩邊微分得

?udx?xdu?vdy?ydv?0?xdu?ydv?vdy?udx

?? 即??

udy?ydu?vd?xxdv?0ydu?xdv??udy?vdx??解之得 du??xu?yvxv?yudx?dy?

x2?y2x2?y dv?yu?xvxu?yvdx?dy?

x2?y2x2?y2xu?yvxv?yu于是

?u??22? ?u?22?

?x?yx?yx?yyu?xvxu?yv

?v?22? ?v??22? ??xx?y?yx?y

例? 設(shè)函數(shù)x?x(u? v)? y?y(u? v)在點(diǎn)(u? v)的某一領(lǐng)域內(nèi)連續(xù)且有連續(xù)偏導(dǎo)數(shù)?

?(x,y)?0? ?(u,v)?x?x(u,v)

(1)證明方程組

?

y?y(u,v)?在點(diǎn)(x? y? u? v)的某一領(lǐng)域內(nèi)唯一確定一組單值連續(xù)且有連續(xù)偏導(dǎo)數(shù)的反函數(shù)u?u(x? y)? v?v(x? y)?

(2)求反函數(shù)u?u(x? y)? v?v(x? y)對(duì)x? y的偏導(dǎo)數(shù)?

解(1)將方程組改寫成下面的形式

?F(x,y,u,v)?x?x(u,v)?0

??

G(x,y,u,v)?y?y(u,v)?0?則按假設(shè)

J??(F,G)?(x,y)??0.?(u,v)?(u,v)由隱函數(shù)存在定理3? 即得所要證的結(jié)論?

(2)將方程組(7)所確定的反函數(shù)u?u(x? y)?v?v(x? y)代入(7)? 即得

?x?x[u(x,y),v(x,y)]

??

y?y[u(x,y),v(x,y)]?將上述恒等式兩邊分別對(duì)x求偏導(dǎo)數(shù)?得

?1??x??u??x??v?

??u?x?v?x?

?y?y?0???u???v??u?x?v?x由于J?0? 故可解得

?y?y

?u?1? ?v??1?

J?u?xJ?v?x

同理? 可得

?u??1?x?v?1?x

? ?

?yJ?v?yJ?u

§8? 6

多元函數(shù)微分學(xué)的幾何應(yīng)用

一?

空間曲線的切線與法平面

設(shè)空間曲線?的參數(shù)方程為

x??(t)? y??(t)? z??(t)這里假定?(t)? ?(t)? ?(t)都在[?? ?]上可導(dǎo)?

在曲線?上取對(duì)應(yīng)于t?t0的一點(diǎn)M0(x0? y0? z0)及對(duì)應(yīng)于t?t0??t的鄰近一點(diǎn)M(x0+?x? y0+?y? z0+?z)? 作曲線的割線MM0? 其方程為

x?x0y?y0z?z0??? ??x?y?z當(dāng)點(diǎn)M沿著?趨于點(diǎn)M0時(shí)割線MM0的極限位置就是曲線在點(diǎn)M0處的切線? 考慮 x?x0y?y0z?z0

? ???x?y?z?t?t?t當(dāng)M?M0? 即?t?0時(shí)? 得曲線在點(diǎn)M0處的切線方程為

x?x0y?y0z?z0??? ??(t0)??(t0)??(t0)

曲線的切向量? 切線的方向向量稱為曲線的切向量? 向量

T?(??(t0)? ??(t0)? ??(t0))就是曲線?在點(diǎn)M0處的一個(gè)切向量?

法平面? 通過點(diǎn)M0而與切線垂直的平面稱為曲線?在點(diǎn)M0 處的法平面? 其法平面方程為

??(t0)(x?x0)???(t0)(y?y0)???(t0)(z?z0)?0?

例1 求曲線x?t? y?t2? z?t3在點(diǎn)(1? 1? 1)處的切線及法平面方程?

因?yàn)閤t??1? yt??2t? zt??3t2? 而點(diǎn)(1? 1? 1)所對(duì)應(yīng)的參數(shù)t?1? 所以

T ?(1? 2? 3)?

于是? 切線方程為

x?1?y?1?z? ?

123法平面方程為

(x?1)?2(y?1)?3(z?1)?0? 即x?2y?3z?6?

討論?

1? 若曲線?的方程為

y??(x)? z??(x)?

問其切線和法平面方程是什么形式?

提示? 曲線方程可看作參數(shù)方程? x?x? y??(x)? z??(x)? 切向量為T?(1? ??(x)? ??(x))?

2? 若曲線?的方程為

F(x? y? z)?0? G(x? y? z)?0?

問其切線和法平面方程又是什么形式??

提示? 兩方程確定了兩個(gè)隱函數(shù)?

y??(x)? z??(x)? 曲線的參數(shù)方程為

x?x? y??(x)? z??(x)? ?dy?dz?0F?F?Fxyz?dydzdxdx由方程組?可解得和?? dydzdxdx?Gx?Gy?Gz?0dxdx?dydz,)? dxdx

例2 求曲線x2?y2?z2?6? x?y?z?0在點(diǎn)(1? ?2? 1)處的切線及法平面方程? ?

dy?dz?02x?2y?2z?dxdx??

解 為求切向量? 將所給方程的兩邊對(duì)x求導(dǎo)數(shù)? 得?dy?1??dz?0?dxdx切向量為T?(1, 解方程組得dyz?xdzx?y??? ? ?dxy?zdxy?zdy?0? dz??1? dxdx從而T ?(1? 0? ?1)?

所求切線方程為

x?1?y?2?z?1

?

10?1法平面方程為

(x?1)?0?(y?2)?(z?1)?0? 即x?z?0?

在點(diǎn)(1? ?2? 1)處?

二? 曲面的切平面與法線

設(shè)曲面?的方程為

F(x? y? z)?0?

M0(x0? y0? z0)是曲面?上的一點(diǎn)?

并設(shè)函數(shù)F(x? y? z)的偏導(dǎo)數(shù)在該點(diǎn)連續(xù)且不同時(shí)為零? 在曲面?上? 通過點(diǎn)M0任意引一條曲線?? 假定曲線?的參數(shù)方程式為

x??(t)? y??(t)? z??(t)? t?t0對(duì)應(yīng)于點(diǎn)M0(x0? y0? z0)? 且??(t0)? ??(t0)? ??(t0)不全為零? 曲線在點(diǎn)的切向量為

T ?(??(t0)? ??(t0)? ??(t0))?

考慮曲面方程F(x? y? z)?0兩端在t?t0的全導(dǎo)數(shù)?

Fx(x0? y0? z0)??(t0)?Fy(x0? y0? z0)??(t0)?Fz(x0? y0? z0)??(t0)?0?

引入向量

n?(Fx(x0? y0? z0)? Fy(x0? y0? z0)? Fz(x0? y0? z0))?

易見T與n是垂直的? 因?yàn)榍€?是曲面?上通過點(diǎn)M0的任意一條曲線? 它們?cè)邳c(diǎn)M0的切線都與同一向量n垂直? 所以曲面上通過點(diǎn)M0的一切曲線在點(diǎn)M0的切線都在同一個(gè)平面上? 這個(gè)平面稱為曲面?在點(diǎn)M0的切平面? 這切平面的方程式是

Fx(x0? y0? z0)(x?x0)?Fy(x0? y0? z0)(y?y0)?Fz(x0? y0? z0)(z?z0)?0?

曲面的法線? 通過點(diǎn)M0(x0? y0? z0)而垂直于切平面的直線稱為曲面在該點(diǎn)的法線? 法線方程為

x?x0y?y0z?z0?

??Fx(x0, y0, z0)Fy(x0, y0, z0)Fz(x0, y0, z0)

曲面的法向量? 垂直于曲面上切平面的向量稱為曲面的法向量? 向量

n?(Fx(x0? y0? z0)? Fy(x0? y0? z0)? Fz(x0? y0? z0))就是曲面?在點(diǎn)M0處的一個(gè)法向量?

例3 求球面x2?y2?z2?14在點(diǎn)(1? 2? 3)處的切平面及法線方程式?

F(x? y? z)? x2?y2?z2?14?

Fx?2x? Fy?2y ? Fz?2z ?

Fx(1? 2? 3)?2? Fy(1? 2? 3)?4? Fz(1? 2? 3)?6?

法向量為n?(2? 4? 6)? 或n?(1? 2? 3)?

所求切平面方程為

2(x?1)?4(y?2)?6(z?3)?0? 即x?2y?3z?14?0?

y?2z?3?法線方程為x?1??

3討論? 若曲面方程為z?f(x? y)? 問曲面的切平面及法線方程式是什么形式?

提示?

此時(shí)F(x? y? z)?f(x? y)?z ?

n?(fx(x0? y0)? fy(x0? y0)? ?1)

例4 求旋轉(zhuǎn)拋物面z?x2?y2?1在點(diǎn)(2? 1? 4)處的切平面及法線方程?

f(x? y)?x2?y2?1?

n?(fx? fy? ?1)?(2x? 2y? ?1)?

n|(2? 1? 4)?(4? 2? ?1)?

所以在點(diǎn)(2? 1? 4)處的切平面方程為

4(x?2)?2(y?1)?(z?4)?0? 即4x?2y?z?6?0?

x?2?y?1?z?4法線方程為 ?

42?1§8? 7

方向?qū)?shù)與梯度

一、方向?qū)?shù)

現(xiàn)在我們來討論函數(shù)z?f(x? y)在一點(diǎn)P沿某一方向的變化率問題?

設(shè)l是xOy平面上以P0(x0? y0)為始點(diǎn)的一條射線? el?(cos ?? cos ?)是與l同方向的單位向量? 射線l的參數(shù)方程為

x?x0?t cos ?? y?y0?t cos ?(t?0)?

設(shè)函數(shù)z?f(x? y)在點(diǎn)P0(x0? y0)的某一鄰域U(P0)內(nèi)有定義? P(x0?t cos ?? y0?t cos ?)為l上另一點(diǎn)? 且P?U(P0)? 如果函數(shù)增量f(x0?t cos ?? y0?t cos ?)?f(x0? y0)與P到P0的距離|PP0|?t的比值

f(x0?tco?s, y0?tcos?)?f(x0,y0)

t當(dāng)P沿著l趨于P0(即t?t0?)時(shí)的極限存在?

則稱此極限為函數(shù)f(x? y)在點(diǎn)P0沿方向l的方向?qū)?shù)? 記作?f?l(x0,y0)? 即

?f?l(x0,y0)?lim?t?0f(x0?tco?s, y0?tcos?)?f(x0,y0)?

t

從方向?qū)?shù)的定義可知? 方向?qū)?shù)

?f?l(x0,y0)就是函數(shù)f(x? y)在點(diǎn)P0(x0? y0)處沿方向l的變化率?

方向?qū)?shù)的計(jì)算?

定理

如果函數(shù)z?f(x? y)在點(diǎn)P0(x0? y0)可微分? 那么函數(shù)在該點(diǎn)沿任一方向l 的方向?qū)?shù)都存在? 且有

?f?l(x0,y0)?fx(x0,y0)co?s?fy(x0,y0)co?s?

其中cos ?? cos ?是方向l 的方向余弦?

簡(jiǎn)要證明? 設(shè)?x?t cos ?? ?y?t cos ?? 則

f(x0?tcos?? y0?tcos?)?f(x0? y0)?f x(x0? y0)tcos??f y(x0? y0)tcos??o(t)?

所以

f(x0?tco?s, y0?tcos?)?f(x0,y0)

lim?fx(x0,y0)co?s?fy(x0,y0)sin??

tt?0?這就證明了方向?qū)?shù)的存在? 且其值為

?f?l(x0,y0)?fx(x0,y0)co?s?fy(x0,y0)co?s??提示? f(x0??x,y0??y)?f(x0,y0)?fx(x0,y0)?x?fy(x0,y0)?y?o((?x)2?(?y)2)?

?x?t cos ?? ?y?t cos ??(?x)2?(?y)2?t?

討論? 函數(shù)z?f(x? y)在點(diǎn)P 沿x軸正向和負(fù)向?

沿y軸正向和負(fù)向的方向?qū)?shù)如何? 提示?

?f?f??

沿x軸正向時(shí)? cos???? cos??0?

?l?x?f?f 沿x軸負(fù)向時(shí)? cos???1? cos??0? ??? ?

?l?x2y

例1 求函數(shù)z?xe在點(diǎn)P(1? 0)沿從點(diǎn)P(1? 0)到點(diǎn)Q(2? ?1)的方向的方向?qū)?shù)?

解 這里方向l即向量PQ?(1, ?1)的方向? 與l同向的單位向量為

el?(1, ?1)?

22? 因?yàn)楹瘮?shù)可微分? 且?z?x所以所求方向?qū)?shù)為

(1,0)?e2y?1? ?z(1,0)?y(1,0)?2xe2y(1,0)?2??

?z?1?1?2?(?1)??2?

?l(1,0)22

2對(duì)于三元函數(shù)f(x? y? z)來說? 它在空間一點(diǎn)P0(x0? y0? z0)沿el?(cos ??? cos ??? cos ?)的方向?qū)?shù)為?

?f?l(x0,y0,z0)?lim?t?0f(x0?tco?s, y0?tcos?,z0?tco?s)?f(x0,y0,z0)?

t

如果函數(shù)f(x? y? z)在點(diǎn)(x0? y0? z0)可微分? 則函數(shù)在該點(diǎn)沿著方向el?(cos ??? cos ??? cos ??的方向?qū)?shù)為

?f?l(x0,y0,z0)?fx(x0? y0? z0)cos??fy(x0? y0? z0)cos??fz(x0? y0? z0)cos??

例2求f(x? y? z)?xy?yz?zx在點(diǎn)(1? 1? 2)沿方向l的方向?qū)?shù)? 其中l(wèi)的方向角分別為60?? 45?? 60??

解 與l同向的單位向量為

el?(cos60?? cos 45?? cos60???(1, 2, 1)???

222????因?yàn)楹瘮?shù)可微分??且

fx(1? 1? 2)?(y?z)|(1? 1? 2)?3?

fy(1? 1? 2)?(x?z)|(1? 1? 2)?3?

fz(1? 1? 2)?(y?x)|(1? 1? 2)?2? 所以

?f?l?3?1?3?2?2?1?1(5?32)?

2222(1,1,2)

二? 梯度

設(shè)函數(shù)z?f(x? y)在平面區(qū)域D內(nèi)具有一階連續(xù)偏導(dǎo)數(shù)? 則對(duì)于每一點(diǎn)P0(x0? y0)?D? 都可確定一個(gè)向量

fx(x0? y0)i?fy(x0? y0)j?

這向量稱為函數(shù)f(x? y)在點(diǎn)P0(x0? y0)的梯度? 記作grad f(x0? y0)? 即

grad f(x0? y0)? fx(x0? y0)i?fy(x0? y0)j?

梯度與方向?qū)?shù)? ?

如果函數(shù)f(x? y)在點(diǎn)P0(x0? y0)可微分? el?(cos ??? cos ??)是與方向l同方向的單位向量? 則

?f?l(x0,y0)?fx(x0,y0)co?s?fy(x0,y0)co?s?

? grad f(x0? y0)?el

?| grad f(x0? y0)|?cos(grad f(x0? y0)?^ el)?

這一關(guān)系式表明了函數(shù)在一點(diǎn)的梯度與函數(shù)在這點(diǎn)的方向?qū)?shù)間的關(guān)系? 特別? 當(dāng)向量el與grad f(x0? y0)的夾角??0? 即沿梯度方向時(shí)? 方向?qū)?shù)

?f?l取得

(x0,y0)最大值? 這個(gè)最大值就是梯度的模|grad f(x0? y0)|? 這就是說? 函數(shù)在一點(diǎn)的梯度是個(gè)向量? 它的方向是函數(shù)在這點(diǎn)的方向?qū)?shù)取得最大值的方向? 它的模就等于方向?qū)?shù)的最大值?

?f

討論? 的最大值?

??l

結(jié)論? 函數(shù)在某點(diǎn)的梯度是這樣一個(gè)向量? 它的方向與取得最大方向?qū)?shù)的方向一致? 而它的模為方向?qū)?shù)的最大值?

我們知道? 一般說來二元函數(shù)z?f(x? y)在幾何上表示一個(gè)曲面? 這曲面被平面z?c(c是常數(shù))所截得的曲線L的方程為

z?f(x,y)

??

?z?c?這條曲線L在xOy面上的投影是一條平面曲線L*? 它在xOy平面上的方程為

f(x? y)?c?

對(duì)于曲線L*上的一切點(diǎn)? 已給函數(shù)的函數(shù)值都是c? 所以我們稱平面曲線L*為函數(shù)z?f(x? y)的等值線?

若f x? f y不同時(shí)為零? 則等值線f(x? y)?c上任一點(diǎn)P0(x0? y0)處的一個(gè)單位法向量為

n?1(fx(x0,y0),fy(x0,y0))?

22fx(x0,y0)?fy(x0,y0)這表明梯度grad f(x0? y0)的方向與等值線上這點(diǎn)的一個(gè)法線方向相同? 而沿這個(gè)方?f向的方向?qū)?shù)就等于|grad f(x0? y0)|? 于是

?n?f

grafd(x0,y0)?n?

?n

這一關(guān)系式表明了函數(shù)在一點(diǎn)的梯度與過這點(diǎn)的等值線、方向?qū)?shù)間的關(guān)系? 這說是說? 函數(shù)在一點(diǎn)的梯度方向與等值線在這點(diǎn)的一個(gè)法線方向相同? 它的指向?yàn)閺臄?shù)值較低的等值線指向數(shù)值較高的等值線? 梯度的模就等于函數(shù)在這個(gè)法線方向的方向?qū)?shù)?

梯度概念可以推廣到三元函數(shù)的情形? 設(shè)函數(shù)f(x? y? z)在空間區(qū)域G內(nèi)具有一階連續(xù)偏導(dǎo)數(shù)? 則對(duì)于每一點(diǎn)P0(x0? y0? z0)?G? 都可定出一個(gè)向量

fx(x0? y0? z0)i?fy(x0? y0? z0)j?fz(x0? y0? z0)k?

這向量稱為函數(shù)f(x? y? z)在點(diǎn)P0(x0? y0? z0)的梯度? 記為grad f(x0? y0? z0)? 即

grad f(x0? y0? z0)?fx(x0? y0? z0)i?fy(x0? y0? z0)j?fz(x0? y0? z0)k?

結(jié)論? 三元函數(shù)的梯度也是這樣一個(gè)向量? 它的方向與取得最大方向?qū)?shù)的方向一致? 而它的模為方向?qū)?shù)的最大值?

如果引進(jìn)曲面

f(x? y? z)?c

為函數(shù)的等量面的概念? 則可得函數(shù)f(x? y? z)在點(diǎn)P0(x0? y0? z0)的梯度的方向與過點(diǎn)P0的等量面 f(x? y? z)?c在這點(diǎn)的法線的一個(gè)方向相同? 且從數(shù)值較低的等量面指向數(shù)值較高的等量面? 而梯度的模等于函數(shù)在這個(gè)法線方向的方向?qū)?shù)?

1?

x2?y2 解 這里f(x,y)?212?

x?y 例3 求grad

因?yàn)? ?f?f2y??22x22? ??222?

?x?y(x?y)(x?y)2y所以

gra d212??22x22i?222j?

x?y(x?y)(x?y)

例4 設(shè)f(x? y? z)?x2?y2?z2? 求grad f(1? ?1? 2)?

解 grad f?(fx? fy? fz)?(2x? 2y? 2z)?

于是

grad f(1? ?1? 2)?(2? ?2? 4)?

數(shù)量場(chǎng)與向量場(chǎng)? 如果對(duì)于空間區(qū)域G內(nèi)的任一點(diǎn)M? 都有一個(gè)確定的數(shù)量f(M)? 則稱在這空間區(qū)域G內(nèi)確定了一個(gè)數(shù)量場(chǎng)(例如溫度場(chǎng)、密度場(chǎng)等)? 一個(gè)數(shù)量場(chǎng)可用一個(gè)數(shù)量函數(shù)f(M)來確定? 如果與點(diǎn)M相對(duì)應(yīng)的是一個(gè)向量F(M)? 則稱在這空間區(qū)域G內(nèi)確定了一個(gè)向量場(chǎng)(例如力場(chǎng)、速度場(chǎng)等)? 一個(gè)向量場(chǎng)可用一個(gè)?向量函數(shù)F(M)來確定? 而

F(M)?P(M)i?Q(M)j?R(M)k?

其中P(M)? Q(M)? R(M)是點(diǎn)M的數(shù)量函數(shù)?

利用場(chǎng)的概念? 我們可以說向量函數(shù)grad f(M)確定了一個(gè)向量場(chǎng)——梯度場(chǎng)? 它是由數(shù)量場(chǎng)f(M)產(chǎn)生的? 通常稱函數(shù)f(M)為這個(gè)向量場(chǎng)的勢(shì)? 而這個(gè)向量場(chǎng)又稱為勢(shì)場(chǎng)? 必須注意? 任意一個(gè)向量場(chǎng)不一定是勢(shì)場(chǎng)? 因?yàn)樗灰欢ㄊ悄硞€(gè)數(shù)量函數(shù)的梯度場(chǎng)??

例5 試求數(shù)量場(chǎng)m所產(chǎn)生的梯度場(chǎng)? 其中常數(shù)m>0?

rr?x2?y2?z2為原點(diǎn)O與點(diǎn)M(x? y? z)間的距離? ?r??mx?

解 ?(m)??m?xrr2?xr3my同理

?(m)??3? ?(m)??mz? 3?yrr?zrrxi?yj?zk)? 從而

gramd??m(rrr2rr?yzx記er?i?j?k? 它是與OM同方向的單位向量? 則gradm??me?

rrrrr2r

上式右端在力學(xué)上可解釋為? 位于原點(diǎn)O 而質(zhì)量為m 質(zhì)點(diǎn)對(duì)位于點(diǎn)M而質(zhì)量為l的質(zhì)點(diǎn)的引力? 這引力的大小與兩質(zhì)點(diǎn)的質(zhì)量的乘積成正比、而與它們的距平方成反比? 這引力的方向由點(diǎn)M指向原點(diǎn)? 因此數(shù)量場(chǎng)m的勢(shì)場(chǎng)即梯度場(chǎng)

rgradm稱為引力場(chǎng)? 而函數(shù)m稱為引力勢(shì)?

r

r§8?8

多元函數(shù)的極值及其求法

一、多元函數(shù)的極值及最大值、最小值

定義

設(shè)函數(shù)z?f(x? y)在點(diǎn)(x0? y0)的某個(gè)鄰域內(nèi)有定義? 如果對(duì)于該鄰域內(nèi)任何異于(x0? y0)的點(diǎn)(x? y)? 都有

f(x? y)f(x0? y0))?

則稱函數(shù)在點(diǎn)(x0? y0)有極大值(或極小值)f(x0? y0)?

極大值、極小值統(tǒng)稱為極值? 使函數(shù)取得極值的點(diǎn)稱為極值點(diǎn)?

例1 函數(shù)z?3x2?4y2在點(diǎn)(0? 0)處有極小值?

?

當(dāng)(x? y)?(0? 0)時(shí)? z?0? 而當(dāng)(x? y)?(0? 0)時(shí)? z?0? 因此z?0是函數(shù)的極小值?

例2 函數(shù)z??x2?y2在點(diǎn)(0? 0)處有極大值?

?

當(dāng)(x? y)?(0? 0)時(shí)? z?0? 而當(dāng)(x? y)?(0? 0)時(shí)? z?0? 因此z?0是函數(shù)的極大值?

例3 函數(shù)z?xy在點(diǎn)(0? 0)處既不取得極大值也不取得極小值?

?

因?yàn)樵邳c(diǎn)(0? 0)處的函數(shù)值為零? 而在點(diǎn)(0? 0)的任一鄰域內(nèi)? 總有使函數(shù)值為正的點(diǎn)? 也有使函數(shù)值為負(fù)的點(diǎn)?

以上關(guān)于二元函數(shù)的極值概念? 可推廣到n元函數(shù)?

設(shè)n元函數(shù)u?f(P)在點(diǎn)P0的某一鄰域內(nèi)有定義? 如果對(duì)于該鄰域內(nèi)任何異于P0的點(diǎn)P? 都有

f(P)f(P 0))?

則稱函數(shù)f(P)在點(diǎn)P0有極大值(或極小值)f(P0)?

定理1(必要條件)設(shè)函數(shù)z?f(x? y)在點(diǎn)(x0? y0)具有偏導(dǎo)數(shù)? 且在點(diǎn)(x0? y0)處有極值? 則有

fx(x0? y0)?0? fy(x0? y0)?0?

證明 不妨設(shè)z?f(x? y)在點(diǎn)(x0? y0)處有極大值? 依極大值的定義? 對(duì)于點(diǎn)(x0? y0)的某鄰域內(nèi)異于(x0? y0)的點(diǎn)(x? y)? 都有不等式

f(x? y)特殊地? 在該鄰域內(nèi)取y?y0而x?x0的點(diǎn)? 也應(yīng)有不等式f(x? y0)這表明一元函數(shù)f(x? y0)在x?x0處取得極大值? 因而必有fx(x0? y0)?0?類似地可證fy(x0? y0)?0?從幾何上看? 這時(shí)如果曲面z?f(x? y)在點(diǎn)(x0? y0? z0)處有切平面? 則切平面z?z0?fx(x0? y0)(x?x0)? fy(x0? y0)(y?y0)成為平行于xOy坐標(biāo)面的平面z?z0?類似地可推得? 如果三元函數(shù)u?f(x? y? z)在點(diǎn)(x0? y0? z0)具有偏導(dǎo)數(shù)? 則它在點(diǎn)(x0? y0? z0)具有極值的必要條件為fx(x0? y0? z0)?0? fy(x0? y0? z0)?0? fz(x0? y0? z0)?0?仿照一元函數(shù)? 凡是能使fx(x? y)?0? fy(x? y)?0同時(shí)成立的點(diǎn)(x0? y0)稱為函數(shù)z?f(x? y)的駐點(diǎn)?從定理1可知? 具有偏導(dǎo)數(shù)的函數(shù)的極值點(diǎn)必定是駐點(diǎn)? 但函數(shù)的駐點(diǎn)不一定是極值點(diǎn)??例如? 函數(shù)z?xy在點(diǎn)(0? 0)處的兩個(gè)偏導(dǎo)數(shù)都是零? 函數(shù)在(0? 0)既不取得極大值也不取得極小值??定理2(充分條件)設(shè)函數(shù)z?f(x? y)在點(diǎn)(x0? y0)的某鄰域內(nèi)連續(xù)且有一階及二階連續(xù)偏導(dǎo)數(shù)? 又fx(x0? y0)?0? fy(x0? y0)?0? 令fxx(x0? y0)?A? fxy(x0? y0)?B? fyy(x0? y0)?C?則f(x? y)在(x0? y0)處是否取得極值的條件如下?(1)AC?B2>0時(shí)具有極值? 且當(dāng)A0時(shí)有極小值?(2)AC?B20? 則函數(shù)具有極值? 且當(dāng)fxx0時(shí)有極小值?極值的求法?第一步 解方程組fx(x? y)?0? fy(x? y)?0?求得一切實(shí)數(shù)解? 即可得一切駐點(diǎn)?第二步 對(duì)于每一個(gè)駐點(diǎn)(x0? y0)? 求出二階偏導(dǎo)數(shù)的值A(chǔ)、B和C?第三步 定出AC?B2的符號(hào)? 按定理2的結(jié)論判定f(x0? y0)是否是極值、是極大值 還是極小值?例4 求函數(shù)f(x? y)?x3?y3?3x2?3y2?9x 的極值??fx(x,y)?3x2?6x?9?0 解 解方程組??2f(x,y)??3y?6y?0?y求得x?1? ?3? y?0? 2? 于是得駐點(diǎn)為(1? 0)、(1? 2)、(?3? 0)、(?3? 2)?再求出二階偏導(dǎo)數(shù)fxx(x? y)?6x?6? fxy(x? y)?0? fyy(x? y)??6y?6?在點(diǎn)(1? 0)處? AC?B2?12?6>0? 又A>0? 所以函數(shù)在(1? 0)處有極小值f(1? 0)??5?在點(diǎn)(1? 2)處? AC?B2?12?(?6)0? 又A0? y>0}內(nèi)取得? 因?yàn)楹瘮?shù)A在D內(nèi)只有一個(gè)駐點(diǎn)? 所以 此駐點(diǎn)一定是A的最小值點(diǎn)? 即當(dāng)水箱的長(zhǎng)為2m、寬為2m、高為8?2m時(shí)? 水箱所用的材料最省??2?2? 因此A在D內(nèi)的唯一駐點(diǎn)(2? 2)處取得最小值? ?即長(zhǎng)為2m、寬為2m、高為8?2m時(shí)? 所用材料最省? ?2?從這個(gè)例子還可看出?在體積一定的長(zhǎng)方體中? 以立方體的表面積為最小??例6 有一寬為24cm的長(zhǎng)方形鐵板? 把它兩邊折起來做成一斷面為等腰梯形的水槽? 問怎樣折法才能使斷面的面積最大??解 設(shè)折起來的邊長(zhǎng)為xcm? 傾角為?? 那末梯形斷面的下底長(zhǎng)為24?2x? 上底長(zhǎng)為24?2x?cos?? 高為x?sin?? 所以斷面面積A?1(24?2x?2xcos??24?2x)?xsin??2即A?24x?sin??2x2sin??x2sin? cos?(0可見斷面面積A是x和?的二元函數(shù)? 這就是目標(biāo)函數(shù)? 面求使這函數(shù)取得最大值的點(diǎn)(x? ?)?令A(yù)x?24sin??4xsin??2xsin? cos??0?A??24xcos??2x2 cos??x2(cos2??sin2?)?0?由于sin? ?0? x?0? 上述方程組可化為?12?2x?xcos??0??2224co?s?2xco?s?x(co?s?sin?)?0?解這方程組? 得??60?? x?8cm?根據(jù)題意可知斷面面積的最大值一定存在? 并且在D?{(x? y)|0二、條件極值拉格朗日乘數(shù)法對(duì)自變量有附加條件的極值稱為條件極值?例如? 求表面積為a2而體積為最大的長(zhǎng)方體的體積問題? 設(shè)長(zhǎng)方體的三棱的長(zhǎng)為x? y? z? 則體積V?xyz? 又因假定表面積為a2? 所以自變量x? y? z還必須滿足附加條件2(xy?yz?xz)?a2??這個(gè)問題就是求函數(shù)V?xyz在條件2(xy?yz?xz)?a2下的最大值問題? 這是一個(gè)條件極值問題?對(duì)于有些實(shí)際問題? 可以把條件極值問題化為無條件極值問題??例如上述問題? ?由條件2(xy?yz?xz)?a2? 解得z?a?2xy? 于是得2(x?y)2V?xy(a?2xy)?2(x?y)只需求V的無條件極值問題?在很多情形下? 將條件極值化為無條件極值并不容易? 需要另一種求條件極值的專用方法? 這就是拉格朗日乘數(shù)法?現(xiàn)在我們來尋求函數(shù)z?f(x? y)在條件?(x? y)?0下取得極值的必要條件?如果函數(shù)z?f(x? y)在(x0? y0)取得所求的極值? 那么有?(x0? y0)?0?假定在(x0? y0)的某一鄰域內(nèi)f(x? y)與?(x? y)均有連續(xù)的一階偏導(dǎo)數(shù)? 而?y(x0? y0)?0?由隱函數(shù)存在定理? 由方程?(x? y)?0確定一個(gè)連續(xù)且具有連續(xù)導(dǎo)數(shù)的函數(shù)y??(x)? 將其代入目標(biāo)函數(shù)z?f(x? y)? 得一元函數(shù)z?f [x? ?(x)]?于是x?x0是一元函數(shù)z?f [x? ?(x)]的極值點(diǎn)? 由取得極值的必要條件? 有dy?0?dzx?x0?fx(x0,y0)?fy(x0,y0)dxdxx?x0即fx(x0,y0)?fy(x0,y0)?x(x0,y0)?0??y(x0,y0)從而函數(shù)z?f(x? y)在條件?(x? y)?0下在(x0? y0)取得極值的必要條件是fx(x0,y0)?fy(x0,y0)?x(x0,y0)?0與?(x0? y0)?0同時(shí)成立??y(x0,y0)fy(x0,y0)設(shè)???? 上述必要條件變?yōu)?y(x0,y0)?fx(x0,y0)???x(x0,y0)?0??fy(x0,y0)???y(x0,y0)?0????(x0,y0)?0拉格朗日乘數(shù)法? 要找函數(shù)z?f(x? y)在條件?(x? y)?0下的可能極值點(diǎn)? 可以先構(gòu)成輔助函數(shù)F(x? y)?f(x? y)???(x? y)?其中?為某一常數(shù)?然后解方程組?Fx(x,y)?fx(x,y)???x(x,y)?0??Fy(x,y)?fy(x,y)???y(x,y)?0????(x,y)?0由這方程組解出x? y及?? 則其中(x? y)就是所要求的可能的極值點(diǎn)?這種方法可以推廣到自變量多于兩個(gè)而條件多于一個(gè)的情形?至于如何確定所求的點(diǎn)是否是極值點(diǎn)? 在實(shí)際問題中往往可根據(jù)問題本身的性質(zhì)來判定?例7 求表面積為a2而體積為最大的長(zhǎng)方體的體積?解 設(shè)長(zhǎng)方體的三棱的長(zhǎng)為x? y? z? 則問題就是在條件2(xy?yz?xz)?a2下求函數(shù)V?xyz的最大值?構(gòu)成輔助函數(shù)F(x? y? z)?xyz??(2xy ?2yz ?2xz ?a2)?解方程組?Fx(x,y,z)?yz?2?(y?z)?0??Fy(x,y,z)?xz?2?(x?z)?0?F(x,y,z)?xy?2?(y?x)?0??z2??2xy?2yz?2xz?a得x?y?z?6a?6這是唯一可能的極值點(diǎn)?因?yàn)橛蓡栴}本身可知最大值一定存在? ?所以最大值就在這個(gè)可能的值點(diǎn)處取得? 此時(shí)V?6a3?

高等數(shù)學(xué)課件 篇7

-----[xn?1 , xn],A??A1??A2????An,?xi?xi?xi?1(i?1 , 2 , ? , n).②在每個(gè)小區(qū)間[xi?1 , xi]上任取一點(diǎn)?i,?Ai?f(?i)??xi,A??f(?i)?xi.i?1n③??max{?x1 , ?x2 , ? , ?xn}.A?lim?f(?i)?xi.??0i?

1-----高等數(shù)學(xué)教案-----

n2.變速直線運(yùn)動(dòng)的路程: 設(shè)速度v?v(t)是時(shí)間間隔[T1 , T2]上t的連續(xù)函數(shù),路程記為s.①把區(qū)間[T1 , T2]分成n個(gè)小區(qū)間:,…,[t0 , t1] [tn?1 , tn],[t1 , t2],s??s1??s2????sn,?ti?ti?ti?1(i?1 , 2 , ? , n).②在每個(gè)小區(qū)間[ti?1 , ti]上任取一點(diǎn)?i,?si?v(?i)??ti,-----高等數(shù)學(xué)教案-----s??v(?i)?ti.i?1n③??max{?t1 , ?t2 , ? , ?tn}.s?lim?v(?i)?ti.??0i?1n3.定積分定義: 設(shè)y?f(x)在[a , b]上有界.①把區(qū)間[a , b]分成n個(gè)小區(qū)間:,[x1 , x2],…,[x0 , x1]

[xn?1 , xn],-----高等數(shù)學(xué)教案-----?xi?xi?xi?1(i?1 , 2 , ? , n).②在每個(gè)小區(qū)間[xi?1 , xi]上任取一點(diǎn)?i,?f(?i)?xi.i?1n③??max{?x1 , ?x2 , ? , ?xn}.如果

lim?f(?i)?xi

??0i?1n存在,且此極限不依賴于對(duì)區(qū)間[a , b]的分法和在[xi?1 , xi]上

-----高等數(shù)學(xué)教案-----

則稱此極限為f(x)?i點(diǎn)的取法,在[a , b]上的定積分,記為

f(?i)?xi.??af(x)dx?lim??0bi?1n注意:定積分? af(x)dx只與被積函數(shù)f(x)﹑積分區(qū)間[a , b]有關(guān),而與積分變量用什么字母表示無關(guān),即

b? af(x)dx?? af(t)dt?? af(u)du b b b.4.(必要條件).如果f(x , y)在D上可積,則f(x , y)在D上

-----高等數(shù)學(xué)教案-----有界.5.(充分條件): ①如果f(x)在[a , b]上連續(xù),則f(x)在[a , b]上可積.②如果f(x)在[a , b]上有界,且只有有限個(gè)間斷點(diǎn),則f(x)在[a , b]上可積.6.定積分的幾何意義:

①如果f(x)在[a , b]上連續(xù),且f(x)?0,則

b? af(x)dx?s

(S是曲邊梯

-----高等數(shù)學(xué)教案-----形的面積).②.如果f(x)在[a , b]上連續(xù),且f(x)?0,則 b? af(x)dx??s

(S是曲邊梯形的面積).③如果f(x)在[a , b]上連續(xù),且f(x)的值有正有負(fù),則 b? af(x)dx等于x軸上方的曲邊梯形面積減去x軸下方的曲邊梯形面積.7.規(guī)定:

-----高等數(shù)學(xué)教案-----

①當(dāng)a?b時(shí),? af(x)dx?0.a?b

②當(dāng)時(shí),ba? af(x)dx???bf(x)dx.7.定積分的性質(zhì):

①??f(x)?g(x)?dx??f(x)dx??g(x)dx.b b②? akf(x)dx?k? af(x)dx.③ b c b? af(x)dx?? af(x)dx?? cf(x)dx.④如果在[a , b]上f(x)?1,則

b b? a1dx?? adx?b?a.b b b b a a a

-----高等數(shù)學(xué)教案-----⑤如果在[a , b]上f(x)?0,則

b? af(x)dx?0.如果在[a , b]上f(x)?g(x),則

b b? af(x)dx?? ag(x)dx,? af(x)dx?? af(x)dx.b b⑥設(shè)m?f(x)?M,則

bm(b?a)?? af(x)dx?M(b?.⑦(積分中值定理)如果f(x)

-----高等數(shù)學(xué)教案-----在[a , b]上連續(xù),則在[a , b]上至少存在一點(diǎn)?,使得

b? af(x)dx?f(?)?(b?a).證:由于f(x)在[a , b]上連續(xù),所以存在最大值M和最小值m,使得

m?f(x)?M,bm(b?a)?? af(x)dx?M(b?a),f(x)dx? am??M,b?a

-----高等數(shù)學(xué)教案-----

b故在[a , b]上至少存在一點(diǎn)?,使得

b? af(x)dx?f(?)b?a即

b? af(x)dx?f(?)?(b?a).b1稱為在f(x)dxf(x)? ab?a[a , b]上的平均值.P23511.證: 對(duì)任意實(shí)數(shù)?,有 12? 0[??f(x)]dx?0,1 122??2?? 0f(x)dx?? 0f(x)dx?0

-----高等數(shù)學(xué)教案-----,所以

12??4?? 0f(x)dx??4? 0f(x)dx?0,即

? 0f(x)dx??? 0f(x)dx?.練習(xí)1.設(shè)f(x)在[a , b]上連續(xù),且f(x)?0,證明: 12 121? af(x)dx? af(x)dx?(b?a)b b.§5.2微積分基本公式

1.積分上限的函數(shù)(變上限

-----高等數(shù)學(xué)教案-----積分): f(x)在[a , b]上連續(xù),稱

x?(x)?? af(t)dt x?[a , b] 為積分上限的函數(shù).2.如果f(x)在[a , b]上連續(xù),x則?(x)?? af(t)dt可導(dǎo),且

xd??(x)?f(t)dt?f(x)? adx.x例1.求F(x)?? 0tsintdt的導(dǎo)數(shù).解: F?(x)?xsinx.-----高等數(shù)學(xué)教案-----

sintdt?sinx 0例2.lim ?lim2x?0x?02xx1?.2 x例3.tedt??lim xx???xe2x??? x2 0t2elim?x2tedt?x x2 0t2x?limx???(1?2

x?limx???1?

2-----高等數(shù)學(xué)教案-----

?

3.?? ?(x)f(t)dt?

?f[?(x)]??(x)?f[?(x)]??(x)?(x)1?.2.x?bd

例4.? x?af(t)dt dx?f[(x?b)]?f[(x?a)].例

15.(? xedt)??e??e?2x xx?1?2xe.lnx2tlnxx22

-----高等數(shù)學(xué)教案-----例6.設(shè)f(x)在[a , b]上連續(xù),且單調(diào)增加,證明:

x1 F(x)?f(t)dt? ax?a在(a , b]內(nèi)單調(diào)增加.證: 當(dāng)x?(a , b)時(shí),f(x)(x?a)?? af(t)dtF?(x)? 2(x?a)f(x)(x?a)?f(?)(x?a)?2(x?a)x

f(x)?f(?)?(x?a)

-----高等數(shù)學(xué)教案-----

(a???x).由于f(x)在[a , b]上單調(diào)增加,而a???x,所以

f(x)?f(?)F?(x)??0,(x?a)故F(x)在(a , b]內(nèi)單調(diào)增加.4.微積分基本公式(牛頓—萊布尼茨公式): 如果f(x)在[a , b]上連續(xù),且F(x)是f(x)的一個(gè)原函數(shù),則

b? af(x)dx?F(b)?F(a)?F(.-----高等數(shù)學(xué)教案-----

為F(x)、x?(x)?? af(t)dt都是f(x)的原函數(shù),所以?(x)?F(x)?C.由于

?(a)?F(a)?C,a?(a)?? af(t)dt?0,得

C??F(a),?(x)?F(x)?F(a),?(b)?F(b)?F(a),b即

?(b)?? af(x)dx

?F(b)?F(a)

?F(x).ba

-----高等數(shù)學(xué)教案-----證: 因

?1

1例7.? ?2dx?lnx?2

x?ln1?ln2 ??ln2.?1

例 2 1 28.? 01?xdx?? 0(1?x)dx?? 1(x?1)dx

221xx?(x?)0?(?x)22

?1.例9.設(shè)

?x , x?[0 , 1), f(x)???x , x?[1 , 2] ,-----高等數(shù)學(xué)教案-----2求?(x)?? 0f(t)dt在[0 , 2]上的表達(dá)式.x解(x)???? x2 0tdt , x?[0 , 1)?? 12dt?? x 0t 1tdt , x?[1 ,?x3 , ???3??13?12(x2?1), ?x3 ??, ?3??1-----高等數(shù)學(xué)教案 6 ,-----

:

2] x?[0 ,x?[1 , 2x?[0 , x?[1 , 2?

例10.求

x f(x)??0tdt 在(?? , ??)上的表達(dá)式.??0?tdt , x?0解: f(x)??x

tdt , x?0??02??x , x?0?2 ??2x? , x?0.?2x§5.3 定積分的換元法和分部積分法

-----高等數(shù)學(xué)教案-----1.定積分的換元法:

b?? af(x)dx x??(t)??f[?(t)]??(其中f(x)連續(xù),?(t)有連續(xù)的導(dǎo)數(shù),a??(?),b??(?),.例1.? 0 4x?2dx 2x?11t2?32 32t?12 x? ? 1 tdt 2t 321?? 1(t?3)dt 2331t?(?3t)1

3-----高等數(shù)學(xué)教案-----例 例

?223.2.? 1dx 34 1?x?1 x??(t2?2t)? ?1?(2t?2)?12 t??2? ?112?1 ?(1t)dt ??2(t?lnt)?1?12

?1?2ln2.3.2? 111?x 2 x2dx x?sint ? ?cost ?24

-----高等數(shù)學(xué)教案-----

sin2tcostdt

2? 例

??2 ? cottdt

4?? ?2(csc2 ?t?1)dt

4?(?cott?t)?2?

4?1??4.? ?5 02sinx?cosxdx

??? ?5 02cosxdcosx

?(?16?6cosx)20

?16.-----高等數(shù)學(xué)教案-----

4.例5.? 0x(2?x)dx

12421??? 0(2?x)d(2?x)2

25111

??[(2?x)]0

2531

?.102.設(shè)f(x)在[?a , a]上連續(xù)且為偶函數(shù),則

a a? ?af(x)dx?2? 0f(x)dx.證: a 0 a? ?af(x)dx?? ?af(x)dx?? 0f(x)dx.12

4-----高等數(shù)學(xué)教案-----? ?af(x)dx x??t ? af(?t)(? 0 0

??? af(t)dt ?? 0f(t)dt ?? 0f(x)dx.a a 0所

a a a? ?af(x)dx?? 0f(x)dx?? 0f(x)dx

?2? 0f(x)dx.a3.設(shè)f(x)在[?a , a]上連續(xù)且

a為奇函數(shù),則

? ?af(x)dx?0.xsinxdx.例6.求? ?242x?3x?1 2

-----高等數(shù)學(xué)教案-----

32xsinx解: 由于f(x)?42x?3x?132是 2奇3函2數(shù),所以

xsinxdx?0.? ?242x?3x?1例7.求 1sinx?(arctanx).dx? ?121?x解: 原式1sinx 1(arctanx).?? ?1dx?dx?22 ?11?x1?xsinx由于f(x)?2是奇函數(shù),1?x

-----高等數(shù)學(xué)教案-----以(arctanx)是偶函數(shù),所g(x)?21?x(arctanx)原式?0?2? 0 dx21?x 12?2? 0(arctanx)d(arctanx)122

312?[(arctanx)]0

332??()3496例8.設(shè)f(x)在[0 , a]上連續(xù),-----高等數(shù)學(xué)教案-----?.?3證明: ? 0f(x)dx?? 0f(a?x)dx.a a證? 0f(x)dx 0 x?a?t ? af(a?t)(?dt)a:

??? af(a?t)dt ?? 0f(a?t)dt ?? 0f(a?x)dx.a 0 a

例9.若f(x)在[0 , 1]上連續(xù),證明: ?f(sinx)dx?

-----高等數(shù)學(xué)教案-----?2 0?f(cosx)dx.2 0? 證: ?f(sinx)dx

? x??t 2 ?2 0f(cost)(?d? ?2 0

??f(cost)dt

?2 0??f(cosx)dx.?2 0

例10.若f(x)在[0 , 1]上連續(xù),證明: ? 0xf(sinx)dx? ??.f(sinx)dx? 02 ?

-----高等數(shù)學(xué)教案-----證: ? 0xf(sinx)dx

0 x???t ? ?(??t)f(sint)?

?? 0(??t)f(sint)dt ??? 0f(sint)dt?? 0tf(sint)dt

??? 0f(sinx)dx?? 0xf(sinx)dx.? ? ? ? ?解? 0 ?得

.f(sinx)dx? 02例11.若f(x)為連續(xù)函數(shù),??xf(sinx)dx?

-----高等數(shù)學(xué)教案-----且?ef(x?t)dt?xe,求f(x)的表達(dá)式.xt證: ? 0ef(x?t)dt xt 0x t?x?u ? xe 0x?uf(u)(?du)

??e?ef(u)du x x?u?e? 0ef(u)du.?ux 0 x所以e?ef(u)du?xe,得

x?u? 0ef(u)du?x.將上式兩邊對(duì)x求導(dǎo)數(shù),得

?x ef(x)?1,x x 0?ux

-----高等數(shù)學(xué)教案-----即

f(x)?e.4.定積分的分部積分法:

x

? auv?dx?(uv)?? au?vdx.bba b

例12.? 1lnxdx?(xlnx)?? 1dx

5?5ln5?x1 5515?5ln5?4.例13.? 0xedx?(xe)?? 0edx

x1?e?e0 1xx10 1x?1.例14.若f(x)是以T為周期的連續(xù)函數(shù),證明:

-----高等數(shù)學(xué)教案-----? af(x)dx?? 0f(x)dx 其中a為常數(shù).a?T T證: ? a 0 a?Tf(x)dx?

T a?T? af(x)dx?? 0f(x)dx?? T a?T? Tf(x)dx

af(x)dx

x?u?T ? 0f(u?T)du ?? 0f(u)du ?? 0f(x)dx ??? af(x)dx.0 a a所以

? a a?T 0f(x)dx?

T 0? af(x)dx?? 0f(x)dx?? af(x)dx

-----高等數(shù)學(xué)教案-----?? 0f(x)dx.T例15.設(shè)f(x)在(?? , ??)上連續(xù),證明: 1lim?[f(x?h)?f(x)]dx?f(b)?f(a)

bh?0h a證: 設(shè)f(x)的一個(gè)原函數(shù)為F(x),則

b1lim?a [f(x?h)?f(x)]dx h?0h[F(x?h)?F(x)]?lim h?0hF(b?h)?F(b)?limh?0hF(a?h)?F(a)?limh?0h

-----高等數(shù)學(xué)教案-----

ba?F?(b)?F?(a)?f(b)?f(a).§5.4 反常積分 1.無窮限的反常積分: ①設(shè)f(x)在[a , ??)上連續(xù),存在,f(x)dxt?a,如果tlim? a???則稱反常義積分? af(x)dx收斂,且

??t

? af(x)dx?tlim.f(x)dx? a??? ??t否則稱反常積分? af(x)dx發(fā)散.??

-----高等數(shù)學(xué)教案-----②設(shè)f(x)在(?? , b]上連續(xù),t?b,如果lim?tf(x)dx存在,t???b則稱反常義積分???f(x)dx收斂,且

b

???f(x)dx?tlim.f(x)dx????tb b否則稱反常積分???f(x)dx發(fā)散.③設(shè)f(x)在(?? , ??)上連 0 ??續(xù),如果? ??f(x)dx與? 0f(x)dx都收斂,則稱反常積分 ??? ??f(x)dx收斂,且

b

-----高等數(shù)學(xué)教案-----? ??f(x)dx ???? ??f(x)dx?? 0f(x)dx.0 ??否則稱反常積分? ??f(x)dx發(fā)散.2.引入記號(hào):

??F(??)?limF(x),x???F(??)?limF(x).x???若在[a , ??)上F?(x)?f(x),則當(dāng)F(??)存在時(shí),??? af(x)dx?F(??)?F(a)

?[F(x)].??a

-----高等數(shù)學(xué)教案-----若在(?? , b]上F?(x)?f(x),則當(dāng)F(??)存在時(shí),b???f(x)dx?F(b)?F(??)

?[F(x)].b??若在上(?? , ??)F?(x)?f(x),則當(dāng)F(??)與F(??)都存在時(shí),?????f(x)dx?F(??)?F(??)

?[F(x)].????例1.判斷反常積分

???x? 0xedx

2-----高等數(shù)學(xué)教案-----是否收斂,若收斂求其值.?x??1解: 原式?(?e)0 2?x11

?xlim(?e)? ???221 ?.2

例2.判斷反常積分

?1? ??cosxdx

22的斂散性.解: 原式?(sinx)

?1???sin(?1)?limsinx.x???sinx不存在,由于xlim所以反???

-----高等數(shù)學(xué)教案-----常積分? ??cosxdx發(fā)散.例3.討論反常積分 ?1? ??1 1x?dx.解:? ??1 1x?dx ?(lnx)????1 , ???(11????1??x)1

-----高等數(shù)學(xué)教案-----

??1 ??1的斂散性 , ???? , ??1????? , ??1 ????1?1 , ??1? ??1 1x?dx,當(dāng)???1時(shí)發(fā)散.例4.判斷反常積分

? ??1 ??1?x2dx.解: ? ??1 ??1?x2dx

-----高等數(shù)學(xué)教案-----

?1所以反常積分時(shí)收斂,當(dāng) 的斂散性 ?(arctanx)0???(arctanx)??0

????

22??.? 1 ??

例5.判斷反常積分

1dx

2x?x ??的斂散性.1dx解: ? 1 2x?x ??11?? 1(?)dx x1?x???[lnx?ln(1?x)]1

-----高等數(shù)學(xué)教案-----

??x?[ln]1 1?xx1?limln?ln x???1?x2?ln2.3.如果f(x)在點(diǎn)a的任一鄰域內(nèi)都無界,那么稱點(diǎn)a為f(x)的瑕點(diǎn).4.無界函數(shù)的反常積分(瑕積分): ①設(shè)f(x)在(a , b]上連續(xù),點(diǎn)a為f(x)的瑕點(diǎn),t?a.如果lim?tf(x)dx存在,則稱反常積t?a?

-----高等數(shù)學(xué)教案-----b分? af(x)dx收斂,且 b

? af(x)dx?lim?tf(x)dx.b bt ?a?否則稱反常積分? af(x)dx發(fā)散.②設(shè)f(x)在[a , b)上連續(xù),點(diǎn)b為f(x)的瑕點(diǎn),t?b.如果

blim?af(x)dx存在,則稱反常積t?b?t分? af(x)dx收斂,且 b

? af(x)dx?lim?af(x)dx.btt ?b?否則稱反常積分? af(x)dx發(fā)散.③設(shè)f(x)在[a , b]上除點(diǎn)c(a?c?b)外連續(xù),點(diǎn)c為f(x)的 b

-----高等數(shù)學(xué)教案-----瑕點(diǎn).如果兩個(gè)反常積分

b c? af(x)dx、? cf(x)dx都收斂,則

b稱反常積分? af(x)dx收斂,且 b c b? af(x)dx?? af(x)dx?? cf(x)dx.b否則稱反常積分? af(x)dx發(fā)散.5.引入記號(hào): ①設(shè)F(x)為f(x)在(a , b]上的一個(gè)原函數(shù),a為f(x)的瑕點(diǎn),則

b? af(x)dx?F(b)?limF(x)

x?a??[F(x)].ba

-----高等數(shù)學(xué)教案-----②設(shè)F(x)為f(x)在[a , b)上的一個(gè)原函數(shù),b為f(x)的瑕點(diǎn),則

b? af(x)dx?limF(x)?F(a)

x?b??[F(x)].ba

例6.判斷反常積分? 0lnxdx的斂散性.1解:? 0lnxdx?(xlnx)??0dx 1101?0?lim(xlnx)?x

x ?0?10??1.-----高等數(shù)學(xué)教案-----

1例7.討論反常積分? 0?dxx 1的斂散性.解: ? 11 0x?dx

?(lnx)10 , ??1?????(1?11??1 ?x)0 , ??1

??0?limx ?0?lnx , ???1?lim ?0?(1?1?x1???1??x)

-----高等數(shù)學(xué)教案-----

??1 ??1 , ?1 , ??1?1??????? , ??1 ??? , ??1?? 11所以反常積分? 0?dx,當(dāng)??1x時(shí)收斂,當(dāng)??1時(shí)發(fā)散.11

例8.判斷反常積分? ?12dxx的斂散性.1解: ? ?12dx x 01 11?? ?12dx?? 02dx

xx 1

-----高等數(shù)學(xué)教案-----

找因數(shù)課件系列


俗話說,做什么事都要有計(jì)劃和準(zhǔn)備。在日常的學(xué)習(xí)工作中,幼兒園教師都會(huì)提前準(zhǔn)備一些能用到的資料。資料可以指人事物的相關(guān)多類信息、情報(bào)。資料可以幫助我們更高效地完成各項(xiàng)工作。你知不知道我們常見的幼師資料有哪些呢?以下是由小編為大家整理的“找因數(shù)課件系列”,歡迎你閱讀與收藏。

找因數(shù)課件(篇1)

教學(xué)內(nèi)容:

青島版數(shù)學(xué)四年級(jí)下冊(cè)第七單元分?jǐn)?shù)加減法信息窗一

教學(xué)目標(biāo):

1、在合作探究活動(dòng)中了解公因數(shù)和最大公因數(shù)的意義,能用列舉法和短除法找出100以內(nèi)兩個(gè)數(shù)的公因數(shù)和最大公因數(shù)。

2、會(huì)在集合圖中表示兩個(gè)數(shù)的因數(shù)和它們的公因數(shù),體會(huì)數(shù)形結(jié)合的數(shù)學(xué)思想。

3、在探索公因數(shù)和最大公因數(shù)意義的過程中,經(jīng)歷列舉、觀察、歸納等數(shù)學(xué)活動(dòng),進(jìn)一步發(fā)展初步的推理能力。感受數(shù)學(xué)思考的條理性,體驗(yàn)學(xué)習(xí)的樂趣。

教學(xué)重點(diǎn):

理解公因數(shù)和最大公因數(shù)的意義,掌握求兩個(gè)數(shù)公因數(shù)和最大公因數(shù)的方法。

教學(xué)難點(diǎn):

理解用短除法求最大公因數(shù)的算理。

評(píng)價(jià)任務(wù)設(shè)計(jì):

1、教師對(duì)學(xué)生能夠利用列舉法、短除法找公因數(shù)和最大公因數(shù)學(xué)習(xí)情況的評(píng)價(jià)。

2、教師對(duì)學(xué)生在學(xué)習(xí)活動(dòng)中體會(huì)數(shù)形結(jié)合思想的評(píng)價(jià)。

3、教師對(duì)學(xué)生參與學(xué)習(xí)活動(dòng)的評(píng)價(jià),及時(shí)評(píng)價(jià)不同水平的學(xué)生參與學(xué)習(xí)活動(dòng)的實(shí)際表現(xiàn)。

教學(xué)過程:

一、復(fù)習(xí)導(dǎo)入

師:昨天,老師布置了這樣一項(xiàng)課前作業(yè)。

師:誰(shuí)能拿著你的作業(yè)到前面來說一說你是怎樣分的?(指名答)

師:這個(gè)同學(xué)把自己的想法表達(dá)的非常清楚,我們?cè)賮砜纯此窃趺捶值摹#ㄕn件演示)

問:還有不同分法嗎?(生答師演示)

預(yù)設(shè):匯報(bào)出錯(cuò),比如4厘米——師引導(dǎo)觀察:如果用邊長(zhǎng)4厘米的小正方形來分的話,長(zhǎng)可以分幾個(gè)呢?這樣還能不能把長(zhǎng)方形正好分完呢?

師:其他同學(xué)還有不同意見嗎?

同位互相看一看各自是怎樣分的,交流一下自己的想法!

二、認(rèn)識(shí)公因數(shù)和最大公因數(shù)

1、教學(xué)公因數(shù)和最大公因數(shù)的意義,總結(jié)列舉法

師:通過研究我們發(fā)現(xiàn),小正方形的邊長(zhǎng)可以是1厘米、2厘米、3厘米或者是6厘米,最多是幾厘米呢?

師:這些小正方形的邊長(zhǎng)1、2、3、6與長(zhǎng)方形的長(zhǎng)24和寬18之間有什么關(guān)系?。?/p>

生:1、2、3、6是18的因數(shù)也是24的因數(shù)。

師:我們把18和24的因數(shù)都找出來,對(duì)比著看一看吧!

師:誰(shuí)能快速找出18的因數(shù)?24的因數(shù)又有哪些呢?(指名說)

師:對(duì)比觀察18和24的因數(shù),你有什么發(fā)現(xiàn)?

生:它們的因數(shù)中都有1、2、3、6、

師:看來,這和我們剛才的想法是一樣的,1、2、3、6既是18的因數(shù),也是24的因數(shù),我們就把1、2、3、6叫做18和24的公因數(shù)。

師:公因數(shù)中哪個(gè)最大?。可?最大

師:我們就把6叫做18和24的最大公因數(shù)。

師:其實(shí)在前面的課前作業(yè)中,小正方形的邊長(zhǎng)就是長(zhǎng)方形長(zhǎng)與寬的公因數(shù)。今天這節(jié)課,我們就來研究公因數(shù)和最大公因數(shù)。

師:剛才我們分別列舉出了18和24的因數(shù),又找出它們的公因數(shù)和最大公因數(shù),這種找公因數(shù)和最大公因數(shù)的方法叫列舉法?!景鍟毫信e法】

2、教學(xué)集合圈

師:為了讓大家更直觀的看出它們的關(guān)系,我們還可以用集合圈的形式表示出來。

24的因數(shù)

18的因數(shù)

【課件出示】

123612346

91881224

師:左邊的集合圈表示的.是18的因數(shù),右邊的集合圈表示的是24的因數(shù)、因?yàn)樗鼈冇泄驍?shù)1、2、3、6,所以我們就把兩個(gè)集合圈合在一起。

問1:現(xiàn)在你知道左邊這一部分表示的什么嗎?(指名答)

右邊這一部分呢?大家一起說!兩個(gè)集合圈相交的部分呢?左半部分又表示什么呢?大家一起說右半部分表示的什么?

師:下面請(qǐng)同位互相說一說集合圈中每一部分表示什么。

師小結(jié)。

師:現(xiàn)在給你一個(gè)集合圈你會(huì)填了嗎?

師:看到這道題你能不能直接填呢?那應(yīng)該先怎么辦?

生:先找到16和28的因數(shù)和公因數(shù),再填集合圈。

師:請(qǐng)同學(xué)們先在作業(yè)紙上列舉出16和28的因數(shù),再填集合圈。

(生獨(dú)立完成,師巡視)

展示與評(píng)價(jià)

師:誰(shuí)來說一說你是怎么填的?(指名匯報(bào))

給大家說說你先填的什么?又填的什么?

指名說一說,及時(shí)評(píng)價(jià)。

師:我們?cè)賮砜纯催@位同學(xué)的作業(yè)。

師:同位互相檢查一下,不對(duì)的改正過來。

三、認(rèn)識(shí)短除法

1、講解短除法

師:同學(xué)們,除了用列舉法找兩個(gè)數(shù)的公因數(shù)和最大公因數(shù)。還有一種方法也能找出兩個(gè)數(shù)的最大公因數(shù),但是需要你用心觀察才能發(fā)現(xiàn),你們?cè)敢饨邮芴魬?zhàn)嗎?

師:請(qǐng)大家先把18和24分解質(zhì)因數(shù)。

師:誰(shuí)來說說你分解質(zhì)因數(shù)的結(jié)果?

師:請(qǐng)同學(xué)們仔細(xì)觀察這兩個(gè)式子,你有什么發(fā)現(xiàn)?

生:我發(fā)現(xiàn)它們都有質(zhì)因數(shù)2和3、

師:18和24公有的質(zhì)因數(shù)2和3與它們的最大公因數(shù)6之間有什么關(guān)系呢?生:2乘3等于6

師:根據(jù)這個(gè)發(fā)現(xiàn)我們就可以把兩個(gè)短除式合并在一起,用短除法來求18和24的最大公因數(shù)。

師邊板書邊講解……

師:最后把所有的除數(shù)連乘起來,就能得到18和24的最大公因數(shù)了。

問:現(xiàn)在誰(shuí)能說說我們是怎樣用短除法求18和24的最大公因數(shù)呢?(指名學(xué)生說一說)

2、練一練

師:下面請(qǐng)你用這種方法求下面每組數(shù)的最大公因數(shù),快速的完成在你的作業(yè)紙上!

師:誰(shuí)來說說你是怎么做的?(指名學(xué)生展示匯報(bào))

問:你認(rèn)為他做的怎么樣?

四、練習(xí)與應(yīng)用

1、練一練(蘇教版P27T1)

師:接下來你能用今天所學(xué)的知識(shí)解決下面這個(gè)問題嗎?(課件出示)把它完成在你的作業(yè)紙上!

展示匯報(bào)

師:我們?cè)谡覂蓚€(gè)數(shù)的公因數(shù)和最大公因數(shù)的時(shí)候,除了列舉法和短除法以外,我們還可以用這種方法(課件演示、介紹)

2、扎花束

師:同學(xué)們!春季運(yùn)動(dòng)會(huì)馬上就要到了,學(xué)校花束隊(duì)買來了兩種顏色的花準(zhǔn)備來扎花束。(課件出示,師讀題目要求)

問:同學(xué)們想一想這道題其實(shí)在求什么?

師:選擇自己喜歡的方法把它完成在練習(xí)本上。

問:大家一起告訴我最多能扎多少束?這樣每一束花里面有幾朵紅花?幾朵黃花呢?

2、數(shù)學(xué)知識(shí)

師:同學(xué)們!早在很久以前,我國(guó)古代的數(shù)學(xué)家就已經(jīng)在研究我們今天所學(xué)的知識(shí)了!

五、課堂總結(jié):通過這節(jié)課的學(xué)習(xí)你有哪些收獲?

找因數(shù)課件(篇2)

一、教學(xué)目標(biāo)

理解質(zhì)因數(shù)和分解質(zhì)因數(shù)的意義,并會(huì)用一種方法或自己喜歡的方法分解質(zhì)因數(shù)。

二、教學(xué)重點(diǎn)、難點(diǎn)

重點(diǎn):分解質(zhì)因數(shù)

難點(diǎn):準(zhǔn)確分解

三、預(yù)計(jì)教學(xué)時(shí)間:

1節(jié)

四、教學(xué)活動(dòng)

(一)基礎(chǔ)訓(xùn)練

【口答】

什么是質(zhì)數(shù)?什么是合數(shù)?1是什么?

【解答題】

下面各數(shù)是質(zhì)數(shù)還是合數(shù)?把你判斷的填在指定的圈里。

19,21,43,67,27,37,41,51,57,69,83,87,81,91

質(zhì)數(shù)、合數(shù)

(二)新知學(xué)習(xí)

引入:今天,我們學(xué)習(xí)合數(shù)與質(zhì)數(shù)之間關(guān)系

揭示課題——分解質(zhì)因數(shù)

【典型例題】

合數(shù)

1??春蠑?shù)21

(1)有多少個(gè)因數(shù)?并寫出:1、3、7、21

(2)回到今天討論的問題是合數(shù)與質(zhì)數(shù)之間的關(guān)系,排除1和它本身21,即1×21=21。

(3)只剩下研究3×7=21的問題,表示成21=3×7。那么,3和7叫做21的質(zhì)因數(shù)

(4)質(zhì)因數(shù)與因數(shù)的分別?(也就是1和合數(shù)做質(zhì)因數(shù),也就是分解質(zhì)因數(shù)中不能有1和合數(shù);什么數(shù)都可以做因數(shù))

2。研究討論合數(shù)的分解方法。

(1)“樹枝”圖式分解法。

(2)“短除法”分解質(zhì)因數(shù)。

3。把27,51,57,87,81分解質(zhì)因數(shù)

【小結(jié)】(分解質(zhì)因數(shù)時(shí),你認(rèn)為應(yīng)注意什么?)

(三)鞏固練習(xí)(10題)

【基礎(chǔ)練習(xí)】

1。判斷下面的橫式哪些是分解質(zhì)因數(shù)?哪些不是?理由?

24=2×2×6、6=1×2×3、60=2×2×3×5

2。把分解不正確的改正過來。

【提高練習(xí)】

把16,12,45,56分解質(zhì)因數(shù)。

【拓展練習(xí)】

把下面各數(shù)分解質(zhì)因數(shù),并分別寫出它們所有的因數(shù)。

分解質(zhì)因數(shù)、因數(shù)

15、15=

18、18=

20、20=

找因數(shù)課件(篇3)

《最大公因數(shù)》教學(xué)設(shè)計(jì)

教材來源:小學(xué)五年級(jí)《數(shù)學(xué)》教科書/人民教育出版社

內(nèi)容來源:小學(xué)五年級(jí)數(shù)學(xué)(下冊(cè))第四單元

主題:最大公因數(shù)

課時(shí):共14課時(shí),第10課時(shí)

授課對(duì)象:五年級(jí)學(xué)生

設(shè)計(jì)者:朱麗娟/中牟縣商都路小學(xué)

目標(biāo)確定的依據(jù)

1.課程標(biāo)準(zhǔn)內(nèi)容目標(biāo)中的相關(guān)要求

能準(zhǔn)確判斷約分的結(jié)果是不是最簡(jiǎn)分?jǐn)?shù)。

2.教材分析

教材之前已經(jīng)引入過分?jǐn)?shù)的基本性質(zhì)、公因數(shù)和最大公因數(shù),已經(jīng)對(duì)本節(jié)課做了很好的鋪墊。

3.學(xué)情分析

學(xué)生之前已經(jīng)學(xué)過分?jǐn)?shù)和分?jǐn)?shù)的基本性質(zhì),并且學(xué)生對(duì)分?jǐn)?shù)的基本性質(zhì)掌握的很好,本節(jié)是利用分?jǐn)?shù)的基本性質(zhì)來進(jìn)入約分,學(xué)生理解起來就相對(duì)來說很簡(jiǎn)單,順理成章。

學(xué)習(xí)目標(biāo)

1、通過學(xué)生獨(dú)立思考、小組合作交流,使學(xué)生掌握約分的方法,并能夠正確、熟練的進(jìn)行約分。

2、通過學(xué)-教-導(dǎo)的問題解決的過程,培養(yǎng)學(xué)生獨(dú)立思考、小組交流解決問題的能力,讓學(xué)生感悟到合作學(xué)習(xí)的魅力。

評(píng)價(jià)任務(wù)

任務(wù)1:理解約分和最簡(jiǎn)分?jǐn)?shù)的意義,掌握約分的方法。

教學(xué)過程

教學(xué)環(huán)節(jié)

學(xué)生的學(xué)

教師的教

評(píng)價(jià)要點(diǎn)

動(dòng)態(tài)修改

環(huán)節(jié)一

復(fù)習(xí)導(dǎo)入

學(xué)生獨(dú)立完成。

1寫出下面各組數(shù)的最大公因數(shù)。

15和12()48和56()

2在括號(hào)里填上適當(dāng)?shù)臄?shù)

====

教師追問:你們這樣填的依據(jù)是什么?

學(xué)生能做對(duì)這些題,并回憶起分?jǐn)?shù)的基本性質(zhì)。

環(huán)節(jié)二

探究新知,及時(shí)檢測(cè)。

學(xué)生分組交流、討論

教師提問:A,有一個(gè)分?jǐn)?shù)24/30,你能不能找到與它大小相等,而分子分母又比它的分子分母小的分?jǐn)?shù)

學(xué)生能夠找出12/158/104/5

跟老師一起認(rèn)識(shí)約分

板書:24/30=(24÷2)/(30÷2)=12/15

12/15=(12÷3)/(15÷3)=4/5

像這樣,把一個(gè)分?jǐn)?shù)化成和它相等,但分子和分母都比較小的分?jǐn)?shù),叫做約分。

教師提問:找到4/5以后為什么不繼續(xù)找了?

教師陳述:4/5的分子和分母只有公因數(shù)1,像這樣的分?jǐn)?shù)叫做最簡(jiǎn)分?jǐn)?shù)。

學(xué)生能夠理解約分和最簡(jiǎn)分?jǐn)?shù)的概念。

學(xué)生獨(dú)立做題。最簡(jiǎn)分?jǐn)?shù)有:15/1610/2117/3031/916/11

教師出示課件:你知道下面哪些數(shù)是最簡(jiǎn)分?jǐn)?shù)?

15/1610/2117/30

20/4531/914/18

6/119/15

教師提問:什么是最簡(jiǎn)分?jǐn)?shù)?

給出一些分?jǐn)?shù),學(xué)生能找出哪些是最簡(jiǎn)分?jǐn)?shù)。

學(xué)生獨(dú)立完成12/30約分

12/30約分

環(huán)節(jié)三

實(shí)踐運(yùn)用

1,p113.1

2,找出最簡(jiǎn)分?jǐn)?shù).[課件4]

2/36/89/125/65/1821/2834/51

找因數(shù)課件(篇4)

各位老師大家好!

今天我說課的題目是蘇教版教材五年級(jí)上冊(cè)《公因數(shù)和最大公因數(shù)》。

分析教材

本課是蘇教版教材五年級(jí)上冊(cè)第三單元《公倍數(shù)和公因數(shù)》中的內(nèi)容。在四年級(jí)(下冊(cè))教材里,學(xué)生已經(jīng)建立了倍數(shù)和因數(shù)的概念,會(huì)找10以內(nèi)自然數(shù)的倍數(shù),100以內(nèi)自然數(shù)的因數(shù)。本單元繼續(xù)教學(xué)倍數(shù)和因數(shù)的知識(shí),要理解公倍數(shù)、最小公倍數(shù)和公因數(shù)、最大公因數(shù)的意義,學(xué)會(huì)找兩個(gè)數(shù)的最小公倍數(shù)和最大公因數(shù)的方法。為以后進(jìn)行通分、約分和分?jǐn)?shù)四則計(jì)算作準(zhǔn)備。

《課程標(biāo)準(zhǔn)》要求學(xué)生“動(dòng)手操作、自主探索、合作交流”,結(jié)合教材的特點(diǎn),我力求達(dá)到下面的教學(xué)目標(biāo):

1、經(jīng)歷找兩個(gè)數(shù)的最大公因數(shù)的過程,理解公因數(shù)和最大公因數(shù)的意義。探索找公因數(shù)的方法,會(huì)正確找出兩個(gè)數(shù)的公因數(shù)和最大公因數(shù)。

2、結(jié)合具體實(shí)例,滲透集合思想,培養(yǎng)學(xué)生有序思考的能力,讓學(xué)生養(yǎng)成不重復(fù)、不遺漏、不重復(fù)的思考習(xí)慣。

3、培養(yǎng)學(xué)生能用自己的語(yǔ)言表述自己的發(fā)現(xiàn),善于發(fā)現(xiàn)規(guī)律,利用規(guī)律解決問題的能力。

依據(jù)《課程標(biāo)準(zhǔn)》的要求和教學(xué)目標(biāo),我確定本課教學(xué)重點(diǎn)是理解公因數(shù)和最大公因數(shù)的意義,教學(xué)難點(diǎn)是會(huì)求兩個(gè)數(shù)的公因數(shù)和最大公因數(shù)。

設(shè)計(jì)理念

在教學(xué)中我發(fā)揮“教師是學(xué)習(xí)活動(dòng)的組織者、引導(dǎo)者與合作者”的作用, 激發(fā)學(xué)生興趣、引導(dǎo)學(xué)生自己探索。學(xué)生才是學(xué)習(xí)的主體,讓學(xué)生在玩中學(xué)、學(xué)中玩,合作交流中學(xué)、學(xué)后合作交流并根據(jù)學(xué)生原有的認(rèn)識(shí)基礎(chǔ)和認(rèn)知規(guī)律,并結(jié)合“以學(xué)生的發(fā)展為本“的理念, 力求突出以下三點(diǎn):

1、將教學(xué)內(nèi)容活動(dòng)化,讓學(xué)生在做中學(xué)。

2、采用小組合作學(xué)習(xí),讓學(xué)生在交往互動(dòng)中學(xué)。

3、充分利用原有的認(rèn)知經(jīng)驗(yàn),在遷移中學(xué)。

教學(xué)過程

依據(jù)教材特點(diǎn)及小學(xué)生認(rèn)知規(guī)律和發(fā)展水平,整個(gè)教學(xué)過程安排了四個(gè)環(huán)節(jié):

一、 活動(dòng)探究,認(rèn)識(shí)公因數(shù)

分為五個(gè)步驟:

1、動(dòng)手操作:在教學(xué)公因數(shù)的概念時(shí),讓學(xué)生經(jīng)歷操作思考的過程,認(rèn)識(shí)公因數(shù)。首先讓學(xué)生用事先準(zhǔn)備好的小長(zhǎng)方形紙片,分別用邊長(zhǎng)6厘米和邊長(zhǎng)4厘米的正方形紙片鋪滿一個(gè)長(zhǎng)18厘米、寬12浪漫的的長(zhǎng)方形操作活動(dòng)。通過學(xué)生的操作,引導(dǎo)學(xué)生觀察正方形的邊長(zhǎng)與長(zhǎng)方形的長(zhǎng)、寬之間的關(guān)系,讓學(xué)生看看正方形每條邊各鋪了幾次?怎樣用算式表示?,來說明為什么?

2、想象延伸:接下來讓學(xué)生思考還有那些邊長(zhǎng)是整厘米數(shù)的正方形也能鋪滿大長(zhǎng)方形。學(xué)生思考后,回答邊長(zhǎng)是1厘米,2厘米,3厘米的正方形也能鋪滿大長(zhǎng)方形。引導(dǎo)學(xué)生說出只要邊長(zhǎng)“既是”18的因數(shù)“又是”12的因數(shù),就能鋪滿大長(zhǎng)方形。從而引出公倍數(shù)的概念,再?gòu)?qiáng)調(diào)因?yàn)橐粋€(gè)數(shù)的因數(shù)的個(gè)數(shù)是有限的,所以兩個(gè)數(shù)的公因數(shù)的個(gè)數(shù)也是有限的(最小是1),讓學(xué)生在自主參與、發(fā)現(xiàn)、歸納的基礎(chǔ)上認(rèn)識(shí)并建立公因數(shù)的概念的過程。

3、歸納總結(jié):只要正方形的邊長(zhǎng)既是12的因數(shù)又是18的因數(shù),這樣的正方形就能鋪滿大長(zhǎng)方形。1、2、3、6既是12的因數(shù)又是18的因數(shù),它們就是12和18的公因數(shù)。

4、根據(jù) 學(xué)生的總結(jié)我及時(shí)板書課題,讓學(xué)生的形象思維轉(zhuǎn)變成抽象思維。

5、反例教學(xué):讓學(xué)生說明4是12和18的公因數(shù)嗎?為什么?

學(xué)生通過上面的一正一反教學(xué)總結(jié)出:公因數(shù)要同時(shí)是兩個(gè)數(shù)的因數(shù)。

為了及時(shí)鞏固,完成練一練:先讓學(xué)生在圖上畫一畫,找出公因數(shù)和最大因數(shù),填寫在書上。

(設(shè)計(jì)目的:通過具體的操作和交流活動(dòng),幫助學(xué)生理解公因數(shù),使知識(shí)不在枯燥無。讓學(xué)生到感受成功的喜悅。)

二、自主探索,求最大公因數(shù):

學(xué)生在已經(jīng)掌握公因數(shù)概念的基礎(chǔ)上,讓學(xué)生學(xué)習(xí)怎樣找兩個(gè)數(shù)的公因數(shù),學(xué)以致用。教學(xué)例4時(shí),讓學(xué)生獨(dú)立思考,自主探索解決問題的方法,然后小組交流。通過具體的運(yùn)用,鞏固公因數(shù)的概念。讓學(xué)生說說怎樣找12和18的公因數(shù),學(xué)生可能說三種方法,一是先找12的因數(shù),從12的因數(shù)中找18的因數(shù);二是先找18的因數(shù),再?gòu)闹姓页?2 的因數(shù),三是分別找出12和18的因數(shù),再找出相同的因數(shù)。通過比較三種方法,讓學(xué)生感受哪種方法比較簡(jiǎn)捷。在此基礎(chǔ)上,揭示最大公因數(shù)的含義,并介紹用集合圈的形式來表示12和18的公因數(shù)和最大公因數(shù),明確集合圖中省略號(hào)的作用。

(設(shè)計(jì)目的:通過學(xué)生自主學(xué)習(xí),弄清怎樣用集合圖來表示兩個(gè)數(shù)的公因數(shù)。幫助學(xué)生更加直觀地理解概念,感受數(shù)學(xué)方法的嚴(yán)謹(jǐn)性。)

三、 綜合實(shí)踐、學(xué)以致用

為了體現(xiàn)數(shù)學(xué)來源與生活,用與生活的理念我設(shè)計(jì)三個(gè)層次的練習(xí):

首先設(shè)計(jì)關(guān)于公因數(shù)和最大公因數(shù)的概念判斷題,進(jìn)一步讓學(xué)生對(duì)公因數(shù)和最大公因數(shù)的認(rèn)識(shí)。做到知識(shí)和技能融為一體。

接著讓學(xué)生完成練習(xí)五第1題。學(xué)生獨(dú)立完成后交流。

然后分別完成2、3題。小組交流。

(練習(xí)的設(shè)計(jì)是從認(rèn)識(shí)到理解,再到拓展應(yīng)用,逐層加深,培養(yǎng)學(xué)生抽象概括能力和合作意識(shí),教學(xué)由課內(nèi)到課外延伸,增加運(yùn)用實(shí)踐機(jī)會(huì)。)

四、全課小結(jié)、過程回顧

這節(jié)課我們認(rèn)識(shí)了兩個(gè)數(shù)的公因數(shù)和最大公因數(shù),說說你掌握的方法。

學(xué)生回憶整堂課所學(xué)知識(shí)。學(xué)生通過這一環(huán)節(jié)可以將整個(gè)學(xué)習(xí)過程進(jìn)行回顧、按一定的線索梳理新知,形成整體印象,便于知識(shí)的理解記憶。

找因數(shù)課件(篇5)

教學(xué)內(nèi)容:北師大版五年級(jí)數(shù)學(xué)上冊(cè)第三單元《找因數(shù)》

教學(xué)目標(biāo):1、在用小正方形拼長(zhǎng)方形的活動(dòng)中,體會(huì)找一個(gè)數(shù)因數(shù)的方法,提高有條理思考的習(xí)慣和能力。

2、在1--100的自然數(shù)中,能找到一個(gè)數(shù)的全部因數(shù)。

教學(xué)重點(diǎn):用小正方形拼長(zhǎng)方形的活動(dòng)中,體會(huì)找一個(gè)數(shù)的因數(shù)的方法.

教學(xué)難點(diǎn):體會(huì)找一個(gè)數(shù)因數(shù)的方法,能準(zhǔn)確、有條理的找出一個(gè)數(shù)的因數(shù)。

教具準(zhǔn)備:課件、小正方形。格子紙。

教學(xué)方法:通過動(dòng)手操作與觀察討論、分析、比較、歸納。

教學(xué)過程:

一、復(fù)習(xí)導(dǎo)入

同學(xué)們,前面我們學(xué)習(xí)了倍數(shù)和因數(shù)的知識(shí),我想考考大家,你們接受挑戰(zhàn)嗎?

一起來看大屏幕

出示課件:根據(jù)下列算式說說誰(shuí)是誰(shuí)的倍數(shù)?誰(shuí)是誰(shuí)的因數(shù)?

6×5=30 24÷3=8

12÷1=12 3×5=15

誰(shuí)來大聲讀一讀題目,你們會(huì)嗎?誰(shuí)來說第一題?

師生互動(dòng),共同解決。

通過這一組的練習(xí),我感覺同學(xué)們掌握知識(shí)還是不錯(cuò)的,那么今天呀,我們就一起來學(xué)習(xí)找因數(shù)

板書課題:找因數(shù)

二、探究新知

同學(xué)們,你們平時(shí)喜歡玩拼圖游戲嗎?那今天這節(jié)課我們就先玩一個(gè)拼圖游戲,用你手中的小正方形來拼長(zhǎng)方形,我們一起來看看有什么活動(dòng)要求。

出示大屏幕:

用12個(gè)小正方形拼成一個(gè)長(zhǎng)方形,有哪幾種拼法?在方格紙上畫一畫,并用算式表示。

以小組為單位,開始吧!

1、學(xué)生:用12個(gè)小正方形拼成一個(gè)長(zhǎng)方形

教師巡視,指導(dǎo)學(xué)生

師:把你拼的長(zhǎng)方形在方格紙上畫出來。

下面我們一起來交流一下吧!

學(xué)生邊匯報(bào),邊到前面進(jìn)行演示

看一下能拼出幾種長(zhǎng)方形?

你是怎樣拼的,說說好嗎?

你又是怎樣畫的呢?

學(xué)生邊匯報(bào),邊到前面進(jìn)行演示

畫出三種長(zhǎng)方形。(因?yàn)樾螤钜粯?,只是位置和方向變了?/p>

2、找一個(gè)數(shù)因數(shù)的方法。

師:同學(xué)們用12個(gè)小正方形擺出了三種長(zhǎng)方形,你能把這些擺法用算式寫出來嗎?

1×12=12 2×6=12 3×4=12

你能找出12的全部因數(shù)嗎?

同桌討論交流

指名回答,然后問你是怎樣找的?

生:用乘法口訣一對(duì)一對(duì)找的。

誰(shuí)乘誰(shuí)等于12,這兩個(gè)乘數(shù)就是12的因數(shù)。

師:為了不重復(fù)、不遺漏,還應(yīng)按一定的順序排列起來。

誰(shuí)能按從小到大的順序說出來?

師板書:12的因數(shù)有:1,2,3,4,6,12。

誰(shuí)來說一說:12的因數(shù)和拼成的長(zhǎng)方形有什么關(guān)系呢?

拼長(zhǎng)方形的方法就是找12的全部因數(shù)的方法。

3、我們還可以利用除法算式找一個(gè)數(shù)的全部因數(shù)

師:當(dāng)被除數(shù)是12時(shí),你能想到哪幾道除法算式?

學(xué)生思考,交流,指名回答

師板書:12÷1=12,12÷2=6,12÷3=4

12÷12=1,12÷6=2,12÷4=3

能找到12的全部因數(shù)嗎?你是怎樣想的?

引導(dǎo)學(xué)生說出只要算到12÷4=3出現(xiàn)重復(fù)就不要再算了。

誰(shuí)能按順序說出來?

12的因數(shù)有:1,2,3,4,6,12。

練習(xí):找出18的全部因數(shù),同桌相互交流

匯報(bào),你是怎樣想的?

18的因數(shù)有:1,2,3,6,9,18。

生1:利用乘法算式一對(duì)一對(duì)的找,兩個(gè)乘數(shù)重復(fù)了就不再往下找了。生2:利用除法算式找時(shí),除數(shù)和商重復(fù)時(shí)就找全了一個(gè)數(shù)的因數(shù)。

4:小結(jié):怎樣找一個(gè)數(shù)的全部因數(shù)呢?

找一個(gè)數(shù)的全部因數(shù):用乘法算式,可以利用乘法口訣一對(duì)一對(duì)的找,也可以用除法算式,一對(duì)一對(duì)的找,并且要有順序的找,這樣既不重復(fù),又不遺漏。

三、鞏固練習(xí)

1、師:剛才我們已經(jīng)學(xué)會(huì)了用小正方形拼長(zhǎng)方形,然后從中找出一個(gè)數(shù)的因數(shù),下面我們共同看38面的第1題。

在課本上畫長(zhǎng)方形,使得它的面積是16平方厘米,邊長(zhǎng)是整厘米數(shù)。(每個(gè)小方格的邊長(zhǎng)是1cm)

全班齊練,展示作品,訂正

1×16=16 2×8=16 4×4=16

16的因數(shù):1,2,4,8,16。

2、第2題:寫出24的全部因數(shù),并說一說你是怎么找的?

24的全部因數(shù):

3、第3題:填一填,獨(dú)立完成,完成后集體交流想法

四、總結(jié):這節(jié)課有什么收獲?

五、作業(yè):課下思考練一練的第4、5題

板書設(shè)計(jì):

找因數(shù)

1×12=12 2×6=12 3×4=12

12的因數(shù)有:1,2,3,4,6,12

12÷1=12 12÷2=6 12÷3=4

12的因數(shù)有:1,2,3,4,6,12

找因數(shù)課件(篇6)

師:在寫12的因數(shù)時(shí),我們可以一對(duì)一對(duì)的寫,(課件出示: 1、12、2、6、3、4. )也可以從兩頭開始寫(板書:1、2、3、4、6、12.)找全了畫一個(gè)句號(hào)。

3、過渡:12的因數(shù)我們已經(jīng)會(huì)找了,那么你能用學(xué)到的知識(shí)找到18的因數(shù)嗎?試一試,看誰(shuí)能挑戰(zhàn)成功!

學(xué)生嘗試,獨(dú)立在本上完成。

教師巡視,找出幾個(gè)問題學(xué)生和完全寫對(duì)的學(xué)生的作業(yè),在視頻臺(tái)上展示。

學(xué)生說如何找全的方法,強(qiáng)化“有序”“一對(duì)一對(duì)的找”。

學(xué)生在學(xué)號(hào)紙上獨(dú)立完成,指名板演2的因數(shù),24的因數(shù),25的因數(shù),1的因數(shù)。

做完的同學(xué),互相檢查糾錯(cuò)。

師:誰(shuí)剛才幫別人找到錯(cuò)誤了?(評(píng)價(jià):你已經(jīng)熟練的掌握了找因數(shù)的方法,真棒!還有誰(shuí)是最棒的?祝賀你們)

師:現(xiàn)在我們來看這些數(shù)的因數(shù),個(gè)數(shù)有多有少,最少的是誰(shuí)?(“1”)最大最小都是它自己。“2”的最小因數(shù)是幾?最大因數(shù)是幾?誰(shuí)還能像老師這樣說一說?

學(xué)生說出“24”和“25”的最小因數(shù)和最大因數(shù)各是多少。

通過找這些數(shù)的因數(shù),從中你發(fā)現(xiàn)了什么?學(xué)生回答:一個(gè)數(shù)的最小因數(shù)是1,最大因數(shù)是它本身。

其他同學(xué)根據(jù)發(fā)現(xiàn)的規(guī)律自己檢驗(yàn),并用彩筆圈起來。

小結(jié):雖然一個(gè)數(shù),它因數(shù)的個(gè)數(shù)有多有少,但最小的因數(shù)是1,最大因數(shù)是它本身。1的因數(shù)只有1。因?yàn)橐粋€(gè)數(shù)的因數(shù)有最大和最小,所以個(gè)數(shù)是有限的。(板書在表格里)。

四、找一個(gè)數(shù)的倍數(shù)。

1、過渡:我們已經(jīng)學(xué)會(huì)了找一個(gè)數(shù)的因數(shù),那么怎樣找一個(gè)數(shù)的倍數(shù)呢?你能像找一個(gè)數(shù)的因數(shù)那樣有序的找嗎?相信這個(gè)問題也一定難不倒大家,咱們先來試一個(gè)簡(jiǎn)單的,找2的倍數(shù),看你能找多少個(gè)。

2、學(xué)生獨(dú)立找,找好后在小組中交流。

3、匯報(bào)展示,交流方法。

引導(dǎo):你能按從小到大的順序找2的倍數(shù)嗎?能寫得完嗎?怎么辦?

明確方法:用2分別乘1、2、3、4……得到的積都是2的倍數(shù)。

4、表示方法:2的倍數(shù)有2,4,6,8,10,…(一般寫完前5個(gè),就可以用省略號(hào)表示);集合圖。

5、寫出自己學(xué)號(hào)的倍數(shù)。

學(xué)生獨(dú)立完成,指名兩生板演(3的倍數(shù),5的倍數(shù),1的倍數(shù)),糾正錯(cuò)誤。

交流匯報(bào):一個(gè)數(shù)的最小倍數(shù)是它本身,沒有最大的倍數(shù),個(gè)數(shù)是無限的。

找因數(shù)課件(篇7)

教材直接呈現(xiàn)了找公因數(shù)的一般方法:先用想乘法算式的方式分別找出12和18的因數(shù),再找出公因數(shù)和最大公因數(shù)。在此基礎(chǔ)上,引出公因數(shù)與最大公因數(shù)的概念。教材用集合的方式呈現(xiàn)探索的過程。在練習(xí)1、2中引出了用因數(shù)關(guān)系、互質(zhì)數(shù)關(guān)系找最大公因數(shù),教師要引導(dǎo)學(xué)生發(fā)現(xiàn)這個(gè)方法并會(huì)運(yùn)用。

本冊(cè)一單元,學(xué)生已經(jīng)理解了因數(shù)和倍數(shù)的意義,能用乘法算式、集合等方式列舉出一個(gè)數(shù)的因數(shù)。因此用列舉法找最大公因數(shù)沒有困難。而利用因數(shù)關(guān)系、互質(zhì)數(shù)關(guān)系找還有一定的難度。因?yàn)閷W(xué)生不易發(fā)現(xiàn)這兩個(gè)數(shù)具有這些關(guān)系。

1、探索找兩個(gè)數(shù)的公因數(shù)的方法,會(huì)用列舉法找出兩個(gè)數(shù)的公因數(shù)和最大公因數(shù)。

2、經(jīng)歷找兩個(gè)數(shù)的公因數(shù)的過程,理解公因數(shù)和最大公因數(shù)的意義。

3、通過觀察、分析、歸納等數(shù)學(xué)活動(dòng),體驗(yàn)數(shù)學(xué)問題的探索性和挑戰(zhàn)性,感受數(shù)學(xué)思考的'條理性。

教學(xué)關(guān)鍵:用列舉法找出兩個(gè)數(shù)的因數(shù),然后有序地篩選出公因數(shù)。

教學(xué)時(shí),教師先讓學(xué)生自己分別找出12和18的因數(shù),并交流找因數(shù)的方法。再讓學(xué)生將這些因數(shù)填入兩個(gè)相交的集合。引導(dǎo)學(xué)生重點(diǎn)思考的問題是:兩個(gè)集合相交的部分填哪些因數(shù)?這時(shí)要組織學(xué)生展開討論,引導(dǎo)學(xué)生理解“兩個(gè)數(shù)公有的因數(shù)是他們的公因數(shù),其中最大的一個(gè)是它們的最大公因數(shù)。”當(dāng)學(xué)生練習(xí)時(shí),再引導(dǎo)學(xué)生發(fā)現(xiàn)用因數(shù)關(guān)系和互質(zhì)數(shù)關(guān)系找最大公因數(shù)。學(xué)生對(duì)本課知識(shí)熟練掌握后,再補(bǔ)充用短除法找最大公因數(shù)。

(1)師:除了3和4是12的因數(shù),12的因數(shù)還有哪些?

師:在這兩個(gè)圈里,應(yīng)該填上什么數(shù)?請(qǐng)大家完成正在書45頁(yè)上。

生做后匯報(bào)師板書于圈中。

(2)師:請(qǐng)大家找一找在12和18的因數(shù)中,有沒有相同的因數(shù),相同的因數(shù)有哪幾個(gè)。

師:像這樣,既是12的因數(shù),又是18的因數(shù),我們就說這些數(shù)都是12和18的公因數(shù)。

師:6就是12和18的最大公因數(shù)。這就是我們這節(jié)課學(xué)習(xí)的內(nèi)容——找最大公因數(shù)。

匯報(bào):中間區(qū)域是12的因數(shù)和18的因數(shù)的交叉區(qū)域,所填的數(shù)應(yīng)該既是12的因數(shù)又是18的因數(shù),也就是12和18的公因數(shù)填在這里。

找因數(shù)課件(篇8)

一、教學(xué)過程:

(一)動(dòng)手操作,感受并認(rèn)識(shí)因數(shù)與倍數(shù)。

1、老師和同學(xué)們都在課前準(zhǔn)備了幾個(gè)小正方形,如果用這些小正方形拼成一個(gè)長(zhǎng)方形,可以怎么拼?(讓學(xué)生獨(dú)立拼擺)

2、全班交流,請(qǐng)學(xué)生上黑板拼一拼,拼法用乘法算式表示出來。

指出:有三種拼法,列出三個(gè)不同的乘法算式,今天我們研究的內(nèi)容就藏在著三個(gè)算式中。

3、教師選擇一個(gè)算式指出4×3=12,4是12的因數(shù),12是4的倍數(shù),看這個(gè)算式還可以說:誰(shuí)是誰(shuí)的因數(shù)?誰(shuí)是誰(shuí)的倍數(shù)嗎?

4、揭示課題:倍數(shù)和因數(shù)。

5、看其他兩個(gè)算式,你還能說什么嗎?你覺得哪個(gè)算式給你的感覺有些特別?

6、自己寫一個(gè)乘法算式,讓你的同桌說一說誰(shuí)是誰(shuí)的因數(shù),誰(shuí)是誰(shuí)的倍數(shù),選一些特殊的例子:如0×8=0的形式16÷2=8。辨析:能不能說16是倍數(shù),2是因數(shù)。

7、完成想想做做(1)。

8、完成想想做做(2)。(交流:應(yīng)付元數(shù)與4元有什么關(guān)系?省略號(hào)表示什么意思?從這個(gè)省略好你知道了什么?)

9、想想做做(3)。(從中發(fā)現(xiàn)了什么?24有那些因數(shù)?最大的是幾?最小的是幾?)

(二)找倍數(shù)和因數(shù)。

1、找一個(gè)數(shù)的倍數(shù)(讓學(xué)生自己在紙上寫,然后交流:你是怎么找的?)

提問:

(1)3的最小的倍數(shù)是幾?最大的呢?

(2)3的倍數(shù)有無數(shù)個(gè),那么該怎么表示?

2、完成試一試。

反思:怎樣找一個(gè)數(shù)的倍數(shù)比較方便?一個(gè)數(shù)的倍數(shù)最小是幾?找得到最大的倍數(shù)嗎?

3、找一個(gè)數(shù)的因數(shù)。

先讓學(xué)生獨(dú)立找36的因數(shù),再進(jìn)行交流。

提問:36最小的因數(shù)是幾?最大的呢?怎樣找才能保證不重復(fù)不遺漏?對(duì)好的方法及時(shí)的給以肯定。

完成試一試

4、提問:15的最小因數(shù)是幾?最大的因數(shù)是幾?16呢?你有什么發(fā)現(xiàn)?

5、鞏固練習(xí):

(1)4的倍數(shù)有:

(2)25以內(nèi)4的倍數(shù)有:

(3)30的因數(shù)有:

(4)15的因數(shù)有:

(三)課堂小結(jié):略。

(四)作業(yè)布置:

1、6的倍數(shù)有:

2、7的倍數(shù)有:

3、100以內(nèi)9的倍數(shù)有:

4、24的因數(shù)有:

5、11的因數(shù)有:

二、教學(xué)反思:

本節(jié)課重點(diǎn)圍繞“理解倍數(shù)和因數(shù)的含義,能按要求找出一個(gè)數(shù)的倍數(shù)和因數(shù)”進(jìn)行教學(xué)。在寫一個(gè)數(shù)的倍數(shù)和因數(shù)時(shí),要讓學(xué)生經(jīng)歷探索的過程,在相互交流時(shí),得出最優(yōu)的方法,在探索倍數(shù)和因數(shù)的規(guī)律時(shí),既不能讓學(xué)生毫無目的的去探究,也不能把這個(gè)結(jié)論直接告訴學(xué)生。

先出示一些具體的數(shù),從這些具體的數(shù)的基礎(chǔ)上進(jìn)行探究,起到了較好的效果。在探究一個(gè)數(shù)的因數(shù)的方法時(shí),先在前面孕伏著除法中也有倍數(shù)和因數(shù),為探究一個(gè)數(shù)的因數(shù)埋下了伏筆。這個(gè)方法要比倍數(shù)的方法難一些,教師要有耐心,把學(xué)生的方法全部板書在黑板上,然后通過比較,發(fā)現(xiàn)商也是這個(gè)數(shù)因數(shù),又發(fā)現(xiàn)一個(gè)數(shù)的因數(shù),是成隊(duì)出現(xiàn)的,所以怎樣做到既不重復(fù),又不遺漏,就要有序思考,與前面學(xué)過的找規(guī)律的方法有機(jī)地聯(lián)系在一起。

數(shù)列的課件(系列15篇)


每個(gè)老師都需要在課前準(zhǔn)備好自己的教案課件,本學(xué)期又到了寫教案課件的時(shí)候了。寫好教案,才能讓課堂教學(xué)更完整,怎樣的教案課件算為優(yōu)秀?這份特別挑選的“數(shù)列的課件”一定值得您一試,請(qǐng)收藏這個(gè)網(wǎng)頁(yè)方便你下次再來查看!

數(shù)列的課件(篇1)

教學(xué)準(zhǔn)備

教學(xué)目標(biāo)

知識(shí)目標(biāo):使學(xué)生掌握等比數(shù)列的定義及通項(xiàng)公式,發(fā)現(xiàn)等比數(shù)列的一些簡(jiǎn)單性質(zhì),并能運(yùn)用定義及通項(xiàng)公式解決一些實(shí)際問題。

能力目標(biāo):培養(yǎng)運(yùn)用歸納類比的方法發(fā)現(xiàn)問題并解決問題的能力及運(yùn)用方程的思想的計(jì)算能力。

德育目標(biāo):培養(yǎng)積極動(dòng)腦的學(xué)習(xí)作風(fēng),在數(shù)學(xué)觀念上增強(qiáng)應(yīng)用意識(shí),在個(gè)性品質(zhì)上培養(yǎng)學(xué)習(xí)興趣。

教學(xué)重難點(diǎn)

本節(jié)的重點(diǎn)是等比數(shù)列的定義、通項(xiàng)公式及其簡(jiǎn)單應(yīng)用,其解決辦法是歸納、類比。

本節(jié)難點(diǎn)是對(duì)等比數(shù)列定義及通項(xiàng)公式的深刻理解,突破難點(diǎn)的關(guān)鍵在于緊扣定義,另外,靈活應(yīng)用定義、公式、性質(zhì)解決一些相關(guān)問題也是一個(gè)難點(diǎn)。

教學(xué)過程

二、教法與學(xué)法分析

為了突出重點(diǎn)、突破難點(diǎn),本節(jié)課主要采用觀察、分析、類比、歸納的方法,讓學(xué)生參與學(xué)習(xí),將學(xué)生置于主體位置,發(fā)揮學(xué)生的主觀能動(dòng)性,將知識(shí)的形成過程轉(zhuǎn)化為學(xué)生親自探索類比歸納的過程,使學(xué)生獲得發(fā)現(xiàn)的成就感。在這個(gè)過程中,力求把握好以下幾點(diǎn):

①通過實(shí)例,讓學(xué)生發(fā)現(xiàn)規(guī)律。讓學(xué)生在問題情景中,經(jīng)歷知識(shí)的形成和發(fā)展,力求使學(xué)生學(xué)會(huì)用類比的思想去看待問題。②營(yíng)造民主的教學(xué)氛圍,把握好師生的情感交流,使學(xué)生參與教學(xué)全過程,讓學(xué)生唱主角,老師任導(dǎo)演。③力求反饋的全面性、及時(shí)性。通過精心設(shè)計(jì)的提問,讓學(xué)生思維動(dòng)起來,針對(duì)學(xué)生回答的問題,老師進(jìn)行適當(dāng)?shù)恼{(diào)控。④給學(xué)生思考的時(shí)間和空間,不急于把結(jié)果拋給學(xué)生,讓學(xué)生自己去觀察、分析、類比得出結(jié)果,老師點(diǎn)評(píng),逐步養(yǎng)成科學(xué)嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度,提高學(xué)生的推理能力。⑤以啟迪思維為核心,啟發(fā)有度,留有余地,導(dǎo)而弗牽,牽而弗達(dá)。這樣做增加了學(xué)生的參與機(jī)會(huì),增強(qiáng)學(xué)生的參與意識(shí),教給學(xué)生獲取知識(shí)的途徑和思考問題的方法,使學(xué)生真正成為教學(xué)的主體,使學(xué)生學(xué)會(huì)學(xué)習(xí),提高學(xué)生學(xué)習(xí)的興趣和能力。

三、教學(xué)程序設(shè)計(jì)

(4)等差中項(xiàng):如果a 、 A 、 b成等差數(shù)列,那么A叫做a與b的等差中項(xiàng)。

說明:通過復(fù)習(xí)等差數(shù)列的相關(guān)知識(shí),類比學(xué)習(xí)本節(jié)課的內(nèi)容,用熟知的等差數(shù)列內(nèi)容來分散本節(jié)課的難點(diǎn)。

2.導(dǎo)入新課

本章引言中關(guān)于在國(guó)際象棋棋盤各格子里放麥粒的問題中,各個(gè)格子的麥粒數(shù)依次是:

1 , 2 , 4 , 8 , … , 263

再來看兩個(gè)數(shù)列:

5 , 25 ,125 , 625 , ...

···

說明:引導(dǎo)學(xué)生通過“觀察、分析、歸納”,類比等差數(shù)列的定義得出等比數(shù)列的定義,為進(jìn)一步理解定義,給出下面的問題:

判定以下數(shù)列是否為等比數(shù)列,若是寫出公比q,若不是,說出理由,然后回答下面問題。

-1 , -2 , -4 , -8 …

-1 , 2 , -4 , 8 …

-1 , -1 , -1 , -1 …

1 , 0 , 1 , 0 …

提出問題:(1)公比q能否為零?為什么?首項(xiàng)a1呢?

(2)公比q=1時(shí)是什么數(shù)列?

(3)q>0是遞增數(shù)列嗎?q

說明:通過師生問答,充分調(diào)動(dòng)學(xué)生學(xué)習(xí)的主動(dòng)性及學(xué)習(xí)熱情,活躍課堂氣氛,同時(shí)培養(yǎng)學(xué)生的口頭表達(dá)能力和臨場(chǎng)應(yīng)變能力。另外通過趣味性的問題,來提高學(xué)生的學(xué)習(xí)興趣。激發(fā)學(xué)生發(fā)現(xiàn)等比數(shù)列的定義及其通項(xiàng)公式的強(qiáng)烈欲望。

3.嘗試推導(dǎo)通項(xiàng)公式

讓學(xué)生回顧等差數(shù)列通項(xiàng)公式的推導(dǎo)過程,引導(dǎo)推出等比數(shù)列的通項(xiàng)公式。

推導(dǎo)方法:疊乘法。

說明:學(xué)生從方法一中學(xué)會(huì)從特殊到一般的方法,并從次數(shù)中去發(fā)現(xiàn)規(guī)律,以培養(yǎng)學(xué)生的觀察能力;另外回憶等差數(shù)列的特點(diǎn),并類比到等比數(shù)列中來,培養(yǎng)學(xué)生的類比能力及將新知識(shí)轉(zhuǎn)化到舊知識(shí)的能力。方法二是讓學(xué)生掌握“疊乘”的思路。

4.探索等比數(shù)列的圖像

等差數(shù)列的圖像可以看成是直線上一群孤立的點(diǎn)構(gòu)成的,觀察等比數(shù)列的通項(xiàng)公式,你能得出什么結(jié)果?它的圖像如何?

變式2.等比數(shù)列{an}中,a2 = 2 , a9 = 32 , 求q.

(學(xué)生自己動(dòng)手解答。)

說明:例1的目的是讓學(xué)生熟悉公式并應(yīng)用于實(shí)際,例2及變式是讓學(xué)生明白,公式中a1 ,q,n,an四個(gè)量中,知道任意三個(gè)即可求另一個(gè)。并從這些題中掌握等比數(shù)列運(yùn)算中常規(guī)的消元方法。

6.探索等比數(shù)列的性質(zhì)

類比等差數(shù)列的性質(zhì),猜測(cè)等比數(shù)列的性質(zhì),然后引導(dǎo)推證。

7.性質(zhì)應(yīng)用

例3.在等比數(shù)列{an}中,a5 = 2 , a10 = 10 , 求a15

(讓學(xué)生自己動(dòng)手,尋求多種解題方法。)

方法一:由題意列方程組解得

方法二:利用性質(zhì)2

方法三:利用性質(zhì)3

例4(見教材例3)已知數(shù)列{an}、{bn}是項(xiàng)數(shù)相同的等比數(shù)列,求證:{an·bn}是等比數(shù)列。

8.小結(jié)

為了讓學(xué)生將獲得的知識(shí)進(jìn)一步條理化,系統(tǒng)化,同時(shí)培養(yǎng)學(xué)生的歸納總結(jié)能力及練習(xí)后進(jìn)行再認(rèn)識(shí)的能力,教師引導(dǎo)學(xué)生對(duì)本節(jié)課進(jìn)行總結(jié)。

1、等比數(shù)列的定義,怎樣判斷一個(gè)數(shù)列是否是等比數(shù)列

2、等比數(shù)列的通項(xiàng)公式,每個(gè)字母代表的含義。

3、等比數(shù)列應(yīng)注意那些問題(a1≠0,q≠0)

4、等比數(shù)列的圖像

5、通項(xiàng)公式的應(yīng)用 (知三求一)

6、等比數(shù)列的性質(zhì)

7、等比數(shù)列的概念(注意兩點(diǎn)①同號(hào)兩數(shù)才有等比中項(xiàng)

②等比中項(xiàng)有兩個(gè),他們互為相反數(shù))

8、本節(jié)課采用的主要思想

——類比思想

9.布置作業(yè)

習(xí)題3.4 1②、④ 3. 8. 9.

10.板書設(shè)計(jì)

數(shù)列的課件(篇2)

分總文段一般有明顯特點(diǎn),尾句或者結(jié)尾出現(xiàn)明顯的提示詞:總之、可見、可得、總而言之、綜上所述、從這個(gè)意義上講等,總結(jié)句之后,就很可能是文段的主旨。一般分總文段,經(jīng)??嫉降男形挠校悍治稣撌?得出結(jié)論、提出問題-解決問題。因而,對(duì)于分總文段,我們可以結(jié)合標(biāo)志詞和行文,重點(diǎn)關(guān)注尾句。

【例1】汪曾祺曾說語(yǔ)言不是外部的東西,它是和內(nèi)在的思想同時(shí)存在,不可剝離的。在他看來寫小說就是寫語(yǔ)言,語(yǔ)文課學(xué)的是語(yǔ)言,但語(yǔ)言不是空殼,而是要承載各種各樣的思想、哲學(xué)、倫理、道德的。怎么做人,如何對(duì)待父母兄弟姐妹,如何對(duì)待朋友,如何對(duì)待民族、國(guó)家和自己的勞動(dòng)等,這些在語(yǔ)文課里是與語(yǔ)言并存的。從這個(gè)意義來講,語(yǔ)文教育必須吸收和繼承傳統(tǒng)文化,而詩(shī)歌無疑是傳統(tǒng)文化的集大成者。

這段文字意在說明:

a.詩(shī)歌中包含豐富的思想、倫理和道德元素。

b.脫離內(nèi)在思想的語(yǔ)文教育是空洞無物的。

c.必須重視詩(shī)歌在語(yǔ)文教育中的作用。

d.語(yǔ)文教育需要和思想品德教育同步進(jìn)行。

【答案】c。解析:文段首先指出汪曾祺認(rèn)為語(yǔ)言與內(nèi)在思想同時(shí)存在不可剝離;接著對(duì)此進(jìn)行了具體闡釋,指出語(yǔ)文課學(xué)的不僅是語(yǔ)言,還有如何為人處世;最后由“從這個(gè)意義來講”作總結(jié),指出語(yǔ)文教育必須重視吸收和繼承傳統(tǒng)文化,尤其是詩(shī)歌這個(gè)傳統(tǒng)文化的集大成者。可見,文段最后落腳在語(yǔ)文教育必須重視詩(shī)歌,c項(xiàng)表述與此相符,當(dāng)選。

【例2】外科手術(shù)和放、化療對(duì)癌癥治療的效果可以肯定,但不滿意。由于存在對(duì)自身的損傷,加劇了正不勝邪的矛盾,給癌細(xì)胞復(fù)活繁殖以可乘之機(jī),一旦復(fù)活,卷土重來,而自身正氣削弱殆盡,無力抵擋,導(dǎo)致復(fù)發(fā)率高,存活率低的結(jié)果。若能與中醫(yī)在理、法、方、藥實(shí)際內(nèi)涵上切實(shí)融合,杜絕形式上的湊合,定能彌補(bǔ)這種不滿意,使正不勝邪轉(zhuǎn)化為邪不勝正,則可望獲得圓滿結(jié)果。

這段文字意在說明:

a.癌癥有著復(fù)發(fā)率高、存活率低的特點(diǎn)。

b.中醫(yī)可能會(huì)對(duì)癌癥的治療起到意想不到的效果。

c.外科手術(shù)等西醫(yī)的方法并不能從根本上治療癌癥。

d.運(yùn)用中西醫(yī)結(jié)合的方法可能會(huì)從根本上治愈癌癥。

【答案】d。解析:文段首先介紹了西醫(yī)治療癌癥的弊端,接著指出若能把中西醫(yī)切實(shí)融合起來,彌補(bǔ)西醫(yī)的欠缺,則可能產(chǎn)生良好的治療效果。由此可知,文段強(qiáng)調(diào)的是運(yùn)用中西醫(yī)結(jié)合方法治療癌癥。d項(xiàng)表述與此相符,當(dāng)選。a項(xiàng)為問題論述部分。b項(xiàng)文段沒有涉及。c項(xiàng)“不能從根本上治療癌癥”說法過于絕對(duì)。故本題選d。

數(shù)列的課件(篇3)

高中數(shù)列,有規(guī)律可循的類型無非就是兩者,等差數(shù)列和等比數(shù)列,這兩者的題目還是比較簡(jiǎn)單的,要把公式牢記住,求和,求項(xiàng)也都是比較簡(jiǎn)單的,公式的運(yùn)用要熟悉。

題目常常不會(huì)如此簡(jiǎn)單容易,稍微加難一點(diǎn)的題目就是等差和等比數(shù)列的一些組合題,這里要采用的一些方法有錯(cuò)位相消法。

題目變化多端,往往出現(xiàn)的壓軸題都是一些從來沒有接觸過的一些通項(xiàng),有些甚至連通項(xiàng)也不給。針對(duì)這兩類,我認(rèn)為應(yīng)該積累以下的一些方法。

對(duì)于求和一類的題目,可以用柯西不等式,轉(zhuǎn)化為等比數(shù)列再求和,分母的放縮,數(shù)學(xué)歸納法,轉(zhuǎn)化為函數(shù)等方法等方法

對(duì)于求通項(xiàng)一類的題目,可以采用先代入求值找規(guī)律,再數(shù)學(xué)歸納法驗(yàn)證,或是用累加法,累乘法都可以。

總之,每次碰到一道陌生的數(shù)列題,要進(jìn)行總結(jié),得出該類的解題方法,或者從中學(xué)會(huì)一種放縮方法,這對(duì)于以后很有幫

1、調(diào)動(dòng)興趣是關(guān)鍵:因?yàn)槲蚁矚g數(shù)學(xué),所以我愿意去學(xué)它,所以我在學(xué)習(xí)過程中遇到任何艱難險(xiǎn)阻也愿意去克服;克服困難所得來的成功體驗(yàn)又增強(qiáng)了我學(xué)習(xí)的興趣和信心,所以我更喜歡學(xué)數(shù)學(xué)了。

2、化抽象為生動(dòng):比如在講例題的時(shí)候,結(jié)合題目給學(xué)生講一些順口溜、數(shù)學(xué)故事、數(shù)學(xué)發(fā)展史、生活中的數(shù)學(xué)等。讓學(xué)生感到數(shù)學(xué)就在身邊。比如華羅庚的數(shù)形結(jié)合順口溜“數(shù)與形,本相依,焉能分作兩邊飛。數(shù)缺形時(shí),難直覺;形缺數(shù)時(shí),難入微。代數(shù)幾何本一體,永遠(yuǎn)聯(lián)系莫分離?!鄙钪械臄?shù)學(xué)包括身邊的事、新聞時(shí)事等,比如:讓學(xué)生適度參與現(xiàn)在很多父母都熱衷的股票問題;自己家里每月消費(fèi)多少米,多少油,多少鹽等,人均消費(fèi)多少;今年淮河流域出現(xiàn)洪災(zāi),泄洪時(shí)就需要考慮上游水位和下游河道寬的關(guān)系等等。

3、化抽象為形象:現(xiàn)在的學(xué)生大都對(duì)電腦感興趣,如果從這一點(diǎn)入手引導(dǎo)學(xué)生學(xué)數(shù)學(xué),是個(gè)很好的辦法。鄭州一所重點(diǎn)中學(xué)的劉老師用幾何畫板讓學(xué)生形象直觀的體會(huì)數(shù)學(xué)知識(shí),學(xué)生在學(xué)幾何畫板的同時(shí),學(xué)數(shù)學(xué)的積極性也被調(diào)動(dòng)起來了。

4、成功體驗(yàn)的積累:興趣與成就感往往有很大關(guān)系。每個(gè)孩子都有想成為研究者、發(fā)現(xiàn)者的內(nèi)在愿望,都有被認(rèn)同和賞識(shí)的需要,都希望取得成就和進(jìn)步。教育者應(yīng)該善于發(fā)現(xiàn)學(xué)生的一點(diǎn)點(diǎn)進(jìn)步,給不同學(xué)生提不同的要求,讓他們有機(jī)會(huì)成功,體會(huì)成功時(shí)的成就感。

5、營(yíng)造學(xué)數(shù)學(xué)的環(huán)境:比如家里的書架上可以放一些數(shù)學(xué)相關(guān)的書籍如《速算秘訣》《中學(xué)生數(shù)理化》《好玩的數(shù)學(xué)系列》《訓(xùn)練思考能力的數(shù)學(xué)書》《故事中的數(shù)學(xué)》等,并推薦孩子閱讀。學(xué)校里也可以營(yíng)造這樣的氛圍。有位老師說:“我每天課間時(shí)間都會(huì)坐在教室門口,拿起一本書來看??倳?huì)有幾個(gè)學(xué)生來問我看的是什么書,一問一答之間他們就對(duì)我手里的書感興趣了。幾天后我就會(huì)發(fā)現(xiàn),有一兩個(gè)學(xué)生帶頭借了這本書。再過一陣子,這本書就風(fēng)靡全班了?!?/p>

6、打牢基礎(chǔ)也可以通過做題來實(shí)現(xiàn),這跟題海戰(zhàn)術(shù)不同,有的學(xué)生可能做兩道題就弄懂了,那他就不需要再做,有的學(xué)生可能需要做20道題,總之,為了達(dá)到最好的理解和記憶效果,讓學(xué)生自己理解知識(shí)點(diǎn)之后,再多做1-2道題,達(dá)到150%的理解和記憶效果。

數(shù)列的課件(篇4)

教學(xué)目標(biāo)

熟悉與數(shù)列知識(shí)相關(guān)的背景,如增長(zhǎng)率、存款利息等問題,提高學(xué)生閱讀理解能力、抽象轉(zhuǎn)化的能力以及解答實(shí)際問題的能力,強(qiáng)化應(yīng)用儀式。

教學(xué)重難點(diǎn)

熟悉與數(shù)列知識(shí)相關(guān)的背景,如增長(zhǎng)率、存款利息等問題,提高學(xué)生閱讀理解能力、抽象轉(zhuǎn)化的能力以及解答實(shí)際問題的能力,強(qiáng)化應(yīng)用儀式。

教學(xué)過程

【復(fù)習(xí)要求】熟悉與數(shù)列知識(shí)相關(guān)的背景,如增長(zhǎng)率、存款利息等問題,提高學(xué)生閱讀理解能力、抽象轉(zhuǎn)化的能力以及解答實(shí)際問題的能力,強(qiáng)化應(yīng)用儀式。

【方法規(guī)律】應(yīng)用數(shù)列知識(shí)界實(shí)際應(yīng)用問題的關(guān)鍵是通過對(duì)實(shí)際問題的綜合分析,確定其數(shù)學(xué)模型是等差數(shù)列,還是等比數(shù)列,并確定其首項(xiàng),公差或公比等基本元素,然后設(shè)計(jì)合理的計(jì)算方案,即數(shù)學(xué)建模是解答數(shù)列應(yīng)用題的關(guān)鍵。

一、基礎(chǔ)訓(xùn)練

1、某種細(xì)菌在培養(yǎng)過程中,每20分鐘x一次一個(gè)x為兩個(gè),經(jīng)過3小時(shí),這種細(xì)菌由1個(gè)可繁殖成

A、511B、512C、1023D、1024

2、若一工廠的生產(chǎn)總值的月平均增長(zhǎng)率為p,則年平均增長(zhǎng)率為

A、B、

C、D、

二、典型例題

例1:某人每期期初到銀行存入一定金額A,每期利率為p,到第n期共有本金nA,第一期的利息是nAp,第二期的利息是n—1Ap……,第n期即最后一期的利息是Ap,問到第n期期末的本金和是多少?

評(píng)析:此例來自一種常見的存款叫做零存整取。存款的方式為每月的某日存入一定的金額,這是零存,一定時(shí)期到期,可以提出全部本金及利息,這是整取。計(jì)算本利和就是本例所用的有窮等差數(shù)列求和的`方法。用實(shí)際問題列出就是:本利和=每期存入的金額[存期+1/2存期存期+1利率]

例2:某人從1999到20xx年間,每年6月1日都到銀行存入m元的一年定期儲(chǔ)蓄,若每年利率q保持不變,且每年到期的存款本息均自動(dòng)轉(zhuǎn)為新的一年定期,到20xx年6月1日,此人到銀行不再存款,而是將所有存款的本息全部取回,則取回的金額是多少元?

例3、某地區(qū)位于沙漠邊緣,人與自然進(jìn)行長(zhǎng)期頑強(qiáng)的斗爭(zhēng),到1999年底全地區(qū)的綠化率已達(dá)到30%,從20xx年開始,每年將出現(xiàn)以下的變化:原有沙漠面積的16%將栽上樹,改造為綠洲,同時(shí),原有綠洲面積的4%又被侵蝕,變?yōu)樯衬?。問?jīng)過多少年的努力才能使全縣的綠洲面積超過60%。lg2=0.3

例4、流行性感冒簡(jiǎn)稱流感是由流感病毒引起的急性呼吸道傳染病。某市去年11月分曾發(fā)生流感,據(jù)資料記載,11月1日,該市新的流感病毒感染者有20人,以后,每天的新感染者平均比前一天的新感染者增加50人,由于該市醫(yī)療部門采取措施,使該種病毒的傳播得到控制,從某天起,每天的新感染者平均比前一天的新感染著減少30人,到11月30日止,該市在這30天內(nèi)感染該病毒的患者共有8670人,問11月幾日,該市感染此病毒的新的患者人數(shù)最多?并求這一天的新患者人數(shù)。

數(shù)列的課件(篇5)

1.能正確計(jì)算有關(guān)0的加減法。

2..培養(yǎng)學(xué)生良好的書寫習(xí)慣和想像能力。重點(diǎn)難點(diǎn)。

弄懂有關(guān)0的加減法計(jì)算的算理并能正確計(jì)算有關(guān)0的加減法。教學(xué)準(zhǔn)備課件,口算卡片教學(xué)過程:

3-3=0表示什么意思?(窩里原來有3只小鳥,飛走了3只,窩里現(xiàn)在一只也沒有了,用0表示)。

先讓學(xué)生觀察,說圖意,老師引導(dǎo):

左邊荷葉上有幾只青蛙,右邊荷葉上有幾只??jī)善扇~上一共有幾只?用什么方法計(jì)算,怎樣列式?教師一一板書:4+0=4(4)想一想:5-0=0+0=先說算式的含義,再說得數(shù)。課堂小結(jié):

提問:今天,我們學(xué)習(xí)了什么?你有什么收獲?

小結(jié):今天,我們認(rèn)識(shí)了0,知道0表示什么也沒有,還表示起點(diǎn),并且學(xué)會(huì)了0的正確寫法。還會(huì)正確計(jì)算有關(guān)0的加減法。教學(xué)反思:

1.充分利用教材的資源,將教材靜態(tài)的圖動(dòng)態(tài)化,讓學(xué)生在生動(dòng)有趣的故事情節(jié)中體會(huì)從有到無這個(gè)動(dòng)態(tài)的變化過程,更好地理解0的含義。

2.同時(shí)提倡算法多樣化,學(xué)生根據(jù)自己不同的理解計(jì)算有關(guān)0的加減法。

數(shù)列的課件(篇6)

設(shè)計(jì)思路

數(shù)列是高中數(shù)學(xué)重要內(nèi)容之一,它不僅有著廣泛的實(shí)際應(yīng)用,而且起著承前啟后的作用。一方面, 數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面,學(xué)習(xí)數(shù)列也為進(jìn)一步學(xué)習(xí)數(shù)列的極限等內(nèi)容做好準(zhǔn)備。而等差數(shù)列是在學(xué)生學(xué)習(xí)了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項(xiàng)公式和遞推公式的基礎(chǔ)上,對(duì)數(shù)列的知識(shí)進(jìn)一步深入和拓廣。同時(shí)等差數(shù)列也為今后學(xué)習(xí)等比數(shù)列提供了“聯(lián)想”、“類比”的思想方法。

教學(xué)過程:

一、片頭

(30秒以內(nèi))

前面學(xué)習(xí)了數(shù)列的概念與簡(jiǎn)單表示法,今天我們來學(xué)習(xí)一種特殊的數(shù)列-等差數(shù)列。本節(jié)微課重點(diǎn)講解等差數(shù)列的定義, 并且能初步判斷一個(gè)數(shù)列是否是等差數(shù)列。

30秒以內(nèi)

二、正文講解(8分鐘左右)

第一部分內(nèi)容:由三個(gè)問題,通過判斷分析總結(jié)出等差數(shù)列的定義 60 秒

第二部分內(nèi)容:給出等差數(shù)列的定義及其數(shù)學(xué)表達(dá)式50 秒

第三部分內(nèi)容:哪些數(shù)列是等差數(shù)列?并且求出首項(xiàng)與公差。根據(jù)這個(gè)練習(xí)總結(jié)出幾個(gè)常用的結(jié)152秒

三、結(jié)尾

(30秒以內(nèi))授課完畢,謝謝聆聽!30秒以內(nèi)

自我教學(xué)反思

本節(jié)課通過生活中一系列的實(shí)例讓學(xué)生觀察,從而得出等差數(shù)列的概念,并在此基礎(chǔ)上學(xué)會(huì)判斷一個(gè)數(shù)列是否是等差數(shù)列,培養(yǎng)了學(xué)生觀察、分析、歸納、推理的能力。充分體現(xiàn)了學(xué)生做數(shù)學(xué)的過程,使學(xué)生對(duì)等差數(shù)列有了從感性到理性的認(rèn)識(shí)過程。

它山之石可以攻玉,以上就是范文為大家整理的6篇《高一數(shù)學(xué)等差數(shù)列教案》,能夠給予您一定的參考與啟發(fā),是范文的價(jià)值所在。

數(shù)列的課件(篇7)

數(shù)列極限教學(xué)設(shè)計(jì)

復(fù)習(xí)目的:1.理解數(shù)列極限的概念,會(huì)用“”定義證明簡(jiǎn)單數(shù)列的極限。

2.掌握三個(gè)最基本的極限和數(shù)列極限的運(yùn)算法則的運(yùn)用。

3.理解無窮數(shù)列各項(xiàng)和的概念。

4.培養(yǎng)學(xué)生的推理論證能力、運(yùn)算能力,提高學(xué)生分析問題,解決問

題的能力。

教學(xué)過程:

問題1:根據(jù)你的理解,數(shù)列極限的定義是如何描述的?

數(shù)列極限的定義:對(duì)于數(shù)列{an},如果存在一個(gè)常數(shù)A,無論事先指定多么小的正數(shù),都能在數(shù)列中找到一項(xiàng)aN,使得這一項(xiàng)后的所有項(xiàng)與A的差的絕對(duì)值小于,(即當(dāng)n>N時(shí),記

時(shí),an趨近于A的無限性,即趨近程度的無(1)的任意性刻劃了當(dāng)

限性(要有多近有多近)。

(2)N的存在性證明了這一無限趨近的可能性。

問題3:“

問題4:“”定義中的N的值是不是唯一? ”定義中,

因?yàn)镹時(shí),an對(duì)應(yīng)的點(diǎn)都在區(qū)間(A-

問題5:利用“,A+)內(nèi)?!倍x來證明數(shù)列極限的關(guān)鍵是什么? N時(shí),立)。

問題6

:無窮常數(shù)數(shù)列有無極限?數(shù)列呢?數(shù)列

三個(gè)最基本的極限:(1)C=C,(2)=0,(3)=0(

問題7

:若=A,=B,則()=?,()=

?,=

?,=?。數(shù)列極限的運(yùn)算法則:()=A+B,()=A-B,=AB,=(B0)。

即如果兩個(gè)數(shù)列都有極限,那么這兩個(gè)數(shù)列對(duì)應(yīng)項(xiàng)的和,差,積,商組成新數(shù)列的極限分別等于它們極限的和,差,積,商。(各項(xiàng)作為除數(shù)的數(shù)列的極限不能為零)

問題8:(,)

=

++

+=0對(duì)嗎? 運(yùn)算法則中的只能推廣到有限個(gè)的情形。

問題9:無窮數(shù)列各項(xiàng)和s是任何定義的? s=,其中為無窮數(shù)列的前n項(xiàng)和,特別地,對(duì)無窮等比數(shù)列(

.用極限定義證明:

例2.求下列各式的值

(2)[()=,]

(2)()

例3

.已知例4

.計(jì)算:

(++)=0,求實(shí)數(shù)a,b的值。+,例5.已知數(shù)列是首項(xiàng)為1,公差為d的等差數(shù)列,它的前n項(xiàng)和為

小結(jié):本節(jié)課復(fù)習(xí)了數(shù)列極限的概念,運(yùn)算法則,三個(gè)最基本的極限,無窮數(shù)列各項(xiàng)和的概念,以及它們的運(yùn)用,主要是利用數(shù)列極限概念證明簡(jiǎn)單數(shù)列的極限,利用運(yùn)算法則求數(shù)列的極限,(包括已知極限求參數(shù)),求無窮數(shù)列各項(xiàng)和。

數(shù)列的課件(篇8)

目的:

要求學(xué)生理解數(shù)列的概念及其幾何表示,理解什么叫數(shù)列的通項(xiàng)公式,給出一些數(shù)列能夠?qū)懗銎渫?xiàng)公式,已知通項(xiàng)公式能夠求數(shù)列的項(xiàng)。

按一定次序排列的一列數(shù)叫做數(shù)列。數(shù)列中的每一個(gè)數(shù)叫做數(shù)列的項(xiàng),數(shù)列的第n項(xiàng)an叫做數(shù)列的通項(xiàng)(或一般項(xiàng))。由數(shù)列定義知:數(shù)列中的數(shù)是有序的,數(shù)列中的數(shù)可以重復(fù)出現(xiàn),這與數(shù)集中的數(shù)的無序性、互異性是不同的。

2.?dāng)?shù)列的通項(xiàng)公式,如果數(shù)列{an}的通項(xiàng)an可以用一個(gè)關(guān)于n的公式來表示,這個(gè)公式就叫做數(shù)列的通項(xiàng)公式。

從映射、函數(shù)的觀點(diǎn)看,數(shù)列可以看成是定義域?yàn)檎麛?shù)集N*(或?qū)挼挠邢拮蛹┑暮瘮?shù)。當(dāng)自變量順次從小到大依次取值時(shí)對(duì)自學(xué)成才的一列函數(shù)值,而數(shù)列的通項(xiàng)公式則是相應(yīng)的解析式。由于數(shù)列的.項(xiàng)是函數(shù)值,序號(hào)是自變量,所以以序號(hào)為橫坐標(biāo),相應(yīng)的項(xiàng)為縱坐標(biāo)畫出的圖像是一些孤立的點(diǎn)。

難點(diǎn):

根據(jù)數(shù)列前幾項(xiàng)的特點(diǎn),以現(xiàn)規(guī)律后寫出數(shù)列的通項(xiàng)公式。給出數(shù)列的前若干項(xiàng)求數(shù)列的通項(xiàng)公式,一般比較困難,且有的數(shù)列不一定有通項(xiàng)公式,如果有通項(xiàng)公式也不一定唯一。給出數(shù)列的前若干項(xiàng)要確定其一個(gè)通項(xiàng)公式,解決這個(gè)問題的關(guān)鍵是找出已知的每一項(xiàng)與其序號(hào)之間的對(duì)應(yīng)關(guān)系,然后抽象成一般形式。

1. 堆放的鋼管 4,5,6,7,8,9,102. 正整數(shù)的倒數(shù) 3. 4. -1的正整數(shù)次冪:-1,1,-1,1,…5. 無窮多個(gè)數(shù)排成一列數(shù):1,1,1,1,…

遞增數(shù)列、遞減數(shù)列;常數(shù)列;擺動(dòng)數(shù)列; 有窮數(shù)列、無窮數(shù)列。

5. 實(shí)質(zhì):

從映射、函數(shù)的觀點(diǎn)看,數(shù)列可以看作是一個(gè)定義域?yàn)檎麛?shù)集 N*(或它的有限子集{1,2,…,n})的函數(shù),當(dāng)自變量從小到大依次取值時(shí)對(duì)應(yīng)的一列函數(shù)值,通項(xiàng)公式即相應(yīng)的函數(shù)解析式。

6. 用圖象表示:

3. 已知通項(xiàng)公式可寫出數(shù)列的任一項(xiàng),因此通項(xiàng)公式十分重要例二 (P111 例二)略

四、補(bǔ)充例題:

寫出下面數(shù)列的一個(gè)通項(xiàng)公式,使它的前 項(xiàng)分別是下列各數(shù):1.1,0,1,0. 2. , , , , 3.7,77,777,7777 4.-1,7,-13,19,-25,31 5. , , ,

1.觀察下面數(shù)列的特點(diǎn),用適當(dāng)?shù)臄?shù)填空,關(guān)寫出每個(gè)數(shù)列的一個(gè)通項(xiàng)公式;(1) , , ,( ), , …(2) ,( ), , , …

2.寫出下面數(shù)列的一個(gè)通項(xiàng)公式,使它的前4項(xiàng)分別是下列各數(shù):(1)1、 、 、 ; (2) 、 、 、 ; (3) 、 、 、 ; (4) 、 、 、

3.求數(shù)列1,2,2,4,3,8,4,16,5,…的一個(gè)通項(xiàng)公式

4.已知數(shù)列an的前4項(xiàng)為0, ,0, ,則下列各式 ①an= ②an= ③an= 其中可作為數(shù)列{an}通項(xiàng)公式的是A ① B ①② C ②③ D ①②③

5.已知數(shù)列1, , , ,3, …, ,…,則 是這個(gè)數(shù)列的( )A. 第10項(xiàng) B.第11項(xiàng) C.第12項(xiàng) D.第21項(xiàng)

6.在數(shù)列{an}中a1=2,a17=66,通項(xiàng)公式或序號(hào)n的一次函數(shù),求通項(xiàng)公式。

(1)求數(shù)列{an}的通項(xiàng)公式;

(2)判斷數(shù)列{an}的單調(diào)性。

8.在數(shù)列{an}中,an=

(2)求數(shù)列{an}的最大項(xiàng)。

答案:

1.(1) ,an= (2) ,an=

2.(1)an= (2)an= (3)an= (4)an=

3.a(chǎn)n= 或an= 這里借助了數(shù)列1,0,1,0,1,0…的通項(xiàng)公式an= 。

7.(1)an= (2)

數(shù)列的課件(篇9)

教學(xué)目標(biāo)?

1.理解的概念,掌握的通項(xiàng)公式,并能運(yùn)用公式解決簡(jiǎn)單的問題。

(1)正確理解的定義,了解公比的概念,明確一個(gè)數(shù)列是的限定條件,能根據(jù)定義判斷一個(gè)數(shù)列是,了解等比中項(xiàng)的概念;

(2)正確認(rèn)識(shí)使用的表示法,能靈活運(yùn)用通項(xiàng)公式求的首項(xiàng)、公比、項(xiàng)數(shù)及指定的項(xiàng);

(3)通過通項(xiàng)公式認(rèn)識(shí)的性質(zhì),能解決某些實(shí)際問題。

2.通過對(duì)的研究,逐步培養(yǎng)學(xué)生觀察、類比、歸納、猜想等思維品質(zhì)。

3.通過對(duì)概念的歸納,進(jìn)一步培養(yǎng)學(xué)生嚴(yán)密的思維習(xí)慣,以及實(shí)事求是的科學(xué)態(tài)度。

教學(xué)建議

教材分析

(1)知識(shí)結(jié)構(gòu)

是另一個(gè)簡(jiǎn)單常見的數(shù)列,研究?jī)?nèi)容可與等差數(shù)列類比,首先歸納出的定義,導(dǎo)出通項(xiàng)公式,進(jìn)而研究圖像,又給出等比中項(xiàng)的概念,最后是通項(xiàng)公式的應(yīng)用。

(2)重點(diǎn)、難點(diǎn)分析

教學(xué)重點(diǎn)是的定義和對(duì)通項(xiàng)公式的認(rèn)識(shí)與應(yīng)用,教學(xué)難點(diǎn)?在于通項(xiàng)公式的推導(dǎo)和運(yùn)用。

①與等差數(shù)列一樣,也是特殊的數(shù)列,二者有許多相同的性質(zhì),但也有明顯的區(qū)別,可根據(jù)定義與通項(xiàng)公式得出的特性,這些是教學(xué)的重點(diǎn)。

②雖然在等差數(shù)列的學(xué)習(xí)中曾接觸過不完全歸納法,但對(duì)學(xué)生來說仍然不熟悉;在推導(dǎo)過程中,需要學(xué)生有一定的觀察分析猜想能力;第一項(xiàng)是否成立又須補(bǔ)充說明,所以通項(xiàng)公式的推導(dǎo)是難點(diǎn)。

③對(duì)等差數(shù)列、的綜合研究離不開通項(xiàng)公式,因而通項(xiàng)公式的靈活運(yùn)用既是重點(diǎn)又是難點(diǎn)。

教學(xué)建議

(1)建議本節(jié)課分兩課時(shí),一節(jié)課為的概念,一節(jié)課為通項(xiàng)公式的應(yīng)用。

(2)概念的引入,可給出幾個(gè)具體的例子,由學(xué)生概括這些數(shù)列的相同特征,從而得到的定義。也可將幾個(gè)等差數(shù)列和幾個(gè)混在一起給出,由學(xué)生將這些數(shù)列進(jìn)行分類,有一種是按等差、等比來分的,由此對(duì)比地概括的定義。

(3)根據(jù)定義讓學(xué)生分析的公比不為0,以及每一項(xiàng)均不為0的特性,加深對(duì)概念的理解。

(4)對(duì)比等差數(shù)列的表示法,由學(xué)生歸納的各種表示法。 啟發(fā)學(xué)生用函數(shù)觀點(diǎn)認(rèn)識(shí)通項(xiàng)公式,由通項(xiàng)公式的結(jié)構(gòu)特征畫數(shù)列的圖象。

(5)由于有了等差數(shù)列的研究經(jīng)驗(yàn),的研究完全可以放手讓學(xué)生自己解決,教師只需把握課堂的節(jié)奏,作為一節(jié)課的組織者出現(xiàn)。

(6)可讓學(xué)生相互出題,解題,講題,充分發(fā)揮學(xué)生的主體作用。

教學(xué)設(shè)計(jì)示例

課題:的概念

教學(xué)目標(biāo)?

1.通過教學(xué)使學(xué)生理解的概念,推導(dǎo)并掌握通項(xiàng)公式。

2.使學(xué)生進(jìn)一步體會(huì)類比、歸納的思想,培養(yǎng)學(xué)生的觀察、概括能力。

3.培養(yǎng)學(xué)生勤于思考,實(shí)事求是的精神,及嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度。

教學(xué)重點(diǎn),難點(diǎn)

重點(diǎn)、難點(diǎn)是的定義的歸納及通項(xiàng)公式的推導(dǎo)。

教學(xué)用具

投影儀,多媒體軟件,電腦。

教學(xué)方法

討論、談話法。

教學(xué)過程?

一、提出問題

給出以下幾組數(shù)列,將它們分類,說出分類標(biāo)準(zhǔn)。(幻燈片)

①-2,1,4,7,10,13,16,19,…

②8,16,32,64,128,256,…

③1,1,1,1,1,1,1,…

④243,81,27,9,3,1, , ,…

⑤31,29,27,25,23,21,19,…

⑥1,-1,1,-1,1,-1,1,-1,…

⑦1,-10,100,-1000,10000,-100000,…

⑧0,0,0,0,0,0,0,…

由學(xué)生發(fā)表意見(可能按項(xiàng)與項(xiàng)之間的關(guān)系分為遞增數(shù)列、遞減數(shù)列、常數(shù)數(shù)列、擺動(dòng)數(shù)列,也可能分為等差、等比兩類),統(tǒng)一一種分法,其中②③④⑥⑦為有共同性質(zhì)的一類數(shù)列(學(xué)生看不出③的情況也無妨,得出定義后再考察③是否為).

二、講解新課

請(qǐng)學(xué)生說出數(shù)列②③④⑥⑦的共同特性,教師指出實(shí)際生活中也有許多類似的例子,如變形蟲分裂問題。假設(shè)每經(jīng)過一個(gè)單位時(shí)間每個(gè)變形蟲都分裂為兩個(gè)變形蟲,再假設(shè)開始有一個(gè)變形蟲,經(jīng)過一個(gè)單位時(shí)間它分裂為兩個(gè)變形蟲,經(jīng)過兩個(gè)單位時(shí)間就有了四個(gè)變形蟲,…,一直進(jìn)行下去,記錄下每個(gè)單位時(shí)間的變形蟲個(gè)數(shù)得到了一列數(shù) 這個(gè)數(shù)列也具有前面的幾個(gè)數(shù)列的共同特性,這是我們將要研究的另一類數(shù)列——. (這里播放變形蟲分裂的多媒體軟件的第一步)

(板書)

1.的定義(板書)

根據(jù)與等差數(shù)列的名字的區(qū)別與聯(lián)系,嘗試給下定義。學(xué)生一般回答可能不夠完美,多數(shù)情況下,有了等差數(shù)列的基礎(chǔ)是可以由學(xué)生概括出來的。教師寫出的定義,標(biāo)注出重點(diǎn)詞語(yǔ)。

請(qǐng)學(xué)生指出②③④⑥⑦各自的公比,并思考有無數(shù)列既是等差數(shù)列又是。學(xué)生通過觀察可以發(fā)現(xiàn)③是這樣的數(shù)列,教師再追問,還有沒有其他的例子,讓學(xué)生再舉兩例。而后請(qǐng)學(xué)生概括這類數(shù)列的一般形式,學(xué)生可能說形如 的數(shù)列都滿足既是等差又是,讓學(xué)生討論后得出結(jié)論:當(dāng) 時(shí),數(shù)列 既是等差又是,當(dāng) 時(shí),它只是等差數(shù)列,而不是。教師追問理由,引出對(duì)的認(rèn)識(shí):

2.對(duì)定義的認(rèn)識(shí)(板書)

(1)的首項(xiàng)不為0;

(2)的每一項(xiàng)都不為0,即 ;

問題:一個(gè)數(shù)列各項(xiàng)均不為0是這個(gè)數(shù)列為的什么條件?

(3)公比不為0.

用數(shù)學(xué)式子表示的定義。

是 ①.在這個(gè)式子的寫法上可能會(huì)有一些爭(zhēng)議,如寫成 ,可讓學(xué)生研究行不行,好不好;接下來再問,能否改寫為 是 ?為什么不能?

式子 給出了數(shù)列第 項(xiàng)與第 項(xiàng)的數(shù)量關(guān)系,但能否確定一個(gè)?(不能)確定一個(gè)需要幾個(gè)條件?當(dāng)給定了首項(xiàng)及公比后,如何求任意一項(xiàng)的值?所以要研究通項(xiàng)公式。

3.的通項(xiàng)公式(板書)

問題:用 和 表示第 項(xiàng) .

①不完全歸納法

.

②疊乘法

,… , ,這 個(gè)式子相乘得 ,所以 .

(板書)(1)的通項(xiàng)公式

得出通項(xiàng)公式后,讓學(xué)生思考如何認(rèn)識(shí)通項(xiàng)公式。

(板書)(2)對(duì)公式的認(rèn)識(shí)

由學(xué)生來說,最后歸結(jié):

①函數(shù)觀點(diǎn);

②方程思想(因在等差數(shù)列中已有認(rèn)識(shí),此處再?gòu)?fù)習(xí)鞏固而已).

這里強(qiáng)調(diào)方程思想解決問題。方程中有四個(gè)量,知三求一,這是公式最簡(jiǎn)單的應(yīng)用,請(qǐng)學(xué)生舉例(應(yīng)能編出四類問題).解題格式是什么?(不僅要會(huì)解題,還要注意規(guī)范表述的訓(xùn)練)

如果增加一個(gè)條件,就多知道了一個(gè)量,這是公式的更高層次的應(yīng)用,下節(jié)課再研究。同學(xué)可以試著編幾道題。

三、小結(jié)

1.本節(jié)課研究了的概念,得到了通項(xiàng)公式;

2.注意在研究?jī)?nèi)容與方法上要與等差數(shù)列相類比;

3.用方程的思想認(rèn)識(shí)通項(xiàng)公式,并加以應(yīng)用。

四、作業(yè)?(略)

五、板書設(shè)計(jì)?

三。

1.的定義

2.對(duì)定義的認(rèn)識(shí)

3.的通項(xiàng)公式

(1)公式

(2)對(duì)公式的認(rèn)識(shí)

探究活動(dòng)

將一張很大的薄紙對(duì)折,對(duì)折30次后(如果可能的話)有多厚?不妨假設(shè)這張紙的厚度為0.01毫米。

參考答案:

30次后,厚度為,這個(gè)厚度超過了世界最高的山峰——珠穆朗瑪峰的高度。如果紙?jiān)俦∫恍?,比如紙?.001毫米,對(duì)折34次就超過珠穆朗瑪峰的高度了。還記得國(guó)王的承諾嗎?第31個(gè)格子中的米已經(jīng)是1073741824粒了,后邊的格子中的米就更多了,最后一個(gè)格子中的米應(yīng)是 粒,用計(jì)算器算一下吧(用對(duì)數(shù)算也行).

數(shù)列的課件(篇10)

數(shù)列的極限說課稿

【一、教材分析】

1、教材的地位和作用:

數(shù)列的極限是中學(xué)數(shù)學(xué)與高等數(shù)學(xué)一個(gè)銜接點(diǎn),它同時(shí)也是中學(xué)數(shù)學(xué)教學(xué)的難點(diǎn)之一。在中學(xué)階段滲透近代數(shù)學(xué)的基礎(chǔ)知識(shí),是課程教材改革的要求之一。教材把極限作為高中階段的必修內(nèi)容,意圖是在中學(xué)階段滲透極限思想,使學(xué)生初步接觸用有限刻畫無限,由已知認(rèn)識(shí)未知,由近似描述精確的數(shù)學(xué)方法,使學(xué)生對(duì)變量、變化過程有更深的認(rèn)識(shí),這對(duì)于提高學(xué)生數(shù)學(xué)素質(zhì)有積極意義。

2、教學(xué)目標(biāo)及確立的依據(jù):

教學(xué)目標(biāo):

(1)教學(xué)知識(shí)目標(biāo):通過趣聞故事和割圓術(shù)使學(xué)生對(duì)“無限趨近”有感性的認(rèn)識(shí);

從數(shù)列的變化趨勢(shì)理解數(shù)列極限的概念;

會(huì)判斷一些簡(jiǎn)單數(shù)列的極限。

(2)能力訓(xùn)練目標(biāo):觀察運(yùn)動(dòng)和變化的過程,初步認(rèn)識(shí)有限與無限、近似與精確、量變與質(zhì)變的辨證關(guān)系,提高學(xué)生的數(shù)學(xué)概括能力和抽象思維能力。

(3)德育滲透目標(biāo):通過教學(xué)提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和數(shù)學(xué)審美能力,培養(yǎng)學(xué)生的主動(dòng)探索精神和創(chuàng)新意識(shí)。

教學(xué)目標(biāo)確立的依據(jù):《全日制中學(xué)數(shù)學(xué)教學(xué)大綱》中明確規(guī)定,要從數(shù)列的變化趨勢(shì)理解數(shù)列的極限,針對(duì)這樣的情況,我依照《大綱》的要求制定了符合實(shí)際的教學(xué)目標(biāo),并在教學(xué)過程中把重點(diǎn)放在對(duì)數(shù)列極限的概念意義的準(zhǔn)確把握和理解上。為了更好的達(dá)到教學(xué)目標(biāo),我設(shè)計(jì)一些形象、直觀、準(zhǔn)確的計(jì)算機(jī)演示程序,分散教學(xué)難點(diǎn)。

3、教學(xué)重點(diǎn)及難點(diǎn)確立的依據(jù):

教學(xué)重點(diǎn):數(shù)列極限的意義

教學(xué)難點(diǎn):數(shù)列極限的概念理解

教學(xué)重點(diǎn)與難點(diǎn)確立的依據(jù):數(shù)列極限的定義抽象性比較強(qiáng),它有諸多的定義方式,我們教材是采用描述性方法定義數(shù)列的極限。數(shù)列極限的定義過程,重點(diǎn)是剖析“數(shù)列無限趨近于常數(shù)”的含義。所以要求學(xué)生的理性認(rèn)識(shí)能力較高,所以本節(jié)課的重點(diǎn)難點(diǎn)就必然落在對(duì)數(shù)列極限概念的理解上。

【二、教材的處理】

由于極限的概念中關(guān)系到“無限”,而高中學(xué)生以往的數(shù)學(xué)學(xué)習(xí)中主要接觸的是“有限”的問題,很少涉及“無限”的問題。因此,對(duì)極限概念如何從變化趨勢(shì)的角度來正確理解成為本章的難點(diǎn)。為了解決這一難點(diǎn),主要結(jié)合具體例子,首先要讓學(xué)生對(duì)它形成正確的初步認(rèn)識(shí),為了理解極限概念積累一定的感性認(rèn)識(shí),還要注意從“特殊”到“一般”的歸納。在將具體例子時(shí),注意從中提煉,概括涉及極限的本質(zhì)特征,為歸納出一般概念作好準(zhǔn)備;在講一般概念時(shí),注意結(jié)合具體例子予以解釋說明,克服抽象理解的困難,使學(xué)生對(duì)數(shù)列極限的概念有很準(zhǔn)確的認(rèn)識(shí)。教材中只是介紹了數(shù)列極限的定義,著重讓學(xué)生從變化趨勢(shì)上去理解,工夫化在概念的理解上,而不過分膨脹內(nèi)容、增加習(xí)題難度和過多的訓(xùn)練。

【三、教學(xué)方法和教學(xué)工具】

教學(xué)方法:通過觀察發(fā)現(xiàn)特征,教師歸納概念,師生共同探討。

確立教學(xué)方法的依據(jù):數(shù)列極限是一個(gè)抽象的概念,關(guān)鍵是讓學(xué)生理解從“有限”到“無限”如何從變化趨勢(shì)來理解極限的概念,通過師生共同觀察討論來幫助學(xué)生深刻理解,為以后的應(yīng)用打下堅(jiān)實(shí)的基礎(chǔ)。

教學(xué)工具:多媒體教學(xué)設(shè)備

【四、教學(xué)流程】

主要過程課程設(shè)計(jì)及決策意圖

一、引入

(1)趣聞故事以趣聞故事引入,激發(fā)學(xué)生學(xué)習(xí)的興趣,并使學(xué)生對(duì)“無限接近”有感性的認(rèn)識(shí)。

(2)割圓術(shù)通過割圓術(shù)使學(xué)生對(duì)“無限接近”有進(jìn)一步的認(rèn)識(shí),并及時(shí)進(jìn)行德育滲透,增強(qiáng)民族自豪感。

二、數(shù)列極限的描述性定義

(1)給出幾個(gè)數(shù)列,讓學(xué)生由學(xué)生歸納當(dāng)無限增大時(shí)數(shù)列的項(xiàng)的值的相關(guān)特征,教師順其給出數(shù)列極限的描述性列表計(jì)算,并借助計(jì)算機(jī)定義,并通過描述性定義進(jìn)行辨析,為后面理演示作圖,觀察歸納數(shù)列解“無限趨近”的數(shù)量表示做準(zhǔn)備極限的描述性定義

(2)概念的辨析

三、“無限趨近”的數(shù)量表示

給出一個(gè)具體的數(shù)列,通過這個(gè)數(shù)列重點(diǎn)剖析“數(shù)列{ }無限趨近于并把這個(gè)數(shù)列的各項(xiàng)在數(shù)軸上常數(shù)c”的含義,讓學(xué)生對(duì)“數(shù)列無限趨近于常表示,觀察數(shù)列各項(xiàng)的點(diǎn)與1數(shù)c”有進(jìn)一步的認(rèn)識(shí)。

的距離是越來越趨近于1。

然后通過“越來越趨近于1”

在數(shù)量上的反映為當(dāng)無限增大時(shí),預(yù)先給定任意小的正數(shù)總可以找到這樣的,使得與1的差的絕對(duì)值都小于,即

三、練習(xí)鞏固數(shù)列極限概念

四、小結(jié) 總結(jié)數(shù)列極限概念的本質(zhì)

【五.幾點(diǎn)說明】

數(shù)學(xué)教學(xué)注重的是學(xué)生在原有的數(shù)學(xué)知識(shí)基礎(chǔ)上,在教師的組織和指導(dǎo)下,充分自主的進(jìn)行討論、交流,通過表達(dá)、接受和轉(zhuǎn)換,獲取新的數(shù)學(xué)知識(shí)與方法,重組個(gè)人的知識(shí)結(jié)構(gòu),形成良好的數(shù)學(xué)素養(yǎng),提高個(gè)人獲取信息的能力,培養(yǎng)合作學(xué)習(xí)的精神。所以在這節(jié)課的設(shè)計(jì)上,我主要是通過趣聞吸引學(xué)生的興趣,從而對(duì)極限有感性的認(rèn)識(shí),然后通過具體數(shù)列由觀察到分析,由定性到定量,由直觀到抽象,按照思維的發(fā)展規(guī)律,有淺入深設(shè)計(jì)了6個(gè)不同的層次:

1、通過趣聞和割圓術(shù),使學(xué)生對(duì)數(shù)列極限有感性的認(rèn)識(shí),并及時(shí)滲透愛國(guó)注意教育,增強(qiáng)學(xué)生的民族自豪感和對(duì)數(shù)學(xué)學(xué)習(xí)的興趣,并激勵(lì)學(xué)生的好奇心和求知欲,在認(rèn)知方面明確本節(jié)課的內(nèi)容。

2、給出幾個(gè)具體的無窮數(shù)列,讓學(xué)生通過列表計(jì)算,并借助計(jì)算機(jī)作圖觀察,并討論交流歸納出有極限數(shù)列當(dāng)項(xiàng)數(shù)無限增大時(shí)的直觀特點(diǎn);

3、教師引導(dǎo)學(xué)生概括出數(shù)列極限的描述性定義;

4、通過對(duì)幾個(gè)精心設(shè)計(jì)的幾個(gè)問題的討論,糾正學(xué)生在對(duì)數(shù)列的描述性定義理解上可能出現(xiàn)的錯(cuò)誤,這樣可以使學(xué)生對(duì)數(shù)列極限定義的進(jìn)一步探討的必要性有了初步的認(rèn)識(shí),也能夠激發(fā)起學(xué)生的參與熱情;

5、通過具體的例子深入分析數(shù)列極限的內(nèi)涵,理解“無限趨近”的數(shù)量表示;

6、鞏固練習(xí),加深對(duì)數(shù)列極限概念的正確認(rèn)識(shí)。

小結(jié)

重在對(duì)數(shù)列極限概念的本質(zhì)進(jìn)行總結(jié)和點(diǎn)撥,以便引起學(xué)生對(duì)極限的更深刻的思考,同時(shí)與教學(xué)目標(biāo)相呼應(yīng)。

數(shù)列的課件(篇11)

高中數(shù)列教案


數(shù)列是高中數(shù)學(xué)課程中的一個(gè)重要概念,它在數(shù)學(xué)領(lǐng)域中有著廣泛的應(yīng)用。數(shù)列的概念并不難理解,但要熟練掌握數(shù)列的性質(zhì)和運(yùn)算規(guī)律,則需要花費(fèi)一定的時(shí)間和精力。在高中數(shù)學(xué)教學(xué)中,數(shù)列的教學(xué)一直是一個(gè)難點(diǎn)和重點(diǎn)。為了能夠更好地幫助學(xué)生掌握數(shù)列的相關(guān)知識(shí),老師需要設(shè)計(jì)生動(dòng)有趣的課堂教學(xué)內(nèi)容,制定有效的數(shù)列教案。


一、教學(xué)目標(biāo)


在設(shè)計(jì)數(shù)列教案之前,首先要確定教學(xué)目標(biāo)。數(shù)列教學(xué)的目標(biāo)主要包括:


1. 理解數(shù)列的概念和性質(zhì);


2. 掌握數(shù)列的常用運(yùn)算規(guī)律;


3. 能夠應(yīng)用數(shù)列解決實(shí)際問題;


4. 培養(yǎng)學(xué)生的邏輯思維和數(shù)學(xué)推理能力。


二、教學(xué)內(nèi)容


數(shù)列的內(nèi)容涉及很廣泛,包括等差數(shù)列、等比數(shù)列、通項(xiàng)公式、數(shù)列的和等方面。在設(shè)計(jì)數(shù)列教案時(shí),應(yīng)該將這些內(nèi)容有機(jī)結(jié)合,從淺入深地進(jìn)行教學(xué)。


1. 等差數(shù)列


等差數(shù)列是指數(shù)列中相鄰兩項(xiàng)之差恒為常數(shù)的數(shù)列。在教學(xué)中,可以通過生動(dòng)有趣的例子引入等差數(shù)列的概念,然后介紹等差數(shù)列的通項(xiàng)公式和求和公式,并通過例題講解加深學(xué)生對(duì)等差數(shù)列的理解。


2. 等比數(shù)列


等比數(shù)列是指數(shù)列中相鄰兩項(xiàng)之比恒為常數(shù)的數(shù)列。在教學(xué)中,同樣可以通過生動(dòng)有趣的例子引入等比數(shù)列的概念,介紹等比數(shù)列的通項(xiàng)公式和求和公式,并通過例題講解加深學(xué)生對(duì)等比數(shù)列的理解。


3. 數(shù)列的和


數(shù)列的和是數(shù)列中所有項(xiàng)的和。在教學(xué)中,可以通過生活中的實(shí)際問題引入數(shù)列的和的概念,介紹數(shù)列的和的計(jì)算方法和性質(zhì),并通過例題講解加深學(xué)生對(duì)數(shù)列的和的理解。


三、教學(xué)方法


在設(shè)計(jì)數(shù)列教案時(shí),要采用多種教學(xué)方法,例如講授法、練習(xí)法、歸納法、啟發(fā)法等,激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生的學(xué)習(xí)效率。


1. 講授法


通過講解概念、性質(zhì)和運(yùn)算規(guī)律,使學(xué)生理解數(shù)列的相關(guān)知識(shí)點(diǎn)。


2. 練習(xí)法


通過大量的練習(xí),鞏固學(xué)生對(duì)數(shù)列的掌握程度,并培養(yǎng)學(xué)生的解題能力。


3. 歸納法


通過歸納總結(jié),幫助學(xué)生理清數(shù)列的性質(zhì)和運(yùn)算規(guī)律,提高學(xué)生對(duì)數(shù)列的整體認(rèn)識(shí)。


4. 啟發(fā)法


通過啟發(fā)學(xué)生思考和解題,培養(yǎng)學(xué)生的邏輯思維和數(shù)學(xué)推理能力。


四、教學(xué)手段


為了提高教學(xué)效果,教師可以運(yùn)用多種教學(xué)手段,如教學(xué)演示、多媒體輔助、學(xué)生互動(dòng)等,使數(shù)列教學(xué)更加生動(dòng)有趣。


1. 教學(xué)演示


通過教學(xué)演示,可以形象直觀地展示數(shù)列的概念和性質(zhì),幫助學(xué)生更好地理解和掌握數(shù)列的相關(guān)知識(shí)。


2. 多媒體輔助


通過多媒體輔助教學(xué),可以運(yùn)用圖片、視頻等多媒體資料,吸引學(xué)生的注意力,提高學(xué)生的學(xué)習(xí)興趣。


3. 學(xué)生互動(dòng)


通過學(xué)生互動(dòng),可以促進(jìn)學(xué)生之間的交流和合作,激發(fā)學(xué)生的學(xué)習(xí)積極性,提高教學(xué)效果。


五、教學(xué)評(píng)估


在教學(xué)過程中,要及時(shí)對(duì)學(xué)生的學(xué)習(xí)情況進(jìn)行評(píng)估,了解學(xué)生的學(xué)習(xí)情況,及時(shí)調(diào)整教學(xué)方法和教學(xué)內(nèi)容,使教學(xué)更加有針對(duì)性。


1. 小測(cè)驗(yàn)


可以通過小測(cè)驗(yàn)來檢測(cè)學(xué)生對(duì)數(shù)列的掌握程度,及時(shí)發(fā)現(xiàn)學(xué)生的問題并進(jìn)行針對(duì)性輔導(dǎo)。


2. 課堂討論


可以通過課堂討論來檢測(cè)學(xué)生的學(xué)習(xí)情況,激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生的學(xué)習(xí)主動(dòng)性。


3. 作業(yè)檢查


通過作業(yè)檢查,及時(shí)發(fā)現(xiàn)學(xué)生的問題并進(jìn)行針對(duì)性的輔導(dǎo),幫助學(xué)生提高數(shù)列的學(xué)習(xí)效果。


通過以上的教學(xué)目標(biāo)、教學(xué)內(nèi)容、教學(xué)方法、教學(xué)手段和教學(xué)評(píng)估,設(shè)計(jì)出生動(dòng)具體的高中數(shù)列教案,將有助于提高教學(xué)質(zhì)量,幫助學(xué)生更好地掌握數(shù)列的相關(guān)知識(shí),提高學(xué)生的數(shù)學(xué)學(xué)習(xí)興趣和學(xué)習(xí)效果。

數(shù)列的課件(篇12)

?§3.1.1、的通項(xiàng)公式?目的:要求學(xué)生理解的概念及其幾何表示,理解什么叫的通項(xiàng)公式,給出一些能夠?qū)懗銎渫?xiàng)公式,已知通項(xiàng)公式能夠求的項(xiàng)。重點(diǎn):1的概念。按一定次序排列的一列數(shù)叫做。中的每一個(gè)數(shù)叫做的項(xiàng),的第n項(xiàng)an叫做的通項(xiàng)(或一般項(xiàng))。由定義知:中的數(shù)是有序的,中的數(shù)可以重復(fù)出現(xiàn),這與數(shù)集中的數(shù)的無序性、互異性是不同的。2.的通項(xiàng)公式,如果{an}的通項(xiàng)an可以用一個(gè)關(guān)于n的公式來表示,這個(gè)公式就叫做的通項(xiàng)公式。從映射、函數(shù)的觀點(diǎn)看,可以看成是定義域?yàn)檎麛?shù)集N*(或?qū)挼挠邢拮蛹┑暮瘮?shù)。當(dāng)自變量順次從小到大依次取值時(shí)對(duì)自學(xué)成才的一列函數(shù)值,而的通項(xiàng)公式則是相應(yīng)的解析式。由于的項(xiàng)是函數(shù)值,序號(hào)是自變量,所以以序號(hào)為橫坐標(biāo),相應(yīng)的項(xiàng)為縱坐標(biāo)畫出的圖像是一些孤立的點(diǎn)。難點(diǎn):根據(jù)前幾項(xiàng)的特點(diǎn),以現(xiàn)規(guī)律后寫出的通項(xiàng)公式。給出的前若干項(xiàng)求的通項(xiàng)公式,一般比較困難,且有的不一定有通項(xiàng)公式,如果有通項(xiàng)公式也不一定唯一。給出的前若干項(xiàng)要確定其一個(gè)通項(xiàng)公式,解決這個(gè)問題的關(guān)鍵是找出已知的每一項(xiàng)與其序號(hào)之間的對(duì)應(yīng)關(guān)系,然后抽象成一般形式。過程:一、從實(shí)例引入(P110)1.? 堆放的鋼管? ??4,5,6,7,8,9,102.? 正整數(shù)的倒數(shù)??? 3.? 4.? -1的正整數(shù)次冪:-1,1,-1,1,…5.? 無窮多個(gè)數(shù)排成一列數(shù):1,1,1,1,…二、提出課題:1.? 的定義:按一定次序排列的一列數(shù)(的有序性)2.? 名稱:項(xiàng),序號(hào),一般公式 ,表示法 3.? 通項(xiàng)公式: 與 之間的函數(shù)關(guān)系式如 1: ?????2: ???? 4: 4.? 分類:遞增、遞減;常;擺動(dòng);????????????????? 有窮、無窮。5.? 實(shí)質(zhì):從映射、函數(shù)的觀點(diǎn)看,可以看作是一個(gè)定義域?yàn)檎麛?shù)集?? ???????? ???N*(或它的有限子集{1,2,…,n})的函數(shù),當(dāng)自變量從小到大依次取值時(shí)對(duì)應(yīng)的一列函數(shù)值,通項(xiàng)公式即相應(yīng)的函數(shù)解析式。6.? 用圖象表示:— 是一群孤立的點(diǎn)????????? 例一 (P111 例一?? 略)三、關(guān)于的通項(xiàng)公式1.? 不是每一個(gè)都能寫出其通項(xiàng)公式 (如3)2.? 的通項(xiàng)公式不唯一?? 如: 4可寫成????? 和???????????????? ??????????? ??? 3.? 已知通項(xiàng)公式可寫出的任一項(xiàng),因此通項(xiàng)公式十分重要例二? (P111? 例二)略?????????? 四、補(bǔ)充例題:寫出下面的一個(gè)通項(xiàng)公式,使它的前 項(xiàng)分別是下列各數(shù):1.1,0,1,0.????????????????????? ????????????? 2. , , , , ??????? ????????????? 3.7,77,777,7777????????? ????????????? 4.-1,7,-13,19,-25,31?????????? ????????????? 5. , , , ???????? 五、小結(jié):1.的有關(guān)概念2.觀察法求的通項(xiàng)公式六、作業(yè)?:? 練習(xí)P112??習(xí)題 3.1(P114)1、2七、練習(xí):1.觀察下面的特點(diǎn),用適當(dāng)?shù)臄?shù)填空,關(guān)寫出每個(gè)的一個(gè)通項(xiàng)公式;(1) , , ,(?? ), , …(2) ,(? ), , , …? 2.寫出下面的一個(gè)通項(xiàng)公式,使它的前4項(xiàng)分別是下列各數(shù):(1)1、 、 、 ;??????? (2) 、 、 、 ;?????? ????????????????? (3) 、 、 、 ;? (4) 、 、 、 。3.求1,2,2,4,3,8,4,16,5,…的一個(gè)通項(xiàng)公式4.已知an的前4項(xiàng)為0, ,0, ,則下列各式 ①an=??? ②an=? ③an=? 其中可作為{an}通項(xiàng)公式的是?A ①???????? B ①②???????? C ②③??????? D ①②③ 5.已知1, , , ,3, …, ,…,則 是這個(gè)的(??? )?A. 第10項(xiàng)??? B.第11項(xiàng)??? C.第12項(xiàng)??? D.第21項(xiàng)????? 6.在{an}中a1=2,a17=66,通項(xiàng)公式或序號(hào)n的一次函數(shù),求通項(xiàng)公式。7.設(shè)函數(shù) ( ),{an}滿足 (1)求{an}的通項(xiàng)公式;(2)判斷{an}的單調(diào)性。8.在{an}中,an=(1)求證:{an}先遞增后遞減;(2)求{an}的最大項(xiàng)。?答案:1. (1) ,an=?(2) ,an=?????? 2.(1)an=??????????????????(2)an=???????? (3)an=????????(4)an=?????? 3.a(chǎn)n=?? ?或an=這里借助了1,0,1,0,1,0…的通項(xiàng)公式an=。4.D? 5.B?? 6. an=4n-27.(1)an=????(2)

數(shù)列的課件(篇13)

§3 數(shù)列極限存在的條件

教學(xué)內(nèi)容:?jiǎn)握{(diào)有界定理,柯西收斂準(zhǔn)則。

教學(xué)目的:使學(xué)生掌握判斷數(shù)列極限存在的常用工具。掌握并會(huì)證明單調(diào)有界定理,并會(huì)運(yùn)用它求某些收斂

數(shù)列的極限;初步理解Cauchy準(zhǔn)則在極限理論中的主要意義,并逐步會(huì)應(yīng)用Cauchy準(zhǔn)則判斷某些數(shù)列的斂散性。

教學(xué)重點(diǎn):?jiǎn)握{(diào)有界定理、Cauchy收斂準(zhǔn)則及其應(yīng)用。

教學(xué)難點(diǎn):相關(guān)定理的應(yīng)用。

教學(xué)方法:講練結(jié)合。

教學(xué)學(xué)時(shí):2學(xué)時(shí)。

? 引言

在研究比較復(fù)雜的極限問題時(shí),通常分兩步來解決:先判斷該數(shù)列是否有極限(極限的存在性問題);若有極限,再考慮如何計(jì)算些極限(極限值的計(jì)算問題)。這是極限理論的兩基本問題。

本節(jié)將重點(diǎn)討論極限的存在性問題。為了確定某個(gè)數(shù)列是否有極限,當(dāng)然不可能將每一個(gè)實(shí)數(shù)依定義一一加以驗(yàn)證,根本的辦法是直接從數(shù)列本身的特征來作出判斷。本節(jié)就來介紹兩個(gè)判斷數(shù)列收斂的方法。

一、單調(diào)數(shù)列:

定義 若數(shù)列?an?的各項(xiàng)滿足不等式an?an?1(a?an?1),則稱?an?為遞增(遞減)數(shù)列。遞增和遞減數(shù)列統(tǒng)稱為單調(diào)數(shù)列. ?(?1)n??1?2例如:??為遞減數(shù)列;?n?為遞增數(shù)列;??不是單調(diào)數(shù)列。n?n???

二、單調(diào)有界定理:

考慮:?jiǎn)握{(diào)數(shù)列一定收斂嗎?有界數(shù)列一定收斂嗎?以上兩個(gè)問題答案都是否定的,如果數(shù)列對(duì)以上兩個(gè)條件都滿足呢?答案就成為肯定的了,即有如下定理:

定理2.9(單調(diào)有界定理)在實(shí)數(shù)系中,有界且單調(diào)數(shù)列必有極限。

證明:不妨設(shè)?an?單調(diào)遞增有上界,由確界原理?an?有上確界a?sup?an?,下面證明liman?a.???0,n??

一方面,由上確界定義?aN??an?,使得a???aN,又由?an?的遞增性得,當(dāng)n?N時(shí)a???aN?an; 另一方面,由于a是?an?的一個(gè)上界,故對(duì)一切an,都有an?a?a??;

所以當(dāng)n?N時(shí)有a???an?a??,即an?a??,這就證得liman?a。n??

同理可證單調(diào)遞減有下界的數(shù)列必有極限,且為它的下確界。

例1 設(shè)an?1?111????,n?1,2,?其中??2,證明數(shù)列?an?收斂。2?3?n?

證明:顯然數(shù)列?an?是單調(diào)遞增的,以下證明它有上界.事實(shí)上,an?1?111???? 22223n

?1?1111??1??11??1?????1??1???????????? 1?22?3(n?1)n?2??23??n?1n?

?2?1?2,n?1,2,? n

于是由單調(diào)有界定理便知數(shù)列?an?收斂。

例2 證明下列數(shù)列收斂,并求其極限:

?? n個(gè)根號(hào)

解:記an?

顯然a1?2?2???2,易見數(shù)列?an?是單調(diào)遞增的,現(xiàn)用數(shù)學(xué)歸納法證明?an?有上界2.2?2,假設(shè)an?2,則有an?1?2?an?2?2?2,從而數(shù)列?an?有上界2.n??2于是由單調(diào)有界定理便知數(shù)列?an?收斂。以下再求其極限,設(shè)liman?a,對(duì)等式an?1?2?an兩邊

2同時(shí)取極限得a?2?a,解之得a?2或a??1(舍去,由數(shù)列極限保不等式性知此數(shù)列極限非負(fù)),從而 lim2?2???2?2.n??

例3證明lim(1?)存在。n??1nn

分析:此數(shù)列各項(xiàng)變化趨勢(shì)如下

我們有理由猜測(cè)這個(gè)數(shù)列單調(diào)遞增且有上界,下面證明這個(gè)猜測(cè)是正確的。

證明:先建立一個(gè)不等式,設(shè)b?a?0,n?N?,則由

bn?1?an?1?(b?a)(bn?bn?1a?bn?2a2???ban?1?an)?(n?1)bn(b?a)得到不等式 an?1?bn?(n?1)a?nb?(*)

以b?1?1111?1??a代入(*)式,由于(n?1)a?nb?(n?1)(1?)?n(1?)?1 nn?1n?1n

n?1nn??11????????1??由此可知數(shù)列??1???為遞增數(shù)列; ??n???n???1??于是?1???n?1?

再以b?1?111?1?a代入(*)式,同樣由于(n?1)a?nb?(n?1)?n(1?)?,2n2n

2n2nn???1????4由此可知數(shù)列??1???為有界數(shù)列; ???n???1?1?1??于是1??1???1?????2n?2?2n?

n綜上由單調(diào)有界定理便知lim(1?)存在。n??n

n???1???注:數(shù)列??1???是收斂的,但它的極限目前沒有辦法求出,實(shí)際上它的極限是e(無理數(shù)),即有???n???

1lim(1?)n=e,這是非常有用的結(jié)論,我們必須熟記,以后可以直接應(yīng)用。n??n

例4 求以下數(shù)列極限:

(1)lim(1?);(2)lim(1?n??n??1nn1n1);(3)lim(1?)2n.n??2nn

?n??1n1?? 解:(1)lim(1?)?lim??1???n??n??n???n?????11?; e

(2)lim(1?n????1n1?)?lim??1??n??2n2n????2n???e ??12

(3)lim(1?n??12n)n??1?n??lim??1????e2.n?????n???2

三、柯西收斂準(zhǔn)則:

1.引言:

單調(diào)有界定理只是數(shù)列收斂的充分條件,下面給出在實(shí)數(shù)集中數(shù)列收斂的充分必要條件——柯西收斂準(zhǔn)則。

2.Cauchy收斂準(zhǔn)則:

定理2.10(Cauchy收斂準(zhǔn)則)數(shù)列?an?收斂的充分必要條件是:對(duì)任給的??0,存在正整數(shù)N,使得當(dāng)n,m?N時(shí)有|an?am|??;或?qū)θ谓o的??0,存在正整數(shù)N,使得當(dāng)n?N,及任一p?N?,有an?p?an??。

3.說明:

(1)Cauchy收斂準(zhǔn)則從理論上完全解決了數(shù)列極限的存在性問題。

(2)Cauchy收斂準(zhǔn)則的條件稱為Cauchy條件,它反映這樣的事實(shí):收斂數(shù)列各項(xiàng)的值愈到后面,彼此愈接近,以至于充分后面的任何兩項(xiàng)之差的絕對(duì)值可以小于預(yù)先給定的任意小正數(shù)?;蛘?,形象地說,收斂數(shù)列的各項(xiàng)越到后面越是“擠”在一起。

(3)Cauchy準(zhǔn)則把??N定義中an與a的之差換成an與am之差。其好處在于無需借助數(shù)列以外的數(shù)a,只要根據(jù)數(shù)列本身的特征就可以鑒別其(收)斂(發(fā))散性。

(4)數(shù)列?an?發(fā)散的充分必要條件是:存在?0?0,對(duì)任意的N?N?,都可以找到n,m?N,使得an?am??0;存在?0?0,對(duì)任意的N?N?,都可以找到n?N,及p?N?,使得an?p?an??0.例5設(shè)an?111?2???n,證明數(shù)列?an?收斂。101010

證明:不妨設(shè)n?m,則

an?am?111?????m?1m?2n101010

1110m?1??1?n?m??1???????10????1?1?1??1?1 m?n?m?19?10?10?10mm1?10對(duì)任給的??0,存在N?

例6設(shè)an?1?

證明:??0??,對(duì)一切n?m?N有|an?am|??,由柯西收斂準(zhǔn)則知數(shù)列?an?收斂。11???,證明數(shù)列?an?發(fā)散。2n

an?p1,對(duì)任意的N?N?,任取n?N,及p?n,則有 211111111?an??????????(共n項(xiàng))?n????0 n?1n?22n2n2n2n2n2由柯西收斂準(zhǔn)則知數(shù)列?an?發(fā)散。

數(shù)列的課件(篇14)

數(shù)列的極限 教學(xué)設(shè)計(jì)

西南位育中學(xué) 肖添憶

一、教材分析

《數(shù)列的極限》為滬教版第七章第七節(jié)第一課時(shí)內(nèi)容,是一節(jié)概念課。極限概念是數(shù)學(xué)中最重要和最基本的概念之一,因?yàn)闃O限理論是微積分學(xué)中的基礎(chǔ)理論,它的產(chǎn)生建立了有限與無限、常量數(shù)學(xué)與變量數(shù)學(xué)之間的橋梁,從而彌補(bǔ)和完善了微積分在理論上的欠缺。本節(jié)后續(xù)內(nèi)容如:數(shù)列極限的運(yùn)算法則、無窮等比數(shù)列各項(xiàng)和的求解也要用到數(shù)列極限的運(yùn)算與性質(zhì)來推導(dǎo),所以極限概念的掌握至關(guān)重要。

課本在內(nèi)容展開時(shí),以觀察n??時(shí)無窮等比數(shù)列an?列an?qn,(|q|?1)與an?1的發(fā)展趨勢(shì)為出發(fā)點(diǎn),結(jié)合數(shù)n21的發(fā)展趨勢(shì),從特殊到一般地給出數(shù)列極限的描述性定義。在n由定義給出兩個(gè)常用極限。但引入部分的表述如“無限趨近于0,但它永遠(yuǎn)不會(huì)成為0”、“不管n取值有多大,點(diǎn)(n,an)始終在橫軸的上方”可能會(huì)造成學(xué)生對(duì)“無限趨近”的理解偏差。

二、學(xué)情分析

通過第七章前半部分的學(xué)習(xí),學(xué)生已經(jīng)掌握了數(shù)列的有關(guān)概念,以及研究一些特殊數(shù)列的方法。但對(duì)于學(xué)生來說,數(shù)列極限是一個(gè)全新的內(nèi)容,學(xué)生的思維正處于由經(jīng)驗(yàn)型抽象思維向理論型抽象思維過渡的階段。

由于已有的學(xué)習(xí)經(jīng)驗(yàn)與不當(dāng)?shù)耐评眍惐?,學(xué)生在理解“極限”、“無限趨近”時(shí)可能產(chǎn)生偏差,比如認(rèn)為極限代表著一種無法逾越的程度,或是近似值。這與數(shù)學(xué)中“極限”的含義相差甚遠(yuǎn)。在學(xué)習(xí)數(shù)列極限之前,又曾多次利用“無限趨近”描述反比例函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的圖像特征,這又與數(shù)列中“無限趨近”的含義有所差異,學(xué)生往往會(huì)因?yàn)槌?shù)列能達(dá)到某一個(gè)常數(shù)而否定常數(shù)列存在極限的事實(shí)。

三、教學(xué)目標(biāo)與重難點(diǎn) 教學(xué)目標(biāo):

1、通過數(shù)列極限發(fā)展史的介紹,感受數(shù)學(xué)知識(shí)的形成與發(fā)展,更好地把握極限概念的來龍去脈;

2、經(jīng)歷極限定義在漫長(zhǎng)時(shí)期內(nèi)發(fā)展的過程,體會(huì)數(shù)學(xué)家們從概念發(fā)現(xiàn)到完善所作出的努力,從數(shù)列的變化趨勢(shì),正確理解數(shù)列極限的概念和描述性定義;

3、會(huì)根據(jù)數(shù)列極限的意義,由數(shù)列的通項(xiàng)公式來考察數(shù)列的極限;掌握三個(gè)常用極限。教學(xué)重點(diǎn):理解數(shù)列極限的概念

教學(xué)難點(diǎn):正確理解數(shù)列極限的描述性定義

四、教學(xué)策略分析

在問題引入時(shí)著重突出“萬世不竭”與“講臺(tái)可以走到”在認(rèn)知上的矛盾,激發(fā)學(xué)生的學(xué)習(xí)興趣與求知欲,并由此引出本節(jié)課的學(xué)習(xí)內(nèi)容。在極限概念形成時(shí),結(jié)合極限概念的發(fā)展史展開教學(xué),讓學(xué)生意識(shí)到數(shù)學(xué)理論不是一成不變的,而是不斷發(fā)展變化的。數(shù)學(xué)的歷史發(fā)展過程與學(xué)生的認(rèn)知過程有著一定的相似性,學(xué)生在某些概念上的進(jìn)展有時(shí)與數(shù)學(xué)史上的概念進(jìn)展平行。比如部分學(xué)生的想法與許多古希臘的數(shù)學(xué)家一樣,認(rèn)為無限擴(kuò)大的正多邊形不會(huì)與圓周重合,它的周長(zhǎng)始終小于其外接圓的周長(zhǎng)。教師通過梳理極限發(fā)展史上的代表性觀點(diǎn),介紹概念的發(fā)展歷程以及前人對(duì)此的一系列觀點(diǎn),能幫助學(xué)生發(fā)現(xiàn)自己可能也存在著類似于前人的一些錯(cuò)誤想法。對(duì)數(shù)學(xué)發(fā)現(xiàn)的過程以認(rèn)知角度加以分析,有助于學(xué)生學(xué)習(xí)數(shù)學(xué)家的思維方式,了解數(shù)學(xué)概念的發(fā)展,進(jìn)而建構(gòu)推理過程,使學(xué)生發(fā)生概念轉(zhuǎn)變。在課堂練習(xí)診斷部分,不但要求回答問題,還需對(duì)選擇原因進(jìn)行辨析,進(jìn)而強(qiáng)化概念的正確理解。

五、教學(xué)過程提綱與設(shè)計(jì)意圖 1.問題引入

讓一名學(xué)生從距離講臺(tái)一米處朝講臺(tái)走動(dòng),每次都移動(dòng)距講臺(tái)距離的一半,在黑板上寫出表示學(xué)生到講臺(tái)距離的數(shù)列。這名學(xué)生是否能走到講臺(tái)呢?類比“一尺之捶,日取其半,萬世不竭”,莊子認(rèn)為這樣的過程是永遠(yuǎn)不會(huì)完結(jié)的,然而“講臺(tái)永遠(yuǎn)走不到”這一結(jié)果顯然與事實(shí)不同,要回答這一矛盾,讓我們看看歷史上的數(shù)學(xué)家們是如何思考的?!驹O(shè)計(jì)意圖】

改編自芝諾悖論的引入問題,與莊子的“一尺之捶”產(chǎn)生了認(rèn)知沖突,激發(fā)學(xué)生的學(xué)習(xí)興趣與求知欲,并引出本節(jié)課的學(xué)習(xí)內(nèi)容

2.極限概念的發(fā)展與完善

極限概念的發(fā)展經(jīng)歷了三個(gè)階段:從早期以“割圓術(shù)”“窮竭法”為代表的樸素極限思想,到極限概念被提出后因“無窮小量是否為0”的爭(zhēng)論而引發(fā)的質(zhì)疑,再經(jīng)由柯西、魏爾斯特拉斯等人的工作以及實(shí)數(shù)理論的形成,嚴(yán)格的極限理論至此才真正建立?!驹O(shè)計(jì)意圖】

教師引導(dǎo)學(xué)生梳理極限發(fā)展史上的代表性觀點(diǎn),了解數(shù)學(xué)家們提出觀點(diǎn)的時(shí)代背景,對(duì)照反思自己的想法,發(fā)現(xiàn)自己可能也存在著類似于前人的一些錯(cuò)誤想法。教師在比較概念發(fā)展史上被否定的觀點(diǎn)與現(xiàn)今數(shù)學(xué)界認(rèn)可的觀點(diǎn)時(shí),會(huì)使學(xué)生產(chǎn)生認(rèn)知沖突。從而可能使學(xué)生發(fā)生概念轉(zhuǎn)變,拋棄不正確的、不完整的、受限的想法,接受新的概念。在數(shù)學(xué)教學(xué)中,結(jié)合數(shù)學(xué)史展開教學(xué)可以讓學(xué)生意識(shí)到數(shù)學(xué)理論不是一成不變的,而是不斷發(fā)展變化的,從而提升學(xué)生概念轉(zhuǎn)變的動(dòng)機(jī)。

3.數(shù)列極限的概念

極限思想的產(chǎn)生最早可追溯于中國(guó)古代。極限理論的完善出于社會(huì)實(shí)踐的需要,不是哪一名數(shù)學(xué)家苦思冥想得出,而是幾代人奮斗的結(jié)果。極限的嚴(yán)格定義經(jīng)歷了相當(dāng)漫長(zhǎng)的時(shí)期才得以完善,它是人類智慧高度文明的體現(xiàn),反映了數(shù)學(xué)發(fā)展的辯證規(guī)律。今天的主題,極限的定義,援引的便是柯西對(duì)于極限的闡述。

定義:在n無限增大的變化過程中,如果無窮數(shù)列{an}中的an無限趨近于一個(gè)常數(shù)A,那么A叫做數(shù)列{an}的極限,或叫做數(shù)列{an}收斂于A,記作liman?A,讀作“n趨向于

n??無窮大時(shí),an的極限等于A”。

在數(shù)列極限的定義中,可用|an-A|無限趨近于0來描述an無限趨近于A。

如前闡述,柯西版本的極限定義雖然不是最完美的,但作為擺脫幾何直觀的首次嘗試,也是歷史上一個(gè)較為成功的版本,在歷史上的地位頗高。有時(shí),我們也稱其為數(shù)列極限的描述性定義。

【設(shè)計(jì)意圖】

通過比較歷史上不同觀點(diǎn)下的極限定義,教師呈現(xiàn)數(shù)列極限的描述性定義,分析該定義的歷史意義,讓學(xué)生進(jìn)一步明確數(shù)列極限的含義。4.課堂練習(xí)診斷

由數(shù)列極限的定義得到三個(gè)常用數(shù)列的極限:(1)limC?C(C為常數(shù));

n??(2)lim1?0(n?N*); n??nnn??(3)當(dāng)|q|判斷下列數(shù)列是否存在極限,若存在求出其極限,若不存在請(qǐng)說明理由

20162016(1)an?;

nsinn?; n(3)1,1,1,1,?,1(2)an?(4)an????4(1?n?1000)

?4(n?1001)?1?1-,n為奇數(shù)(5)an??n

?? 1,n為偶數(shù)注:

(1)、(2)考察三個(gè)常用極限

(3)考查學(xué)生是否能清楚認(rèn)識(shí)到數(shù)列極限概念是基于無窮項(xiàng)數(shù)列的背景下探討的。當(dāng)項(xiàng)數(shù)無限增大時(shí),數(shù)列的項(xiàng)若無限趨近于一個(gè)常數(shù),則認(rèn)為數(shù)列的極限存在。因此,數(shù)列極限可以看作是數(shù)列的一種趨于穩(wěn)定的發(fā)展趨勢(shì)。有窮數(shù)列的項(xiàng)數(shù)是有限的,因而并不存在極限這個(gè)概念。

(4)引用柯西的觀點(diǎn),解釋此處無限趨近的含義,是指隨著數(shù)列項(xiàng)數(shù)的增加,數(shù)列的項(xiàng)與某一常數(shù)要多接近就有多接近,由此得出結(jié)論:數(shù)列極限與前有限項(xiàng)無關(guān)且無窮常數(shù)數(shù)列存在極限的。

(5)擴(kuò)充對(duì)三種趨近方式的理解:小于A趨近、大于A趨近和擺動(dòng)趨近。本題中的數(shù)列沒有呈現(xiàn)出以上三種方式的任意一種。避免學(xué)生將趨近誤解為項(xiàng)數(shù)與常數(shù)間的差距不斷縮小。練習(xí)若A=0.9+0.09+0.009+0.0009+...,則以下對(duì)A的描述正確的是_____.A、A是小于1的最大正數(shù)

B、A的精確值為1 C、A的近似值為1

選擇此選項(xiàng)的原因是_________ ①由于A的小數(shù)位都是 9,找不到比A大但比1小的數(shù);

②A是由無限多個(gè)正數(shù)的和組成,它們可以一直不斷得加下去,但總小于 2;

③A表示的數(shù)是數(shù)列0.9,0.99,0.999,0.9999,...的極限;

④1與A的差等于 0.00…01。

注:此題是為考查學(xué)生對(duì)于無窮小量和極限概念的理解。由極限概念的發(fā)展史可以看出,數(shù)學(xué)家們?cè)L(zhǎng)時(shí)期陷入對(duì)無窮小概念理解的誤區(qū)中,極大地阻礙了對(duì)極限概念的理解。學(xué)生學(xué)習(xí)極限概念時(shí)可能也會(huì)遇到類似的誤區(qū)。

練習(xí)順次連接△ABC各邊中點(diǎn)A1、B1、C1,得到△A1B1C1。取△A1B1C1各邊中點(diǎn) A2、B2、C2并順次連接又得到一個(gè)新三角形△A2B2C2。再按上述方法一直進(jìn)行下去,那么最終得到的圖形是_________.A、一個(gè)點(diǎn)

B、一個(gè)三角形

C、不確定

選擇此選項(xiàng)的原因是_________.①

無限次操作后所得三角形的面積無限趨近于 0 但不可能等于 0。②

當(dāng)操作一定次數(shù)后,三角形的三點(diǎn)會(huì)重合。

該項(xiàng)操作可以無限多次進(jìn)行下去,因而總能作出類似的三角形。

無限次操作后所得三角形的三個(gè)頂點(diǎn)會(huì)趨向于一點(diǎn)。

注:此題從無限觀的角度考察學(xué)生對(duì)極限概念的的理解。學(xué)生容易忽視極限概念中的實(shí)無限,他們?cè)谝曈X上采用無窮疊加的形式,但是會(huì)受最后一項(xiàng)的慣性思維,導(dǎo)致采用潛無限的思辨方式。所謂實(shí)無限是指把無限的整體本身作為一個(gè)現(xiàn)成的單位,是可以自我完成的過程或無窮整體。相對(duì)地,潛無限是指把無限看作永遠(yuǎn)在延伸著的,一種變化著成長(zhǎng)著不斷產(chǎn)生出來的東西。它永遠(yuǎn)處在構(gòu)造中,永遠(yuǎn)完成不了,是潛在的,而不是實(shí)在的。持有潛無限觀點(diǎn)的學(xué)生在理解極限概念時(shí),會(huì)將極限理解為是一個(gè)漸進(jìn)過程,或是一個(gè)不可達(dá)到的極值。

通過習(xí)題,分析總結(jié)以下三個(gè)注意點(diǎn):

(1)數(shù)列{an}有極限必須是一個(gè)無窮數(shù)列,但無窮數(shù)列不一定有極限存在;

1}可以說隨著n的無限增大,n1數(shù)列的項(xiàng)與-1會(huì)越來越接近,但這種接近不是無限趨近,所以不能說lim??1;

n??n(2)“無限趨近”不能用“越來越接近”代替,例如數(shù)列{(3)數(shù)列{an}趨向極限A的過程可有多種呈現(xiàn)形式。

【設(shè)計(jì)意圖】

通過例題與選項(xiàng)原因的分析,消除關(guān)于數(shù)列極限理解的三類誤區(qū):

第一類是將數(shù)列極限等同于如下的三種概念:漸近線、最大限度或是近似值。第二類是學(xué)生對(duì)于數(shù)列趨向于極限方式的錯(cuò)誤認(rèn)知。第三類是對(duì)于無限的錯(cuò)誤認(rèn)知。

5.課堂小結(jié)

極限的描述性定義與注意點(diǎn) 三個(gè)常用的極限

6.作業(yè)布置

1>任課老師布置的其他作業(yè)

2>學(xué)習(xí)魏爾斯特拉斯的數(shù)列極限定義,并用該定義證明習(xí)題的第一第二小問 【設(shè)計(jì)意圖】

通過與數(shù)列極限相關(guān)的延伸問題,完善極限概念的體系,為學(xué)生創(chuàng)設(shè)課后自主探究平臺(tái),感受靜態(tài)定義中凝結(jié)的數(shù)學(xué)家的智慧。

數(shù)列的課件(篇15)

數(shù)列(第一課時(shí))的說課稿

一、教材結(jié)構(gòu)與內(nèi)容簡(jiǎn)析

本節(jié)內(nèi)容在全書及章節(jié)的地位:《數(shù)列(第一課時(shí))》是高中數(shù)學(xué)新教材第一冊(cè)(上)第3章第一節(jié)。數(shù)列是在緊接著第二章函數(shù)之后的內(nèi)容,數(shù)列是一個(gè)定義域?yàn)檎麛?shù)集(或它的有限子集)的函數(shù)當(dāng)自變量由小到大依次取值時(shí)對(duì)應(yīng)的一列函數(shù)值。它在教材中起著承前啟后的作用,一方面,可以加深學(xué)生對(duì)函數(shù)概念的認(rèn)識(shí),使他們了解不僅可以有自變量連續(xù)變化的函數(shù),還可以有自變量離散變化的函數(shù);另一方面,又可以從函數(shù)的觀點(diǎn)出發(fā)變動(dòng)地、直觀地研究數(shù)列的一些問題,以便對(duì)數(shù)列性質(zhì)的認(rèn)識(shí)更深入一步。數(shù)列還有著非常廣泛的實(shí)際應(yīng)用;數(shù)列還是培養(yǎng)學(xué)生數(shù)學(xué)能力的良好題材。所以說數(shù)列是高中數(shù)學(xué)重要內(nèi)容之一。

數(shù)學(xué)思想方法分析:作為一名數(shù)學(xué)老師,不僅要傳授給學(xué)生數(shù)學(xué)知識(shí),更重要的是傳授給學(xué)生數(shù)學(xué)思想、數(shù)學(xué)意識(shí),因此本節(jié)課在教學(xué)中力圖向?qū)W生展示嘗試觀察、歸納、類比、聯(lián)想等數(shù)學(xué)思想方法。

二、教學(xué)目標(biāo)

根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征 ,我制定如下教學(xué)目標(biāo):

1、基礎(chǔ)知識(shí)目標(biāo):形成并掌握數(shù)列的概念,理解數(shù)列的通項(xiàng)公式。并通過數(shù)列與函數(shù)的比較加深對(duì)數(shù)列的認(rèn)識(shí)。

2、能力訓(xùn)練目標(biāo): 培養(yǎng)學(xué)生觀察、歸納、類比、聯(lián)想等發(fā)現(xiàn)規(guī)律的一般方法。

3、情感目標(biāo):讓學(xué)生在民主、和諧的共同活動(dòng)中感受學(xué)習(xí)的樂趣。

三、教學(xué)重點(diǎn)、難點(diǎn)、關(guān)鍵

本著課程標(biāo)準(zhǔn),在吃透教材基礎(chǔ)上,我覺得本節(jié)課是本章內(nèi)容的第一節(jié)課,是學(xué)生學(xué)習(xí)本章的基礎(chǔ),為了本章后面知識(shí)的學(xué)習(xí),首先必須掌握數(shù)列的概念,其次數(shù)列的通項(xiàng)公式是研究后面等差數(shù)列、等比數(shù)列的靈魂,所以我認(rèn)為數(shù)列的概念及其通項(xiàng)公式是教學(xué)的重點(diǎn)。由特殊到一般,由現(xiàn)象到本質(zhì),要學(xué)生從一個(gè)數(shù)列的前幾項(xiàng)或相鄰的幾項(xiàng)來觀察、歸納、類比、聯(lián)想出數(shù)列的通項(xiàng)公式,學(xué)生必須通過自己的努力尋找出數(shù)列的通項(xiàng)an與項(xiàng)數(shù)n之間的關(guān)系來,對(duì)學(xué)生的能力要求比較高,所以我認(rèn)為建立數(shù)列的通項(xiàng)公式是教學(xué)的難點(diǎn)。我覺得教學(xué)的關(guān)鍵就是教會(huì)學(xué)生克服難點(diǎn),辦法是讓學(xué)生學(xué)會(huì)觀察數(shù)列的前幾項(xiàng)的特點(diǎn),在觀察和比較中揭示數(shù)列的變化規(guī)律。

下面,為了講清重點(diǎn)、難點(diǎn),使學(xué)生能達(dá)到本節(jié)設(shè)定的教學(xué)目標(biāo),我再?gòu)慕谭ê蛯W(xué)法上談?wù)劇?/p>

四、教法

數(shù)學(xué)是一門培養(yǎng)和發(fā)展人的思維的重要學(xué)科,因此,在教學(xué)中,不僅要使學(xué)生“知其然”而且要使學(xué)生“知其所以然”。為了體現(xiàn)以學(xué)生發(fā)展為本,遵循學(xué)生的認(rèn)知規(guī)律,體現(xiàn)循序漸進(jìn)與啟發(fā)式的教學(xué)原則,我進(jìn)行了這樣的教法設(shè)計(jì):在教師的引導(dǎo)下,創(chuàng)設(shè)情景,通過開放性問題的設(shè)置來啟發(fā)學(xué)生思考,在思考中體會(huì)數(shù)學(xué)概念形成過程中所蘊(yùn)涵的數(shù)學(xué)方法,使之獲得內(nèi)心感受。

五、學(xué)法

我們常說:“現(xiàn)代的文盲不是不識(shí)字的人,而是沒有掌握學(xué)習(xí)方法的人”,因而在教學(xué)中要特別重視學(xué)法的指導(dǎo)。隨著《基礎(chǔ)教育課程改革綱要(試行)》的頒布實(shí)施,課程改革形成由點(diǎn)到面,逐步鋪開的良好態(tài)勢(shì)。其中轉(zhuǎn)變學(xué)生學(xué)習(xí)方式是本次課程改革的重點(diǎn)之一。課程改革的具體目標(biāo)之一是“改變課程實(shí)施過于強(qiáng)調(diào)接受學(xué)習(xí)、死記硬背、機(jī)械訓(xùn)練的現(xiàn)狀,倡導(dǎo)學(xué)生主動(dòng)參與、樂于探究、勤于動(dòng)手,培養(yǎng)學(xué)生搜集和處理信息的能力、獲取新知識(shí)的能力、分析和解決問題的能力以及交流與合作的能力”。數(shù)學(xué)作為基礎(chǔ)教育的核心課程之一,轉(zhuǎn)變學(xué)生數(shù)學(xué)學(xué)習(xí)方式,不僅有利于提高學(xué)生的數(shù)學(xué)素養(yǎng),而且有利于促進(jìn)學(xué)生整體學(xué)習(xí)方式的轉(zhuǎn)變。我以建構(gòu)主義理論為指導(dǎo),輔以多媒體手段,采用著重于學(xué)生探索研究的啟發(fā)式教學(xué)方法,結(jié)合師生共同討論、歸納。在課堂結(jié)構(gòu)上,我根據(jù)學(xué)生的認(rèn)知水平,我設(shè)計(jì)了 ①創(chuàng)設(shè)情境——引入概念②觀察歸納——形成概念③討論研究——深化概念④即時(shí)訓(xùn)練—鞏固新知⑤總結(jié)反思——提高認(rèn)識(shí)⑥任務(wù)后延——自主探究六個(gè)層次的學(xué)法,它們環(huán)環(huán)相扣,層層深入,從而順利完成教學(xué)目標(biāo)。

六、教學(xué)程序及設(shè)想

接下來,我再具體談一談這堂課的教學(xué)過程:

(一) 創(chuàng)設(shè)情境——引入概念我經(jīng)常在思考:長(zhǎng)期以來,我們的學(xué)生為什么對(duì)數(shù)學(xué)不感興趣,甚至害怕數(shù)學(xué),其中的一個(gè)重要因素就是數(shù)學(xué)離學(xué)生的生活實(shí)際太遠(yuǎn)了。事實(shí)上,數(shù)學(xué)學(xué)習(xí)應(yīng)該與學(xué)生的生活融合起來,從學(xué)生的生活經(jīng)驗(yàn)和已有的知識(shí)背景出發(fā),讓他們?cè)谏钪腥グl(fā)現(xiàn)數(shù)學(xué)、探究數(shù)學(xué)、認(rèn)識(shí)并掌握數(shù)學(xué)。

1、由生活中的具體的數(shù)列實(shí)例引入:a、時(shí)間:時(shí)鐘、掛歷 b、植物:植物的莖

2、用古老的有關(guān)國(guó)際象棋的傳說引入,符合高一學(xué)生喜歡探究新奇奧妙事物的特點(diǎn)。有利于激發(fā)學(xué)生的學(xué)習(xí)興趣。

(二)觀察歸納——形成概念

由實(shí)例得出幾列數(shù),再有目的地設(shè)計(jì),如自然數(shù)、自然數(shù)的倒數(shù)、大于零的偶數(shù)、開關(guān)(0,1,0,1,0,1,?)、“一尺之棰,日取其半,永世不竭?!币约皬?984年到2019年我國(guó)體育健兒參加六次奧運(yùn)會(huì)獲得的金牌數(shù)15,5,16,16,28,32所形成的數(shù)列,教師引導(dǎo)學(xué)生概括總結(jié)出本課新的知識(shí)點(diǎn):數(shù)列的定義。

(三)討論研究——深化概念

課前我精心設(shè)計(jì)的幾個(gè)數(shù)列中已經(jīng)含概了有窮數(shù)列、無窮數(shù)列、遞增數(shù)列、遞減數(shù)列、常數(shù)數(shù)列,等待學(xué)生觀察、討論、交流后掌握以上幾個(gè)概念。數(shù)列的相關(guān)概念:數(shù)列中的每一個(gè)數(shù)都叫這個(gè)數(shù)列的項(xiàng),并且依次叫做這個(gè)數(shù)列的第一項(xiàng)(首項(xiàng)),第二項(xiàng),…第n項(xiàng),…。數(shù)列的一般形式可寫成:a1,a2,a3,…,an?,簡(jiǎn)記為{an},其中an表示數(shù)列的第n項(xiàng)。 接著引導(dǎo)學(xué)生再觀察以上幾個(gè)數(shù)列的項(xiàng)與項(xiàng)數(shù)之間的關(guān)系,如果數(shù)列{an}的第n項(xiàng)an與序號(hào)n之間的關(guān)系可以用一個(gè)公式an=f(n)來表示,那么這個(gè)公式就叫做這個(gè)數(shù)列的通項(xiàng)公式。 最后通過數(shù)列通項(xiàng)公式與函數(shù)解析式的對(duì)比研究,使學(xué)生得出數(shù)列通項(xiàng)公式an=f(n)的圖象是一群孤立的點(diǎn)。 在數(shù)列中,項(xiàng)數(shù)n與項(xiàng)an之間存在著對(duì)應(yīng)關(guān)系。如果把項(xiàng)數(shù)n看作自變量,那么數(shù)列可以看作以自然數(shù)集(或它的有限子集{1,2,3,?,n})為定義域的函數(shù)當(dāng)自變量由小到大依次取值時(shí)對(duì)應(yīng)的一列函數(shù)值。而數(shù)列的通項(xiàng)公式也就是相應(yīng)函數(shù)的解析式。當(dāng)我們把直角坐標(biāo)系的橫坐標(biāo)看作項(xiàng)數(shù)n,縱坐標(biāo)看作項(xiàng)an時(shí),我們得到的圖象就是一群孤立的點(diǎn)。

(四)即時(shí)訓(xùn)練—鞏固新知

為了使學(xué)生達(dá)到對(duì)知識(shí)的深化理解,從而達(dá)到鞏固提高的效果,我特地設(shè)計(jì)了一組即時(shí)訓(xùn)練題,并且把課本的例題熔入即時(shí)訓(xùn)練題中,通過學(xué)生的觀察嘗試,討論研究,教師引導(dǎo)來鞏固新知識(shí)。

(五)總結(jié)反思——提高認(rèn)識(shí)

由學(xué)生總結(jié)本節(jié)課所學(xué)習(xí)的主要內(nèi)容:⑴數(shù)列及其有關(guān)概念;⑵根據(jù)數(shù)列的通項(xiàng)公式求其任意一項(xiàng);⑶根據(jù)數(shù)列的一些相鄰項(xiàng)求數(shù)列的通項(xiàng)公式;⑷數(shù)列與函數(shù)的關(guān)系(數(shù)列是一種特殊的函數(shù))。讓學(xué)生通過知識(shí)性內(nèi)容的小結(jié),把課堂教學(xué)傳授的知識(shí)盡快化為學(xué)生的素質(zhì);通過數(shù)學(xué)思想方法的小結(jié),使學(xué)生更深刻地理解數(shù)學(xué)思想方法在解題中的地位和應(yīng)用,并且逐漸培養(yǎng)學(xué)生的良好的個(gè)性品質(zhì)目標(biāo)。

(六)任務(wù)后延——自主探究

學(xué)生經(jīng)過以上五個(gè)環(huán)節(jié)的學(xué)習(xí),已經(jīng)初步掌握了探究數(shù)列規(guī)律的一般方法,有待進(jìn)一步提高認(rèn)知水平,因此我針對(duì)學(xué)生素質(zhì)的差異設(shè)計(jì)了有層次的訓(xùn)練題,留給學(xué)生課后自主探究,這樣既使學(xué)生掌握基礎(chǔ)知識(shí),又使學(xué)有佘力的學(xué)生有所提高,從而達(dá)到拔尖和“減負(fù)”的目的。

七、簡(jiǎn)述板書設(shè)計(jì)。

結(jié)束:以上,我僅從說教材,說學(xué)情,說教法,說學(xué)法,說教學(xué)程序上說明了“教什么”和“怎么教”,闡明了“為什么這樣教”。希望各位專家領(lǐng)導(dǎo)對(duì)本堂說課提出寶貴意見。

相關(guān)推薦

  • 高等數(shù)學(xué)課件系列七篇 每個(gè)老師都需要在課前準(zhǔn)備好自己的教案課件,本學(xué)期又到了寫教案課件的時(shí)候了。?教師應(yīng)該在教案課件中充分展示,讓學(xué)生理解和掌握知識(shí)。我在教育網(wǎng)上找到一篇關(guān)于“高等數(shù)學(xué)課件”的文章內(nèi)容很詳盡,希望這些知識(shí)能夠?qū)δ阌兴鶐椭?..
    2024-03-29 閱讀全文
  • 高中課件教案系列 教案課件是教師提前準(zhǔn)備好的,每個(gè)老師都應(yīng)該精心設(shè)計(jì)教案課件。通過了解學(xué)生的反應(yīng),教師可以更好地診斷課堂中的問題。大家有沒有在寫教案課件方面遇到過困難呢?為了方便后續(xù)閱讀,請(qǐng)大家收藏本文,《高中課件教案》是由本我們特意為您提供的內(nèi)容。...
    2023-05-24 閱讀全文
  • 找因數(shù)課件系列 俗話說,做什么事都要有計(jì)劃和準(zhǔn)備。在日常的學(xué)習(xí)工作中,幼兒園教師都會(huì)提前準(zhǔn)備一些能用到的資料。資料可以指人事物的相關(guān)多類信息、情報(bào)。資料可以幫助我們更高效地完成各項(xiàng)工作。你知不知道我們常見的幼師資料有哪些呢?以下是由小編為大家整理的“找因數(shù)課件系列”,歡迎你閱讀與收藏。教學(xué)內(nèi)容:青島版數(shù)學(xué)四...
    2023-06-16 閱讀全文
  • 高中美術(shù)課件教案系列 下面小編為大家整理的“高中美術(shù)課件教案”,僅供你在工作和學(xué)習(xí)中參考。老師每一堂上一般都需要一份教案課件,大家可以開始寫自己課堂教案課件了。?學(xué)生表現(xiàn)的不同可以反映出教學(xué)方法的優(yōu)劣。...
    2023-03-23 閱讀全文
  • 數(shù)列的課件(系列15篇) 每個(gè)老師都需要在課前準(zhǔn)備好自己的教案課件,本學(xué)期又到了寫教案課件的時(shí)候了。寫好教案,才能讓課堂教學(xué)更完整,怎樣的教案課件算為優(yōu)秀?這份特別挑選的“數(shù)列的課件”一定值得您一試,請(qǐng)收藏這個(gè)網(wǎng)頁(yè)方便你下次再來查看!...
    2024-04-17 閱讀全文

每個(gè)老師都需要在課前準(zhǔn)備好自己的教案課件,本學(xué)期又到了寫教案課件的時(shí)候了。?教師應(yīng)該在教案課件中充分展示,讓學(xué)生理解和掌握知識(shí)。我在教育網(wǎng)上找到一篇關(guān)于“高等數(shù)學(xué)課件”的文章內(nèi)容很詳盡,希望這些知識(shí)能夠?qū)δ阌兴鶐椭?..

2024-03-29 閱讀全文

教案課件是教師提前準(zhǔn)備好的,每個(gè)老師都應(yīng)該精心設(shè)計(jì)教案課件。通過了解學(xué)生的反應(yīng),教師可以更好地診斷課堂中的問題。大家有沒有在寫教案課件方面遇到過困難呢?為了方便后續(xù)閱讀,請(qǐng)大家收藏本文,《高中課件教案》是由本我們特意為您提供的內(nèi)容。...

2023-05-24 閱讀全文

俗話說,做什么事都要有計(jì)劃和準(zhǔn)備。在日常的學(xué)習(xí)工作中,幼兒園教師都會(huì)提前準(zhǔn)備一些能用到的資料。資料可以指人事物的相關(guān)多類信息、情報(bào)。資料可以幫助我們更高效地完成各項(xiàng)工作。你知不知道我們常見的幼師資料有哪些呢?以下是由小編為大家整理的“找因數(shù)課件系列”,歡迎你閱讀與收藏。教學(xué)內(nèi)容:青島版數(shù)學(xué)四...

2023-06-16 閱讀全文

下面小編為大家整理的“高中美術(shù)課件教案”,僅供你在工作和學(xué)習(xí)中參考。老師每一堂上一般都需要一份教案課件,大家可以開始寫自己課堂教案課件了。?學(xué)生表現(xiàn)的不同可以反映出教學(xué)方法的優(yōu)劣。...

2023-03-23 閱讀全文

每個(gè)老師都需要在課前準(zhǔn)備好自己的教案課件,本學(xué)期又到了寫教案課件的時(shí)候了。寫好教案,才能讓課堂教學(xué)更完整,怎樣的教案課件算為優(yōu)秀?這份特別挑選的“數(shù)列的課件”一定值得您一試,請(qǐng)收藏這個(gè)網(wǎng)頁(yè)方便你下次再來查看!...

2024-04-17 閱讀全文