函數(shù)的概念課件
發(fā)布時間:2024-03-07 函數(shù)概念課件 函數(shù)課件函數(shù)的概念課件。
俗話說,不打無準(zhǔn)備之仗。當(dāng)一次工作學(xué)習(xí)即將開始時,我們通常會提前查閱一些資料。資料可以指生產(chǎn)、生活中必需的東西。如:生產(chǎn)資料;生活資料。有了資料才能更好的在接下來的工作輕裝上陣!所以,您有沒有了解過幼師資料的種類呢?小編特地花時間為你收集并編輯了函數(shù)的概念課件,可能你會喜歡,歡迎分享。
函數(shù)的概念課件【篇1】
函數(shù)概念課件
函數(shù)是數(shù)學(xué)中一個重要的概念,也是數(shù)學(xué)和計算機科學(xué)中常見的概念之一。它在求解問題、描述規(guī)律和實現(xiàn)功能等方面都起著關(guān)鍵的作用。本文將從函數(shù)的定義、特點、分類和應(yīng)用等方面詳細(xì)介紹函數(shù)的概念。
一、函數(shù)的定義
在數(shù)學(xué)中,函數(shù)是一種特殊的關(guān)系,它將一個集合的元素映射到另一個集合的元素上。換句話說,函數(shù)是一個規(guī)則,它將每一個輸入值映射到一個唯一的輸出值上。函數(shù)通常用f(x)或者y表示,其中x是輸入值,y是輸出值。
函數(shù)的定義包括以下幾個要素:
1.定義域:函數(shù)的定義域是指所有可能的輸入值的集合。函數(shù)只能對定義域內(nèi)的值進(jìn)行運算和映射。
2.值域:函數(shù)的值域是指所有可能的輸出值的集合。函數(shù)的輸出值只能取值于值域內(nèi)。
3.映射規(guī)則:函數(shù)的映射規(guī)則是指定義在定義域上的數(shù)學(xué)關(guān)系。它描述了輸入值和輸出值之間的對應(yīng)關(guān)系。
二、函數(shù)的特點
函數(shù)有以下幾個特點:
1.唯一性:對于一個確定的輸入值,函數(shù)的輸出值是唯一確定的。換句話說,一個輸入值不能對應(yīng)多個輸出值。
2.多樣性:函數(shù)的定義域和值域可以是任意的集合,可以是有限集,也可以是無限集。
3.有序性:函數(shù)是有序的,即輸入值和輸出值之間是有順序的。輸入值的順序決定了輸出值的順序。
4.確定性:函數(shù)的映射規(guī)則是確定的,即對于相同的輸入值,得到的輸出值是相同的。
三、函數(shù)的分類
函數(shù)可以根據(jù)不同的特點進(jìn)行分類,常見的分類有以下幾種:
1.按照定義域和值域的類型分類:
- 實函數(shù):定義域和值域都是實數(shù)集合的函數(shù)。
- 自然函數(shù):定義域和值域都是非負(fù)整數(shù)集合的函數(shù)。
- 分段函數(shù):定義域可以劃分成多個區(qū)間,并在每個區(qū)間上定義不同的映射規(guī)則的函數(shù)。
2.按照映射規(guī)則的特點分類:
- 一次函數(shù):函數(shù)的映射規(guī)則是一次多項式。
- 冪函數(shù):函數(shù)的映射規(guī)則是冪指數(shù)函數(shù)。
- 指數(shù)函數(shù):函數(shù)的映射規(guī)則是指數(shù)函數(shù)。
- 對數(shù)函數(shù):函數(shù)的映射規(guī)則是對數(shù)函數(shù)。
3.按照函數(shù)的性質(zhì)分類:
- 奇函數(shù):函數(shù)滿足f(-x)=-f(x)的函數(shù)。
- 偶函數(shù):函數(shù)滿足f(-x)=f(x)的函數(shù)。
- 周期函數(shù):函數(shù)在一定區(qū)間上滿足f(x+T)=f(x)的函數(shù)。
四、函數(shù)的應(yīng)用
函數(shù)在數(shù)學(xué)和計算機科學(xué)中具有廣泛的應(yīng)用:
1.函數(shù)在求解問題中有著重要的作用。例如,用函數(shù)可以描述一輛汽車的速度和時間之間的關(guān)系,并用這個函數(shù)來計算汽車行駛的距離。
2.函數(shù)在描述規(guī)律和模型中起著關(guān)鍵的作用。例如,用函數(shù)可以描述物體的運動規(guī)律、人口增長規(guī)律等。
3.函數(shù)在算法和程序設(shè)計中有著重要的應(yīng)用。例如,函數(shù)可以將一段復(fù)雜的邏輯封裝成一個函數(shù),以便在需要的時候調(diào)用,提高程序的可讀性和可維護性。
4.函數(shù)在數(shù)據(jù)分析和統(tǒng)計中有廣泛的應(yīng)用。例如,用函數(shù)可以描述一組數(shù)據(jù)的分布規(guī)律,通過函數(shù)來進(jìn)行數(shù)據(jù)分析和預(yù)測。
小編認(rèn)為,函數(shù)是數(shù)學(xué)中一個重要的概念,它具有唯一性、多樣性、有序性和確定性的特點。函數(shù)可以根據(jù)不同的特點進(jìn)行分類,并在數(shù)學(xué)、計算機科學(xué)和其他領(lǐng)域中有著廣泛的應(yīng)用。了解函數(shù)的概念對于理解數(shù)學(xué)和計算機科學(xué)的課程內(nèi)容,以及在實際問題中的求解具有重要的意義。
函數(shù)的概念課件【篇2】
各位專家、各位老師:
大家好!
今天我說課的題目是《函數(shù)的概念》,本課題是人教A版必修1中1、2的內(nèi)容,計劃安排兩個課時,本課時的內(nèi)容為:函數(shù)的概念、三要素及簡單函數(shù)的定義域及值域的求法。下面我將以“學(xué)什么、怎么學(xué)、學(xué)了有何用”為思路,從教材、教法、學(xué)法、教學(xué)評價、教學(xué)過程設(shè)計、板書設(shè)計等幾個方面對本節(jié)課的教學(xué)加以說明。
一、教學(xué)目標(biāo)
1、課程標(biāo)準(zhǔn)
課節(jié)內(nèi)容的課標(biāo)要求是:
(1)通過豐富實例,進(jìn)一步體會函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對應(yīng)的語言來刻畫函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;了解構(gòu)成函數(shù)的要素,會求一些簡單函數(shù)的定義域和值域;了解映射的概念。
(2)在實際情景中,會根據(jù)不同的需要選擇恰當(dāng)?shù)姆椒ǎㄈ鐖D像法、列表法、解析法)表示函數(shù)。
(3)通過具體實例,了解簡單的分段函數(shù),并能簡單應(yīng)用。
(4)通過已學(xué)過的函數(shù)特別是二次函數(shù),理解函數(shù)的單調(diào)性、最大(?。┲导捌鋷缀我饬x;結(jié)合具體函數(shù),了解奇偶性的含義。
(5)學(xué)會運用函數(shù)圖像理解和研究函數(shù)的性質(zhì)。
2、課標(biāo)解讀
關(guān)于函數(shù)內(nèi)容的整體定位和基本要求解讀:
(1)把函數(shù)作為刻畫現(xiàn)實世界中一類重要變化規(guī)律的模型來學(xué)習(xí),是一種通過某一事物的變化信息可推知另一事物信息的對應(yīng)關(guān)系的數(shù)學(xué)模型;
(2)強調(diào)對函數(shù)本質(zhì)的認(rèn)識和理解,因此要求在高中數(shù)學(xué)學(xué)習(xí)中多次接觸、螺旋上升;
(3)關(guān)注背景、應(yīng)用、增加了函數(shù)模型及其應(yīng)用;
(4)削弱和淡化了一些內(nèi)容,如函數(shù)的定義域、值域、反函數(shù)、復(fù)合函數(shù)等;
(5)注重思想和聯(lián)系——增加了函數(shù)與方程、用二分法求方程的近似根;
(6)合理地使用信息技術(shù),旨在幫助學(xué)生更好地認(rèn)識和理解函數(shù)及其性質(zhì)。
【依據(jù)意圖】
(1)教材如此要求的根本目的是希望幫助學(xué)生更好地從整體上認(rèn)識和理解函數(shù)的本質(zhì),而真正理解函數(shù)概念是不容易的。因此,不要在過于細(xì)枝末節(jié)的非本質(zhì)問題上作過多的訓(xùn)練,有了定義域和對應(yīng)關(guān)系,值域自然就定了。此外,“課標(biāo)”建議先講函數(shù)再講映射,也是為了幫助學(xué)生把注意力集中在函數(shù)的本質(zhì)理解。
(2)希望通過方程根與函數(shù)零點的內(nèi)在聯(lián)系,加強對函數(shù)概念、函數(shù)思想及函數(shù)這一主線在高中數(shù)學(xué)中的地位作用的認(rèn)識和理解。并通過用二分法求方程近似根將函數(shù)思想以及方程的根與函數(shù)零點之間的聯(lián)系具體化。
(3)二分法是求方程近似根的常用方法,更為一般、簡單,能很好地體現(xiàn)函數(shù)思想,“大綱”只是用“三個二”解決根的分布問題。
(4)現(xiàn)代信息技術(shù)不能替代艱苦的學(xué)習(xí)和人腦精密的思考,信息技術(shù)只是作為達(dá)到目的的一種手段,一種快速計算的工具。
3、教材分析
(1)地位作用
函數(shù)內(nèi)容是高中數(shù)學(xué)學(xué)習(xí)的一條主線,它貫穿整個高中數(shù)學(xué)學(xué)習(xí)中,其重要性體現(xiàn)在以下幾個方面:
1、函數(shù)是高中數(shù)學(xué)七大主干知識之一,又是溝通代數(shù)﹑方程﹑不等式﹑數(shù)列、三角函數(shù)、解析幾何、導(dǎo)數(shù)等內(nèi)容的橋梁,同時也是今后進(jìn)一步學(xué)習(xí)高等數(shù)學(xué)的基礎(chǔ);
2、函數(shù)的學(xué)習(xí)過程經(jīng)歷了直觀感知、觀察分析、歸納類比、抽象概括等思維過程,通過學(xué)習(xí)可以提高了學(xué)生的數(shù)學(xué)思維能力;
3、這一節(jié)所學(xué)習(xí)的函數(shù)概念既是對初中所學(xué)函數(shù)概念的一次升華和再認(rèn)識、對集合語言的一次重要應(yīng)用;又是以后繼續(xù)學(xué)習(xí)函數(shù)的性質(zhì)、數(shù)列等等知識的必備理論基礎(chǔ),在函數(shù)學(xué)習(xí)中是承上啟下的關(guān)鍵章節(jié)。
(2)內(nèi)容與課時劃分
本課題是高中數(shù)學(xué)人教A版必修1中1、2節(jié),計劃教學(xué)2個課時,第一課時內(nèi)容包括函數(shù)的概念、函數(shù)的三要素、簡單函數(shù)的定義域及值域的求法;第二課時內(nèi)容為:區(qū)間表示、較復(fù)雜函數(shù)的定義域及值域的求法、分段函數(shù)、函數(shù)圖象等。本節(jié)《函數(shù)的概念》是函數(shù)這一章的起始課。概念是數(shù)學(xué)的基礎(chǔ),只有對概念做到深刻理解,才能正確靈活地加以應(yīng)用。
4、學(xué)情分析
(1)學(xué)生在初中已經(jīng)在初中學(xué)習(xí)過函數(shù)的概念。
(2)本班級學(xué)生個體差異較明顯。
5、教學(xué)目標(biāo)
【依據(jù)意圖】:教學(xué)目標(biāo)的設(shè)計,要簡潔明了,具有較強的可操作性,容易檢測目標(biāo)的達(dá)成度,同時也要體現(xiàn)出新課標(biāo)下對素質(zhì)教育的要求?;谝陨戏治鲎鳛橐罁?jù),課時目標(biāo)分解如下:
【課時分解目標(biāo)】
1、能夠列舉生活中具有函數(shù)關(guān)系的實例;
2、能用集合與對應(yīng)的語言描述函數(shù)的定義,能對具體函數(shù)指出定義域、對應(yīng)法則、值域;
3、會求一些簡單函數(shù)(帶根號,分式)的定義域和值域;
4、能夠從函數(shù)的三要素的角度去判定兩個函數(shù)是否是同一個函數(shù)。
二、教學(xué)重難點
重點:讓學(xué)生體會函數(shù)是描述變量之間的相互依賴關(guān)系的重要數(shù)學(xué)模型,正確理解形成函數(shù)的概念。
難點:引導(dǎo)學(xué)生從具體實例抽象出函數(shù)概念。
[意圖依據(jù)]:本課時是概念課,重在概念的理解和形成,但教師應(yīng)把重點放在讓學(xué)生形成概念的過程中,聯(lián)系舊知、突破難點、生長新知。為此通過教學(xué)目標(biāo)和難重點的展示,讓學(xué)生明確本節(jié)課的任務(wù)及精髓,帶著目標(biāo)去學(xué)習(xí),才能達(dá)到事半功倍的效果。
三、教法
問題式教學(xué)法(實例情境、啟發(fā)引導(dǎo)、合作交流、歸納抽象)
由于本課題是從集合與對應(yīng)的角度揭示函數(shù)的本質(zhì),無論難度還是跨度都有質(zhì)的飛躍。根據(jù)學(xué)生的心理特征和認(rèn)知規(guī)律,我通過以問題為主線,以學(xué)生為主體,以教師為主導(dǎo)的教學(xué)理念。采用一系列的設(shè)問、引導(dǎo)、啟發(fā)、發(fā)現(xiàn),讓學(xué)生歸納、概括出函數(shù)概念的本質(zhì),并靈活應(yīng)用多媒體、黑板呈現(xiàn)、展示、交流。
[意圖依據(jù)]:函數(shù)的`概念的教學(xué)要注重以下幾個方面:
(1)把集合作為一種語言;
(2)對函數(shù)本質(zhì)的理解不能一步到位,要注重螺旋上升;
(3)重視信息技術(shù)的使用。為此,教師要在課堂上搭建一個平臺,通過展示實例、學(xué)生舉例、典例分析、小結(jié)歸納等環(huán)節(jié)穿插若干問題,引起思考,達(dá)成教學(xué)目標(biāo)。
四、學(xué)法
自主探究、合作交流、展示互評
我們知道越是基礎(chǔ)性的概念,其統(tǒng)攝性就越強,學(xué)生從中領(lǐng)悟到的數(shù)學(xué)就越本質(zhì);但事物總有兩面性,這些概念的理解和掌握往往難度大、時間長,需要更多的經(jīng)驗積累.因此本節(jié)課在學(xué)法上我重視學(xué)生在列舉大量實際背景的前提下對所給出實例觀察,類比,歸納,分析,探究,合作,提煉,感悟函數(shù)概念的“本來面目”,以此培養(yǎng)學(xué)生發(fā)現(xiàn)問題、研究問題和分析解決問題的能力;同時在預(yù)習(xí)環(huán)節(jié)有學(xué)生的自主學(xué)習(xí)、在互動環(huán)節(jié)有學(xué)生的合作交流、在課后拓展環(huán)節(jié)有學(xué)生的探究學(xué)習(xí)。這樣做,增加了學(xué)生主動參與的機會,增強了參與意識,教給學(xué)生獲取知識的途徑以及思考問題的方法,使學(xué)生真正成為教學(xué)的主體。也只有這樣做,才能使學(xué)生“學(xué)”有所“思”,“思”有所“獲”,“獲”有所“用”。也恰好能夠體現(xiàn)我以“學(xué)什么、怎么學(xué)、學(xué)了有何用”來設(shè)計本課題的整體思路。
[意圖依據(jù)]:本課時是以問題為主線的教學(xué)過程,著重讓學(xué)生經(jīng)過對大量實例的剖析、了解、歸納而形成概念。在這個過程中,教師的作用是引導(dǎo),經(jīng)過一系列問題的提出、解決讓學(xué)生在思考、交流的基礎(chǔ)上層層深入的理解函數(shù)概念。
五、教學(xué)過程設(shè)計
本節(jié)內(nèi)容的教學(xué)過程我設(shè)計為以下逐層推進(jìn)六個步驟:
1、課前預(yù)習(xí)、生成問題
2、創(chuàng)境設(shè)問、引入課題
3、觀察分析、探索新知
4、思考辨析、深刻理解
5、提煉總結(jié)、分享收獲
6、布置作業(yè)、拓展延伸
函數(shù)的概念課件【篇3】
一、教材分析
本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)數(shù)學(xué)教科書-必修1》(人教A版)《1.2.1 函數(shù)的概念》共3課時,本節(jié)課是第1課時。
托馬斯說:“函數(shù)概念是近代數(shù)學(xué)思想之花”。 生活中的許多現(xiàn)象如物體運動,氣溫升降,投資理財?shù)榷伎梢杂煤瘮?shù)的模型來刻畫,是我們更好地了解自己、認(rèn)識世界和預(yù)測未來的重要工具。
函數(shù)是數(shù)學(xué)的重要的基礎(chǔ)概念之一,是高等數(shù)學(xué)重多學(xué)科的基礎(chǔ)概念和重要的研究對象。同時函數(shù)也是物理學(xué)等其他學(xué)科的重要基礎(chǔ)知識和研究工具,教學(xué)內(nèi)容中蘊涵著極其豐富的辯證思想。函數(shù)的的重要性正如恩格斯所說:“數(shù)學(xué)中的轉(zhuǎn)折點是笛卡爾的變數(shù),有了變數(shù),運動就進(jìn)入了數(shù)學(xué);有了變數(shù),辯證法就進(jìn)入了數(shù)學(xué)”。
二、學(xué)生學(xué)習(xí)情況分析
函數(shù)是中學(xué)數(shù)學(xué)的主體內(nèi)容,學(xué)生在中學(xué)階段對函數(shù)的認(rèn)識分三個階段:(一)初中從運動變化的角度來刻畫函數(shù),初步認(rèn)識正比例、反比例、一次和二次函數(shù);(二)高中用集合與對應(yīng)的觀點來刻畫函數(shù),研究函數(shù)的性質(zhì),學(xué)習(xí)典型的對、指、冪和三解函數(shù);(三)高中用導(dǎo)數(shù)工具研究函數(shù)的單調(diào)性和最值。
1.有利條件
現(xiàn)代教育心理學(xué)的研究認(rèn)為,有效的概念教學(xué)是建立在學(xué)生已有知識結(jié)構(gòu)的基礎(chǔ)上的,因此教師在設(shè)計教學(xué)的過程中必須注意在學(xué)生已有知識結(jié)構(gòu)中尋找新概念的固著點,引導(dǎo)學(xué)生通過同化或順應(yīng),掌握新概念,進(jìn)而完善知識結(jié)構(gòu)。
初中用運動變化的觀點對函數(shù)進(jìn)行定義的,它反映了歷史上人們對它的一種認(rèn)識,而且這個定義較為直觀,易于接受,因此按照由淺入深、力求符合學(xué)生認(rèn)知規(guī)律的內(nèi)容編排原則,函數(shù)概念在初中介紹到這個程度是合適的。也為我們用集合與對應(yīng)的觀點研究函數(shù)打下了一定的基礎(chǔ)。
2.不利條件
用集合與對應(yīng)的觀點來定義函數(shù),形式和內(nèi)容上都是比較抽象的,這對學(xué)生的理解能力是一個挑戰(zhàn),是本節(jié)課教學(xué)的一個不利條件。
三、教學(xué)目標(biāo)分析
課標(biāo)要求:通過豐富實例,進(jìn)一步體會函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對應(yīng)的語言來刻畫函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;了解構(gòu)成函數(shù)的要素,會求一些簡單函數(shù)的定義域和值域.
1.知識與能力目標(biāo):
⑴能從集合與對應(yīng)的角度理解函數(shù)的概念,更要理解函數(shù)的本質(zhì)屬性;
⑵理解函數(shù)的三要素的含義及其相互關(guān)系;
⑶會求簡單函數(shù)的定義域和值域
2.過程與方法目標(biāo):
⑴通過豐富實例,使學(xué)生建立起函數(shù)概念的背景,體會函數(shù)是描述變量之間依賴關(guān)系的數(shù)學(xué)模型;
⑵在函數(shù)實例中,通過對關(guān)鍵詞的強調(diào)和引導(dǎo)使學(xué)發(fā)現(xiàn)它們的共同特征,在此基礎(chǔ)上再用集合與對應(yīng)的語言來刻畫函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用.
3.情感、態(tài)度與價值觀目標(biāo):
感受生活中的數(shù)學(xué),感悟事物之間聯(lián)系與變化的辯證唯物主義觀點。
四、教學(xué)重點、難點分析
1.教學(xué)重點:對函數(shù)概念的理解,用集合與對應(yīng)的語言來刻畫函數(shù);
重點依據(jù):初中是從變量的角度來定義函數(shù),高中是用集合與對應(yīng)的語言來刻畫函數(shù)。二者反映的本質(zhì)是一致的,即“函數(shù)是一種對應(yīng)關(guān)系”。 但是,初中定義并未完全揭示出函數(shù)概念的本質(zhì),對y?1這樣的函數(shù)用運動變化的觀點也很難解釋。在以函數(shù)為重要內(nèi)容的高中階段,課本應(yīng)將函數(shù)定義為兩個數(shù)集之間的一種對應(yīng)關(guān)系,按照這種觀點,使我們對函數(shù)概念有了更深一層的認(rèn)識,也很容易說明y?1這函數(shù)表達(dá)式。因此,分析兩種函數(shù)概念的關(guān)系,讓學(xué)生融會貫通地理解函數(shù)的概念應(yīng)為本節(jié)課的重點。
突出重點:重點的突出依賴于對函數(shù)概念本質(zhì)屬性的把握,使學(xué)生通過表面的語言描述抓住概念的精髓。
2.教學(xué)難點:第一:從實際問題中提煉出抽象的概念;第二:符號“y=f(x)”的含義的理解.
難點依據(jù):數(shù)學(xué)語言的抽象概括難度較大,對符號y=f(x)的理解會受到以前知識的負(fù)遷移。
突破難點:難點的突破要依托豐富的實例,從集合與對應(yīng)的角度恰當(dāng)?shù)匾龑?dǎo),而對抽象符號的理解則要結(jié)合函數(shù)的三要素和小例子進(jìn)行說明。
五、教法與學(xué)法分析
1.教法分析
本節(jié)課我主要采用教師導(dǎo)學(xué)法、知識遷移法和知識對比法,從學(xué)生熟悉的豐富實例出發(fā),關(guān)注學(xué)生的原有的知識基礎(chǔ),注重概念的形成過程,從初中的函數(shù)概念自然過度到函數(shù)的近代定我。
2.學(xué)法分析
在教學(xué)過程中我注意在教學(xué)中引導(dǎo)學(xué)生用模型法分析函數(shù)問題、通過自主學(xué)習(xí)法總結(jié)“區(qū)間”的知識。
函數(shù)的概念課件【篇4】
一、教學(xué)目標(biāo)
【知識與技能】
理解函數(shù)的概念,能對具體函數(shù)指出定義域、對應(yīng)法則、值域。
【過程與方法】
通過對函數(shù)的學(xué)習(xí),進(jìn)一步體會集合與對應(yīng)的數(shù)學(xué)思想方法。
【情感、態(tài)度與價值觀】
在探索中感受到成功的喜悅,提高學(xué)習(xí)數(shù)學(xué)的興趣。
二、教學(xué)重難點
【重點】函數(shù)的概念。
【難點】從具體實例中抽象出函數(shù)概念。
三、教學(xué)過程
(一)導(dǎo)入新課
帶領(lǐng)學(xué)生復(fù)習(xí)初中階段函數(shù)的概念,并舉例說明,從而引出高中階段對函數(shù)的學(xué)習(xí)。
(二)講解新知
利用多媒體展示上一節(jié)的實例,例如:(1)加油站儲油罐的儲油量和高度的關(guān)系;(2)高速公路總里程與年份的關(guān)系。引導(dǎo)學(xué)生分析歸納以上兩個實例,變量分別是誰、變量的范圍是什么、變量之間存在的關(guān)系是什么、這些例子有什么共同特點。
函數(shù)的概念課件【篇5】
第一大塊:教材分析
一、本課時在教材中的地位及作用
函數(shù)作為初等數(shù)學(xué)的核心內(nèi)容,貫穿于整個初等數(shù)學(xué)體系之中。本章節(jié)9個課時,函數(shù)這一章在高中數(shù)學(xué)中,起著承上啟下的作用,它是對初中函數(shù)概念的承接與深化。在初中,只停留在具體的幾個簡單類型的函數(shù)上,把函數(shù)看成變量之間的依賴關(guān)系,而高中階段不僅把函數(shù)看成變量之間的依賴關(guān)系,更是從“變量說”到“對應(yīng)說”,這是對函數(shù)本質(zhì)特征的進(jìn)一步認(rèn)識,也是學(xué)生認(rèn)識上的一次飛躍。這一章內(nèi)容滲透了函數(shù)的思想,集合的思想以及數(shù)學(xué)建模的思想等內(nèi)容,這些內(nèi)容的學(xué)習(xí),無疑對學(xué)生今后的學(xué)習(xí)起著深刻的影響。
本節(jié)課《函數(shù)的概念》是函數(shù)這一章的起始課。概念是數(shù)學(xué)的基礎(chǔ),只有對概念做到深刻理解,才能正確靈活地加以應(yīng)用。本課從集合間的對應(yīng)來描繪函數(shù)概念,起到了上承集合,下引函數(shù)的作用。也為進(jìn)一步學(xué)習(xí)函數(shù)這一章的其它內(nèi)容提供了方法和依據(jù)
二、教學(xué)目標(biāo)
理解函數(shù)的概念,會用函數(shù)的定義判斷函數(shù),會求一些最基本的函數(shù)的定義域、值域。
通過對實際問題分析、抽象與概括,培養(yǎng)學(xué)生抽象、概括、歸納知識以及邏輯思維、建模等方面的能力。
通過對函數(shù)概念形成的探究過程,培養(yǎng)學(xué)生發(fā)現(xiàn)問題,探索問題,不斷超越的創(chuàng)新品質(zhì)。
三、重難點分析確定
根據(jù)上述對教材的分析及新課程標(biāo)準(zhǔn)的要求,確定函數(shù)的概念既是本節(jié)課的重點,也應(yīng)該是本章的難點
第二大塊:說教法、學(xué)法
一、教學(xué)基本思路及過程
本節(jié)課《函數(shù)的概念》是函數(shù)這一章的起始課。概念是數(shù)學(xué)的基礎(chǔ),只有對概念做到深刻理解,才能正確靈活地加以應(yīng)用。本課(借助小黑板)從集合間的對應(yīng)來描繪函數(shù)概念,起到了上承集合,下引函數(shù)的作用,也為進(jìn)一步學(xué)習(xí)函數(shù)這一章的其它內(nèi)容提供了方法和依據(jù)。
二、學(xué)情分析
一方面學(xué)生在初中已經(jīng)學(xué)習(xí)了變量觀點下的函數(shù)定義,并具體研究了幾類最簡單的函數(shù),對函數(shù)已經(jīng)有了一定的感性認(rèn)識;另一方面在本書第一章學(xué)生已經(jīng)學(xué)習(xí)了集合的概念,這為學(xué)習(xí)函數(shù)的現(xiàn)代定義打下了基礎(chǔ)。
函數(shù)在初中雖已講過,不過較為膚淺,本課主要是從兩個集合間對應(yīng)來描繪函數(shù)概念,是一個抽象過程,要求學(xué)生的抽象、分析、概括的能力比較高,學(xué)生學(xué)起來有一定的難度,加上學(xué)生數(shù)學(xué)基礎(chǔ)較差,理解能力,運算能力等參差不齊等。
三、教法、學(xué)法
1、本節(jié)課采用的方法有:
直觀教學(xué)法、啟發(fā)教學(xué)法、課堂討論法。
2、采用這些方法的理論依據(jù):
我一方面精心設(shè)計問題情景,引導(dǎo)學(xué)生主動探索,另一方面,依據(jù)本節(jié)為概念學(xué)習(xí)的特點,以問題的提出、問題的解決為主線,設(shè)置問題,倡導(dǎo)學(xué)生主動參與,通過不斷探究、發(fā)現(xiàn),在師生互動、生生互動中,讓學(xué)習(xí)過程成為學(xué)生心靈愉悅的主動認(rèn)知過程,充分體現(xiàn)“教師為主導(dǎo),學(xué)生為主體”的教學(xué)原則。
函數(shù)的概念課件【篇6】
教學(xué)目標(biāo):
1、進(jìn)一步理解的概念,能從簡單的實際事例中,抽象出關(guān)系,列出解析式;
2、使學(xué)生分清常量與變量,并能確定自變量的取值范圍.
3、會求值,并體會自變量與值間的對應(yīng)關(guān)系.
4、使學(xué)生掌握解析式為只含有一個自變量的簡單的整式、分式、二次根式的的自變量的取值范圍的求法.
5、通過的教學(xué)使學(xué)生體會到事物是相互聯(lián)系的.是有規(guī)律地運動變化著的.
教學(xué)重點:了解的意義,會求自變量的取值范圍及求值.
教學(xué)難點:概念的抽象性.
教學(xué)過程:
(一)引入新課:
上一節(jié)課我們講了的概念:一般地,設(shè)在一個變化過程中有兩個變量x、y,如果對于x的每一個值,y都有唯一的值與它對應(yīng),那么就說x是自變量,y是x的.
生活中有很多實例反映了關(guān)系,你能舉出一個,并指出式中的自變量與嗎?
1、學(xué)校計劃組織一次春游,學(xué)生每人交30元,求總金額y(元)與學(xué)生數(shù)n(個)的關(guān)系.
2、為迎接新年,班委會計劃購買100元的小禮物送給同學(xué),求所能購買的總數(shù)n(個)與單價(a)元的關(guān)系.
解:1、y=30n
y是,n是自變量
2、 ,n是,a是自變量.
(二)講授新課
剛才所舉例子中的,都是利用數(shù)學(xué)式子即解析式表示的.這種用數(shù)學(xué)式子表示時,要考慮自變量的取值必須使解析式有意義.如第一題中的學(xué)生數(shù)n必須是正整數(shù).
例1、求下列中自變量x的取值范圍.
(1) (2)
(3) (4)
(5) (6)
分析:在(1)、(2)中,x取任意實數(shù), 與 都有意義.
(3)小題的 是一個分式,分式成立的條件是分母不為0.這道題的分母是 ,因此要求 .
同理(4)小題的 也是分式,分式成立的條件是分母不為0,這道題的分母是 ,因此要求 且 .
第(5)小題, 是二次根式,二次根式成立的條件是被開方數(shù)大于、等于零. 的被開方數(shù)是 .
同理,第(6)小題 也是二次根式, 是被開方數(shù),
.
解:(1)全體實數(shù)
(2)全體實數(shù)
(3)
(4) 且
(5)
(6)
小結(jié):從上面的例題中可以看出的解析式是整數(shù)時,自變量可取全體實數(shù);的解析式是分式時,自變量的取值應(yīng)使分母不為零;的解析式是二次根式時,自變量的取值應(yīng)使被開方數(shù)大于、等于零.
注意:有些同學(xué)沒有真正理解解析式是分式時,自變量的取值應(yīng)使分母不為零,片面地認(rèn)為,凡是分母,只要 即可.教師可將解題步驟設(shè)計得細(xì)致一些.先提問本題的分母是什么?然后再要求分式的分母不為零.求出使成立的自變量的取值范圍.二次根式的問題也與次類似.
但象第(4)小題,有些同學(xué)會犯這樣的錯誤,將答案寫成 或 .在解一元二次方程時,方程的兩根用“或者”聯(lián)接,在這里就直接拿過來用.限于初中學(xué)生的接受能力,教師可聯(lián)系日常生活講清“且”與“或”.說明這里 與 是并且的關(guān)系.即2與-1這兩個值x都不能取.
函數(shù)的概念課件【篇7】
一、教材分析及處理
函數(shù)是高中數(shù)學(xué)的重要內(nèi)容之一,函數(shù)的基礎(chǔ)知識在數(shù)學(xué)和其他許多學(xué)科中有著廣泛的應(yīng)用;函數(shù)與代數(shù)式、方程、不等式等內(nèi)容聯(lián)系非常密切;函數(shù)是近一步學(xué)習(xí)數(shù)學(xué)的重要基礎(chǔ)知識;函數(shù)的概念是運動變化和對立統(tǒng)一等觀點在數(shù)學(xué)中的具體體現(xiàn);函數(shù)概念及其反映出的數(shù)學(xué)思想方法已廣泛滲透到數(shù)學(xué)的各個領(lǐng)域,《函數(shù)》教學(xué)設(shè)計。
對函數(shù)概念本質(zhì)的理解,首先應(yīng)通過與初中定義的比較、與其他知識的聯(lián)系以及不斷地應(yīng)用等,初步理解用集合與對應(yīng)語言刻畫的函數(shù)概念.其次在后續(xù)的學(xué)習(xí)中通過基本初等函數(shù),引導(dǎo)學(xué)生以具體函數(shù)為依托、反復(fù)地、螺旋式上升地理解函數(shù)的本質(zhì)。
教學(xué)重點是函數(shù)的概念,難點是對函數(shù)概念的本質(zhì)的理解。
學(xué)生現(xiàn)狀
學(xué)生在第一章的時候已經(jīng)學(xué)習(xí)了集合的概念,同時在初中時已學(xué)過一次函數(shù)、反比例函數(shù)和二次函數(shù),那么如何用集合知識來理解函數(shù)概念,結(jié)合原有的知識背景,活動經(jīng)驗和理解走入今天的課堂,如何有效地激活學(xué)生的學(xué)習(xí)興趣,讓學(xué)生積極參與到學(xué)習(xí)活動中,達(dá)到理解知識、掌握方法、提高能力的目的,使學(xué)生獲得有益有效的學(xué)習(xí)體驗和情感體驗,是在教學(xué)設(shè)計中應(yīng)思考的。
二、教學(xué)三維目標(biāo)分析
1、知識與技能(重點和難點)
(1)、通過實例讓學(xué)生能夠進(jìn)一步體會到函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型。并且在此基礎(chǔ)上學(xué)習(xí)應(yīng)用集合與對應(yīng)的語言來刻畫函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用。不但讓學(xué)生能完成本節(jié)知識的學(xué)習(xí),還能較好的復(fù)習(xí)前面內(nèi)容,前后銜接。
(2)、了解構(gòu)成函數(shù)的三要素,缺一不可,會求簡單函數(shù)的定義域、值域、判斷兩個函數(shù)是否相等等。
(3)、掌握定義域的表示法,如區(qū)間形式等。
(4)、了解映射的概念。
2、過程與方法
函數(shù)的概念及其相關(guān)知識點較為抽象,難以理解,學(xué)習(xí)中應(yīng)注意以下問題:
(1)、首先通過多媒體給出實例,在讓學(xué)生以小組的形式開展討論,運用猜想、觀察、分析、歸納、類比、概括等方法,探索發(fā)現(xiàn)知識,找出不同點與相同點,實現(xiàn)學(xué)生在教學(xué)中的主體地位,培養(yǎng)學(xué)生的創(chuàng)新意識。
(2)、面向全體學(xué)生,根據(jù)課本大綱要求授課。
(3)、加強學(xué)法指導(dǎo),既要讓學(xué)生學(xué)會本節(jié)知識點,也要讓學(xué)生會自我主動學(xué)習(xí)。
3、情感態(tài)度與價值觀
(1)、通過多媒體給出實例,學(xué)生小組討論,給出自己的結(jié)論和觀點,加上老師的輔助講解,培養(yǎng)學(xué)生的實踐能力和和大膽創(chuàng)新意識,教案《《函數(shù)》教學(xué)設(shè)計》。
(2)、讓學(xué)生自己討論給出結(jié)論,培養(yǎng)學(xué)生的自我動手能力和小組團結(jié)能力。
三、教學(xué)器材
多媒體ppt課件
四、教學(xué)過程
教學(xué)內(nèi)容教師活動學(xué)生活動設(shè)計意圖
《函數(shù)》課題的引入(用時一分鐘)配著簡單的音樂,從簡單的例子引入函數(shù)應(yīng)用的廣泛,將同學(xué)們的視線引入函數(shù)的學(xué)習(xí)上聽著悠揚的音樂,讓同學(xué)們的視線全注意在老師所講的內(nèi)容上從貼近學(xué)生生活入手,符合學(xué)生的認(rèn)知特點。讓學(xué)生在領(lǐng)略大自然的美妙與和諧中進(jìn)入函數(shù)的世界,體現(xiàn)了新課標(biāo)的理念:從知識走向生活
知識回顧:初中所學(xué)習(xí)的函數(shù)知識(用時兩分鐘)回顧初中函數(shù)定義及其性質(zhì),簡單回顧一次函數(shù)、二次函數(shù)、正比例函數(shù)、反比例函數(shù)的性質(zhì)、定義及簡單作圖認(rèn)真聽老師回顧初中知識,發(fā)現(xiàn)異同在初中知識的基礎(chǔ)上引導(dǎo)學(xué)生向更深的內(nèi)容探索、求知。即復(fù)習(xí)了所學(xué)內(nèi)容又做了即將所學(xué)內(nèi)容的鋪墊
思考與討論:通過給出的問題,引出本節(jié)課的主要內(nèi)容(用時四分鐘)給出兩個簡單的問題讓同學(xué)們思考,講述初中內(nèi)容無法給出正確答案,需要從新的高度來認(rèn)識函數(shù)結(jié)合老師所回顧的知識,結(jié)合自己所掌握的知識,思考老師給出的問題,小組形式作討論,從簡單問題入手,循序漸進(jìn),引出本節(jié)主要知識,回顧前一節(jié)的集合感念,應(yīng)用到本節(jié)知識,前后聯(lián)系、銜接
新知識的講解:從概念開始講解本節(jié)知識(用時三分鐘)詳細(xì)講解函數(shù)的知識,包括定義域,值域等,回到開始提問部分作答做筆記,專心聽講講解函數(shù)概念,由知識講解回到問題身上,解決問題
對提問的回答(用時五分鐘)引導(dǎo)學(xué)生自己解決開始所提的兩個問題,然后同個互動給出最后答案通過與老師共同討論回答開始問題,總結(jié)更好的掌握函數(shù)概念,通過問題來更好的掌握知識
函數(shù)區(qū)間(用時五分鐘)引入函數(shù)定義域的表示方法簡潔明了的方法表示函數(shù)的定義域或值域,在集合表示方法的基礎(chǔ)上引入另一種方法
注意點(用時三分鐘)做個簡單的的回顧新內(nèi)容,把難點重點提出來,讓同學(xué)們記住通過問題回答,概念解答,把重難點給出,提醒學(xué)生注意內(nèi)容和知識點
習(xí)題(用時十分鐘)給出習(xí)題,分析題意在稿紙上簡單作答,回答問題通過習(xí)題練習(xí)明確重難點,把不懂的地方記住,課后學(xué)生在做進(jìn)一步的聯(lián)系
映射(用時兩分鐘)從概念方面講解映射的意義,象與原象在新知識的基礎(chǔ)上了解更多知識,映射的學(xué)習(xí)給以后的知識內(nèi)容做更好的鋪墊
小結(jié)(用時五分鐘)簡單講述本節(jié)的知識點,重難點做筆記前后知識的連貫,總結(jié),使學(xué)生更明白知識點
五、教學(xué)評價
為了使學(xué)生了解函數(shù)概念產(chǎn)生的背景,豐富函數(shù)的感性認(rèn)識,獲得認(rèn)識客觀世界的體驗,本課采用"突出主題,循序漸進(jìn),反復(fù)應(yīng)用"的方式,在不同的場合考察問題的不同側(cè)面,由淺入深。本課在教學(xué)時采用問題探究式的教學(xué)方法進(jìn)行教學(xué),逐層深入,這樣使學(xué)生對函數(shù)概念的理解也逐層深入,從而準(zhǔn)確理解函數(shù)的概念。函數(shù)引入中的三種對應(yīng),與初中時學(xué)習(xí)函數(shù)內(nèi)容相聯(lián)系,這樣起到了承上啟下的作用。這三種對應(yīng)既是函數(shù)知識的生長點,又突出了函數(shù)的本質(zhì),為從數(shù)學(xué)內(nèi)部研究函數(shù)打下了基礎(chǔ)。
在培養(yǎng)學(xué)生的能力上,本課也進(jìn)行了整體設(shè)計,通過探究、思考,培養(yǎng)了學(xué)生的實踐能力、觀察能力、判斷能力;通過揭示對象之間的內(nèi)在聯(lián)系,培養(yǎng)了學(xué)生的辨證思維能力;通過實際問題的解決,培養(yǎng)了學(xué)生的分析問題、解決問題和表達(dá)交流能力;通過案例探究,培養(yǎng)了學(xué)生的創(chuàng)新意識與探究能力。
雖然函數(shù)概念比較抽象,難以理解,但是通過這樣的教學(xué)設(shè)計,學(xué)生基本上能很好地理解了函數(shù)概念的本質(zhì),達(dá)到了課程標(biāo)準(zhǔn)的要求,體現(xiàn)了課改的教學(xué)理念。
函數(shù)的概念課件【篇8】
教材分析:函數(shù)是描述客觀世界變化規(guī)律的重要數(shù)學(xué)模型.高中階段不僅把函數(shù)看成變量之間的依賴關(guān)系,同時還用集合與對應(yīng)的語言刻畫函數(shù),高中階段更注重函數(shù)模型化的思想.
教學(xué)目的:
(1)通過豐富實例,進(jìn)一步體會函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對應(yīng)的語言來刻畫函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;
(2)了解構(gòu)成函數(shù)的要素;
(3)會求一些簡單函數(shù)的定義域和值域;
(4)能夠正確使用“區(qū)間”的符號表示某些函數(shù)的定義域;
教學(xué)重點:理解函數(shù)的模型化思想,用合與對應(yīng)的語言來刻畫函數(shù);
教學(xué)難點:符號“y=f(x)”的含義,函數(shù)定義域和值域的區(qū)間表示;
教學(xué)過程:
一、引入課題
1.復(fù)習(xí)初中所學(xué)函數(shù)的概念,強調(diào)函數(shù)的模型化思想;
2.閱讀課本引例,體會函數(shù)是描述客觀事物變化規(guī)律的數(shù)學(xué)模型的思想:
(1)炮彈的射高與時間的變化關(guān)系問題;
(2)南極臭氧空洞面積與時間的變化關(guān)系問題;
(3)“八五”計劃以來我國城鎮(zhèn)居民的恩格爾系數(shù)與時間的變化關(guān)系問題
備用實例:
我國xxxx年4月份非典疫情統(tǒng)計:
日期222324252627282930
新增確診病例數(shù)1061058910311312698152101
3.引導(dǎo)學(xué)生應(yīng)用集合與對應(yīng)的語言描述各個實例中兩個變量間的依賴關(guān)系;
4.根據(jù)初中所學(xué)函數(shù)的概念,判斷各個實例中的兩個變量間的關(guān)系是否是函數(shù)關(guān)系.
二、新課教學(xué)
(一)函數(shù)的有關(guān)概念
1.函數(shù)的概念:
設(shè)A、B是非空的數(shù)集,如果按照某個確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應(yīng),那么就稱f:A→B為從集合A到集合B的一個函數(shù)(function).
記作:y=f(x),x∈A.
其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域(domain);與x的值相對應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域(range).
注意:
○1“y=f(x)”是函數(shù)符號,可以用任意的字母表示,如“y=g(x)”;
○2函數(shù)符號“y=f(x)”中的f(x)表示與x對應(yīng)的函數(shù)值,一個數(shù),而不是f乘x.
2.構(gòu)成函數(shù)的三要素:
定義域、對應(yīng)關(guān)系和值域
3.區(qū)間的概念
(1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間;
(2)無窮區(qū)間;
(3)區(qū)間的數(shù)軸表示.
4.一次函數(shù)、二次函數(shù)、反比例函數(shù)的定義域和值域討論
(由學(xué)生完成,師生共同分析講評)
(二)典型例題
1.求函數(shù)定義域
課本P20例1
解:(略)
說明:
○1函數(shù)的定義域通常由問題的實際背景確定,如果課前三個實例;
○2如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域,則函數(shù)的定義域即是指能使這個式子有意義的實數(shù)的集合;
○3函數(shù)的定義域、值域要寫成集合或區(qū)間的形式.
鞏固練習(xí):課本P22第1題
2.判斷兩個函數(shù)是否為同一函數(shù)
課本P21例2
解:(略)
說明:
○1構(gòu)成函數(shù)三個要素是定義域、對應(yīng)關(guān)系和值域.由于值域是由定義域和對應(yīng)關(guān)系決定的,所以,如果兩個函數(shù)的定義域和對應(yīng)關(guān)系完全一致,即稱這兩個函數(shù)相等(或為同一函數(shù))
○2兩個函數(shù)相等當(dāng)且僅當(dāng)它們的定義域和對應(yīng)關(guān)系完全一致,而與表示自變量和函數(shù)值的字母無關(guān)。
鞏固練習(xí):
○1課本P22第2題
○2判斷下列函數(shù)f(x)與g(x)是否表示同一個函數(shù),說明理由?
(1)f(x)=(x-1)0;g(x)=1
(2)f(x)=x;g(x)=
(3)f(x)=x2;f(x)=(x+1)2
(4)f(x)=|x|;g(x)=
(三)課堂練習(xí)
求下列函數(shù)的定義域
(1)
(2)
(3)
(4)
(5)
(6)
三、歸納小結(jié),強化思想
從具體實例引入了函數(shù)的的概念,用集合與對應(yīng)的語言描述了函數(shù)的定義及其相關(guān)概念,介紹了求函數(shù)定義域和判斷同一函數(shù)的典型題目,引入了區(qū)間的概念來表示集合。
四、作業(yè)布置
課本P28習(xí)題1.2(A組)第1—7題(B組)第1題
函數(shù)的概念課件【篇9】
一、說課內(nèi)容:
蘇教版九年級數(shù)學(xué)下冊第六章第一節(jié)的二次函數(shù)的概念及相關(guān)習(xí)題二、教材分析:
1、教材的地位和作用這節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了一次函數(shù)、正比例函數(shù)、反比例函數(shù)的基礎(chǔ)上,來學(xué)習(xí)二次函數(shù)的概念。二次函數(shù)是初中階段研究的最后一個具體的函數(shù),也是最重要的,在歷年來的中考題中占有較大比例。同時,二次函數(shù)和以前學(xué)過的一元二次方程、一元二次不等式有著密切的聯(lián)系。進(jìn)一步學(xué)習(xí)二次函數(shù)將為它們的解法提供新的方法和途徑,并使學(xué)生更為深刻的理解“數(shù)形結(jié)合”的重要思想。而本節(jié)課的二次函數(shù)的概念是學(xué)習(xí)二次函數(shù)的基礎(chǔ),是為后來學(xué)習(xí)二次函數(shù)的圖象做鋪墊。所以這節(jié)課在整個教材中具有承上啟下的重要作用。
2、教學(xué)目標(biāo)和要求:
(1)知識與技能:使學(xué)生理解二次函數(shù)的概念,掌握根據(jù)實際問題列出二次函數(shù)關(guān)系式的方法,并了解如何根據(jù)實際問題確定自變量的'取值范圍。
(2)過程與方法:復(fù)習(xí)舊知,通過實際問題的引入,經(jīng)歷二次函數(shù)概念的探索過程,提高學(xué)生解決問題的能力。
(3)情感、態(tài)度與價值觀:通過觀察、操作、交流歸納等數(shù)學(xué)活動加深對二次函數(shù)概念的理解,發(fā)展學(xué)生的數(shù)學(xué)思維,增強學(xué)好數(shù)學(xué)的愿望與信心。
3、教學(xué)重點:對二次函數(shù)概念的理解。
4、教學(xué)難點:由實際問題確定函數(shù)解析式和確定自變量的取值范圍。
二、教法學(xué)法設(shè)計:
1、從創(chuàng)設(shè)情境入手,通過知識再現(xiàn),孕伏教學(xué)過程。
2、從學(xué)生活動出發(fā),通過以舊引新,順勢教學(xué)過程。
3、利用探索、研究手段,通過思維深入,領(lǐng)悟教學(xué)過程四。
三、教學(xué)過程:
(一)復(fù)習(xí)提問
1.什么叫函數(shù)?我們之前學(xué)過了那些函數(shù)?(一次函數(shù),正比例函數(shù),反比例函數(shù))
2.它們的形式是怎樣的?(y=kx+b,k≠0;y=kx,k≠0;y=,k≠0)3.一次函數(shù)(y=kx+b)的自變量是什么?函數(shù)是什么?常量是什么?為什么要有k≠0的條件?k值對函數(shù)性質(zhì)有什么影響?
(二)設(shè)計意圖
復(fù)習(xí)這些問題是為了幫助學(xué)生弄清自變量、函數(shù)、常量等概念,加深對函數(shù)定義的理解.強調(diào)k≠0的條件,以備與二次函數(shù)中的a進(jìn)行比較。
引入新課函數(shù)是研究兩個變量在某變化過程中的相互關(guān)系,我們已學(xué)過正比例函數(shù),反比例函數(shù)和一次函數(shù)。
看下面三個例子中兩個變量之間存在怎樣的關(guān)系:
例1、(1)圓的半徑是r(cm)時,面積s(cm)與半徑之間的關(guān)系是什么?解:s=πr(r>0)。
例2、用周長為20m的籬笆圍成矩形場地,場地面積y(m)與矩形一邊長x(m)之間的關(guān)系是什么?解:y=x(20/2-x)=x(10-x)=-x+10x(0例3、設(shè)人民幣一年定期儲蓄的年利率是x,一年到期后,銀行將本金和利息自動按一年定期儲蓄轉(zhuǎn)存。如果存款額是100元,那么請問兩年后的本息和y(元)與x之間的關(guān)系是什么(不考慮利息稅)?解:y=100(1+x)=100(x+2x+1)=100x+200x+100(0教師提問:以上三個例子所列出的函數(shù)與一次函數(shù)有何相同點與不同點?(三)講解新課以上函數(shù)不同于我們所學(xué)過的一次函數(shù),正比例函數(shù),反比例函數(shù),我們就把這種函數(shù)稱為二次函數(shù)。二次函數(shù)的定義:形如y=ax2+bx+c(a≠0,a,b,c為常數(shù))的函數(shù)叫做二次函數(shù)。鞏固對二次函數(shù)概念的理解:1、強調(diào)“形如”,即由形來定義函數(shù)名稱。二次函數(shù)即y是關(guān)于x的二次多項式(關(guān)于的x代數(shù)式一定要是整式)。2、在y=ax2+bx+c中自變量是x,它的取值范圍是一切實數(shù)。但在實際問題中,自變量的取值范圍是使實際問題有意義的值。(如例1中要求r>0)3、為什么二次函數(shù)定義中要求a≠0?(若a=0,ax2+bx+c就不是關(guān)于x的二次多項式了)4、在例3中,二次函數(shù)y=100x2+200x+100中,a=100,b=200,c=100.5、b和c是否可以為零?(四)鞏固練習(xí)已知一個直角三角形的兩條直角邊長的和是10cm。(1)當(dāng)它的一條直角邊的長為4.5cm時,求這個直角三角形的面積;(2)設(shè)這個直角三角形的面積為Scm2,其中一條直角邊為xcm,求S關(guān)于x的函數(shù)關(guān)系式。此題由具體數(shù)據(jù)逐步過渡到用字母表示關(guān)系式,讓學(xué)生經(jīng)歷由具體到抽象的過程,從而降低學(xué)生學(xué)習(xí)的難度。(五)小結(jié)思考:本節(jié)課你有哪些收獲?還有什么不清楚的地方?讓學(xué)生來談本節(jié)課的收獲,培養(yǎng)學(xué)生自我檢查、自我小結(jié)的良好習(xí)慣,將知識進(jìn)行整理并系統(tǒng)化。而且由此可了解到學(xué)生還有哪些不清楚的地方,以便在今后的教學(xué)中補充。(六)作業(yè)布置必做題:正方形的邊長為4,如果邊長增加x,則面積增加y,求y關(guān)于x的函數(shù)關(guān)系式。這個函數(shù)是二次函數(shù)嗎?在長20cm,寬15cm的矩形木板的四角上各鋸掉一個邊長為xcm的正方形,寫出余下木板的面積y(cm2)與正方形邊長x(cm)之間的函數(shù)關(guān)系,并注明自變量的取值范圍?選做題:1.已知函數(shù)是二次函數(shù),求m的值?2.試在平面直角坐標(biāo)系畫出二次函數(shù)y=x2和y=-x2圖象?作業(yè)中分為必做題與選做題,實施分層教學(xué),體現(xiàn)新課標(biāo)人人學(xué)有價值的數(shù)學(xué),不同的人得到不同的發(fā)展。另外補充第4題,旨在激發(fā)學(xué)生繼續(xù)學(xué)習(xí)二次函數(shù)圖象的興趣。
函數(shù)的概念課件【篇10】
函數(shù)的概念課件
在計算機科學(xué)領(lǐng)域中,函數(shù)是一種非常重要的概念。無論是編程、算法設(shè)計還是數(shù)據(jù)處理,函數(shù)都扮演著關(guān)鍵的角色。本篇文章將詳細(xì)介紹函數(shù)的概念,并探討其在計算機科學(xué)中的應(yīng)用。通過生動的例子和詳細(xì)的解釋,我們將幫助讀者對函數(shù)有一個更深入的理解。
1. 函數(shù)的定義和特性
函數(shù)是一段可以重復(fù)調(diào)用的代碼塊,用來實現(xiàn)特定的功能。它接受輸入?yún)?shù),并返回一個結(jié)果。函數(shù)具有以下特性:
1.1 輸入?yún)?shù):函數(shù)可以接收零個或多個參數(shù)作為輸入。這些參數(shù)可以是任何類型的數(shù)據(jù),例如整數(shù)、浮點數(shù)、字符串或其他函數(shù)。
1.2 返回值:函數(shù)可以返回一個值,也可以不返回任何值。返回值通常用于將函數(shù)的計算結(jié)果傳遞給其他部分的程序。
1.3 獨立性:函數(shù)是獨立的代碼塊,可以在不同的上下文中被調(diào)用。這種獨立性使得函數(shù)能夠重復(fù)利用和模塊化。
2. 函數(shù)的應(yīng)用
2.1 封裝和抽象:函數(shù)可以將一段復(fù)雜的代碼封裝起來,隱藏內(nèi)部實現(xiàn)的細(xì)節(jié),只暴露給外部使用者一個簡潔的接口。這將大大提高代碼的可讀性和可維護性。
舉例來說,假設(shè)我們需要編寫一個計算圓面積的程序。我們可以將計算圓面積的代碼封裝在一個名為"calculate_area"的函數(shù)中。這樣,我們在其他地方使用時,只需要調(diào)用這個函數(shù)并傳入圓的半徑作為參數(shù)即可,無需關(guān)心具體的計算過程。
2.2 代碼的組織和重用:函數(shù)的重要作用之一是幫助我們組織代碼。通過將不同的功能拆分成不同的函數(shù),我們可以更好地組織代碼結(jié)構(gòu),使得程序更加清晰和易于理解。另外,函數(shù)的獨立性使得我們可以將其重復(fù)利用,減少代碼的冗余。
舉例來說,假設(shè)我們需要編寫一個程序來計算學(xué)生的平均成績。我們可以先編寫一個函數(shù)"calculate_average"來計算平均值,再編寫一個函數(shù)"get_grades"來獲取學(xué)生的成績。通過使用這兩個函數(shù),我們可以在不同的地方重復(fù)使用它們,從而提高代碼的重用性。
2.3 遞歸和迭代:函數(shù)還可以用于實現(xiàn)遞歸和迭代算法。遞歸是指函數(shù)直接或間接地調(diào)用自身,從而解決問題。迭代是指通過不斷重復(fù)一定的操作來逐步逼近解。
舉例來說,假設(shè)我們需要編寫一個函數(shù)來計算斐波那契數(shù)列的第n項。我們可以使用遞歸的方式來解決這個問題。例如,我們可以定義一個函數(shù)"fibonacci",它接受一個整數(shù)n作為參數(shù),并返回斐波那契數(shù)列的第n項。在函數(shù)內(nèi)部,我們可以通過調(diào)用自身來計算前兩項的和,直到n為0或1。
3. 函數(shù)的設(shè)計和實現(xiàn)
3.1 函數(shù)的命名:好的函數(shù)應(yīng)該有一個簡潔而有意義的命名,能夠清楚地表達(dá)其功能。命名應(yīng)該遵循一定的命名規(guī)范,以提高代碼的可讀性。
3.2 參數(shù)的設(shè)計:函數(shù)的參數(shù)應(yīng)該考慮到其功能的需求,合理設(shè)計參數(shù)的類型和順序。對于參數(shù)過多或過于復(fù)雜的情況,可以通過使用結(jié)構(gòu)體或類來封裝參數(shù)。
3.3 函數(shù)的實現(xiàn):函數(shù)的實現(xiàn)應(yīng)該符合函數(shù)的定義,確保代碼的正確性和可靠性。在實現(xiàn)函數(shù)時,應(yīng)該考慮到函數(shù)的邊界條件和異常處理,以防止出現(xiàn)錯誤。
4. 總結(jié)
函數(shù)是計算機科學(xué)中的基本概念之一,具有重要的應(yīng)用價值。通過封裝和抽象、代碼的組織和重用、遞歸和迭代等方式,函數(shù)能夠幫助我們更好地組織和實現(xiàn)代碼。通過合理設(shè)計和實現(xiàn)函數(shù),我們能夠提高代碼的可讀性、可維護性和可靠性。
本文詳細(xì)介紹了函數(shù)的概念和特性,并通過生動的例子解釋了函數(shù)在計算機科學(xué)中的應(yīng)用。通過閱讀本文,讀者將對函數(shù)有一個更深入的理解,并能夠更好地運用函數(shù)來解決問題。
函數(shù)的概念課件【篇11】
函數(shù)概念課件
函數(shù)是數(shù)學(xué)中最基本的概念之一,也是應(yīng)用數(shù)學(xué)中最為重要、最頻繁的工具之一。通過函數(shù)概念的學(xué)習(xí),不僅可以幫助我們理解數(shù)學(xué)中一些問題的本質(zhì),還能為解決實際問題提供有效的方法。本篇文章將詳細(xì)介紹函數(shù)的概念、性質(zhì)以及應(yīng)用,并重點討論函數(shù)在實際生活中的應(yīng)用場景。
一、函數(shù)的概念
函數(shù)是數(shù)學(xué)中最基本的概念之一,它描述了兩個集合之間的某種對應(yīng)關(guān)系。簡單來說,函數(shù)可以理解為一個輸入和一個輸出之間的映射。具體地,如果有兩個集合A和B,對于集合A中的每一個元素a,都能夠找到一個唯一的元素b屬于集合B與之對應(yīng),那么我們就說存在一個函數(shù)f,它將A中的元素映射到B中的元素上。通常將元素a稱為函數(shù)f的自變量,將元素b稱為函數(shù)f的因變量。
二、函數(shù)的性質(zhì)
1. 單射性:如果函數(shù)f的每一個自變量a對應(yīng)到B中的唯一元素b上,那么我們就說函數(shù)f是單射的。換句話說,如果一個函數(shù)f不會出現(xiàn)兩個不同的自變量對應(yīng)到相同的因變量的情況,那么它就是單射函數(shù)。
2. 滿射性:如果對于集合B中的每一個元素b,都可以找到集合A中的一個元素a使得函數(shù)f將其映射到b上,那么我們就說函數(shù)f是滿射的。換句話說,如果一個函數(shù)f的所有因變量都能夠被集合A中的某個自變量映射到,那么它就是滿射函數(shù)。
3. 雙射性:如果一個函數(shù)f既是單射的又是滿射的,那么我們就說函數(shù)f是雙射的。雙射函數(shù)在集合論中具有非常重要的作用,它可以建立兩個集合之間的一一對應(yīng)關(guān)系。
三、函數(shù)的應(yīng)用
函數(shù)在數(shù)學(xué)中的應(yīng)用非常廣泛,尤其是在代數(shù)、微積分等領(lǐng)域。除此之外,函數(shù)還有許多實際應(yīng)用,下面我們將重點介紹函數(shù)在實際生活中的應(yīng)用場景。
1. 經(jīng)濟學(xué)中的需求函數(shù):在經(jīng)濟學(xué)中,需求函數(shù)是描述消費者購買某種商品數(shù)量與價格之間關(guān)系的函數(shù)。需求函數(shù)可以幫助經(jīng)濟學(xué)家分析市場需求的彈性、預(yù)測商品的銷售量以及預(yù)測價格的變化對市場行為的影響等問題,對于企業(yè)制定價格策略和市場開發(fā)具有重要意義。
2. 物理學(xué)中的運動函數(shù):在物理學(xué)中,運動函數(shù)是描述物體運動狀態(tài)隨時間變化關(guān)系的函數(shù)。通過運動函數(shù),我們可以計算物體在不同時間點的位置、速度和加速度等物理量,研究物體在不同條件下的受力情況,對于分析物體的運動規(guī)律具有重要意義。
3. 生物學(xué)中的生長函數(shù):在生物學(xué)中,生長函數(shù)是描述生物個體或者種群生長過程中數(shù)量隨時間變化關(guān)系的函數(shù)。通過生長函數(shù),我們可以分析生物個體或種群的增長速率、受環(huán)境因素影響的程度以及預(yù)測未來的發(fā)展趨勢等問題,對于生態(tài)系統(tǒng)的管理和保護具有重要意義。
4. 信息技術(shù)中的編程函數(shù):在信息技術(shù)中,函數(shù)起到了極為重要的作用。編程函數(shù)可以將一系列代碼封裝起來,并通過給定的輸入?yún)?shù)實現(xiàn)特定的功能。通過函數(shù)的調(diào)用,我們可以實現(xiàn)程序的模塊化、調(diào)試的便捷性以及代碼的復(fù)用,對于開發(fā)高效、可維護的軟件具有重要意義。
函數(shù)作為數(shù)學(xué)最基本的概念之一,不僅在純粹數(shù)學(xué)中具有重要作用,而且在實際生活中也有廣泛的應(yīng)用。通過函數(shù)的概念的學(xué)習(xí),我們可以更好地理解數(shù)學(xué)中的問題和現(xiàn)象,并能夠利用函數(shù)的性質(zhì)和應(yīng)用方法解決實際問題。因此,掌握函數(shù)的概念和應(yīng)用是我們學(xué)習(xí)數(shù)學(xué)和應(yīng)用數(shù)學(xué)的基礎(chǔ),也是提升數(shù)學(xué)素養(yǎng)和解決實際問題的關(guān)鍵。希望通過本篇文章的介紹,讀者能夠?qū)瘮?shù)有一個更加深入的理解,并能夠在實際生活中靈活運用函數(shù)的知識。
yJS21.com更多精選幼師資料閱讀
函數(shù)概念教學(xué)反思通用
幼兒教師教育網(wǎng)相關(guān)欄目推薦:“函數(shù)概念教學(xué)反思”。
教師作為學(xué)生學(xué)習(xí)的向?qū)?,教師為了更好地教學(xué),一般都會為自己準(zhǔn)備一份教案。教案在教學(xué)工作建立在學(xué)習(xí)理論、教學(xué)理論和系統(tǒng)科學(xué)理論的基礎(chǔ)上,小編為您提供了函數(shù)概念教學(xué)反思,希望對你有所幫助,動動手指請收藏一下!
函數(shù)概念教學(xué)反思(篇1)
在課前,我加強了預(yù)習(xí)指導(dǎo),訓(xùn)練學(xué)生的自學(xué)能力。在課堂中,我設(shè)計同桌合作探究,找出蝙蝠探路靠的是什么,并完成表格。在閱讀了蝙蝠探路方法和雷達(dá)探路方法后,我又讓學(xué)生用卡片在黑板上擺一擺整個過程,激發(fā)了學(xué)生閱讀文章的興趣,同時讓他們在眾人面前勇于展現(xiàn)自我。通過活動,學(xué)生在玩中學(xué),不但牢固地掌握了知識,了解了蝙蝠和雷達(dá)探路方法,而且使學(xué)生得到了主動和諧全面的發(fā)展。
但是,在教學(xué)過程中,有些方面沒有達(dá)到預(yù)期的效果,還值得改進(jìn)。如在學(xué)習(xí)科學(xué)家三次實驗的經(jīng)過,填寫表格這一學(xué)習(xí)環(huán)節(jié)沒有處理好。學(xué)生在復(fù)述這部分內(nèi)容時,沒有很好地運用到課文中的語言,只是用自己的話來組織語言,沒有達(dá)到復(fù)述課文的真正目的。復(fù)述完后,如能帶領(lǐng)學(xué)生再回到課文中讀一讀,回味課文語言,感悟課文語言,體會作者寫作思路的縝密,我相信效果會更好。讀的訓(xùn)練還顯得較為薄弱。
曾有人說,語文課是一門遺憾的藝術(shù)。的確,一堂課下來,既有令我欣慰的地方,也讓我認(rèn)識到自己的不足,使我明確了自己努力的方向。今后,我將再接再厲,不斷地探究語文教育教學(xué)的藝術(shù)和方法,更上一層樓。
函數(shù)概念教學(xué)反思(篇2)
堂真正成為學(xué)生展示自我的舞臺。充分利用合作交流的形式,能使教師發(fā)現(xiàn)學(xué)生分析問題解決問題的獨到見解以及思維的誤區(qū),以便指導(dǎo)今后的教學(xué)。但在復(fù)習(xí)與練習(xí)的過程中,我發(fā)現(xiàn)學(xué)生存在著這樣幾個問題。
1、某些記憶性的知識沒記住。
2、學(xué)生稍遇到點難題就失去做下去的信心。題目較長時就不愿意仔細(xì)讀,從而失去讀下去的勇氣
3、學(xué)生的識圖能力、讀題能力與分析問題、解決問題的能力較弱。
4、解題過程寫得不全面,丟三落四的現(xiàn)象嚴(yán)重。
針對上述問題,需要采取的措施與方法是:
1、根據(jù)實際情況,對于中考升學(xué)有希望的學(xué)生利用課余時間做好他們的思想工作。并對他們進(jìn)行面對面的單獨輔導(dǎo),增強他們的自信心,以此來提高他們的數(shù)學(xué)成績。
2、結(jié)合自己的學(xué)習(xí)經(jīng)驗對他們進(jìn)行學(xué)法指導(dǎo)和解題技巧的指導(dǎo)。
3、根據(jù)不同的學(xué)生情況,搜集典型題讓他們單獨做,并給予及時的輔導(dǎo)與矯正。
4、與其它任課教師聯(lián)手一起想對策,指導(dǎo)學(xué)生讀題的方法與分析問題,解決問題的方法。
5、無論是做練習(xí)還是考試之前,都告訴學(xué)生要認(rèn)真仔細(xì)的讀題,從圖形中獲取信息。
函數(shù)概念教學(xué)反思(篇3)
本單元主要內(nèi)容為感受自然。本課的特殊之處在于作者以他獨特的觀察視角,采用聯(lián)想和想象,賦予山中萬物以人的情感。文章字字璣珠,句句含情,讀來朗朗上口,情真意切,給人美的享受。作者帶著滿懷的好心情,走進(jìn)山林,探訪山中的眾朋友古橋、樹林、山泉與朋友們互訴心聲,營造了一個如詩如畫的童話世界,使讀者頓生身臨其境之感,表達(dá)了對大自然的熱愛之情。
我在教學(xué)本課的時候,依據(jù)學(xué)生的認(rèn)知規(guī)律,注重讓學(xué)生欣賞文章畫面美,感受作者美好情懷,通過入情入境的朗讀品味文章清新優(yōu)美的語言,感受作者對山中朋友那份深厚的感情,并體會作者表達(dá)情感的方法作為教學(xué)重點。六年級學(xué)生雖然已經(jīng)接觸了一些散文,但對散文的特點還不能深入理解。不過學(xué)生已經(jīng)具備了一定的朗讀能力,可以通過朗讀感受文章語言的魅力,入情入境,理解作者表達(dá)的感情。同時小學(xué)生想象力豐富,善于模仿,通過閱讀體驗可以和作者產(chǎn)生一定的情感共鳴。
針對本課構(gòu)思奇特、想象豐富,文字優(yōu)美的特點,我通過感情誦讀法:教學(xué)生讀散文,注重對學(xué)生進(jìn)行朗讀訓(xùn)練,引導(dǎo)學(xué)生入境悟情、審美學(xué)文,通過朗讀,把學(xué)生帶入課文意境,體會作者熱愛大自然的感情,從而使學(xué)生受到美的熏陶。通過音樂渲染、圖像再現(xiàn)、語言描述等形式,讓學(xué)生觀察思索,入境悟情。數(shù)據(jù)本文想象奇特浪漫的特點,讓學(xué)生在誦讀基礎(chǔ)上展開想象,體會文章特色。最后進(jìn)行仿寫訓(xùn)練法:運用第二人稱及擬人、想象等手法介紹一兩個你自然界的朋友,說清楚以他為朋友的原因,培養(yǎng)寫作能力。在感受的基礎(chǔ)上進(jìn)行練習(xí),是對課文的深入理解,同時也是對知識方法的一種靈活的運用,在這個過程中使知識得到豐富,能力得到提高。
在課文分析時,用第三段做例子,重點講解。其他的段落,學(xué)生自己讀,先說說這一段落該用什么語氣語調(diào)來朗讀,再讓他根據(jù)自己的理解與體會朗讀出來。然后說自己的理解和感受,在此過程中,爭取讓每一個學(xué)生發(fā)言,讓每一個學(xué)生都能有表達(dá)自己的機會。
最后強調(diào),文章字里行間透露出作者與山中朋友之間的親切,表達(dá)作者對大自然的熱愛之情。
作者構(gòu)思新奇,想象豐富,充滿童心童趣。以山中訪友為題,讓人感到更加親切,使景與我融為一體。讀者時時會被作者的童心打動,時時被流淌在字里行間的激情感染,我們與大自然是這樣的貼近,甚至?xí)跒橐惑w,又怎么能不熱愛大自然,熱愛生活呢?來引起共鳴
進(jìn)行本課,在仿寫時處理的比較粗糙。朗讀的時候?qū)W生對感情的把握也不是很好。說明學(xué)生的個性化體驗不夠,在今后的教學(xué)中要有足夠的重視。
函數(shù)概念教學(xué)反思(篇4)
對于必修1函數(shù)概念的教學(xué)活動中,我有以下反思:
函數(shù)是高中數(shù)學(xué)的重要研究問題,貫穿整個高中數(shù)學(xué)的學(xué)習(xí)。然而同學(xué)們對初中的函數(shù)概念的理解根深蒂固。要使他們接受從集合角度所定義的函數(shù)概念很難。本身這個概念很抽象,敘述起來很冗長,同學(xué)們讀了一遍又一遍始終不解其意,我便采用啟發(fā)式教學(xué),就像學(xué)習(xí)語文一樣,讓大家總結(jié)函數(shù)的本質(zhì)為:“函數(shù)是一種對應(yīng)關(guān)系”再啟發(fā)得到:“函數(shù)是兩個非空數(shù)集之間的對應(yīng)關(guān)系”,又得到“函數(shù)是兩個非空數(shù)集之間滿足一對一或多對一的對應(yīng)關(guān)系”,再加上細(xì)節(jié)性的定語。大多數(shù)同學(xué)頓時覺得茅塞頓開,明白清楚。我又加之幾個實例判斷是否為函數(shù)并分解其理由,同學(xué)們更加清楚明了。
通過這個概念的學(xué)習(xí),我從中得到啟示:要使學(xué)生數(shù)學(xué)思維生動活潑對抽象概念的學(xué)習(xí)不能照本宣科,必須對知識重組,揭示概念的本質(zhì),使學(xué)生樂于學(xué)習(xí)它,并運用它。
這是我這節(jié)課后的一點小反思,也算是以后授課的一點小啟示。
函數(shù)概念教學(xué)反思(篇5)
對于教師來說,'反思教學(xué)'就是教師自覺地把自己的課堂教學(xué)實踐,作為認(rèn)識對象而進(jìn)行全面而深入的冷靜思考和總結(jié),它是一種用來提高自身的業(yè)務(wù),改進(jìn)教學(xué)實踐的學(xué)習(xí)方式,不斷對自己的教育實踐深入反思,積極探索與解決教育實踐中的一系列問題。進(jìn)一步充實自己,優(yōu)化教學(xué),并使自己逐漸成長為一名稱職的人類靈魂工程師。以下是我在上了函數(shù)的概念之后的一點反思:
這堂課堂氣氛較為活躍。學(xué)生不僅能在課堂上勇于發(fā)言,而且還敢于質(zhì)疑并且能做到言之有理,還能積極參與小組討論交流,共同分享團隊協(xié)作的成果,基本完成教學(xué)目標(biāo)。
這堂課是研究函數(shù)的概念。這節(jié)課主要采用了探索、發(fā)現(xiàn)、歸納、反饋的教學(xué)流程,達(dá)成了對函數(shù)的概念的教學(xué)。
函數(shù)性質(zhì)的研究是高中階段數(shù)學(xué)學(xué)習(xí)的一個重要組成部分,因此函數(shù)概念的學(xué)習(xí)是研究函數(shù)性質(zhì)時應(yīng)予以考查的一個重要方面,并且要在后續(xù)學(xué)習(xí)中體現(xiàn)這個性質(zhì)的應(yīng)用。它在計算函數(shù)值,討論函數(shù)單調(diào)性,繪制函數(shù)圖象均有用處,對學(xué)生來說這是一個新的概念。引進(jìn)新概念的過程也是培養(yǎng)學(xué)生探索問題、發(fā)現(xiàn)規(guī)律、作出歸納的過程。因此在教學(xué)時沒有生硬地提出問題,而是采用生活中的事例引入,繼而引出數(shù)值在直角坐標(biāo)系中的對應(yīng)關(guān)系導(dǎo)出新概念,不僅順乎自然而且為以后研究函數(shù)奇偶性的幾何意義(圖形對稱的兩條定理)埋下伏筆。
本堂課的一個亮點是反饋過程中給出幾個例題后所引起學(xué)生的思考、發(fā)言、爭執(zhí)、討論以至正確答案的達(dá)成一致的過程,其中教師起了很及時和恰當(dāng)?shù)奶崾?。學(xué)生的勇于質(zhì)疑使課堂上呈現(xiàn)一派生氣勃勃的景象,學(xué)習(xí)積極性和主動性得到了充分調(diào)動,使學(xué)生對看似簡單的函數(shù)的概念也產(chǎn)生了不容輕視感,同時也發(fā)展了能力。一般來說學(xué)生在學(xué)習(xí)一些簡單的.知識點時會覺得乏味,在組織教學(xué)時充分考慮了這些淺顯、平淡的知識還有一些值得思索和注意的地方。真正體現(xiàn)出“淺顯中有新意,平淡中有雋永”。
我上課的最大風(fēng)格是注重將新概念講清講透,能在師生互動的過程中培養(yǎng)學(xué)生的探索能力和高度概括能力,并使學(xué)生舉一反三。難能可貴有同學(xué)能概括出的結(jié)論,因此可以以它作為下節(jié)課研究函數(shù)奇偶性的引入語。
總體來說,這堂課較好地使學(xué)生在學(xué)習(xí)中完成了“引起關(guān)注————激發(fā)熱情————參與體驗”的過程,是一堂比較成功的課。
遺憾之處是發(fā)言的學(xué)生由于受時間的約束,發(fā)言的人數(shù)和長度不夠理想。
(1)函數(shù)的概念,看起來比較簡單,學(xué)生學(xué)習(xí)時也往往感覺的乏味。因此,在組織教學(xué)時必須考慮到如何使學(xué)生感到這些淺顯、平淡的知識還有一些值得思索與注意的地方。
(2)根據(jù)學(xué)生的接受能力可將內(nèi)容安排兩節(jié)課的教學(xué)。
函數(shù)概念教學(xué)反思(篇6)
函數(shù)是高中數(shù)學(xué)中一個非常重要的內(nèi)容之一,它貫穿整個高中階段的數(shù)學(xué)學(xué)習(xí),乃到一生的數(shù)學(xué)學(xué)習(xí)過程。其重要性主要體現(xiàn)在:
1、函數(shù)本身源于在現(xiàn)實生活,例如自然科學(xué)乃至于社會科學(xué)中,具有廣泛的應(yīng)用。
2、函數(shù)本身是數(shù)學(xué)的重要內(nèi)容,是溝通代數(shù)、幾何、三角等內(nèi)容的橋梁。亦是今后進(jìn)一步學(xué)習(xí)高等數(shù)學(xué)的基礎(chǔ)和方法。
3、函數(shù)部分內(nèi)容蘊涵大量的重要數(shù)學(xué)方法,如函數(shù)的思索,方程的思想,分類討論的思想,數(shù)形結(jié)合的思想,化歸的思想,換元法,侍定系數(shù)法、配方法等。這些思想方法是進(jìn)一步學(xué)習(xí)數(shù)學(xué)和解決數(shù)學(xué)問題的基礎(chǔ),是我們教學(xué)過程中應(yīng)注意重點講解學(xué)生重點掌握的部分。
然而函數(shù)這部份知識在教學(xué)中又是一大難點這主要是因為概念的抽象性,學(xué)生理解起來相當(dāng)不容易,接受起來就更難這又是由于函數(shù)這部份知識的主要思想特點體現(xiàn)于一個“變”字。即研究的主要是“變量”與“變量”之間的關(guān)系,要求用變量的眼光,運動變化的關(guān)點去看侍和接觸相關(guān)問題,這與初中學(xué)習(xí)知識的以靜態(tài)觀點為中習(xí)的思維特點有較大差異,所以函數(shù)成了高一新生進(jìn)入高中首先到的一條攔路虎,有些學(xué)生高中畢業(yè)了,對函數(shù)這個概念也沒有理解透澈。
實際上,在學(xué)習(xí)函數(shù)這部份知識中,函數(shù)概念是最重要的,也就是最難的地方,突破了它后面的學(xué)習(xí)就容易了。現(xiàn)行的數(shù)學(xué)教材,其主要內(nèi)容表現(xiàn)的都是數(shù)學(xué)知識的技術(shù)形式。函數(shù)的概念亦是如此,不管是傳統(tǒng)定義也好,還是近代定義也好,表現(xiàn)出來的都是抽象數(shù)學(xué)形式,在數(shù)學(xué)的教學(xué)中,學(xué)習(xí)形式化的表達(dá)是一項基本要求,但是不能只限于形式表達(dá),要強調(diào)對數(shù)學(xué)本質(zhì)的認(rèn)識,否則會將生動活潑的數(shù)學(xué)思維活動淹沒在形式化的海洋里。對數(shù)學(xué)知識的教學(xué)要返璞歸真,努力揭示數(shù)學(xué)概念、法則,結(jié)論發(fā)展過程和本質(zhì)。對越是抽象的數(shù)學(xué)概念,越是如此。所以函數(shù)概念的教學(xué)更忌照本宣科,要注意對知識進(jìn)行重組。努力去提示函數(shù)概念的本質(zhì),使學(xué)生真正理解它,覺得它有用,而樂于學(xué)習(xí)它。
新概念課件六篇
請閱讀由小編為你編輯的“新概念課件”,感謝您的耐心同時也請記得收藏本文。老師都需要為每堂課準(zhǔn)備教案課件,每位老師都需要認(rèn)真準(zhǔn)備自己的教案課件。教案是課堂教學(xué)中必不可少的一環(huán)。
新概念課件 篇1
向量是高中階段學(xué)習(xí)的一個新的矢量,向量概念是《平面向量》的最基本內(nèi)容,它的學(xué)習(xí)直接影響到我們對向量的進(jìn)一步研究和學(xué)習(xí),如向量間關(guān)系、向量的加法、減法以及數(shù)乘等運算,還有向量的坐標(biāo)運算等,因此為后面的學(xué)習(xí)奠定了基礎(chǔ).
結(jié)合本節(jié)課的特點及學(xué)生的實際情況我制定了如下的教學(xué)目標(biāo)及教學(xué)重難點:
1)識記平面向量的定義,會用有向線段和字母表示向量,能辨別數(shù)量與向量;
2)識記向量模的定義,會用字母和線段表示向量的模.
3)知道零向量、單位向量的概念.
學(xué)生通過對向量的學(xué)習(xí),能體會出向量來自于客觀現(xiàn)實 ,提高觀察、分析、抽象和概括等方面的能力,感悟數(shù)形結(jié)合的思想.
通過構(gòu)建和諧的課堂教學(xué)氛圍,激發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生勇于提出問題,同時培養(yǎng)學(xué)生團隊合作的精神及積極向上的學(xué)習(xí)態(tài)度.
教學(xué)重點:向量的定義,向量的幾何表示和符號表示,以及零向量和單位向量
(1)能力分析:對于我校的學(xué)生,基礎(chǔ)知識較薄弱,雖然他們的智力發(fā)展已到了形成運演階段,但并不具備較強的抽象思維能力、概括能力及數(shù)形結(jié)合的思想.
(2)認(rèn)知分析:之前,學(xué)生有了物理中的矢量概念,這為學(xué)習(xí)向量作了最好的鋪墊。
(3)情感分析:部分學(xué)生具有積極的學(xué)習(xí)態(tài)度,強烈的探究欲望,能主動參與研究.
教法:啟發(fā)教學(xué)法,引探教學(xué)法,問題驅(qū)動法,并借助多媒體來輔助教學(xué)
學(xué)法:在學(xué)法上,采用的是探究,發(fā)現(xiàn),歸納,練習(xí)。從問題出發(fā),引導(dǎo)學(xué)生分析問題,讓學(xué)生經(jīng)歷觀察分析、概括、歸納、類比等發(fā)現(xiàn)和探索過程.
課前:
為了打造高效課堂,以生為本我選擇生本式的教學(xué)方式,以穿針引線的方式設(shè)計了前置性作業(yè)。其中包括一些向量的基本概念,并提出:
1、你學(xué)過的其他學(xué)科中有沒有可以稱為向量的.?
2、向量的特點是什么?有幾種描述向量的表示方法?
3、零向量的特點是什么?
【設(shè)計意圖】目的是通過課前的預(yù)習(xí)明確自己需要在本節(jié)課中解決的問題,帶著問題聽課,我會在上課前就學(xué)生的完成情況明確主要的教學(xué)側(cè)重點,真正打造高效課堂。
數(shù)學(xué)的學(xué)習(xí)應(yīng)該是與學(xué)生的生活融合起來,從學(xué)生的生活經(jīng)驗和已有的知識背景出發(fā),讓他們在生活中發(fā)現(xiàn)數(shù)學(xué),探究數(shù)學(xué),認(rèn)識并掌握數(shù)學(xué),由生活的實例引入,在對比于物理學(xué)中的速度、位移等學(xué)生已有的知識給出本章研究的問題平面向量
【設(shè)計意圖】形成對概念的初步認(rèn)識,為進(jìn)一步抽象概括做準(zhǔn)備。
結(jié)合物理學(xué)中對矢量的定義,給出向量的描述性概念。對于一個新學(xué)的量定義概念后,通常要用符號表示它。怎樣把我們所舉例子中的向量表示出來呢?
采取讓學(xué)生先嘗試向量的表示方法,自覺接受用帶有箭頭的線段(有向線段)來表示向量。明確為什么可以用有向線段表示向量,引導(dǎo)學(xué)生總結(jié)出向量的表示方法,強調(diào)印刷體與手寫體的區(qū)別。結(jié)合板書的有向線段給出向量的`模。
為了使學(xué)生達(dá)到對知識的深化理解,從而達(dá)到鞏固提高的效果,我特地設(shè)計了一組即時訓(xùn)練題,通過學(xué)生的觀察嘗試,討論研究,教師引導(dǎo)來鞏固新知
本階段的教學(xué),我采用的是教材上的兩個例題,旨在鞏固學(xué)生對平面向量的觀念,提高學(xué)生的動手實踐能力,掌握求模的基本方法,提升識圖能力.
為了調(diào)動學(xué)生的積極性,培養(yǎng)學(xué)生團隊合作的精神,本環(huán)節(jié)我采用小組競爭的方式開展教學(xué),小組討論并選派代表回答,各組之間取長補短,將課堂教學(xué)推向高潮,再次加強學(xué)生對向量概念的理解。
為了了解學(xué)生本節(jié)課的學(xué)習(xí)效果,并且將所學(xué)做個很好的總結(jié)。設(shè)置問題:通過本節(jié)課的學(xué)習(xí)你有哪些收獲?(可以從各種角度入手)
【設(shè)計意圖】通過總結(jié)使學(xué)生明確本節(jié)的學(xué)習(xí)內(nèi)容,強化重點,為今后的學(xué)習(xí)打下堅定的基礎(chǔ)
出選做題的目的是注意分層教學(xué)和因材施教,為學(xué)有余力的學(xué)生提供思考的空間.
以上幾個環(huán)節(jié)環(huán)環(huán)相扣,層層深入,并充分體現(xiàn)教師與學(xué)生的交流互動,在教師的整體調(diào)控下,學(xué)生通過動眼觀察,動腦思考,層層遞進(jìn),親身經(jīng)歷了知識的形成和發(fā)展過程,以問題為驅(qū)動,使學(xué)生對知識的理解逐步深入。而最后的實際應(yīng)用又將激發(fā)學(xué)生的學(xué)習(xí)興趣,帶領(lǐng)學(xué)生進(jìn)入對本節(jié)課更深一步的思考和研究之中,從而達(dá)到知識在課堂以外的延伸。
新概念課件 篇2
了解線性空間(不考證明),維數(shù),基
9頁:線性變換,定理1.3
13頁:定理1.10,線性空間的內(nèi)積,正交
要求:線性子空間(3條)非零,加法,數(shù)乘
35頁,2491011
本章出兩道題
第二章:
約旦標(biāo)準(zhǔn)型
相似變換矩陣?yán)?.8(51頁)出3階的例2.6(46頁) 出3階的
三角分解例2.9(55頁)(待定系數(shù)法)(方陣)
行滿秩/列滿秩 (最大秩分解)
奇異值分解
本章出兩道題
第三章:
例3.1(75頁) 定理3.2要會證明例3.3必須知道(證明不需要知道)定義3.3 例3.4證明要知道定理3.5掌握定理3.7要掌握
習(xí)題24
本章出(一道計算,一道證明)或者(一道大題(一半計算,一半證明))
第四章:
矩陣級數(shù)的收斂性判定要會,一般會讓你證明它的收斂
比較法, 數(shù)字級數(shù)
對數(shù)量微分不考,考對向量微分(向量函數(shù)對向量求導(dǎo))
本章最多兩道,最少 一道,也能是出兩道題選一道
第六章:
用廣義逆矩陣法求例6.4(154頁)
能求最小范數(shù)(158頁) 如果無解就是LNLS解
定理6.1了解定理6.2 求廣義逆的方法(不證明)
定理6.3(會證明)定理6.4(會證明)(去年考了) 定理6.9(會證明)推論要記
住定理6.10(會證明)
出一道證明一道計算
新概念課件 篇3
大家好!我是焦作一中的郜珂。今天,有幸借此平臺與大家交流,希望各位專家和老師指導(dǎo)我的說課。我說課的題目是《復(fù)數(shù)的有關(guān)概念》,我將從教材分析、學(xué)情分析、教學(xué)目標(biāo)、教學(xué)過程、自我反思五個部分作具體的闡述。
首先是教材分析,《復(fù)數(shù)的有關(guān)概念》是北師大版新課程標(biāo)準(zhǔn)實驗教科書選修系列2的模塊2中第五章第一節(jié)的內(nèi)容,這節(jié)課的主要內(nèi)容是數(shù)系的擴充與復(fù)數(shù)的引入、以及復(fù)數(shù)的有關(guān)概念。數(shù)系擴充的過程體現(xiàn)了數(shù)學(xué)的發(fā)現(xiàn)和創(chuàng)造的過程,同時也體現(xiàn)了數(shù)學(xué)發(fā)生發(fā)展的客觀需求和背景。
復(fù)數(shù)的引入是中學(xué)階段數(shù)系的又一次擴充。對于高中生來說,學(xué)習(xí)一些復(fù)數(shù)的基礎(chǔ)知識是十分必要的,這可以促使學(xué)生對數(shù)的概念有一個初步的較為完整的認(rèn)識,也給他們運用數(shù)學(xué)知識解決問題增添了新的工具,同是還為進(jìn)一步學(xué)習(xí)高等數(shù)學(xué)打下一定的基礎(chǔ)。
在實際生活中,復(fù)數(shù)在電力學(xué)、熱力學(xué)、流體力學(xué)、固體力學(xué)、系統(tǒng)分析、信息分析等方面都得到了廣泛的運用,是現(xiàn)代人才必備的基礎(chǔ)知識之一。
與本節(jié)教材相關(guān)的學(xué)生情況有如下幾個特征:(1)我們的學(xué)生在從小學(xué)到高中的學(xué)習(xí)中已經(jīng)掌握了整數(shù)、分?jǐn)?shù)、正數(shù)、負(fù)數(shù)、有理數(shù)、無理數(shù)、實數(shù)這些概念,也掌握了相應(yīng)的運算法則和運算律;(2)同時又從政治和歷史課中了解到一些與數(shù)系擴充的有關(guān)的重要歷史事件;(3)但是學(xué)生們對數(shù)的分類的掌握,主要依靠的是簡單記憶,當(dāng)然對數(shù)系的擴充過程以及與人類發(fā)展史的必然聯(lián)系不甚了解。
鑒于以上對教材和學(xué)情的分析,確定本節(jié)課的教學(xué)目標(biāo)如下:
1、知識目標(biāo):了解數(shù)系擴充的過程,理解復(fù)數(shù)的基本概念,掌握復(fù)數(shù)相等的充要條件
2、能力目標(biāo):通過對新概念的學(xué)習(xí)提高學(xué)生的認(rèn)知能力,在復(fù)數(shù)相等充要條件的研究過程中提高學(xué)生類比思考的能力;
3、情感目標(biāo):提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;拓展數(shù)學(xué)視野,使學(xué)生逐步認(rèn)識到數(shù)學(xué)的科學(xué)價值、應(yīng)用價值和文化價值。
為了達(dá)成以上教學(xué)目標(biāo),我將本節(jié)課設(shè)計成以下五個環(huán)節(jié):
首先是設(shè)置情境,演示數(shù)系擴充的過程;然后引入虛數(shù),講解復(fù)數(shù)的基本概念;接下來通過類比學(xué)習(xí),掌握復(fù)數(shù)相等的充要條件;完成了以上新概念的學(xué)習(xí)環(huán)節(jié)之后,利用課堂小結(jié)鞏固本節(jié)課主要內(nèi)容。最后進(jìn)行課外引申,激發(fā)學(xué)生課外學(xué)習(xí)興趣。
第一環(huán)節(jié)中,首先讓學(xué)生回憶從小學(xué)到高中認(rèn)識數(shù)的過程,然后結(jié)合人類發(fā)展史,通過幻燈片展示,用通俗易懂的語言向?qū)W生演示數(shù)系發(fā)展的過程。展示過程如下:
從遠(yuǎn)古圍獵時期人類常用的“結(jié)繩”和“堆石”記數(shù)方法中,逐步產(chǎn)生了自然數(shù)的概念;在分配勞動成果的過程中,產(chǎn)生了“正分?jǐn)?shù)”的概念;隨著人類商品交換時代的來臨,為了表示相反意義的量,又引入了“負(fù)數(shù)”的概念;至此人們認(rèn)為所有的數(shù)都可以用兩個互質(zhì)整數(shù)的比值來表示;然而,隨著人類種植活動的興盛,在丈量土地、計算長度、計算產(chǎn)量過程中產(chǎn)生了經(jīng)驗幾何學(xué),其中在勾股弦定理使用中發(fā)現(xiàn):在求兩直角邊長度都是“1”的直角三角形斜邊的時候,其斜
邊長度不能用任何有理數(shù)來表示,于是引入了無理數(shù),把數(shù)系擴充為實數(shù)。
在此,提出問題:數(shù)系發(fā)展的動力和原因是什么?由學(xué)生體會并回答。
這個過程中通過興趣學(xué)習(xí),讓學(xué)生了解數(shù)系擴充的過程,讓學(xué)生親自體會到“數(shù)的產(chǎn)生和發(fā)展,是人類生產(chǎn)和生活的需要”。之后,我還會指出數(shù)系的每一次擴充也是數(shù)學(xué)自身發(fā)展和完善的需要,并以解方程為例進(jìn)行說明。為了使方程理論更加完整數(shù)系一步步擴充到了實數(shù)。
通過第一環(huán)節(jié)的學(xué)習(xí),學(xué)生已經(jīng)了解了由自然數(shù)到實數(shù)的數(shù)系擴充過程。但是人們發(fā)現(xiàn)在實數(shù)范圍內(nèi)仍然無法完全解決代數(shù)方程根的問題,例如在解方程x?1?0時候,用任何實數(shù)都無法表達(dá)其方程的根,這就必須引入新的“數(shù)” 。2
這時,要鼓勵學(xué)生積極思考和嘗試創(chuàng)造,并肯定學(xué)生的思維結(jié)果。由此自然地引入“虛數(shù)單位i”,規(guī)定i2??1;接著要求學(xué)生嘗試求解方程x2??4和x2?2x?5?0的根,讓學(xué)生逐步發(fā)現(xiàn)復(fù)數(shù)的代數(shù)表示形式Z?a?bi。指出這些原來在實數(shù)范圍內(nèi)無解的方程,現(xiàn)在可以借助虛數(shù)單位表示出根來,這些根都是虛數(shù),與之對應(yīng),之前我們認(rèn)識的數(shù)都是實數(shù),實數(shù)和虛數(shù)統(tǒng)稱為復(fù)數(shù)。接下來,提出問題“形如Z?a?bi的數(shù)是否一定是虛數(shù)?”
在學(xué)生思考和討論之后,總結(jié)結(jié)論并講解實部虛部的概念,通過對實部虛部取值情況的分析,幫助學(xué)生掌握復(fù)數(shù)集的分類:當(dāng)虛部b=0時復(fù)數(shù)Z?a?bi表示的是實數(shù),當(dāng)虛部b≠0時復(fù)數(shù)Z?a?bi表示的是虛數(shù),特別的當(dāng)b≠0且a=0時復(fù)數(shù)Z?a?bi可寫成Z?bi,這樣的數(shù)是純虛數(shù)。至此完成了“引導(dǎo)學(xué)生從實數(shù)系到復(fù)數(shù)系擴充”的教學(xué)任務(wù)。結(jié)合學(xué)生認(rèn)識數(shù)的過程,引導(dǎo)學(xué)生發(fā)現(xiàn)“每個人認(rèn)識數(shù)字的歷程都和人類發(fā)展史中數(shù)系擴充的過程是一致的”,讓學(xué)生體會到數(shù)學(xué)體系、數(shù)學(xué)思維的發(fā)展會促進(jìn)人類全面素質(zhì)的提高,從而激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和熱情。
為了鞏固學(xué)生對復(fù)數(shù)概念的理解,與學(xué)生一起分析例一,邊啟發(fā)邊講解,注重實部虛部概念的表述,強調(diào)復(fù)數(shù)a?bi的實部是a,虛部是b,不是bi。之后要求學(xué)生思考課后練習(xí)第一題,以此加強對復(fù)數(shù)概念和復(fù)數(shù)集分類的掌握。最后通過提問的方式確認(rèn)學(xué)生已經(jīng)達(dá)到本環(huán)節(jié)教學(xué)目標(biāo)的要求。為了提高學(xué)生思維能力并加強學(xué)生對復(fù)數(shù)概念的理解,引導(dǎo)學(xué)生完成例一變式:
例1變式:當(dāng)m為何實數(shù)時,復(fù)數(shù)z?m2?m?2?(m2?1)i是
在第四問中,通過復(fù)數(shù)Z等于0的題目設(shè)置引導(dǎo)學(xué)生向復(fù)數(shù)相等充要條件的教學(xué)目標(biāo)過度。
第三環(huán)節(jié):進(jìn)入到第三個教學(xué)環(huán)節(jié),引導(dǎo)學(xué)生類比兩個二項式相等的條件,歸納出復(fù)數(shù)相等的充要條件,即實部與實部相等并且虛部與虛部相等。之后,詳細(xì)講解并板書例二,如幻燈片所示,起到教師的典范的作用。
例2:設(shè)x,y?R,并且(x?2)?2xi??3y?(y?1)i,求x,y的值.
在觀察學(xué)生反映,確認(rèn)學(xué)生已經(jīng)基本理解復(fù)數(shù)相等的充要條件之后,要求學(xué)生獨立完成課后練習(xí)第二題。經(jīng)過巡視,挑出學(xué)生代表展示其解析過程,表揚書寫比較工整的學(xué)生,以達(dá)到教育全班學(xué)生要規(guī)范嚴(yán)謹(jǐn)?shù)慕虒W(xué)目的。
為了引起學(xué)生重視并給學(xué)生提供思維能力升華的空間,鼓勵學(xué)生積極思考例二
例2變式:已知實數(shù)x與純虛數(shù)y滿足2x?1?2i?y,求x和y.
這個題目要由學(xué)生在組內(nèi)討論完成,為了保證教學(xué)效果,教師積極參與到小組討論中去,通過交流與觀察,由完成較好的小組推舉出代表為大家進(jìn)行講解,教師及時給予點評。
在完成了新知學(xué)習(xí)的環(huán)節(jié)之后,進(jìn)入到課堂小結(jié)。引導(dǎo)學(xué)生通讀一遍課本的同時回顧本節(jié)課的主要內(nèi)容,由學(xué)生自己總結(jié)出本節(jié)課的主要知識和方法。并在多媒體上演示這些內(nèi)容。以此達(dá)到提高學(xué)生歸納總結(jié)能力的教學(xué)目標(biāo)。
布置作業(yè)時,分兩部分:
1、書面作業(yè):課后習(xí)題A組第1、2題,書面作業(yè)設(shè)置的目的,就是通過這些題目的訓(xùn)練,達(dá)到促使學(xué)生課下復(fù)習(xí)思考,加深對復(fù)數(shù)相關(guān)概念的理解和應(yīng)用。
2、知識拓展作業(yè):小組成員交流合作,寫一篇與數(shù)系擴充和發(fā)展有關(guān)的小論文;以此促使學(xué)生對數(shù)學(xué)史進(jìn)行研究,延伸了數(shù)學(xué)課堂,并達(dá)到提高學(xué)生語言組織能力、邏輯思考能力的教學(xué)目的。
最后一個環(huán)節(jié),進(jìn)行課外引申,激發(fā)學(xué)生課外學(xué)習(xí)數(shù)學(xué)的興趣。通過提出“數(shù)系發(fā)展到復(fù)數(shù)之后還能不能繼續(xù)擴充?”這樣的問題,引發(fā)學(xué)生思考,并鼓勵學(xué)生了去解章末閱讀材料中“四元數(shù)”的.內(nèi)容,再推薦一本書目《虛數(shù)的故事》給興趣濃厚的學(xué)生提供課外拓展數(shù)學(xué)視野的平臺。
在最后,我對本節(jié)課的設(shè)計進(jìn)行一下自我反思。
在設(shè)計之初,考慮到復(fù)數(shù)基本概念比較容易掌握,但如果要求學(xué)生簡單硬性記憶,并不能達(dá)到新課程標(biāo)準(zhǔn)中三維目標(biāo)的要求。所以本節(jié)課設(shè)計理念就是:把數(shù)系擴充過程的詳細(xì)生動講解作為一個亮點,以此吸引學(xué)生的注意力,提高學(xué)生學(xué)習(xí)興趣,激發(fā)學(xué)生思考和創(chuàng)造的精神,并且期望能達(dá)到進(jìn)一步提高學(xué)生數(shù)學(xué)素養(yǎng)的最高目標(biāo)。
在課堂設(shè)計中,采用了教師示范、自學(xué)討論、學(xué)生互評等多元化的教學(xué)方式,在教學(xué)過程中時刻注重學(xué)生的參與,每個環(huán)節(jié)都采用有效的方法來確認(rèn)教學(xué)目標(biāo)的達(dá)成,保證課堂的時效性,圓滿完成本節(jié)課的教學(xué)任務(wù)。
我的說課到此結(jié)束,希望各位專家和老師給予指導(dǎo)。謝謝!
新概念課件 篇4
一、學(xué)習(xí)目標(biāo)與任務(wù)
1、學(xué)習(xí)目標(biāo)描述
知識目標(biāo)
(A)理解和掌握圓錐曲線的第一定義和第二定義,并能應(yīng)用第一定義和第二定義來解題。
(B)了解圓錐曲線與現(xiàn)實生活中的聯(lián)系,并能初步利用圓錐曲線的知識進(jìn)行知識延伸和知識創(chuàng)新。
能力目標(biāo)
(A)通過學(xué)生的操作和協(xié)作探討,培養(yǎng)學(xué)生的實踐能力和分析問題、解決問題的能力。
(B)通過知識的再現(xiàn)培養(yǎng)學(xué)生的創(chuàng)新能力和創(chuàng)新意識。
(C)專題網(wǎng)站中提供各層次的例題和習(xí)題,解決各層次學(xué)生的學(xué)習(xí)過程中的各種的需要,從而培養(yǎng)學(xué)生應(yīng)用知識的能力。
德育目標(biāo)
讓學(xué)生體會知識產(chǎn)生的全過程,培養(yǎng)學(xué)生運動變化的辯證唯物主義思想。
2、學(xué)習(xí)內(nèi)容與學(xué)習(xí)任務(wù)說明
本節(jié)課的內(nèi)容是圓錐曲線的第一定義和圓錐曲線的統(tǒng)一定義,以及利用圓錐曲線的定義來解決軌跡問題和最值問題。
學(xué)習(xí)重點:圓錐曲線的第一定義和統(tǒng)一定義。
學(xué)習(xí)難點:圓錐曲線第一定義和統(tǒng)一定義的應(yīng)用。
明確本課的重點和難點,以學(xué)習(xí)任務(wù)驅(qū)動為方式,以圓錐曲線定義和定義應(yīng)用為中心,主動操作實驗、大膽分析問題和解決問題。
抓住本節(jié)課的重點和難點,采取的基于學(xué)科專題網(wǎng)站下的三者結(jié)合的教學(xué)模式,突出重點、突破難點。
充分利用《圓錐曲線》專題網(wǎng)站內(nèi)的內(nèi)容,在著重學(xué)習(xí)內(nèi)容的基礎(chǔ)上,內(nèi)延外拓,培養(yǎng)學(xué)生的創(chuàng)新精神和克服困難的信心。
二、學(xué)習(xí)者特征分析
(說明學(xué)生的學(xué)習(xí)特點、學(xué)習(xí)習(xí)慣、學(xué)習(xí)交往特點等)
l本課的學(xué)習(xí)對象為高二下學(xué)期學(xué)生,他們經(jīng)過近兩年的高中學(xué)習(xí),已經(jīng)有一定的學(xué)習(xí)基礎(chǔ)和分析問題、解決問題的能力,基本的計算機操作較為熟練。
高二年下學(xué)期學(xué)生由于高考的壓力,他們保持著傳統(tǒng)教學(xué)的學(xué)習(xí)習(xí)慣,在
l課堂上的主體作用的體現(xiàn)不是太充分,但是如果他們還是樂于嘗試、勇于探索的。
高二年的學(xué)生在學(xué)習(xí)交往上“個別化學(xué)習(xí)”和“協(xié)作討論學(xué)習(xí)”并存,也就是說學(xué)生是具有一定的群體性小組交流能力與協(xié)同討論學(xué)習(xí)能力的,還是能完成上課時教師布置的協(xié)作學(xué)習(xí)任務(wù)的。
三、學(xué)習(xí)環(huán)境選擇與學(xué)習(xí)資源設(shè)計
1.學(xué)習(xí)環(huán)境選擇(打√)
(1)Web教室(√)(2)局域網(wǎng)(3)城域網(wǎng)(4)校園網(wǎng)(√)(5)Internet(√)
(6)其它
2、學(xué)習(xí)資源類型(打√)
(1)課件(網(wǎng)絡(luò)課件)(√)(2)工具(3)專題學(xué)習(xí)網(wǎng)站(√)(4)多媒體資源庫
(5)案例庫(6)題庫(7)網(wǎng)絡(luò)課程(8)其它
3、學(xué)習(xí)資源內(nèi)容簡要說明
(說明名稱、網(wǎng)址、主要內(nèi)容等)
新概念課件 篇5
一、學(xué)習(xí)目標(biāo):
1、掌握用旋轉(zhuǎn)定義角的概念,理解并掌握正角負(fù)角象限角終邊相同的角的含義
2、掌握所有與角終邊相同的角(包括角)的表示方法
3、體會運動變化觀點,深刻理解推廣后的角的概念;
二、教學(xué)重點、難點
重點:理解并掌握正角負(fù)角零角的定義,掌握終邊相同的角的表示方法.
難點:終邊相同的角的表示.
三、教學(xué)方法:
講授法、討論法、媒體課件演示
四、內(nèi)容分析
1、引導(dǎo)學(xué)生通過切身感受來認(rèn)識角的概念推廣的必要性。
2、為引入正角與負(fù)角的概念做好準(zhǔn)備。
新概念產(chǎn)生
1.角的概念的推廣
⑴旋轉(zhuǎn)形成角
一條射線由原來的位置OA,繞著它的端點O按逆時針方向旋轉(zhuǎn)到另一位置OB,就形成角.旋轉(zhuǎn)開始時的射線OA叫做角的始邊,旋轉(zhuǎn)終止的射線OB叫做角的終邊,射線的端點O叫做角的頂點.
突出旋轉(zhuǎn)注意:頂點始邊終邊
⑵.正角與負(fù)角0角
我們把按逆時針方向旋轉(zhuǎn)所形成的角叫做正角,把按順時針方向旋轉(zhuǎn)所形成的角叫做負(fù)角,如OA為始邊的角=210,=-150,=660,
特別地,當(dāng)一條射線沒有作任何旋轉(zhuǎn)時,我們也認(rèn)為這時形成了一個角,并把這個角叫做零角.記法:角或可以簡記成
⑶意義
用旋轉(zhuǎn)定義角之后,角的范圍大大地擴大了
1角有正負(fù)之分
2角可以任意大
實例:體操動作:旋轉(zhuǎn)2周(360(2=720()3周(360(3=1080()
3還有零角
角的概念推廣以后,它包括任意大小的正角、負(fù)角和零角.要注意,正角和負(fù)角是表示具有相反意義的旋轉(zhuǎn)量,它的正負(fù)規(guī)定純系習(xí)慣,就好象與正數(shù)、負(fù)數(shù)的規(guī)定一樣,零角無正負(fù),就好象數(shù)零無正負(fù)一樣.2.象限角
為了研究方便,我們往往在平面直角坐標(biāo)系中來討論角
角的頂點合于坐標(biāo)原點,角的始邊合于軸的正半軸,這樣一來,角的終邊落在第幾象限,我們就說這個角是第幾象限的角(角的終邊落在坐標(biāo)軸上,則此角不屬于任何一個象限)
例如:30(、390(、(330(是第Ⅰ象限角,300(、(60(是第Ⅳ象限角,585(、1180(是第Ⅲ象限角,(2000(是第Ⅱ象限角等
提出問題,學(xué)生討論回答:
(1)在坐標(biāo)系中表示角時,對角的頂點與角的始邊有什么要求?
(2)你對角的終邊落在坐標(biāo)軸上,則此角不屬于任何一個象限這句話是怎么理解的?
(3)分別舉出幾個第一、二、三、四象限角的例子。學(xué)習(xí)新概念與問題討論相結(jié)合,進(jìn)一步加深學(xué)生對于新概念的理解與掌握。新
概念形成
.終邊相同的角
⑴觀察:390(,(330(角,它們的終邊都與30(角的終邊相同
⑵探究:終邊相同的角都可以表示成一個0(到360(的角與個周角的和:
⑶結(jié)論:所有與(終邊相同的角連同(在內(nèi)可以構(gòu)成一個集合:
即:任何一個與角(終邊相同的角,都可以表示成角(與整數(shù)個周角的和。
終邊相同的角不一定相等,但相等的角,終邊一定相同,終邊相同的角有無數(shù)多個,它們相差360的整數(shù)倍引導(dǎo)學(xué)生觀察分析:
(1)終邊相同的角有何特點?(相差整數(shù)個周角)。
(2)試表示出與30(終邊相同的角。
(3)用集合表示終邊相同的角請注意以下問題:
終邊相同的角不一定相等,但是相等的一定終邊相同,終邊相同的角有無數(shù)多個,它們相差360(的整數(shù)倍。
從觀察分析入手,通過具體例子,歸納總結(jié)出終邊相同的角的表示方法,并初步認(rèn)識用集合表示終邊相同的角需注意的幾個問題。
講解范例
例1在0到360范圍內(nèi),找出與下列各角終邊相同的角,并判斷它是哪個象限的角
解:⑴∵-120=-360+240,
240的角與-140的角終邊相同,它是第三象限角.
⑵∵640=360+280,
280的角與640的角終邊相同,它是第四象限角.
⑶∵-95012=-3360+12948,
12948的角與-95012的角終邊相同,它是第三象限角.
例2寫出與下列各角終邊相同的角的集合S,并把S中在間的角寫出來:
解:
(1)
S-360~720間的角是
-1360+60=-280;
0360+60=60;
1360+60=420.
(2)
S中在-360~720間的角是
0360-21=-21;
1360-21=339;
2360-21=699.
(3)
S中在-360~720間的角是
-2360+36314=-35646;
-1360+36314=314;
0360+36314=36314.
1、選例1的第一小題板書來示范解題的步驟,其他例題請幾個學(xué)生板演,,其他學(xué)生在下面自己完成,針對板演同學(xué)所出現(xiàn)的步驟上的問題及時給予更正,教師要適時引導(dǎo)學(xué)生做好總結(jié)歸納。
2、例2可以組織學(xué)生討論,然后讓學(xué)生回答,互相更正,對出現(xiàn)的錯誤進(jìn)行糾正講解,并要求學(xué)生熟練掌握這些常見角的集合的表示方法。
1、例1主要讓學(xué)生學(xué)會如何在0到360范圍內(nèi),找出與某個角終邊相同的角,并判斷它是哪個象限的角。
2、例4主要想解決:所有與(終邊相同的角連同(在內(nèi)可以構(gòu)成一個集合:
即:任何一個與角(終邊相同的角,都可以表示成角(與整數(shù)個周角的和。在這里:
終邊相同的角不一定相等,但是相等的一定終邊相同,終邊相同的角有無數(shù)多個,它們相差360(的整數(shù)倍。
課堂練習(xí)1.銳角是第幾象限的角?第一象限的角是否都是銳角?小于90的角是銳角嗎?0~90的角是銳角嗎?
(答:銳角是第一象限角;第一象限角不一定是銳角;小于90的角可能是零角或負(fù)角,故它不一定是銳角;0~90的角可能是零角,故它也不一定是銳角.)
總結(jié)有關(guān)角的集合表示.銳角:{|090},
0~90的角:{|090};
小于90角:{|90}.
2.已知角的頂點與坐標(biāo)系原點重合,始邊落在x軸的正半軸上,作出下列各角,并指出它們是哪個象限的角?
(1)420,(2)-75,(3)855,(4)-510.
(答:(1)第一象限角,(2)第四象限角,(3)第二象限角,(4)第三象限角)
課堂練習(xí)的目的是對本節(jié)課的內(nèi)容進(jìn)行綜合回顧,教師可以放手讓學(xué)生自行解決,然后教師加以點撥。
歸納小結(jié)
從知識、方法兩個方面對本節(jié)課的內(nèi)容進(jìn)行歸納總結(jié)
本節(jié)課我們學(xué)習(xí)了正角、負(fù)角和零角的概念,象限角的概念,要注意如果角的終邊在坐標(biāo)軸上,就認(rèn)為這個角不屬于任何象限.本節(jié)課重點是學(xué)習(xí)終邊相同的角的表示法.
新概念課件 篇6
摘要:在日常教學(xué)中,結(jié)合對學(xué)生容易發(fā)生差錯的一些問題的分析,探討提高物理概念教學(xué)效率的策略和方法,以提高課堂教學(xué)效率和學(xué)生的解決物理問題的能力,從而激發(fā)學(xué)生學(xué)習(xí)物理的興趣,建立起學(xué)生學(xué)習(xí)物理的信心。
物理概念是物理知識的重要組成部分,是學(xué)好物理定律、公式和理論的基礎(chǔ)。在物理教學(xué)中正確建立物理概念是學(xué)生學(xué)習(xí)過程中一個質(zhì)的飛躍,是物理教學(xué)的任務(wù),也是提高物理教學(xué)質(zhì)量的關(guān)鍵。物理概念來源于物理實踐、物理事實,它是由實踐得來的感性認(rèn)識而上升成的理論認(rèn)識,再回到實踐中去,用來指導(dǎo)實踐,并予以檢驗和深化。若學(xué)生只知道物理事實,而不能上升到物理概念,就不能說學(xué)到了物理知識;若學(xué)生對物理概念不理解或理解片面,就談不上對物理概念的認(rèn)識掌握;若學(xué)生對物理概念理解不透、混淆不清,就難以進(jìn)行判斷、推理等抽象活動,更不能正確地應(yīng)用定理、公式來解決實際問題。
從認(rèn)識論的角度來看,物理學(xué)家探索物理的方法與物理教學(xué)的方法基本上是一致的。不過前者是物理學(xué)家尋覓直接經(jīng)驗,后者是學(xué)生在教材、教師的安排、引導(dǎo)下有目的地學(xué)習(xí)間接知識。所以物理教學(xué)不可能像物理學(xué)家創(chuàng)立概念、發(fā)現(xiàn)定律那樣親身經(jīng)歷、事事實驗。這就是說,一些比較抽象的物理概念的形成,就可能因無法通過實驗,而只能采用其它方法。
1、類比方法:如用水流類比電流,用水壓類比電壓,用電場類比磁場等。
3、演繹推理:如根據(jù)磁場對電流的作用力。公式推導(dǎo)出洛侖茲力公式等等。
4、比喻方法:如用地勢降落的陡度比喻電勢降落的陡度,使“電勢降落的陡度”這一概念一目了然。
5、理想化思維:在物理學(xué)中,實際研究對象和它所處的環(huán)境一般比較復(fù)雜,決定的因素和受約束的條件很多,如果不分主次輕重地考慮一切因素和條件,那么必然會使問題復(fù)雜化而無法研究。為了方便研究,暫時拋開次要的或非本質(zhì)的因素,割斷事物的某些聯(lián)系,保留實際對象的某些主要性質(zhì)和主要條件,加以概括,這種形成概念的方法,就稱為理想化思維。物理學(xué)中所研究的對象一般都是理想化的物理模型。研究物理學(xué)如果不采用適當(dāng)?shù)奈锢砟P?,那么就很難理解物理現(xiàn)象的本質(zhì),一個物理模型勝過無數(shù)個事實。
學(xué)生掌握了物理概念后,在用它解決問題過程中,對概念的理解將會更深刻,內(nèi)容也會更豐富,且易于鞏固。
物理本身就是一門實踐性很強的自然學(xué)科,物理概念都是從實踐中總結(jié)出來的,所以只有把物理概念應(yīng)用于實踐,應(yīng)用于解決實際問題,才能體現(xiàn)出物理概念的`價值與作用,才能提高學(xué)生學(xué)習(xí)物理的興趣,使物理知識不在抽象、難懂。
根據(jù)人的記憶規(guī)律,如果把所學(xué)的概念納入一個網(wǎng)絡(luò),就不容易遺忘,而且在解決問題時也更容易快速檢索出所需的概念。在概念網(wǎng)絡(luò)中激活任意一個網(wǎng)點,都將引出相關(guān)的聯(lián)想。
概念圖是表示概念和概念之間相互關(guān)系的空間網(wǎng)絡(luò)結(jié)構(gòu)圖。概念圖包括概念、分支和層次、概念間的連接線和連接語、例子等幾部分。概念圖的制作可以用紙和筆,還可用專門的繪圖軟件。
雖然概念圖的制作沒有嚴(yán)格的程序規(guī)范,但要制作一個較完整的概念圖,一般有以下幾個步驟: 選取一個熟悉的知識領(lǐng)域,羅列出盡可能多的概念; 確定關(guān)鍵概念和概念等級; 初步擬定概念圖的縱向分層和橫向分支; 建立概念之間的連接,并在連線上用連接詞標(biāo)明兩者之間的關(guān)系。
通過制作概念圖可以促使學(xué)生積極動手和思考,使他們能夠從整體上掌握基本知識結(jié)構(gòu)和各個知識間的關(guān)系;通過制作概念圖,可促進(jìn)新舊概念的整合,形成概念網(wǎng)絡(luò);隨著知識的積累,網(wǎng)絡(luò)的編織將更加完整。
另外,概念圖的形成是學(xué)生經(jīng)歷一次頭腦風(fēng)暴的過程。這既是原有思維的呈現(xiàn),更是創(chuàng)造性思維的激發(fā)過程。當(dāng)用概念圖把知識展示出來時,知識結(jié)構(gòu)會變得更加清晰,這時很容易產(chǎn)生新想法。概念圖中的交叉連接需要橫向思維,是發(fā)現(xiàn)和形成概念間新的關(guān)系、產(chǎn)生新知識的重要一環(huán)。
實踐證明,制作概念圖是學(xué)生樂于接受的一種學(xué)習(xí)方式,因為它提供了一種有效的思維工具,為學(xué)生主動建構(gòu)概念開啟了一扇門。
物理概念按不同的劃分標(biāo)準(zhǔn),可分矢量和標(biāo)量,狀態(tài)量和過程量,特性量和屬性量等。掌握了概念的種類后,學(xué)生對概念就會有更深的理解。概念的種類是概念教學(xué)中不可或缺的一步,如果講得不清、不透徹就會影響學(xué)生解決相關(guān)物理問題的能力。如講授加速度概念時,首先讓學(xué)生知道這是一個人們?yōu)榱搜芯窟\動規(guī)律的需要,通過對運動現(xiàn)象的觀察、分析、抽象概括出來的概念。再引導(dǎo)學(xué)生將加速度和速度兩個概念用比較法進(jìn)行分析。此外,提醒學(xué)生要明確加速度跟速度、速度增量的聯(lián)系與區(qū)別:加速度的方向決定于物體所受合力的方向,跟速度增量的方向一致,但不一定跟速度的方向一致;負(fù)加速度不一定就是勻減速運動,反之亦然。
綜上所述,物理概念教學(xué)是物理教學(xué)中最重要的環(huán)節(jié),只有搞好物理概念教學(xué),才能提高學(xué)生學(xué)習(xí)物理的興趣,為進(jìn)一步學(xué)習(xí)物理規(guī)律和定律打下良好的基礎(chǔ)。
函數(shù)的課件
居安思危,思則有備,有備無患。當(dāng)幼兒園教師的教學(xué)任務(wù)遇到困難時,往往都需要參考一下我們提前準(zhǔn)備參考資料。資料所覆蓋的面比較廣,可以指學(xué)習(xí)資料。參考資料我們接下來的學(xué)習(xí)工作才會更加好!你是否收藏了一些有用的幼師資料內(nèi)容呢?于是,小編為你收集整理了函數(shù)的課件。歡迎閱讀,希望你能閱讀并收藏。
函數(shù)的課件【篇1】
函數(shù)是數(shù)學(xué)中最重要的基本概念之一,它揭示了現(xiàn)實世界中數(shù)量關(guān)系之間相互依存和變化的實質(zhì),是刻畫和研究現(xiàn)實世界變化規(guī)律的重要模型。托馬斯稱:函數(shù)是現(xiàn)代數(shù)學(xué)思想之花。
《集合與函數(shù)概念》一章在高中數(shù)學(xué)中起著承上啟下的作用。本課學(xué)習(xí)的函數(shù)概念及其反映出來的數(shù)學(xué)思想方法已廣泛滲透到數(shù)學(xué)的各個領(lǐng)域,是進(jìn)一步學(xué)習(xí)數(shù)學(xué)的重要基礎(chǔ)。函數(shù)的思想方法貫穿了高中數(shù)學(xué)課程的始終。
本小節(jié)是繼學(xué)習(xí)集合語言之后,運用集合與對應(yīng)語言,在初中學(xué)習(xí)的基礎(chǔ)上,進(jìn)一步刻畫函數(shù)概念,目的是讓學(xué)生認(rèn)識到它們優(yōu)越性,從根本上揭示函數(shù)的本質(zhì)。因此本課的教學(xué)重點是:學(xué)會用集合與對應(yīng)語言刻畫函數(shù)概念,進(jìn)一步認(rèn)識函數(shù)是描述客觀世界中變量間依賴關(guān)系的數(shù)學(xué)模型。
1.正確理解函數(shù)的概念,會用集合與對應(yīng)語言刻畫函數(shù)。通過實例分析,體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;強化數(shù)學(xué)的應(yīng)用與建模意識;培養(yǎng)學(xué)生的學(xué)習(xí)興趣。
2.理解函數(shù)三要素,會求簡單函數(shù)的定義域。通過例題教學(xué)與練習(xí),培養(yǎng)歸納概括能力。
3.理解符號y=f(x)的含義,明確f(x)與f(a)的區(qū)別與聯(lián)系。體會函數(shù)思想,代換思想,提高思維品質(zhì)。
本堂課作為一堂公開課,我曾在多個班級試教。主要問題有:
首先,由三個實例歸納共性會遇到困難。原因是由具體實例到抽象的數(shù)學(xué)語言,要求學(xué)生具備較強的歸納概括能力;而對高一學(xué)生抽象思維能力相對較弱。
其次,學(xué)生不容易認(rèn)識到函數(shù)概念的整體性。原因是把函數(shù)單一地理解成函數(shù)中的對應(yīng)關(guān)系,甚至認(rèn)為函數(shù)就是函數(shù)值。
第三,函數(shù)符號y=f(x)比較抽象,學(xué)生難以理解。
因此本課的教學(xué)難點是:1、從主觀知識抽象成為客觀概念。2、函數(shù)符號y=f(x)的理解。
在初中學(xué)生已學(xué)習(xí)了變量觀點下的函數(shù)定義,具體研究了幾類最簡單的函數(shù),對函數(shù)并不陌生;學(xué)生已經(jīng)會把函數(shù)看成變量之間的依賴關(guān)系;同時,雖然函數(shù)概念比較抽象,但函數(shù)現(xiàn)象大量存在于學(xué)生周圍,學(xué)生能列舉出函數(shù)的實例,已具備初步的數(shù)學(xué)建模能力。 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?我們目前所教的學(xué)生經(jīng)歷了初中新課程改革,他們普遍思維活躍,表達(dá)能力強,有較強的獨立解決問題的能力。在平時的學(xué)習(xí)過程中,他們更喜歡教師創(chuàng)造疑問,然后自己想辦法解決問題,通過教師的啟發(fā)點撥,學(xué)生以自己的努力找到解決問題的方法。學(xué)生作為教學(xué)主體隨時對所學(xué)知識產(chǎn)生有意注意,努力思索解決疑問的方式,使自己的能力通過教師的點撥得到發(fā)揮。
針對學(xué)生這一學(xué)習(xí)方式,我們在教學(xué)過程中從學(xué)生已有的知識經(jīng)驗出發(fā),讓學(xué)生明白新問題產(chǎn)生的背景,引導(dǎo)學(xué)生對三個實例進(jìn)行分析,然后歸納共性,抽象出用集合與對應(yīng)語言刻畫的函數(shù)概念。其間采用了多媒體動畫演示、教師引導(dǎo)、學(xué)生探究、討論、交流一系列活動,讓學(xué)生感到“概念的.得出是水到渠成的,自然的而不是強加于人的”。
對函數(shù)概念的整體性的理解,通過設(shè)計“想一想”、“練一練”、“試一試”等問題情景激發(fā)學(xué)生積極參與,在問題解決的過程中鞏固函數(shù)概念。而對函數(shù)符號y=f(x),則讓學(xué)生分析實例和動手操作,來認(rèn)識和理解符號的內(nèi)涵;并進(jìn)一步滲透函數(shù)思想、代換思想。如三個實例用統(tǒng)一的符號表示、例4中計算當(dāng)自變量是數(shù)字、字母不同情況時的函數(shù)值。讓學(xué)生在做數(shù)學(xué)中領(lǐng)會含義,學(xué)會解題方法,提高解決問題的能力。
《標(biāo)準(zhǔn)》提倡運用信息技術(shù)呈現(xiàn)以往教學(xué)難以呈現(xiàn)的課程內(nèi)容,數(shù)學(xué)的理解需要直觀的觀察、視覺的感知,特別是幾何圖形的性質(zhì),復(fù)雜的計算過程,函數(shù)的動態(tài)變化過程、幾何直觀背景等,若能利用信息技術(shù)來直觀呈現(xiàn)使其可視化將會有助于學(xué)生的理解。本節(jié)課將充分利用信息技術(shù)支持課堂教學(xué)。
1、? ?多媒體動畫演示炮彈發(fā)射。在形象生動的情景中感受高度h隨時間t的變化而變化的運動規(guī)律。
2、? ?用幾何畫板畫出h=130t-5t2的圖象。在圖象上任取一點P(t,h),然后拖動點P的位置,觀察點P的橫坐標(biāo)t與縱坐標(biāo)h的變化規(guī)律。
3、? ?制作幻燈片展示問題情景。
函數(shù)的課件【篇2】
一.內(nèi)容和內(nèi)容解析
【內(nèi)容】變量與函數(shù)的概念
【內(nèi)容解析】
“14.1變量與函數(shù)”是人教版義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書八年級上冊第十四章第一單元,本設(shè)計是第1課時,引導(dǎo)學(xué)生從生活實例中抽象出常量、變量與函數(shù)等概念,其中函數(shù)的概念是本節(jié)核心內(nèi)容.函數(shù)概念的核心是兩個變量間的特殊對應(yīng)關(guān)系:(1)由哪一個變量確定另一個變量;(2)唯一對應(yīng)關(guān)系.如果直接研究某個量y有一定困難,我們可以去研究另一個與之有關(guān)的量x,從而達(dá)到研究的目的.這也是一種化繁為簡的轉(zhuǎn)化思想.
本節(jié)課是函數(shù)入門課,首先必須準(zhǔn)確認(rèn)識變量與常量的特征,初步感受到現(xiàn)實世界各種變量之間聯(lián)系的復(fù)雜性,同時感受到研究主要從化繁就簡入手,在初中階段主要研究兩個變量之間的特殊對應(yīng)關(guān)系.本設(shè)計把重點放在認(rèn)識“兩個變量間的特殊對應(yīng)關(guān)系:由哪一個變量確定另一變量;唯一確定的含義.” 而函數(shù)圖象較為直觀形象,有助于學(xué)生理解函數(shù)的概念,因此把函數(shù)圖象中的部分內(nèi)容提前到本課時學(xué)習(xí).
二.目標(biāo)和目標(biāo)解析
【目標(biāo)】理解常量、變量與函數(shù)的概念.
【目標(biāo)解析】
(1)借助簡單實例,學(xué)生初步感知用常量與變量來刻畫一些簡單的數(shù)學(xué)問題,能指出具體問題中的常量、變量.初步理解存在一類變量可以用函數(shù)方式來刻畫,能舉出涉及兩個變量的實例,并指出由哪一個變量確定另一個變量,這兩個變量是否具有函數(shù)關(guān)系.初步理解對應(yīng)的思想,體會函數(shù)概念的核心是兩個變量之間的特殊對應(yīng)關(guān)系,能判斷兩個變量間是否具有函數(shù)關(guān)系.
(2)借助簡單實例,引領(lǐng)學(xué)生參與變量的發(fā)現(xiàn)和函數(shù)概念的形成過程,體會從生活實例抽象出數(shù)學(xué)知識的方法,感知現(xiàn)實世界中變量之間聯(lián)系的復(fù)雜性,數(shù)學(xué)研究從最簡單的情形入手,化繁為簡.
(3)從學(xué)生熟悉、感興趣的實例引入課題,引領(lǐng)學(xué)生參與變量的發(fā)現(xiàn)和函數(shù)概念的形成過程,體驗“發(fā)現(xiàn)、創(chuàng)造”數(shù)學(xué)知識的樂趣.學(xué)生初步感知實際生活蘊藏著豐富的數(shù)學(xué)知識,感知數(shù)學(xué)是有用、有趣的學(xué)科.
三、教學(xué)問題診斷分析
變量與函數(shù)的概念把學(xué)生由常量數(shù)學(xué)的學(xué)習(xí)引入變量數(shù)學(xué)學(xué)習(xí)中.學(xué)生知道代數(shù)式中的字母可以表示數(shù),方程中的未知數(shù)求出來后也是一個“已知數(shù)”,從“靜態(tài)”的角度理解字母所表示的數(shù),另外,學(xué)生在日常生活中也接觸到函數(shù)圖象、兩個變量的關(guān)系等樸素的函數(shù)關(guān)系的生活實例.但是學(xué)生初次接觸函數(shù)的概念,難以理解定義中“唯一確定”的準(zhǔn)確含義.
【教學(xué)重點】借助簡單實例,從兩個變量間的特殊對應(yīng)關(guān)系抽象出函數(shù)的概念.
【教學(xué)難點】怎樣理解“唯一對應(yīng)”.
四、教學(xué)過程設(shè)計
(一)導(dǎo)言:
1.《名偵探柯南》中有這樣一個情景:柯南根據(jù)案發(fā)現(xiàn)場的腳印,鎖定疑犯的身高.你知道其中的道理嗎?
2.我們班中同學(xué)A與職業(yè)相撲運動員,誰的飯量大?你能說明理由嗎?
問題1中都涉及兩個量的關(guān)系,腳印確定,對應(yīng)的身高有多個取值;問題2涉及多個量的關(guān)系.這一節(jié)課我們研究兩個量的關(guān)系,研究怎樣由一個量來確定另一個量.
【設(shè)計意圖】從學(xué)生的生活入手,開門見山,在極短的時間(一兩分鐘)內(nèi)指明本節(jié)課的學(xué)習(xí)內(nèi)容.現(xiàn)實世界中各種量之間的聯(lián)系紛繁復(fù)雜,應(yīng)向?qū)W生說明我們數(shù)學(xué)的研究方法是化繁就簡,本節(jié)課只關(guān)注一類簡單的問題.
(二)概念的引入
1.票房收入問題:每張電影票的售價為10元.
(1)若一場售出150張電影票,則該場的票房收入是 元;若售出205張、310張呢?
(2)若一場售出x張電影票,則該場的票房收入y元,則y= .
思考:
(1)票房收入隨售出的電影票變化而變化,即y隨的變化而變化;
(2)當(dāng)售出票數(shù)x取定一個確定的值時,對應(yīng)的票房收入y的取值是否唯一確定?
2.成績問題:如圖是某班同學(xué)一次數(shù)學(xué)測試中的成績登記表:這一次數(shù)學(xué)測試中,13號的成績?yōu)開_____;15號的成績?yōu)開_____;16號的成績?yōu)開_____;23號的成績?yōu)開_____.
思考:
(1)測試成績隨________的變化而變化;
(2)任意確定一個學(xué)號x,對應(yīng)的成績f的取值是否唯一確定?
3.氣溫問題:圖一是撫順春季某一天的氣溫T隨時間t變化的圖象,看圖回答:
(1)這天的8時的氣溫是 ℃,14時的氣溫是 ℃,最高氣溫是 ℃,最低氣溫是 ℃;
(3)這一天中,在4時~12時,氣溫( ),在16時~24時,氣溫( ).
A.持續(xù)升高 B.持續(xù)降低 C.持續(xù)不變
思考:
(1)天氣溫度隨的變化而變化,即T隨的變化而變化;
(2)當(dāng)時間t取定一個確定的值時,對應(yīng)的溫度T的取值是否唯一確定?
【設(shè)計意圖】這三個問題中都含有變量之間的單值對應(yīng)關(guān)系,通過研究這些問題引出常量、變量、函數(shù)等概念,通過這種從實際問題出發(fā)開始討論的方式,使學(xué)生體驗從具體到抽象地認(rèn)識過程.問題的形式有填空、列表、求值、寫解析式、讀圖等,隱含著在函數(shù)關(guān)系中表示兩個變量的對應(yīng)關(guān)系有解析法、列表法、圖象法.
(三)概念的界定
思考:上述三個問題中,分別涉及哪些量的關(guān)系?通過哪一個量可以確定另一個量?
在上面的三個問題中,其中一個量的變化引起另一個量的變化(按照某種規(guī)律變化),變化的量叫做變量;有些量的值始終不變(例如電影票的單價10元……).并且當(dāng)其中一個變量取定一個值時,另一個變量就隨之確定,且它的對應(yīng)值只有一個.
教師根據(jù)學(xué)生的回答,在黑板上板書:
師生對上述三個問題進(jìn)行分析,找出它們的共性,歸納出函數(shù)的概念.
【設(shè)計意圖】(1)如何把具體的實例進(jìn)行抽象,形式化為數(shù)學(xué)知識是本課的關(guān)鍵.這里提出的問題“上述三個問題中,分別涉及哪些量的關(guān)系?通過哪一個量可以確定另一個量?”是一個關(guān)鍵的“腳手架”,借助“腳手架”,學(xué)生經(jīng)歷數(shù)學(xué)概念的形成過程,引導(dǎo)學(xué)生認(rèn)識為什么要引進(jìn)變量、常量、函數(shù)的概念,逐步了解如何給數(shù)學(xué)概念下定義.(2)此處板書是“腳手架”的重要組成部分,揭示“兩個量的對應(yīng)關(guān)系”.
問題回顧:指出前面三個問題中涉及到的量,并指出其中的變量、常量、自變量與函數(shù).
【設(shè)計意圖】鞏固常量、變量、自變量、函數(shù)的概念.
例1 一個三角形的底邊為5,這一邊上的高h(yuǎn)可以任意伸縮.
(1)高h(yuǎn)的變化會引起三角形中哪些量發(fā)生變化?這些變量是高h(yuǎn)的函數(shù)嗎?
(2)試求面積s隨h變化的關(guān)系式,并指出其中的'常量、變量與自變量。
例2如果用r表示圓的半徑,半徑r的變化會引起圓中哪些量發(fā)生變化?這些變量是半徑r的函數(shù)嗎?
【設(shè)計意圖】例1、例2的引入用幾何畫板做動態(tài)演示.此兩例引導(dǎo)學(xué)生體會幾何問題中兩個變量在動態(tài)變化過程中的依存關(guān)系.
例3 問題1中,售出票數(shù)是票房的函數(shù)嗎?問題2中,學(xué)號x是成績f的函數(shù)嗎?
【設(shè)計意圖】(1)引導(dǎo)學(xué)生從逆向思維的角度進(jìn)行思考,更全面地理解函數(shù)的概念.(2)培養(yǎng)學(xué)生逆向思維的習(xí)慣.(3)讓學(xué)生對這三個問題留下更深刻的印象,特別是“成績問題,”它將在函數(shù)這一章書的教學(xué)中反復(fù)被引用,幫助學(xué)生深入理解函數(shù)的概念.
(四)概念鞏固
1.購買一些簽字筆,單價3元,總價為y元,簽字筆為x支,根據(jù)題意填表:
(1)y隨x變化的關(guān)系式y(tǒng) = , 是自變量, 是 的函數(shù);
(2)當(dāng)購買8支簽字筆時,總價為 元.
2.周末,小李8時騎自行車從家里出發(fā),到野外郊游,16時回到家里.他離開家后的距離s(千米)與時間t(時)的關(guān)系如圖所示.
(1)當(dāng)t=12時,s=________;當(dāng)t=14時,s=________;
(2)小李從______時開始第一次休息,休息時間為____小時,此時離家______千米.
(3)距離s是時間t的函數(shù)嗎?時間t是距離s的函數(shù)嗎?
函數(shù)的課件【篇3】
§5 簡單的冪函數(shù)(第1課時)
交大二附中
劉正偉
一、課標(biāo)三維目標(biāo):
1.知識技能:了解簡單冪函數(shù)的概念;通過具體實例了解冪函數(shù)的圖象和性質(zhì),并能進(jìn)行初步的應(yīng)用.2.過程與方法:通過作函數(shù)圖像,讓學(xué)生體會冪函數(shù)圖像的特點,會利用定義證
明簡單函數(shù)的奇偶性,了解利用奇偶性畫函數(shù)圖像和研究函數(shù)的方法。
3.情感、態(tài)度、價值觀:進(jìn)一步滲透數(shù)形結(jié)合與類比的思想方法;培養(yǎng)從特殊歸
納出一般的意識,體會冪函數(shù)的變化規(guī)律及蘊含其中的對稱性。
二、教學(xué)重點與難點:
重點:冪函數(shù)的概念,函數(shù)奇、偶性的概念。
難點:判斷函數(shù)的奇偶性。
三、學(xué)法指導(dǎo):
通過數(shù)形結(jié)合,類比、觀察、思考、交流、討論,理解冪函數(shù)的概念和函數(shù)的奇偶性。
四、教學(xué)方法:
對奇偶性要求不高,題目不需要過難,盡量用多媒體和計算機畫函數(shù)的圖像,重在從圖上看出圖像關(guān)于誰對稱,著重從對稱的角度應(yīng)用這一性質(zhì),培養(yǎng)學(xué)生自己歸納總結(jié)的能力。
五、教學(xué)過程:
(一)創(chuàng)設(shè)情境(生活實例中抽象出幾個數(shù)學(xué)模型)
1.如果張紅購買每千克1元的蔬菜x千克,那么她需要付的錢數(shù) p=x元,這里p是s的函數(shù).2.如果正方形的邊長為a,那么正方形的面積S=a2,這里S是a的函數(shù).3.如果正方體的邊長為a,那么正方體的體積V=a3,這里V是a的函數(shù)
4.如果正方形場地的面積為S,那么正方形的邊長a=S1/2,這里a是S的函數(shù).5.如果某人t s內(nèi)騎車行進(jìn)了1km,那么他騎車的平均速度 v=t-1km/s,這里v 是t的函數(shù).【思考】上述函數(shù)解析式有什么形式特征?具有什么共同點?(教師將解析式寫成指數(shù)冪形式,以啟發(fā)學(xué)生歸納,板書課題并歸納冪函數(shù)的定義。)
(二)探究冪函數(shù)的概念、圖象和性質(zhì)
1.冪函數(shù)的定義
如果一個函數(shù),底數(shù)是自變量x,指數(shù)是常量α,即y = x,這樣的函數(shù)稱為冪函數(shù).如
α【練】為了加深對定義的理解,讓學(xué)生判別下列函數(shù)中有幾個冪函數(shù)?
212x2(1)y=x+x(2)y=(3)y=2(4)y=2(5)y=2x(6)y=x3xx 22.冪函數(shù)的圖象和性質(zhì)
【1】通過幾何畫板演示讓學(xué)生認(rèn)識到,冪函數(shù)的圖象因a的不同而形狀各異 【2】引導(dǎo)學(xué)生從5個具體冪函數(shù)的圖象入手,研究冪函數(shù)的性質(zhì)
① 畫出y?x,y?x,y?x,y?x,y?x?1的圖象(重點畫y=x3和y=x1/2的圖象----學(xué)生畫,再用幾何畫板演示)
2312
學(xué)生活動:1.學(xué)生自己說出作圖步驟,交流討論單調(diào)性。
學(xué)生活動:2.觀察交流,分析圖像還有那些特點?
3.觀察函數(shù)值和自變量取值有什么特點?
我們還可以看到,f(x)=x3 的圖像關(guān)于原點對稱.并且對任意的x,f(-x)=(-x)3=-x3,即f(-x)=-f(x).
(三)奇函數(shù)、偶函數(shù)的定義
一般地,圖像關(guān)于原點對稱的函數(shù)叫作奇函數(shù),即f(-x)=-f(x);反之,滿足f(-x)=-f(x)的函數(shù)y=f(x)一定是奇函數(shù)。
2學(xué)生通過類比,自己找出偶函數(shù)的定義,可以建議利用y=x的圖像特征?
一定是偶函數(shù)。
當(dāng)函數(shù)f(x)是奇函數(shù)或偶函數(shù)時,稱函數(shù)具有奇偶性。例1:畫出下列函數(shù)的圖像,判斷奇偶性.(1)f(x)=-3x-1;
(2)f(x)= x2,x∈﹙-3,3〕
(3)f(x)= x2-3
;(4)f(x)= 2(x+1)2+1 圖像關(guān)于y軸對稱的函數(shù)叫作偶函數(shù),即f(-x)=f(x);反之,滿足f(-x)=f(x)的函數(shù)y=f(x)學(xué)生活動:思考討論:
1.總結(jié)奇偶性對函數(shù)定義域的要求.2.總結(jié)利用圖像法判斷函數(shù)奇偶性
(四)根據(jù)定義法判斷奇偶性
例2.判斷f(x)=-2x5 和g(x)= x4 +2的奇偶性.
由于從圖像上進(jìn)行觀察是一種常用而又較為粗略的方法,嚴(yán)格的說,它需要根據(jù)奇偶函數(shù)的定義進(jìn)行證明。
學(xué)生自己先動手證明,教師一旁指導(dǎo)。要注意書寫規(guī)范,并討論交流定義法證明的步驟。
例3學(xué)生活動:動手實踐
在圖2-28 中,只畫出了函數(shù)圖象的一半,請你畫出它們的另一半,并說出畫法的依據(jù).
結(jié)論:
在研究函數(shù)時,如果知道其圖像具有關(guān)于原點或y軸對稱的特點,那么我們可以先研究它的一半,再利用對稱性了解另一半,從而可以減少工作量.
六.歸納小結(jié):(學(xué)生自己交流總結(jié))
1.本節(jié)課學(xué)習(xí)的主要知識是什么?
2.如何確定函數(shù)的奇偶性,其定義域有何特征?
3.思考討論填寫常用冪函數(shù)規(guī)律表。
七.作業(yè):課本第50頁A組1(2),2,3(1)(2),4
選做:B組、第2題
八.板書設(shè)計:
簡單的冪函數(shù)
α一. 定義:形如y = x,α是常量.二. 奇、偶函數(shù)的定義: 三. 定義證明奇偶性。(教師板演)
八.教學(xué)反思:
函數(shù)的課件【篇4】
反比例函數(shù)是繼一次函數(shù)學(xué)習(xí)之后又一類新的函數(shù),它位居初中階段三大函數(shù)中的第二,區(qū)別于一次函數(shù),但又建立在一次函數(shù)基礎(chǔ)之上,而又服務(wù)于以后更高層次函數(shù)的學(xué)習(xí),以及為函數(shù)、方程、不等式間關(guān)系的處理奠定了基礎(chǔ)。函數(shù)本身是數(shù)學(xué)學(xué)習(xí)中的重要內(nèi)容,而反比例函數(shù)則是基礎(chǔ)函數(shù)。具體老師評課如下:
劉霞:通過反比例函數(shù)的應(yīng)用使學(xué)生明確函數(shù)、方程、不等式是解決實際問題的三種重要的數(shù)學(xué)模型,它們之間有著密切聯(lián)系,并在一定的條件下可以互相轉(zhuǎn)化。
在本節(jié)課的復(fù)習(xí)過程中,滲透著建模思想、函數(shù)思想、數(shù)形結(jié)合思想、方程以及方程組的思想,這些思想也為后面學(xué)習(xí)二次函數(shù)的應(yīng)用奠定了基礎(chǔ)。
而利用反比例函數(shù)解決實際問題的基本步驟是通過對例題的解題過程進(jìn)行歸納總結(jié)而得到的結(jié)論。它遵循了從“具體到抽象再到具體”的認(rèn)知規(guī)律,蘊含了從“特殊到一般再到特殊”的推理方法。對今后學(xué)習(xí)數(shù)學(xué)有著重要的指導(dǎo)意義。
孫法圣:鞏固反比例函數(shù)的概念,會求反比例函數(shù)表達(dá)式并能畫出圖象。 鞏固反比例函數(shù)圖象的變化及性質(zhì)并能運用解決某些實際問題。
李杰:可以說從復(fù)習(xí)課的角度來說這樣安排教學(xué)目標(biāo)是恰如其分的,使數(shù)學(xué)教學(xué)課標(biāo)要求當(dāng)中的了解、掌握、直至應(yīng)用都考慮到了體現(xiàn)。
牛媛:首先通過提問的方式梳理有關(guān)反比例函數(shù)的知識點(如:定義,表示法,圖像性質(zhì)),形成知識體系。爾后給出三道例題,學(xué)生做完后由學(xué)生板演再師生共同分析,最后學(xué)生再完成自我測驗題。(馮老師精心設(shè)計本節(jié)課教學(xué)內(nèi)容并通過印刷試卷給予呈現(xiàn)。)通過這些難度不同的習(xí)題來滲透反比例函數(shù)的相關(guān)知識與性質(zhì)以及數(shù)學(xué)思想方法。使基礎(chǔ)薄弱的學(xué)生能聽得懂做一些,也使學(xué)有余力的學(xué)生學(xué)習(xí)能力得到進(jìn)一步的提升,面向全體,使每一位學(xué)生都學(xué)有所得,另一方面也符合學(xué)生的認(rèn)知特點和認(rèn)知規(guī)律。
梁淑禎:應(yīng)該說馮老師能較好地完成了本節(jié)課的教學(xué)任務(wù),實現(xiàn)了既定的教學(xué)目標(biāo),達(dá)到了一定的教學(xué)效果,數(shù)學(xué)思想方法都能從例題教學(xué)中得到了體現(xiàn)??傮w上落實以教師為主導(dǎo),學(xué)生為主體,練習(xí)為主線的復(fù)習(xí)課教學(xué)模式。
在教學(xué)基本功方面:馮老師深入研讀課標(biāo),鉆研教學(xué)大綱,吃透教材,形成自己獨到的見解,把握教材準(zhǔn)確、恰當(dāng),難易適中,重點空出,緊緊抓住數(shù)形結(jié)合的思想來求解有關(guān)反比例函數(shù)的應(yīng)用問題。
板書工整有示范性,有啟發(fā)性,如在學(xué)生板演出現(xiàn)錯誤時給予及時糾正并用彩色筆加以區(qū)別經(jīng)引起學(xué)生的特別注意。靈活地把黑板分成4大板面,內(nèi)容緊湊
又分明、清晰,主板書和副板書一目了然。個人以為在學(xué)生不能很好地完成書寫過程時,教師不應(yīng)把板演的任務(wù)交給學(xué)生,雖說教師已加以修改和訂正,但看起來已經(jīng)不夠整潔,也不美觀。這樣在一定程度上就降低了板書對示范性和啟發(fā)性要求。
教師上課娓娓道來,循循善誘,聲音柔和,具有校強的語言功底,這有利于學(xué)生靜心思考,與學(xué)生容易形成思維的碰撞,易于與學(xué)生達(dá)到心靈上的勾通,交流。不過引起注意是要多注視數(shù)學(xué)語言的生動有趣、簡潔明了、富于啟發(fā)的.特點,特別當(dāng)學(xué)生情緒處于低落之時,若能制造輕松愉快的課堂氛圍,就更有利于學(xué)生的思考。當(dāng)學(xué)生在思維處于山重水復(fù)疑無路時,教師應(yīng)適時加以啟發(fā)以讓學(xué)生的思維得到進(jìn)一步的深入,以期達(dá)到柳岸花明又一春的境界,這樣也許更好。
教師具有較強地把握課堂的能力,得心應(yīng)手地實施教學(xué)設(shè)想。
教師從概念入手引發(fā)性質(zhì),步步為營,有利于知識重組,形成知識體系,然后拋出例題由學(xué)生解答,學(xué)以致用。
教師首先提問學(xué)生反比例函數(shù)的定義及性質(zhì)如:圖像的位置、單調(diào)性、函數(shù)表達(dá)式的兩種表示方式(少了一種,應(yīng)有三種),由學(xué)生共同回答,當(dāng)學(xué)生無法回答出反比例函數(shù)當(dāng)k 的值互為相反數(shù)時圖像的兩支關(guān)于x軸或y軸成軸對稱(最好補充關(guān)于原點成中心對稱)時,老師能給予及時的啟發(fā),讓學(xué)生的思維得以順利地進(jìn)行(啟發(fā)略嫌生澀)。接著進(jìn)入典型例題的講解,例題1兩個小題是關(guān)于反比例函數(shù)解析式的求解以及實際的應(yīng)用,其中涉及到解析式兩個解取一個的情況,另一個解是負(fù)數(shù)不合實際意義,要舍去。解析式的求法用到了待定系數(shù)法,根據(jù)過函數(shù)反比例函數(shù)圖像上任意一點作x軸或y軸的垂線,以垂足、該點和原點這三個點為頂點的三角形的面積的兩倍就是k絕對值。若設(shè)這一點的坐標(biāo)為(a,b),則k=ab。教師在講解完該題時若能及時給予歸納就有畫龍點睛的作用了,也更有深入淺出之意境,這樣將大大提高了學(xué)生掌握和應(yīng)用知識的能力。另外教師采用由學(xué)生到黑板析演的方式,而不是先由自己板書再讓學(xué)生做下面第二題時再讓學(xué)生板書,有暴露學(xué)生解題過程之不足之意,此種做法的效率個人以為有待于進(jìn)一步商榷。
復(fù)習(xí)舊知時由學(xué)生一人主講,讓其他學(xué)生補充的方式。復(fù)習(xí)完舊知時,教師在不改變例題作用和降低例題使用效果的情況把三道例題結(jié)合為一道大例題,這樣能節(jié)省學(xué)生因?qū)忣}而花費的時間,也使題目的從易到難,層層深入,步步為營,同時照顧到了全體學(xué)生,使每個學(xué)生都能學(xué)有所獲,也能讓本節(jié)課不至于太沉悶。爾后,在講解完例題后,還可留出一些時間給學(xué)生歸納反比例函數(shù)解題時所涉及的思想方法,讓數(shù)學(xué)思想方法成為學(xué)生學(xué)習(xí)數(shù)學(xué)的導(dǎo)航器。
函數(shù)的課件【篇5】
人教版 數(shù)學(xué) 八年級 上冊
第十四章
一次函數(shù)
§14.1.2 函數(shù)
教
案 設(shè) 計 說 明
江西省贛州市文清實驗學(xué)校 謝志華
【教學(xué)設(shè)計說明】
這節(jié)課本著以觀察為起點,以問題為主線,以培養(yǎng)能力為核心的宗旨;遵照教師為主導(dǎo),學(xué)生為主體,訓(xùn)練為主線的教學(xué)原則;遵循特殊到一般,具體到抽象,由淺入深,由易到難的認(rèn)識規(guī)律。整個教學(xué)過程突出以下構(gòu)想:(1).創(chuàng)設(shè)情境,引人入勝
首先根據(jù)學(xué)生的認(rèn)知基礎(chǔ),播放一組生活中熟悉的體現(xiàn)運動變化的課件視頻與圖片,激發(fā)學(xué)生的求知欲,使學(xué)生感知變量和函數(shù)的存在和意義,體會變量之間的相互依存關(guān)系和變化規(guī)律,為新課的開展創(chuàng)設(shè)良好的教學(xué)氛圍,同時培養(yǎng)學(xué)生從數(shù)學(xué)的角度觀察生活,思考問題的能力。
(2).過程凸現(xiàn),緊扣重點
函數(shù)概念的形成過程是本節(jié)的重點。所以本節(jié)突出概念形成過程的教學(xué)。首先列舉學(xué)生熟悉例子,引導(dǎo)學(xué)生從實例中觀察分析探索變量之間的規(guī)律,抽象出函數(shù)的概念。然后提出注意問題,幫助學(xué)生把握概念的本質(zhì)特征,再通過生活中的函數(shù)舉例進(jìn)一步理解函數(shù)的概念,最后引導(dǎo)學(xué)生運用概念并及時反饋,同時在概念的形成過程中,著意培養(yǎng)學(xué)生觀察分析抽象概括的能力。引導(dǎo)學(xué)生從運動變化的角度看問題時,向?qū)W生滲透唯物主義觀點的教育。(3).動態(tài)顯現(xiàn),化難為易
本節(jié)課的難點是理解函數(shù)概念。教學(xué)活動中充分利用多媒體有聲有色有動感的畫面,使抽象的問題形象化,靜態(tài)方式的動態(tài)化,直觀深刻地揭示函數(shù)概念的本質(zhì)。不僅叩開學(xué)生的思維之門,也打開他們的心靈之窗,使他們在欣賞享受中,在美的熏陶中主動地輕松愉快地獲得新知。
(4).例子展現(xiàn),多方滲透
為了使抽象的概念具體化,通俗易懂,本節(jié)列舉了大量的生活中的例子和其他學(xué)科中的例子,培養(yǎng)學(xué)生的發(fā)散思維,加強學(xué)科間的滲透,知識間的聯(lián)系,也增強學(xué)生學(xué)數(shù)學(xué)的意識。
函數(shù)的課件【篇6】
函數(shù)的概念教學(xué)設(shè)計說明
一、本質(zhì)、地位、作用分析:
函數(shù)這一章在高中數(shù)學(xué)中,起著承上啟下的作用,本節(jié)《函數(shù)的概念》是函數(shù)這一章的起始課.它上承集合,下引性質(zhì).是派生數(shù)學(xué)概念的強大“固著點”.本節(jié)在復(fù)習(xí)初中函數(shù)概念的基礎(chǔ)上,用集合和對應(yīng)的觀點來研究函數(shù),加深對函數(shù)概念的理解,為高中后續(xù)課程的學(xué)習(xí)打下基礎(chǔ),函數(shù)的概念將貫穿整個高中數(shù)學(xué)的始終,滲透到數(shù)學(xué)的各個領(lǐng)域。
二、教學(xué)目標(biāo)分析
我們生活的世界時刻都在發(fā)生變化,變化無處不在.這些變化著的現(xiàn)象都可以用數(shù)學(xué)有效地描述它們的變化規(guī)律.函數(shù)正是描述客觀世界變化規(guī)律的重要數(shù)學(xué)模型,通過函數(shù)模型可以幫助我們科學(xué)地預(yù)測將發(fā)生什么,進(jìn)而解決實際問題.因此,學(xué)習(xí)函數(shù)知識對研究客觀世界、掌握事物變化規(guī)律具有重要的意義.教科書采用了從實際例子中抽象概括出用集合與對應(yīng)的語言定義函數(shù)的方式介紹函數(shù)概念.這樣不僅為學(xué)生理解函數(shù)概念打了感性基礎(chǔ),而且注重培養(yǎng)了學(xué)生的抽象概括能力,啟發(fā)學(xué)生運用函數(shù)模型表述、思考和解決現(xiàn)實世界中蘊涵的規(guī)律,逐漸形成善于提出問題的習(xí)慣,學(xué)會數(shù)學(xué)表達(dá)和交流,發(fā)展數(shù)學(xué)應(yīng)用意識.本課主要是從兩集合間對應(yīng)來描繪函數(shù)的概念,是一個抽象過程,學(xué)生學(xué)習(xí)可能有所不適應(yīng).教學(xué)中宜逐步設(shè)計合理的階梯,從實際問題逐步建構(gòu)函數(shù)的初步定義,對函數(shù)的概念的研究遵循“直觀感知、抽象概括”的認(rèn)知過程展開,學(xué)生在對生活中的實例觀察感知基礎(chǔ)上,借助幫助學(xué)生總結(jié)它們的共同特征得出定義,構(gòu)建函數(shù)的一般概念,并通過辨析問題深化對定義的理解,這樣就避免了學(xué)生死記硬背概念,有利于理解數(shù)學(xué)概念的本質(zhì)。使學(xué)生更好地參與教學(xué)活動,展開思維,體驗探索的樂趣,增強學(xué)習(xí)數(shù)學(xué)的興趣.為更好地鞏固函數(shù)的概念,設(shè)置了有梯度的例題,例1的三個小題都是選擇題,第一小題重點考察是變量x與y是否具有函數(shù)關(guān)系,緊扣定義,驗證定義即可;第二小題考察從集合A到集合B的函數(shù)應(yīng)該滿足什么條件,方法一可以通過定義驗證對于集合A中的每一個元素,在集合B中是否有元素而且是唯一的元素與之相對應(yīng);另一種方法是從集合A到集合B的函數(shù),其特點是:A就是函數(shù) 的定義域,B包含函數(shù)的值域,值域可以變化,只要是B的子集即可。如果條件“從A到B的函數(shù)”改為“以A為定義域,以B為值域的函數(shù)”,學(xué)生應(yīng)當(dāng)注意這道題變化前后的區(qū)別,再次加深函數(shù)的概念的理解;第三個題考察函數(shù)相等的條件,了解函數(shù)的三要素是定義域、對應(yīng)關(guān)系和值域,而三者中起決定因素的是定義域和對應(yīng)關(guān)系,使學(xué)生對于函數(shù)有直觀的認(rèn)識。例2是一道解答題,考察求函數(shù)的定義域問題,函數(shù)問題首要考慮定義域,這是研究函數(shù)的值域,單調(diào)性等一些性質(zhì)的前提,所以函數(shù)的定義域顯得尤為重要,本例的意圖是讓學(xué)生總結(jié)如何求函數(shù)的定義域;例3是求函數(shù)值問題,旨在讓學(xué)生明白f(a)與f(x)的區(qū)別,真正理解函數(shù);最后設(shè)計了一道易錯題,考察含參問題一定要注意分類討論。這四個題都是學(xué)生自己討論、自己寫出解題過程、自己講解,最后教師點評。
整個教學(xué)過程主要是對函數(shù)概念的探究和應(yīng)用。通過對概念的探究,不僅培養(yǎng)和提高了學(xué)生對抽象問題的感知和概括能力,而且通過對函數(shù)概念的感性認(rèn)識進(jìn)一步讓學(xué)生認(rèn)識到數(shù)學(xué)和生活密不可分,數(shù)學(xué)來源于生活并服務(wù)于生活,加深了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
三、教學(xué)問題診斷:
(1)班級學(xué)生狀況分析:
1.在學(xué)習(xí)本節(jié)課之前,學(xué)生在初中已經(jīng)學(xué)習(xí)了函數(shù)的概念,對函數(shù)已經(jīng)有了一些直觀的認(rèn)識;
2.學(xué)生已具有小組合作學(xué)習(xí)的經(jīng)驗,能積極參與討論,對高效課堂的學(xué)習(xí)模式已經(jīng)熟悉,但部分學(xué)生課前預(yù)習(xí)抓不住重點,自學(xué)能力不強;
3.少部分學(xué)生能從初中所學(xué)的函數(shù)的概念再加上生活中一些函數(shù)模型學(xué)習(xí)本課,大部分學(xué)生對于抽象的、不可觸摸的函數(shù)概念理解不透徹,不知道怎么應(yīng)用,因此我們采取對生活中常見的三類例子進(jìn)行分析,從實際例子中抽象概括出用集合與對應(yīng)的語言定義函數(shù)的方式介紹函數(shù)概念.這樣不僅為學(xué)生理解函數(shù)概念打了感性基礎(chǔ),而且注重培養(yǎng)了學(xué)生的抽象概括能力,啟發(fā)學(xué)生運用函數(shù)模型表述、思考和解決現(xiàn)實世界中蘊涵的規(guī)律,逐漸形成善于提出問題的習(xí)慣,學(xué)會數(shù)學(xué)表達(dá)和交流,發(fā)展數(shù)學(xué)應(yīng)用意識.4.學(xué)生對學(xué)習(xí)概念興趣不高,對學(xué)習(xí)抽象的函數(shù)概念有畏懼情緒,所以,學(xué)生需要受到鼓勵和安慰,增強學(xué)習(xí)的興趣。
(2)學(xué)情分析:
學(xué)生在初中已經(jīng)學(xué)習(xí)了函數(shù),并且已經(jīng)認(rèn)識一次函數(shù)、二次函數(shù)、正比例函數(shù)和反比例函數(shù),對于函數(shù)已經(jīng)有了直觀的認(rèn)識,但對于類似“x=1”、“y=1”、?x?1x?0等一些表達(dá)式是否是函數(shù)沒有概念,無從下手,這就說明初 f(x)???x?1x?0 中所學(xué)的概念太過狹隘,這就要求我們從更高的層面再次學(xué)習(xí)函數(shù)。函數(shù)的概念從初中的變量學(xué)說到高中階段的對應(yīng)學(xué)說,顯得很抽象,不好理解,特別“對于A中的任意一個元素,B中都有唯一的元素與之相對應(yīng)”這句話的怎么理解,它有什么深刻的含義,這就要求我們用生活中同學(xué)們所熟悉的實例出發(fā),提出問題讓學(xué)生思考,解釋為什么要強調(diào)A中任意,B中唯一,很自然的歸納出函數(shù)的定義,并通過一些例題加深對函數(shù)概念的認(rèn)識和理解。對于函數(shù)的三要素、函數(shù)相等的條件、函數(shù)的定義域問題以及函數(shù)求值問題是對函數(shù)概念的升華,是為了加深對函數(shù)概念的理解,也是對函數(shù)概念的應(yīng)用
四、教法特點以及預(yù)期效果分析:
(1)教法特點:
·情境激趣策略:根據(jù)學(xué)生的特點,本節(jié)課借助對生活中常見的三類實例及多媒體手段,觀察思考數(shù)學(xué)在生活中的應(yīng)用,促進(jìn)思維的深層次加工和提高課堂參與度,激發(fā)學(xué)生興趣,調(diào)動學(xué)生的積極性,使學(xué)生覺得學(xué)有所用;
·問題目標(biāo)引導(dǎo)探究策略:通過問題目標(biāo)的驅(qū)動,引導(dǎo)學(xué)生積極思考生活中的函數(shù)問題,并通過直觀感知、抽象概括一步步加深對函數(shù)概念的理解,使學(xué)習(xí)循序漸進(jìn)、由淺入深,積極地參與到猜想、探究的學(xué)習(xí)中;
·自主合作、實驗探究式學(xué)習(xí)策略:建立小組討論、交流、合作的課堂氛圍,主張“先學(xué)后導(dǎo),問題評價”的教學(xué)思維,采用小組合作學(xué)習(xí)方式,師生共同圍繞研究這節(jié)課的主要內(nèi)容和問題進(jìn)行自主學(xué)習(xí)、合作交流,在討論的過程中使學(xué)生思維更加開放、多樣和靈活,給予學(xué)生一定的自主性和創(chuàng)造發(fā)揮的空間,使學(xué)生樂意學(xué)習(xí),主動學(xué)習(xí)。(2)預(yù)期效果分析:
本節(jié)課借助多媒體輔助教學(xué),采用“引導(dǎo)-探究式“教學(xué)方法,整個教學(xué)過程遵循”直觀感知-歸納總結(jié)“的認(rèn)知規(guī)律,注重發(fā)展學(xué)生的合情推理能力,降低對抽象問題理解的難度,同時加強了抽象問題具體化的培養(yǎng),注重知識產(chǎn)生的
過程性,使學(xué)生更容易的記住本節(jié)課知識??紤]到學(xué)生的實際,有意地設(shè)計了一些鋪墊和引導(dǎo),既鞏固已有知識,又為新知識提供了附著點,充分體現(xiàn)學(xué)生的主體地位。
本節(jié)課做題過程中滲透了分類討論的數(shù)學(xué)思想方法,設(shè)計中注重對學(xué)生自己發(fā)現(xiàn)問題,自己解決問題能力的培養(yǎng),使學(xué)生學(xué)會思考、掌握方法,有利于培養(yǎng)學(xué)生思維的廣闊性與深刻性。相信通過這節(jié)課的學(xué)習(xí)會達(dá)到比較好地教學(xué)效果。
函數(shù)的課件【篇7】
1.掌握對數(shù)函數(shù)的概念,圖象和性質(zhì),且在掌握性質(zhì)的基礎(chǔ)上能進(jìn)行初步的應(yīng)用.
(1) 能在指數(shù)函數(shù)及反函數(shù)的概念的基礎(chǔ)上理解對數(shù)函數(shù)的定義,了解對底數(shù)的要求,及對定義域的要求,能利用互為反函數(shù)的兩個函數(shù)圖象間的關(guān)系正確描繪對數(shù)函數(shù)的圖象.
(2) 能把握指數(shù)函數(shù)與對數(shù)函數(shù)的實質(zhì)去研究認(rèn)識對數(shù)函數(shù)的性質(zhì),初步學(xué)會用對數(shù)函數(shù)的性質(zhì)解決簡單的問題.
2.通過對數(shù)函數(shù)概念的學(xué)習(xí),樹立相互聯(lián)系相互轉(zhuǎn)化的觀點,通過對數(shù)函數(shù)圖象和性質(zhì)的學(xué)習(xí),滲透數(shù)形結(jié)合,分類討論等思想,注重培養(yǎng)學(xué)生的觀察,分析,歸納等邏輯思維能力.
3.通過指數(shù)函數(shù)與對數(shù)函數(shù)在圖象與性質(zhì)上的對比,對學(xué)生進(jìn)行對稱美,簡潔美等審美教育,調(diào)動學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性.
(1) 對數(shù)函數(shù)又是函數(shù)中一類重要的基本初等函數(shù),它是在學(xué)生已經(jīng)學(xué)過對數(shù)與常用對數(shù),反函數(shù)以及指數(shù)函數(shù)的基礎(chǔ)上引入的.故是對上述知識的應(yīng)用,也是對函數(shù)這一重要數(shù)學(xué)思想的進(jìn)一步認(rèn)識與理解.對數(shù)函數(shù)的概念,圖象與性質(zhì)的學(xué)習(xí)使學(xué)生的知識體系更加完整,系統(tǒng),同時又是對數(shù)和函數(shù)知識的拓展與延伸.它是解決有關(guān)自然科學(xué)領(lǐng)域中實際問題的重要工具,是學(xué)生今后學(xué)習(xí)對數(shù)方程,對數(shù)不等式的基礎(chǔ).
(2) 本節(jié)的教學(xué)重點是理解對數(shù)函數(shù)的定義,掌握對數(shù)函數(shù)的圖象性質(zhì).難點是利用指數(shù)函數(shù)的圖象和性質(zhì)得到對數(shù)函數(shù)的圖象和性質(zhì).由于對數(shù)函數(shù)的概念是一個抽象的形式,學(xué)生不易理解,而且又是建立在指數(shù)與對數(shù)關(guān)系和反函數(shù)概念的基礎(chǔ)上,故應(yīng)成為教學(xué)的重點.
(3) 本節(jié)課的主線是對數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),所有的問題都應(yīng)圍繞著這條主線展開.而通過互為反函數(shù)的兩個函數(shù)的關(guān)系由已知函數(shù)研究未知函數(shù)的性質(zhì),這種方法是第一次使用,學(xué)生不適應(yīng),把握不住關(guān)鍵,所以應(yīng)是本節(jié)課的難點.
(1) 對數(shù)函數(shù)在引入時,就應(yīng)從學(xué)生熟悉的指數(shù)問題出發(fā),通過對指數(shù)函數(shù)的認(rèn)識逐步轉(zhuǎn)化為對對數(shù)函數(shù)的認(rèn)識,而且畫對數(shù)函數(shù)圖象時,既要考慮到對底數(shù) 的`分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標(biāo)系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì).
(2) 在本節(jié)課中結(jié)合對數(shù)函數(shù)教學(xué)的特點,一定要讓學(xué)生動手做,動腦想,大膽猜,要以學(xué)生的研究為主,教師只是不斷地反函數(shù)這條主線引導(dǎo)學(xué)生思考的方向.這樣既增強了學(xué)生的參與意識又教給他們思考問題的方法,獲取知識的途徑,使學(xué)生學(xué)有所思,思有所得,練有所獲,,從而提高學(xué)習(xí)興趣.
教學(xué)設(shè)計示例1. 在指數(shù)函數(shù)及反函數(shù)概念的基礎(chǔ)上,使學(xué)生掌握對數(shù)函數(shù)的概念,能正確描繪對數(shù)函數(shù)的圖像,掌握對數(shù)函數(shù)的性質(zhì),并初步應(yīng)用性質(zhì)解決簡單問題.
2. 通過對數(shù)函數(shù)的學(xué)習(xí),樹立相互聯(lián)系,相互轉(zhuǎn)化的觀點,滲透數(shù)形結(jié)合,分類討論的思想.
3. 通過對數(shù)函數(shù)有關(guān)性質(zhì)的研究,培養(yǎng)學(xué)生觀察,分析,歸納的思維能力,調(diào)動學(xué)生學(xué)習(xí)的積極性.
重點是理解對數(shù)函數(shù)的定義,掌握圖像和性質(zhì).
難點是由對數(shù)函數(shù)與指數(shù)函數(shù)互為反函數(shù)的關(guān)系,利用指數(shù)函數(shù)圖像和性質(zhì)得到對數(shù)函數(shù)的圖像和性質(zhì).
今天我們一起再來研究一種常見函數(shù).前面的幾種函數(shù)都是以形式定義的方式給出的,今天我們將從反函數(shù)的角度介紹新的函數(shù).
反函數(shù)的實質(zhì)是研究兩個函數(shù)的關(guān)系,所以自然我們應(yīng)從大家熟悉的函數(shù)出發(fā),再研究其反函數(shù).這個熟悉的函數(shù)就是指數(shù)函數(shù).
由學(xué)生說出 是指數(shù)函數(shù),它是存在反函數(shù)的.并由一個學(xué)生口答求反函數(shù)的過程:
由 得 .又 的值域為 ,
所求反函數(shù)為 .
那么我們今天就是研究指數(shù)函數(shù)的反函數(shù)-----對數(shù)函數(shù).
由于定義就是從反函數(shù)角度給出的,所以下面我們的研究就從這個角度出發(fā).如從定義中你能了解對數(shù)函數(shù)的什么性質(zhì)嗎?最初步的認(rèn)識是什么?
教師可提示學(xué)生從反函數(shù)的三定與三反去認(rèn)識,從而找出對數(shù)函數(shù)的定義域為 ,對數(shù)函數(shù)的值域為 ,且底數(shù) 就是指數(shù)函數(shù)中的 ,故有著相同的限制條件 .
在此基礎(chǔ)上,我們將一起來研究對數(shù)函數(shù)的圖像與性質(zhì).
提問學(xué)生打算用什么方法來畫函數(shù)圖像?學(xué)生應(yīng)能想到利用互為反函數(shù)的兩個函數(shù)圖像之間的關(guān)系,利用圖像變換法畫圖.同時教師也應(yīng)指出用列表描點法也是可以的,讓學(xué)生從中選出一種,最終確定用圖像變換法畫圖.
由于指數(shù)函數(shù)的圖像按 和 分成兩種不同的類型,故對數(shù)函數(shù)的圖像也應(yīng)以1為分界線分成兩種情況 和 ,并分別以 和 為例畫圖.
具體操作時,要求學(xué)生做到:
(1) 指數(shù)函數(shù) 和 的圖像要盡量準(zhǔn)確(關(guān)鍵點的位置,圖像的變化趨勢等).
(2) 畫出直線 .
(3) 的圖像在翻折時先將特殊點 對稱點 找到,變化趨勢由靠近 軸對稱為逐漸靠近 軸,而 的圖像在翻折時可提示學(xué)生分兩段翻折,在 左側(cè)的先翻,然后再翻在 右側(cè)的部分.
學(xué)生在筆記本完成具體操作,教師在學(xué)生完成后將關(guān)鍵步驟在黑板上演示一遍,畫出
和 的圖像.(此時同底的指數(shù)函數(shù)和對數(shù)函數(shù)畫在同一坐標(biāo)系內(nèi))如圖:
2. 草圖.
教師畫完圖后再利用投影儀將? 和 的圖像畫在同一坐標(biāo)系內(nèi),如圖:
然后提出讓學(xué)生根據(jù)圖像說出對數(shù)函數(shù)的性質(zhì)(要求從幾何與代數(shù)兩個角度說明)
由以上兩條可說明圖像位于 軸的右側(cè).
(3) 截距:令 得 ,即在 軸上的截距為1,與 軸無交點即以 軸為漸近線.
(4) 奇偶性:既不是奇函數(shù)也不是偶函數(shù),即它不關(guān)于原點對稱,也不關(guān)于 軸對稱.
(5) 單調(diào)性:與 有關(guān).當(dāng) 時,在 上是增函數(shù).即圖像是上升的
當(dāng) 時,在 上是減函數(shù),即圖像是下降的.
之后可以追問學(xué)生有沒有最大值和最小值,當(dāng)?shù)玫椒穸ù鸢笗r,可以再問能否看待何時函數(shù)值為正?學(xué)生看著圖可以答出應(yīng)有兩種情況:
當(dāng) 時,有 ;當(dāng) 時,有 .
學(xué)生回答后教師可指導(dǎo)學(xué)生巧記這個結(jié)論的方法:當(dāng)?shù)讛?shù)與真數(shù)在1的同側(cè)時函數(shù)值為正,當(dāng)?shù)讛?shù)與真數(shù)在1的兩側(cè)時,函數(shù)值為負(fù),并把它當(dāng)作第(6)條性質(zhì)板書記下來.
最后教師在總結(jié)時,強調(diào)記住性質(zhì)的關(guān)鍵在于要腦中有圖.且應(yīng)將其性質(zhì)與指數(shù)函數(shù)的性質(zhì)對比記憶.(特別強調(diào)它們單調(diào)性的一致性)
對圖像和性質(zhì)有了一定的了解后,一起來看看它們的應(yīng)用.
例1.? 求下列函數(shù)的定義域:
先由學(xué)生依次列出相應(yīng)的不等式,其中特別要注意對數(shù)中真數(shù)和底數(shù)的條件限制.
(1) 與 ;????? (2) 與 ;
(3) 與 ;????????? ?(4) 與 .
讓學(xué)生先說出各組數(shù)的特征即它們的底數(shù)相同,故可以構(gòu)造對數(shù)函數(shù)利用單調(diào)性來比大?。詈笞寣W(xué)生以其中一組為例寫出詳細(xì)的比較過程.
(1)??? 定義域(2)值域(3)截距(4)奇偶性(5)單調(diào)性
(1) 已知 是函數(shù) 的反函數(shù),且 都有意義.
① 求 ;
② 試比較 與4 的大小,并說明理由.
(2) .
函數(shù)的課件【篇8】
(1)開口___________;
(2)對稱軸是___________;
(3)頂點坐標(biāo)是___________;
(4)當(dāng)時,隨的增大而___________;
當(dāng)時,隨的增大而___________;
(5)函數(shù)圖象有___________點,函數(shù)有___________值;
當(dāng)_____時,取得__________值____.
問題:那二次函數(shù)的圖象會是什么樣子呢?它會有哪些性質(zhì)呢?它與的圖象有關(guān)系嗎?
Ⅱ.自主探索、小組互學(xué)、展學(xué)提升:
(2)觀察、思考并與同伴交流完成“議一議”
(3)一小組派代表展示,其它小組與老師評價、完善。
(1)作出二次函數(shù)的圖象:
議一議:
仔細(xì)觀察,用心思考,與同伴交流:
(1)二次函數(shù)的圖象是什么樣子?
(2)它的開口方向是什么?
(3)它是軸對稱圖形嗎?對稱軸是誰?
(4)它的頂點坐標(biāo)是什么?
(5)當(dāng)取什么值時,隨的增大而增大?當(dāng)取什么值時,隨的增大而減小?
(6)二次函數(shù)的圖象有最高點還是最低點?它會取得最大還是最小值?是多少?
此時,等于多少?
(7)二次函數(shù)與二次函數(shù)的圖象有哪些相同點和不同點呢?它們的圖象之間有什么關(guān)系呢?
教師巡視,察看學(xué)生完成情況并適時給予指導(dǎo)。
當(dāng)學(xué)生展開討論時,參與到學(xué)生的交流中啟發(fā)、點撥學(xué)生的思維。
學(xué)生通過上一環(huán)節(jié)的作圖、觀察、比較、歸納、交流討論等過程,已經(jīng)積累了一些方法和經(jīng)驗,所以此環(huán)節(jié)由學(xué)生自己獨立完成:
(1)作出二次函數(shù)的圖象;
(2)觀察、思考完成“想一想”
(3)一學(xué)生展示,其他同學(xué)與老師評價、完善。
問:
二次函數(shù)的圖象會是什么樣子?它與二次函數(shù)的圖象有哪些相同點和不同點呢?它們的圖象之間有什么關(guān)系呢?它圖象的開口方向、對稱軸、頂點坐標(biāo)是什么?它的增減性、最值是什么情況呢?請你先猜一猜,然后做出它的圖象觀察思考,你猜的對嗎?
(1)作出二次函數(shù)的圖象:
(1)二次函數(shù)的圖象是什么樣子?
(2)它的開口方向是什么?
(3)它是軸對稱圖形嗎?對稱軸是誰?
(4)它的頂點坐標(biāo)是什么?
(5)當(dāng)取什么值時,隨的增大而增大?當(dāng)取什么值時,隨的增大而減小?
(6)二次函數(shù)的圖象有最高點還是最低點?它會取得最大還是最小值?是多少?
此時,等于多少?
(7)二次函數(shù)與二次函數(shù)的圖象有哪些相同點和不同點呢?它們的圖象之間有什么關(guān)系呢?
教師巡視,察看學(xué)生解決問題情況并適時指導(dǎo).之后請學(xué)生展示,師生共同評價完善.
Ⅳ.自主探索、小組互學(xué)、展學(xué)提升:
學(xué)生在前面作圖、觀察、思考、交流討論的基礎(chǔ)上,完成“猜一猜”,然后師生共同利用計算機進(jìn)行驗證。最后,學(xué)生在交流討論的基礎(chǔ)上總結(jié)二此函數(shù)的性質(zhì)。
猜一猜:
(1)二次函數(shù)的圖象是什么樣子呢?二次函數(shù)的圖象與二次函數(shù)的圖象有什么關(guān)系?請你描述一下二次函數(shù)的性質(zhì).
(2)二次函數(shù)的圖象是什么樣子呢?二次函數(shù)的圖象與二次函數(shù)的圖象有什么關(guān)系?請你描述一下二次函數(shù)的性質(zhì).
議一議:
(1)二次函數(shù)的圖象與二次函數(shù)的圖象有什么關(guān)系?
(2)二次函數(shù)的性質(zhì):
函數(shù)的課件【篇9】
2.函數(shù)f(x)=(a2-1)x在R上是減函數(shù),則a的取值范圍是( )
4.已知ab,ab 下列不等式(1)a2b2,(2)2a2b,(3) ,(4)a b ,(5)( )a( )b
(C)y= (D)y=
8.若函數(shù)y=32x-1的反函數(shù)的圖像經(jīng)過P點,則P點坐標(biāo)是( )
(A)(2,5) (B)(1,3) (C)(5,2) (D)(3,1)
10.已知函數(shù)f(x)=ax+k,它的.圖像經(jīng)過點(1,7),又知其反函數(shù)的圖像經(jīng)過點(4,0),則函數(shù)f(x)的表達(dá)式是( )
(A)f(x)=2x+5 (B)f(x)=5x+3 (C)f(x)=3x+4 (D)f(x)=4x+3
11.已知01,b-1,則函數(shù)y=ax+b的圖像必定不經(jīng)過( )
12.一批設(shè)備價值a萬元,由于使用磨損,每年比上一年價值降低b%,則n年后這批設(shè)備的價值為( )
(A)na(1-b%) (B)a(1-nb%) (C)a[(1-(b%))n (D)a(1-b%)n
13.若a a ,則a的取值范圍是 。
14.若10x=3,10y=4,則10x-y= 。
15.化簡= 。
18.(12分)若 ,求 的值.
19.(12分)設(shè)01,解關(guān)于x的不等式a a .
20.(12分)已知x [-3,2],求f(x)= 的最小值與最大值。
21.(12分)已知函數(shù)y=( ) ,求其單調(diào)區(qū)間及值域。
22.(14分)若函數(shù) 的值域為 ,試確定 的取值范圍。
題號 11 12 13 14 15 16 17 18 19 20
4.(- ,0) (0,1) (1,+ ) ,聯(lián)立解得x 0,且x 1。
5.[( )9,39] 令U=-2x2-8x+1=-2(x+2)2+9,∵ -3 ,又∵y=( )U為減函數(shù),( )9 y 39。 6。D、C、B、A。
令y=3U,U=2-3x2, ∵y=3U為增函數(shù),y=3 的單調(diào)遞減區(qū)間為[0,+ )。
8.0 f(125)=f(53)=f(522-1)=2-2=0。
9. 或3。
Y=m2x+2mx-1=(mx+1)2-2, ∵它在區(qū)間[-1,1]上的最大值是14,(m-1+1)2-2=14或(m+1)2-2=14,解得m= 或3。
11.∵ g(x)是一次函數(shù),可設(shè)g(x)=kx+b(k 0), ∵F(x)=f[g(x)]=2kx+b。由已知有F(2)= ,F(xiàn)( )=2, , k=- ,b= ,f(x)=2-
1.∵02, y=ax在(- ,+ )上為減函數(shù),∵ a a , 2x2-3x+1x2+2x-5,解得23,
2.g[g(x)]=4 =4 =2 ,f[g(x)]=4 =2 ,∵g[g(x)]g[f(x)]f[g(x)], 2 2 ,22x+122x, 2x+12x,解得01
3.f(x)= , ∵x [-3,2],.則當(dāng)2-x= ,即x=1時,f(x)有最小值 ;當(dāng)2-x=8,即x=-3時,f(x)有最大值57。
4.要使f(x)為奇函數(shù),∵ x R,需f(x)+f(-x)=0, f(x)=a- =a- ,由a- =0,得2a- =0,得2a- 。
5.令y=( )U,U=x2+2x+5,則y是關(guān)于U的減函數(shù),而U是(- ,-1)上的減函數(shù),[-1,+ ]上的增函數(shù), y=( ) 在(- ,-1)上是增函數(shù),而在[-1,+ ]上是減函數(shù),又∵U=x2+2x+5=(x+1)2+4 4, y=( ) 的值域為(0,( )4)]。
由函數(shù)y=2x的單調(diào)性可得x 。
7.(2x)2+a(2x)+a+1=0有實根,∵ 2x0,相當(dāng)于t2+at+a+1=0有正根,
則
8.(1)∵定義域為x ,且f(-x)= 是奇函數(shù);
(2)f(x)= 即f(x)的值域為(-1,1);
(3)設(shè)x1,x2 ,且x1x2,f(x1)-f(x2)= (∵分母大于零,且a a ) f(x)是R上的增函數(shù)。
新概念2課件5篇
教案課件在老師少不了一項工作事項,寫好教案課件是每位老師必須具備的基本功。?教學(xué)過程中學(xué)生的表現(xiàn)同樣重要,什么樣的教學(xué)課件才是好的?這是幼兒教師教育網(wǎng)小編為你整理的“新概念2課件”類內(nèi)容希望對你有所幫助,希望這些建議能夠幫助你提高個人表現(xiàn)!
新概念2課件(篇1)
新概念英語課件是一種新型的學(xué)習(xí)工具,它為學(xué)習(xí)者提供了更加生動、具體且詳細(xì)的學(xué)習(xí)材料。每篇課件都有超過1000字的內(nèi)容,讓學(xué)習(xí)者能夠更深入地理解英語知識。
課件一般包括課文、語法解析、詞匯講解以及練習(xí)題。課文部分是課件的核心內(nèi)容,其中的文章生動有趣,語言簡潔明了。這樣能夠引起學(xué)習(xí)者的興趣,提高他們的學(xué)習(xí)動力。語法解析部分詳細(xì)講解了課文中所涉及到的語法知識,通過對語法的深入解析,讓學(xué)習(xí)者更好地掌握英語的語法規(guī)則。詞匯講解部分則對課文中的生詞和難詞進(jìn)行解釋和講解,幫助學(xué)習(xí)者擴大詞匯量,提高詞匯應(yīng)用能力。
除了以上內(nèi)容外,課件還提供了豐富的練習(xí)題目。練習(xí)題目既包括對課文的理解和運用,也有對語法和詞匯的鞏固練習(xí)。這些練習(xí)題目可以幫助學(xué)習(xí)者檢驗自己的學(xué)習(xí)效果,發(fā)現(xiàn)自己的不足之處,并及時進(jìn)行糾正。同時,通過反復(fù)練習(xí),學(xué)習(xí)者可以加深對知識點的理解和運用,提高語言能力。
新概念英語課件的特點在于它的互動性和多媒體性。學(xué)習(xí)者可以通過點擊屏幕或者鍵盤來進(jìn)行操作,參與到課堂中來。同時,課件中融入了多媒體元素,例如音頻和視頻,使得學(xué)習(xí)過程更加豐富多樣。學(xué)習(xí)者可以通過聽力練習(xí)來提高聽力技能,通過觀看視頻來了解英語國家的文化和風(fēng)俗習(xí)慣。這樣的學(xué)習(xí)方式既增強了學(xué)習(xí)者的學(xué)習(xí)興趣,也提高了學(xué)習(xí)效果。
新概念英語課件的課程設(shè)置也非常科學(xué)合理。課程內(nèi)容按照語言難度逐漸增加,從簡單到復(fù)雜,融入了大量的實例和案例,幫助學(xué)習(xí)者更好地理解和應(yīng)用所學(xué)知識。同時,課程也充分考慮了學(xué)習(xí)者的需求和興趣,注重培養(yǎng)學(xué)習(xí)者的學(xué)習(xí)能力和語言運用能力。
新概念英語課件是一種高效、靈活、多樣化的學(xué)習(xí)工具。它以其生動詳細(xì)的內(nèi)容、豐富多樣的練習(xí)題目和互動性的學(xué)習(xí)方式,為學(xué)習(xí)者提供了一個良好的學(xué)習(xí)平臺。在新概念英語課件的輔助下,學(xué)習(xí)者能夠更深入地理解英語知識,提高自己的語言能力。
新概念2課件(篇2)
第二教時教材:
1、復(fù)習(xí)
2、《課課練》及《教學(xué)與測試》中的有關(guān)內(nèi)容目的: 復(fù)習(xí)集合的概念;鞏固已經(jīng)學(xué)過的內(nèi)容,并加深對集合的理解。
過程:
一、 復(fù)習(xí):(結(jié)合提問)
1.集合的概念 含集合三要素
2.集合的表示、符號、常用數(shù)集、列舉法、描述法
3.集合的分類:有限集、無限集、空集、單元集、二元集
4.關(guān)于“屬于”的概念
二、 例一 用適當(dāng)?shù)姆椒ū硎鞠铝屑希?/strong>
1.平方后仍等于原數(shù)的數(shù)集解:{x|x2=x}={0,1}
2.比2大3的數(shù)的集合解:{x|x=2+3}={5}
3.不等式x2-x-6
4.過原點的直線的集合解:{(x,y)|y=kx}
5.方程4x2+9y2-4x+12y+5=0的解集解:{(x,y)| 4x2+9y2-4x+12y+5=0}={(x,y)| (2x-1)2+(3y+2)2=0}={(x,y)| (1/2,3)}
6.使函數(shù)y=有意義的實數(shù)x的集合解:{x|x2+x-60}={x|x2且x3,xr}
三、 處理蘇大《教學(xué)與測試》第一課 含思考題、備用題
四、 處理《課課練》
五、 作業(yè) 《教學(xué)與測試》 第一課 練習(xí)題
新概念2課件(篇3)
摘要:通過創(chuàng)設(shè)實例情境,引發(fā)學(xué)生學(xué)習(xí)興趣;通過反例教學(xué),加深學(xué)生對概念的理解;運用啟發(fā)式教學(xué),通過類比和化歸,建立導(dǎo)數(shù)與微分之間的關(guān)系;通過精講多練,鞏固學(xué)生所學(xué)知識。
關(guān)鍵詞:微分;概念;教學(xué)
微分概念是教學(xué)的重點,更是難點。
以前在教學(xué)中,這一塊知識的傳授一直是令人頭疼的地方,感覺已經(jīng)盡了很大的努力,學(xué)生還是不能理解,即使表面會了,可以到應(yīng)用還是不行,而且所學(xué)知識很快又忘了。
這說明他們最開始還是沒掌握好,沒理解透,概念沒有真正建立起來。
筆者重新對微分概念進(jìn)行了教學(xué)設(shè)計后,取得了較好的效果。
1新課引入
一般的課堂導(dǎo)入是這樣的:在理論研究和實際應(yīng)用中,常常會遇到這樣的問題:當(dāng)自變量x有微小變化時,求函數(shù)y=f(x)的微小改變量Δy=f(x+Δx)-f(x)。
這個問題初看起來似乎只要做減法運算就可以了。
然而,對于較復(fù)雜的函數(shù)f(x),差值f(x+Δx)-f(x)卻是一個更復(fù)雜的表達(dá)式,不易求出其值。
一個想法是:設(shè)法將Δy表示成Δx的線性函數(shù),即線性化,從而把復(fù)雜問題化為簡單問題。
可是這種導(dǎo)入,學(xué)生往往不感興趣,難以進(jìn)入狀態(tài)。
既然微分是實現(xiàn)增量線性化的一種數(shù)學(xué)模型,即微分函數(shù)的實質(zhì):局部像條直線。
那么怎么讓學(xué)生直觀地感受到這一點呢?
我先是提問學(xué)生:地球是什么形狀的?學(xué)生都感到好笑:地球當(dāng)然是圓的。
這時我又提出個問題:那么古時候的人們?yōu)槭裁匆詾榈厍蚴莻€大平面?學(xué)生七嘴八舌地說:那時科學(xué)不發(fā)達(dá),在他們眼睛看到的范圍內(nèi),地球看起來就是個大平面。
這時候我覺得時機到了,就跟學(xué)生說,其實曲線的增量很小(或相對很小時),例如在人眼所能看到的范圍內(nèi),這個距離增量相對于地球而言是非常小的,此時曲線可以近似的看作切線,這就是微分的幾何本質(zhì),所以古時候的人們單憑自己的肉眼就犯了錯誤。
通過實例來引入課題,為概念學(xué)習(xí)創(chuàng)設(shè)情境,拉近數(shù)學(xué)與現(xiàn)實的距離,加強學(xué)生的感性認(rèn)識,提高學(xué)生的學(xué)習(xí)興趣。
2新課講授
2.1微分的定義
(1)概念引入。
在這部分教學(xué)中,適當(dāng)?shù)貙ふ一蛘邩?gòu)造一些反例,能更好地理解概念本身的內(nèi)涵和外延。
可以舉一個微分不存在的例子加深學(xué)生對定義的理解。
2.2函數(shù)可微的條件
微分定義較為抽象,為了深刻理解其含義,我提出幾個問題讓學(xué)生思考并回答:(1)什么樣的函數(shù)是可微的?(2)什么是函數(shù)的微分?(3)A和什么有關(guān)呢?
讓學(xué)生觀察引例,學(xué)生很快就發(fā)現(xiàn)了“秘密”:A=f′(x0)。
這時,要適時地將導(dǎo)數(shù)與微分概念聯(lián)系起來對比和分析:(1)若函數(shù)可微,那么函數(shù)是否可導(dǎo)?(2)若函數(shù)可導(dǎo),那么函數(shù)是否可微?通過這兩個問題的解答結(jié)果,從而得到函數(shù)可微的充分必要條件以及函數(shù)的微分公式。
進(jìn)而得到微分公式:dy=f′(x)dx,上式變形為dydx=f′(x)。
即函數(shù)的導(dǎo)數(shù)等于函數(shù)的微分與自變量的微分的商,因此,導(dǎo)數(shù)又稱為“微商”。
在這部分教學(xué)中,把導(dǎo)數(shù)作為“微商”重新理解了一下復(fù)合函數(shù)求導(dǎo)的鏈?zhǔn)椒▌t和反函數(shù)求導(dǎo)法則。
為了加深學(xué)生印象,我講了一個笑話:說有一個學(xué)生抄襲別人的作業(yè),但后來卻自以為聰明地把dydx中的d約掉了。
2.3微分的幾何意義
以前的這塊教學(xué)中,我只是簡單地介紹dy所在位置和大小,而沒有從圖形和數(shù)值上突出局部線性化含義。
現(xiàn)在借助多媒體進(jìn)行圖形演示,用flash把圖像放大,通過不斷的移動x的位置,讓學(xué)生觀察曲線和切線關(guān)系。
學(xué)生通過自己的觀察得出:x離x0的距離越小,曲線越可近似地看作一條直線,同時也解決了我們在引入新課時所提出的問題。
2.4基本初等函數(shù)的微分公式與微分運算法則
牢牢抓住微分和導(dǎo)數(shù)關(guān)系dy=f′(x)dx,進(jìn)行對比教學(xué)即可。
2.5微分形式不變性
無論u是自變量還是復(fù)合函數(shù)的中間變量,函數(shù)y=f(u)的微分形式總是可以按微分定義的形式來寫,即有dy=f′(u)du這一性質(zhì)稱為微分形式的不變性。
利用這一特性,可以簡化微分的有關(guān)運算。
但微分形式不變性是教學(xué)的難點,教師可以總結(jié)一句話讓學(xué)生牢記:“函數(shù)對哪個變量求導(dǎo)就乘以哪個變量的微分”。
2.6利用微分進(jìn)行近似計算
利用微分作近似計算,有利于培養(yǎng)學(xué)生靈活運用微積分知識的基礎(chǔ)內(nèi)容,也使部分達(dá)不到較高教學(xué)要求的、數(shù)學(xué)基礎(chǔ)較弱的學(xué)生,對基礎(chǔ)性內(nèi)容有所了解,不至于什么都學(xué)不到。
3例題選講
3.1微分的定義內(nèi)容選講了兩道例題
例1. 求函數(shù)y=x2當(dāng)x由1改變到1.01的微分。
例2. 求函數(shù)y=x3在x=2處的微分。
3.2基本初等函數(shù)的微分公式與微分運算法則的應(yīng)用內(nèi)容選講了兩道例題
例3. 求函數(shù)y=x3e2x的微分。
例4. 求函數(shù)y=sinxx的微分。
3.3微分形式的不變性內(nèi)容選講了二道例題
例5. 在d=cosωtdt;的括號中填入適當(dāng)?shù)暮瘮?shù),使等式成立。
3.4微分近似計算和線性化內(nèi)容選講了三道例題
例6. 求f(x)=1+x在x=0與x=3處的線性化。
注:通過這道題使學(xué)生進(jìn)一步明確不同點的近似直線不同。
例7. 半徑10厘米的金屬圓片加熱后,半徑伸長了005厘米,問面積近似增大了多少?
例8. 計算e-0.03的近似值。
有些例題由學(xué)生獨立完成后,再由教師做點評。
例題設(shè)置由易到難,具有層次性,便于學(xué)生解題能力的提升。
通過例題可以檢測學(xué)生對知識的掌握情況,找到差距,更進(jìn)一步鞏固和深化新知,讓學(xué)生知道數(shù)學(xué)重在應(yīng)用,培養(yǎng)學(xué)生運用所學(xué)知識解決問題的能力,有利于學(xué)生養(yǎng)成良好的思考習(xí)慣。
4歸納總結(jié)、分層作業(yè)
引導(dǎo)學(xué)生回顧本節(jié)課學(xué)到概念、方法、定理和公式,鍛煉學(xué)生的歸納概括能力,有利于學(xué)生理清思路,從整體上把握內(nèi)容,抓住要點。
布置的作業(yè)分鞏固題、思考題和提高題三種類型,以適用不同層次學(xué)生的`需要,從而分類推進(jìn),促進(jìn)學(xué)生的共同發(fā)展,同時也要考慮到為學(xué)習(xí)下節(jié)課的內(nèi)容做好鋪墊。
參考文獻(xiàn)
[1]吳贛昌.微積分[M].北京:中國人民大學(xué)出版社,.
[2]李令斗,高等數(shù)學(xué)中微分概念的說課[J].教育教學(xué)論壇,,(07).
偏微分方程課堂實踐教學(xué)應(yīng)用【2】
摘要:加強理論與實踐的融合,特別是在偏微分方程數(shù)值解課程教學(xué)中,通過引入實踐教學(xué),突出高等數(shù)學(xué)的應(yīng)用性,使之能夠與具體的學(xué)科生產(chǎn)實際相聯(lián)系,既有助于提升學(xué)生對偏微分方程的理解,還能夠從科研、工程應(yīng)用前沿中來增強學(xué)習(xí)興趣,提升高等數(shù)學(xué)在實踐生活中的應(yīng)用能力。
關(guān)鍵詞:偏微分方程;實踐性教學(xué);應(yīng)用探討
數(shù)學(xué)知識是豐富的、數(shù)學(xué)思想是多彩的,數(shù)學(xué)中蘊含著豐富的數(shù)學(xué)思想方法,數(shù)學(xué)思想方法是聯(lián)系知識與能力的紐帶,是數(shù)學(xué)解題的指導(dǎo)思想。
而對于數(shù)學(xué)概念的實踐性教學(xué),將數(shù)學(xué)知識與現(xiàn)實世界建立關(guān)聯(lián),是推進(jìn)大學(xué)生數(shù)學(xué)應(yīng)用實踐的有效途徑。
數(shù)學(xué)作為自然科學(xué),其理論的產(chǎn)生是基于數(shù)學(xué)自身理論系統(tǒng)的發(fā)展。
如數(shù)學(xué)建模思想的應(yīng)用實踐,將數(shù)學(xué)理論知識與具體的行業(yè)科學(xué)建立緊密聯(lián)系,突出數(shù)學(xué)建模在學(xué)科專業(yè)性和應(yīng)用廣泛性中的作用,以解決現(xiàn)實問題。
偏微分方程是高等數(shù)學(xué)中的重要內(nèi)容,在課程教學(xué)中具有較強的實際應(yīng)用前景。
現(xiàn)代自然科學(xué)領(lǐng)域中的很多工程實踐問題,其解決方法都由數(shù)學(xué)建模來進(jìn)行描述,而偏微分方程的求解方法則具有廣泛的應(yīng)用。
本文則是通過對偏微分方程的一些闡述來講解偏微分方程在課堂實踐中的教學(xué)應(yīng)用.
一、高等數(shù)學(xué)實踐性教學(xué)的現(xiàn)狀
強調(diào)理論與實踐的滲透一直是高等數(shù)學(xué)課堂實踐性教學(xué)的主要方向,由于教學(xué)環(huán)境的局限,對于課程實踐性內(nèi)容的梳理多存在制約,尤其是理論講解過多,而實踐教學(xué)相對不足,導(dǎo)致學(xué)生對高等數(shù)學(xué)的論證感到繁瑣而枯燥。
偏微分方程數(shù)值解由于涉及較多的公式推導(dǎo),學(xué)生學(xué)習(xí)積極性不夠,而對于理工類學(xué)科專業(yè),偏微分方程在實踐應(yīng)用中具有普遍性。
因此,要從實踐性教學(xué)環(huán)節(jié)入手,積極探索該課程與生產(chǎn)實踐的關(guān)聯(lián)度,加強對偏微分方程與實際應(yīng)用的銜接,特別是實驗教學(xué)環(huán)節(jié)的明確,要從學(xué)科前沿發(fā)展上,融入實際案例和問題,增強學(xué)生的學(xué)習(xí)興趣,引導(dǎo)學(xué)生從數(shù)學(xué)推導(dǎo)中提升計算能力,增強科學(xué)思維能力,解決實際問題能力。
二、實踐性教學(xué)的必要性研究
從國家對高等教育改革工作的發(fā)展綱要來看,堅持教育與現(xiàn)代社會生產(chǎn)的聯(lián)系,特別是從人才培養(yǎng)模式上,著力從教學(xué)方法上來深化改革,強調(diào)知行合一,因地制宜的調(diào)整和優(yōu)化課程實踐教學(xué)環(huán)節(jié),突出學(xué)科理論學(xué)習(xí)與實踐課程的融合,增強學(xué)生的實踐技能。
理工類專業(yè)群在高等數(shù)學(xué)教學(xué)目標(biāo)上,要結(jié)合自身專業(yè)設(shè)置實際,從數(shù)學(xué)基礎(chǔ)知識與學(xué)科專業(yè)方向上,既要關(guān)注數(shù)學(xué)基礎(chǔ)知識的講授,還要從學(xué)生數(shù)學(xué)思維、計算思維、計算方法等方面,強調(diào)數(shù)學(xué)知識與工程應(yīng)用的聯(lián)系,特別是實踐性教學(xué)環(huán)節(jié),要注重對各種數(shù)值方法的求解,訓(xùn)練學(xué)生能夠從具體方法求解中來培養(yǎng)動手能力。
偏微分方程具有較強的理論性,對于理論知識的講授,特別是穩(wěn)定性分析、收斂性分析、誤差估值分析等,涉及較多的公式推導(dǎo),學(xué)生學(xué)習(xí)積極性差,通過對實踐性教學(xué)環(huán)節(jié)的設(shè)置,使之具有形象性、直觀性和動態(tài)性,提升學(xué)生解決數(shù)學(xué)實際問題的能力。
三、偏微分方程與實踐性教學(xué)的應(yīng)用探討
1.注重偏微分方程與實際應(yīng)用的銜接
從課程內(nèi)容來看,偏微分方程在與生產(chǎn)實踐聯(lián)系上具有廣泛性,但對于具體的數(shù)值求解方法來說,因介紹較少,而學(xué)生對知識背景認(rèn)知不夠。
如對于線性常系數(shù)偏微分方程,在探討其穩(wěn)定性方面,由于,利用差商法來替換微商法,其中心格式的穩(wěn)定性仍然不夠。
但可以將之改寫為中心差分格式,由此來得到Lax-Friedrichs穩(wěn)定性數(shù)值方程;從中可知,利用,可以實現(xiàn)偏微分方程的數(shù)值求解穩(wěn)定性,同時對于雙曲型方程也具有較高的計算準(zhǔn)確性,便于將偏微分方程數(shù)學(xué)理論與生產(chǎn)實踐相聯(lián)系。
同樣道理,在共軛方程求解中,對于,在實際生產(chǎn)中應(yīng)用較廣,作為二階共軛方程,將表示為溫度函數(shù),表示為熱傳導(dǎo)系數(shù),可以對熱傳導(dǎo)方程進(jìn)行改寫。
從上述推導(dǎo)變換中,盡管數(shù)學(xué)公式本身沒有變化,但與物理問題相融合后,其意義更加廣泛。
我們知道,從熱傳導(dǎo)過程來看,對于傳導(dǎo)系數(shù)來說本身具有連續(xù)性,利用函數(shù)來表示更加準(zhǔn)確,從熱傳導(dǎo)守恒性來看,以離散值求解方法來計算結(jié)果,與實際問題存在不符,但通過進(jìn)行離散處理,可以獲得。
從中可知,學(xué)生在認(rèn)識偏微分方程的求解疑難時,借助于對實際生產(chǎn)的背景介紹,從中來理解數(shù)學(xué)理論知識在實踐中的應(yīng)用,增強學(xué)生的學(xué)習(xí)熱情,也提升了學(xué)生運用數(shù)學(xué)方法解決實際問題的能力。
2.強調(diào)實驗教學(xué)的課時比重
在高等數(shù)學(xué)學(xué)習(xí)中,由于計算機的應(yīng)用,可以利用偏微分方程來構(gòu)建數(shù)學(xué)模型,增強偏微分方程在生產(chǎn)實踐中的應(yīng)用。
從數(shù)學(xué)理論來看,偏微分方程本身實踐性強,而在實驗課程教學(xué)中的課時比例相對不足,特別是學(xué)生上機學(xué)習(xí)較少,影響學(xué)生對偏微分方程數(shù)值求解方法的掌握。
以信息技術(shù)專業(yè)為例,在偏微分方程數(shù)值計算訓(xùn)練上,可以從Fortran95數(shù)值教學(xué)平臺上來開放應(yīng)用程序,結(jié)合不同的邊界條件和初值,讓學(xué)生從具體算法上來進(jìn)行上機調(diào)試,分析存在的問題,并從實驗報告分析中來強調(diào)知識的實踐性。
借助于數(shù)學(xué)軟件教學(xué),其目標(biāo)在于:一是提升數(shù)學(xué)理論知識的可視性,特別是對于偏微分方程自身公式的推導(dǎo)來說,因繁瑣而影響學(xué)生的學(xué)習(xí)熱情,而直觀的數(shù)值計算軟件的應(yīng)用,提升計算結(jié)果的直觀性。
新概念2課件(篇4)
大家好!我是焦作一中的郜珂。今天,有幸借此平臺與大家交流,希望各位專家和老師指導(dǎo)我的說課。我說課的題目是《復(fù)數(shù)的有關(guān)概念》,我將從教材分析、學(xué)情分析、教學(xué)目標(biāo)、教學(xué)過程、自我反思五個部分作具體的闡述。
首先是教材分析,《復(fù)數(shù)的有關(guān)概念》是北師大版新課程標(biāo)準(zhǔn)實驗教科書選修系列2的模塊2中第五章第一節(jié)的內(nèi)容,這節(jié)課的主要內(nèi)容是數(shù)系的擴充與復(fù)數(shù)的引入、以及復(fù)數(shù)的有關(guān)概念。數(shù)系擴充的過程體現(xiàn)了數(shù)學(xué)的發(fā)現(xiàn)和創(chuàng)造的過程,同時也體現(xiàn)了數(shù)學(xué)發(fā)生發(fā)展的客觀需求和背景。
復(fù)數(shù)的引入是中學(xué)階段數(shù)系的又一次擴充。對于高中生來說,學(xué)習(xí)一些復(fù)數(shù)的基礎(chǔ)知識是十分必要的,這可以促使學(xué)生對數(shù)的概念有一個初步的較為完整的認(rèn)識,也給他們運用數(shù)學(xué)知識解決問題增添了新的工具,同是還為進(jìn)一步學(xué)習(xí)高等數(shù)學(xué)打下一定的基礎(chǔ)。
在實際生活中,復(fù)數(shù)在電力學(xué)、熱力學(xué)、流體力學(xué)、固體力學(xué)、系統(tǒng)分析、信息分析等方面都得到了廣泛的運用,是現(xiàn)代人才必備的基礎(chǔ)知識之一。
與本節(jié)教材相關(guān)的學(xué)生情況有如下幾個特征:(1)我們的學(xué)生在從小學(xué)到高中的學(xué)習(xí)中已經(jīng)掌握了整數(shù)、分?jǐn)?shù)、正數(shù)、負(fù)數(shù)、有理數(shù)、無理數(shù)、實數(shù)這些概念,也掌握了相應(yīng)的運算法則和運算律;(2)同時又從政治和歷史課中了解到一些與數(shù)系擴充的有關(guān)的重要歷史事件;(3)但是學(xué)生們對數(shù)的分類的掌握,主要依靠的是簡單記憶,當(dāng)然對數(shù)系的擴充過程以及與人類發(fā)展史的必然聯(lián)系不甚了解。
鑒于以上對教材和學(xué)情的分析,確定本節(jié)課的教學(xué)目標(biāo)如下:
1、知識目標(biāo):了解數(shù)系擴充的過程,理解復(fù)數(shù)的基本概念,掌握復(fù)數(shù)相等的充要條件
2、能力目標(biāo):通過對新概念的學(xué)習(xí)提高學(xué)生的認(rèn)知能力,在復(fù)數(shù)相等充要條件的研究過程中提高學(xué)生類比思考的能力;
3、情感目標(biāo):提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;拓展數(shù)學(xué)視野,使學(xué)生逐步認(rèn)識到數(shù)學(xué)的科學(xué)價值、應(yīng)用價值和文化價值。
為了達(dá)成以上教學(xué)目標(biāo),我將本節(jié)課設(shè)計成以下五個環(huán)節(jié):
首先是設(shè)置情境,演示數(shù)系擴充的過程;然后引入虛數(shù),講解復(fù)數(shù)的基本概念;接下來通過類比學(xué)習(xí),掌握復(fù)數(shù)相等的充要條件;完成了以上新概念的學(xué)習(xí)環(huán)節(jié)之后,利用課堂小結(jié)鞏固本節(jié)課主要內(nèi)容。最后進(jìn)行課外引申,激發(fā)學(xué)生課外學(xué)習(xí)興趣。
第一環(huán)節(jié)中,首先讓學(xué)生回憶從小學(xué)到高中認(rèn)識數(shù)的過程,然后結(jié)合人類發(fā)展史,通過幻燈片展示,用通俗易懂的語言向?qū)W生演示數(shù)系發(fā)展的過程。展示過程如下:
從遠(yuǎn)古圍獵時期人類常用的“結(jié)繩”和“堆石”記數(shù)方法中,逐步產(chǎn)生了自然數(shù)的概念;在分配勞動成果的過程中,產(chǎn)生了“正分?jǐn)?shù)”的概念;隨著人類商品交換時代的來臨,為了表示相反意義的量,又引入了“負(fù)數(shù)”的概念;至此人們認(rèn)為所有的數(shù)都可以用兩個互質(zhì)整數(shù)的比值來表示;然而,隨著人類種植活動的興盛,在丈量土地、計算長度、計算產(chǎn)量過程中產(chǎn)生了經(jīng)驗幾何學(xué),其中在勾股弦定理使用中發(fā)現(xiàn):在求兩直角邊長度都是“1”的直角三角形斜邊的時候,其斜
邊長度不能用任何有理數(shù)來表示,于是引入了無理數(shù),把數(shù)系擴充為實數(shù)。
在此,提出問題:數(shù)系發(fā)展的動力和原因是什么?由學(xué)生體會并回答。
這個過程中通過興趣學(xué)習(xí),讓學(xué)生了解數(shù)系擴充的過程,讓學(xué)生親自體會到“數(shù)的產(chǎn)生和發(fā)展,是人類生產(chǎn)和生活的需要”。之后,我還會指出數(shù)系的每一次擴充也是數(shù)學(xué)自身發(fā)展和完善的需要,并以解方程為例進(jìn)行說明。為了使方程理論更加完整數(shù)系一步步擴充到了實數(shù)。
通過第一環(huán)節(jié)的學(xué)習(xí),學(xué)生已經(jīng)了解了由自然數(shù)到實數(shù)的數(shù)系擴充過程。但是人們發(fā)現(xiàn)在實數(shù)范圍內(nèi)仍然無法完全解決代數(shù)方程根的問題,例如在解方程x?1?0時候,用任何實數(shù)都無法表達(dá)其方程的根,這就必須引入新的“數(shù)” 。2
這時,要鼓勵學(xué)生積極思考和嘗試創(chuàng)造,并肯定學(xué)生的思維結(jié)果。由此自然地引入“虛數(shù)單位i”,規(guī)定i2??1;接著要求學(xué)生嘗試求解方程x2??4和x2?2x?5?0的根,讓學(xué)生逐步發(fā)現(xiàn)復(fù)數(shù)的代數(shù)表示形式Z?a?bi。指出這些原來在實數(shù)范圍內(nèi)無解的方程,現(xiàn)在可以借助虛數(shù)單位表示出根來,這些根都是虛數(shù),與之對應(yīng),之前我們認(rèn)識的數(shù)都是實數(shù),實數(shù)和虛數(shù)統(tǒng)稱為復(fù)數(shù)。接下來,提出問題“形如Z?a?bi的數(shù)是否一定是虛數(shù)?”
在學(xué)生思考和討論之后,總結(jié)結(jié)論并講解實部虛部的概念,通過對實部虛部取值情況的分析,幫助學(xué)生掌握復(fù)數(shù)集的分類:當(dāng)虛部b=0時復(fù)數(shù)Z?a?bi表示的是實數(shù),當(dāng)虛部b≠0時復(fù)數(shù)Z?a?bi表示的是虛數(shù),特別的當(dāng)b≠0且a=0時復(fù)數(shù)Z?a?bi可寫成Z?bi,這樣的數(shù)是純虛數(shù)。至此完成了“引導(dǎo)學(xué)生從實數(shù)系到復(fù)數(shù)系擴充”的教學(xué)任務(wù)。結(jié)合學(xué)生認(rèn)識數(shù)的過程,引導(dǎo)學(xué)生發(fā)現(xiàn)“每個人認(rèn)識數(shù)字的歷程都和人類發(fā)展史中數(shù)系擴充的過程是一致的”,讓學(xué)生體會到數(shù)學(xué)體系、數(shù)學(xué)思維的發(fā)展會促進(jìn)人類全面素質(zhì)的提高,從而激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和熱情。
為了鞏固學(xué)生對復(fù)數(shù)概念的理解,與學(xué)生一起分析例一,邊啟發(fā)邊講解,注重實部虛部概念的表述,強調(diào)復(fù)數(shù)a?bi的實部是a,虛部是b,不是bi。之后要求學(xué)生思考課后練習(xí)第一題,以此加強對復(fù)數(shù)概念和復(fù)數(shù)集分類的掌握。最后通過提問的方式確認(rèn)學(xué)生已經(jīng)達(dá)到本環(huán)節(jié)教學(xué)目標(biāo)的要求。為了提高學(xué)生思維能力并加強學(xué)生對復(fù)數(shù)概念的理解,引導(dǎo)學(xué)生完成例一變式:
例1變式:當(dāng)m為何實數(shù)時,復(fù)數(shù)z?m2?m?2?(m2?1)i是
在第四問中,通過復(fù)數(shù)Z等于0的題目設(shè)置引導(dǎo)學(xué)生向復(fù)數(shù)相等充要條件的教學(xué)目標(biāo)過度。
第三環(huán)節(jié):進(jìn)入到第三個教學(xué)環(huán)節(jié),引導(dǎo)學(xué)生類比兩個二項式相等的條件,歸納出復(fù)數(shù)相等的充要條件,即實部與實部相等并且虛部與虛部相等。之后,詳細(xì)講解并板書例二,如幻燈片所示,起到教師的典范的作用。
例2:設(shè)x,y?R,并且(x?2)?2xi??3y?(y?1)i,求x,y的值.
在觀察學(xué)生反映,確認(rèn)學(xué)生已經(jīng)基本理解復(fù)數(shù)相等的充要條件之后,要求學(xué)生獨立完成課后練習(xí)第二題。經(jīng)過巡視,挑出學(xué)生代表展示其解析過程,表揚書寫比較工整的學(xué)生,以達(dá)到教育全班學(xué)生要規(guī)范嚴(yán)謹(jǐn)?shù)慕虒W(xué)目的。
為了引起學(xué)生重視并給學(xué)生提供思維能力升華的空間,鼓勵學(xué)生積極思考例二
例2變式:已知實數(shù)x與純虛數(shù)y滿足2x?1?2i?y,求x和y.
這個題目要由學(xué)生在組內(nèi)討論完成,為了保證教學(xué)效果,教師積極參與到小組討論中去,通過交流與觀察,由完成較好的小組推舉出代表為大家進(jìn)行講解,教師及時給予點評。
在完成了新知學(xué)習(xí)的環(huán)節(jié)之后,進(jìn)入到課堂小結(jié)。引導(dǎo)學(xué)生通讀一遍課本的同時回顧本節(jié)課的主要內(nèi)容,由學(xué)生自己總結(jié)出本節(jié)課的主要知識和方法。并在多媒體上演示這些內(nèi)容。以此達(dá)到提高學(xué)生歸納總結(jié)能力的教學(xué)目標(biāo)。
布置作業(yè)時,分兩部分:
1、書面作業(yè):課后習(xí)題A組第1、2題,書面作業(yè)設(shè)置的目的,就是通過這些題目的訓(xùn)練,達(dá)到促使學(xué)生課下復(fù)習(xí)思考,加深對復(fù)數(shù)相關(guān)概念的理解和應(yīng)用。
2、知識拓展作業(yè):小組成員交流合作,寫一篇與數(shù)系擴充和發(fā)展有關(guān)的小論文;以此促使學(xué)生對數(shù)學(xué)史進(jìn)行研究,延伸了數(shù)學(xué)課堂,并達(dá)到提高學(xué)生語言組織能力、邏輯思考能力的教學(xué)目的。
最后一個環(huán)節(jié),進(jìn)行課外引申,激發(fā)學(xué)生課外學(xué)習(xí)數(shù)學(xué)的興趣。通過提出“數(shù)系發(fā)展到復(fù)數(shù)之后還能不能繼續(xù)擴充?”這樣的問題,引發(fā)學(xué)生思考,并鼓勵學(xué)生了去解章末閱讀材料中“四元數(shù)”的.內(nèi)容,再推薦一本書目《虛數(shù)的故事》給興趣濃厚的學(xué)生提供課外拓展數(shù)學(xué)視野的平臺。
在最后,我對本節(jié)課的設(shè)計進(jìn)行一下自我反思。
在設(shè)計之初,考慮到復(fù)數(shù)基本概念比較容易掌握,但如果要求學(xué)生簡單硬性記憶,并不能達(dá)到新課程標(biāo)準(zhǔn)中三維目標(biāo)的要求。所以本節(jié)課設(shè)計理念就是:把數(shù)系擴充過程的詳細(xì)生動講解作為一個亮點,以此吸引學(xué)生的注意力,提高學(xué)生學(xué)習(xí)興趣,激發(fā)學(xué)生思考和創(chuàng)造的精神,并且期望能達(dá)到進(jìn)一步提高學(xué)生數(shù)學(xué)素養(yǎng)的最高目標(biāo)。
在課堂設(shè)計中,采用了教師示范、自學(xué)討論、學(xué)生互評等多元化的教學(xué)方式,在教學(xué)過程中時刻注重學(xué)生的參與,每個環(huán)節(jié)都采用有效的方法來確認(rèn)教學(xué)目標(biāo)的達(dá)成,保證課堂的時效性,圓滿完成本節(jié)課的教學(xué)任務(wù)。
我的說課到此結(jié)束,希望各位專家和老師給予指導(dǎo)。謝謝!
新概念2課件(篇5)
1、算法概念:
在數(shù)學(xué)上,現(xiàn)代意義上的“算法”通常是指可以用計算機來解決的某一類問題是程序或步驟,這些程序或步驟必須是明確和有效的,而且能夠在有限步之內(nèi)完成.
2. 算法的特點:
(1)有限性:一個算法的步驟序列是有限的,必須在有限操作之后停止,不能是無限的.
(2)確定性:算法中的每一步應(yīng)該是確定的并且能有效地執(zhí)行且得到確定的結(jié)果,而不應(yīng)當(dāng)是模棱兩可.
(3)順序性與正確性:算法從初始步驟開始,分為若干明確的步驟,每一個步驟只能有一個確定的后繼步驟,前一步是后一步的前提,只有執(zhí)行完前一步才能進(jìn)行下一步,并且每一步都準(zhǔn)確無誤,才能完成問題.
(4)不唯一性:求解某一個問題的解法不一定是唯一的,對于一個問題可以有不同的算法.
(5)普遍性:很多具體的問題,都可以設(shè)計合理的算法去解決,如心算、計算器計算都要經(jīng)過有限、事先設(shè)計好的步驟加以解決.
1、程序框圖基本概念:
(一)程序構(gòu)圖的概念:程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準(zhǔn)確、直觀地表示算法的圖形。
一個程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說明。
起止框 表示一個算法的起始和結(jié)束,是任何流程圖不可少的。
輸入、輸出框 表示一個算法輸入和輸出的信息,可用在算法中任何需要輸入、輸出的位置。
處理框 賦值、計算,算法中處理數(shù)據(jù)需要的算式、公式等分別寫在不同的用以處理數(shù)據(jù)的處理框內(nèi)。
判斷框 判斷某一條件是否成立,成立時在出口處標(biāo)明“是”或“Y”;不成立時明“否”或“N”。
學(xué)習(xí)這部分知識的時候,要掌握各個圖形的形狀、作用及使用規(guī)則,畫程序框圖的規(guī)則如下:
1、使用標(biāo)準(zhǔn)的圖形符號。
2、框圖一般按從上到下、從左到右的方向畫。
3、除判斷框外,大多數(shù)流程圖符號只有一個進(jìn)入點和一個退出點。判斷框具有超過一個退出點的唯一符號。
4、判斷框分兩大類,一類判斷框“是”與“否”兩分支的判斷,而且有且僅有兩個結(jié)果;另一類是多分支判斷,有幾種不同的結(jié)果。
5、在圖形符號內(nèi)描述的語言要非常簡練清楚。
1、順序結(jié)構(gòu):順序結(jié)構(gòu)是最簡單的算法結(jié)構(gòu),語句與語句之間,框與框之間是按從上到下的順序進(jìn)行的,它是由若干個依次執(zhí)行的處理步驟組成的,它是任何一個算法都離不開的一種基本算法結(jié)構(gòu)。
順序結(jié)構(gòu)在程序框圖中的體現(xiàn)就是用流程線將程序框自上而下地連接起來,按順序執(zhí)行算法步驟。如在示意圖中,A框和B框是依次執(zhí)行的,只有在執(zhí)行完A框指定的操作后,才能接著執(zhí)行B框所指定的操作。
2、條件結(jié)構(gòu):
條件結(jié)構(gòu)是指在算法中通過對條件的判斷根據(jù)條件是否成立而選擇不同流向的算法結(jié)構(gòu)。條件P是否成立而選擇執(zhí)行A框或B框。無論P條件是否成立,只能執(zhí)行A框或B框之一,不可能同時執(zhí)行A框和B框,也不可能A框、B框都不執(zhí)行。一個判斷結(jié)構(gòu)可以有多個判斷框。
3、循環(huán)結(jié)構(gòu):在一些算法中,經(jīng)常會出現(xiàn)從某處開始,按照一定條件,反復(fù)執(zhí)行某一處理步驟的情況,這就是循環(huán)結(jié)構(gòu),反復(fù)執(zhí)行的處理步驟為循環(huán)體,顯然,循環(huán)結(jié)構(gòu)中一定包含條件結(jié)構(gòu)。循環(huán)結(jié)構(gòu)又稱重復(fù)結(jié)構(gòu),循環(huán)結(jié)構(gòu)可細(xì)分為兩類:
(1)、一類是當(dāng)型循環(huán)結(jié)構(gòu),如下左圖所示,它的功能是當(dāng)給定的條件P成立時,執(zhí)行A框,A框執(zhí)行完畢后,再判斷條件P是否成立,如果仍然成立,再執(zhí)行A框,如此反復(fù)執(zhí)行A框,直到某一次條件P不成立為止,此時不再執(zhí)行A框,離開循環(huán)結(jié)構(gòu)。
(2)、另一類是直到型循環(huán)結(jié)構(gòu),如下右圖所示,它的功能是先執(zhí)行,然后判斷給定的條件P是否成立,如果P仍然不成立,則繼續(xù)執(zhí)行A框,直到某一次給定的條件P成立為止,此時不再執(zhí)行A框,離開循環(huán)結(jié)構(gòu)。
注意:1循環(huán)結(jié)構(gòu)要在某個條件下終止循環(huán),這就需要條件結(jié)構(gòu)來判斷。因此,循環(huán)結(jié)構(gòu)中一定包含條件結(jié)構(gòu),但不允許“死循環(huán)”。2在循環(huán)結(jié)構(gòu)中都有一個計數(shù)變量和累加變量。計數(shù)變量用于記錄循環(huán)次數(shù),累加變量用于輸出結(jié)果。計數(shù)變量和累加變量一般是同步執(zhí)行的,累加一次,計數(shù)一次。
(2)輸入語句的作用是實現(xiàn)算法的輸入信息功能;(3)“提示內(nèi)容”提示用戶輸入什么樣的信息,變量是指程序在運行時其值是可以變化的量;(4)輸入語句要求輸入的值只能是具體的常數(shù),不能是函數(shù)、變量或表達(dá)式;(5)提示內(nèi)容與變量之間用分號“;”隔開,若輸入多個變量,變量與變量之間用逗號“,”隔開。
(2)輸出語句的作用是實現(xiàn)算法的輸出結(jié)果功能;(3)“提示內(nèi)容”提示用戶輸入什么樣的信息,表達(dá)式是指程序要輸出的數(shù)據(jù);(4)輸出語句可以輸出常量、變量或表達(dá)式的值以及字符。
(2)賦值語句的作用是將表達(dá)式所代表的值賦給變量;
(3)賦值語句中的“=”稱作賦值號,與數(shù)學(xué)中的等號的意義是不同的。賦值號的左右兩邊不能對換,它將賦值號右邊的表達(dá)式的值賦給賦值號左邊的變量;
(4)賦值語句左邊只能是變量名字,而不是表達(dá)式,右邊表達(dá)式可以是一個數(shù)據(jù)、常量或算式;(5)對于一個變量可以多次賦值。
注意:①賦值號左邊只能是變量名字,而不能是表達(dá)式。如:2=X是錯誤的。②賦值號左右不能對換。如“A=B”“B=A”的含義運行結(jié)果是不同的。③不能利用賦值語句進(jìn)行代數(shù)式的演算。(如化簡、因式分解、解方程等)④賦值號“=”與數(shù)學(xué)中的等號意義不同。
1、條件語句的一般格式有兩種:(1)IF—THEN—ELSE語句;(2)IF—THEN語句。2、IF—THEN—ELSE語句
循環(huán)結(jié)構(gòu)是由循環(huán)語句來實現(xiàn)的。對應(yīng)于程序框圖中的兩種循環(huán)結(jié)構(gòu),一般程序設(shè)計語言中也有當(dāng)型(WHILE型)和直到型(UNTIL型)兩種語句結(jié)構(gòu)。即WHILE語句和UNTIL語句。
當(dāng)計算機遇到WHILE語句時,先判斷條件的真假,如果條件符合,就執(zhí)行WHILE與WEND之間的循環(huán)體;然后再檢查上述條件,如果條件仍符合,再次執(zhí)行循環(huán)體,這個過程反復(fù)進(jìn)行,直到某一次條件不符合為止。這時,計算機將不執(zhí)行循環(huán)體,直接跳到WEND語句后,接著執(zhí)行WEND之后的語句。因此,當(dāng)型循環(huán)有時也稱為“前測試型”循環(huán)。
直到型循環(huán)又稱為“后測試型”循環(huán),從UNTIL型循環(huán)結(jié)構(gòu)分析,計算機執(zhí)行該語句時,先執(zhí)行一次循環(huán)體,然后進(jìn)行條件的判斷,如果條件不滿足,繼續(xù)返回執(zhí)行循環(huán)體,然后再進(jìn)行條件的判斷,這個過程反復(fù)進(jìn)行,直到某一次條件滿足時,不再執(zhí)行循環(huán)體,跳到LOOP UNTIL語句后執(zhí)行其他語句,是先執(zhí)行循環(huán)體后進(jìn)行條件判斷的循環(huán)語句。
1、輾轉(zhuǎn)相除法。也叫歐幾里德算法,用輾轉(zhuǎn)相除法求最大公約數(shù)的步驟如下:
(1):用較大的數(shù)m除以較小的數(shù)n得到一個商 和一個余數(shù) ;(2):若 =0,則n為m,n的最大公約數(shù);若 ≠0,則用除數(shù)n除以余數(shù) 得到一個商 和一個余數(shù) ;(3):若 =0,則 為m,n的最大公約數(shù);若 ≠0,則用除數(shù) 除以余數(shù) 得到一個商 和一個余數(shù) ;…… 依次計算直至 =0,此時所得到的 即為所求的最大公約數(shù)。
我國早期也有求最大公約數(shù)問題的算法,就是更相減損術(shù)。在《九章算術(shù)》中有更相減損術(shù)求最大公約數(shù)的步驟:可半者半之,不可半者,副置分母?子之?dāng)?shù),以少減多,更相減損,求其等也,以等數(shù)約之。
翻譯為:(1):任意給出兩個正數(shù);判斷它們是否都是偶數(shù)。若是,用2約簡;若不是,執(zhí)行第二步。(2):以較大的數(shù)減去較小的數(shù),接著把較小的數(shù)與所得的差比較,并以大數(shù)減小數(shù)。繼續(xù)這個操作,直到所得的數(shù)相等為止,則這個數(shù)(等數(shù))就是所求的最大公約數(shù)。
3、輾轉(zhuǎn)相除法與更相減損術(shù)的區(qū)別:
(1)都是求最大公約數(shù)的方法,計算上輾轉(zhuǎn)相除法以除法為主,更相減損術(shù)以減法為主,計算次數(shù)上輾轉(zhuǎn)相除法計算次數(shù)相對較少,特別當(dāng)兩個數(shù)字大小區(qū)別較大時計算次數(shù)的區(qū)別較明顯。
(2)從結(jié)果體現(xiàn)形式來看,輾轉(zhuǎn)相除法體現(xiàn)結(jié)果是以相除余數(shù)為0則得到,而更相減損術(shù)則以減數(shù)與差相等而得到
1、秦九韶算法概念:
f(x)=anxn+an-1xn-1+….+a1x+a0求值問題
f(x)=anxn+an-1xn-1+….+a1x+a0=( anxn-1+an-1xn-2+….+a1)x+a0 =(( anxn-2+an-1xn-3+….+a2)x+a1)x+a0
=......=(...( anx+an-1)x+an-2)x+...+a1)x+a0
求多項式的值時,首先計算最內(nèi)層括號內(nèi)依次多項式的值,即v1=anx+an-1
v2=v1x+an-2 v3=v2x+an-3 ...... vn=vn-1x+a0這樣,把n次多項式的求值問題轉(zhuǎn)化成求n個一次多項式的值的問題。
基本思想:插入排序的思想就是讀一個,排一個。將第1個數(shù)放入數(shù)組的第1個元素中,以后讀入的數(shù)與已存入數(shù)組的數(shù)進(jìn)行比較,確定它在從大到小的排列中應(yīng)處的位置.將該位置以及以后的元素向后推移一個位置,將讀入的新數(shù)填入空出的位置中.(由于算法簡單,可以舉例說明)
基本思想:依次比較相鄰的兩個數(shù),把大的放前面,小的放后面.即首先比較第1個數(shù)和第2個數(shù),大數(shù)放前,小數(shù)放后.然后比較第2個數(shù)和第3個數(shù)......直到比較最后兩個數(shù).第一趟結(jié)束,最小的一定沉到最后.重復(fù)上過程,仍從第1個數(shù)開始,到最后第2個數(shù)...... 由于在排序過程中總是大數(shù)往前,小數(shù)往后,相當(dāng)氣泡上升,所以叫冒泡排序.
1、概念:進(jìn)位制是一種記數(shù)方式,用有限的數(shù)字在不同的位置表示不同的數(shù)值??墒褂脭?shù)字符號的個數(shù)稱為基數(shù),基數(shù)為n,即可稱n進(jìn)位制,簡稱n進(jìn)制?,F(xiàn)在最常用的是十進(jìn)制,通常使用10個阿拉伯?dāng)?shù)字0-9進(jìn)行記數(shù)。對于任何一個數(shù),我們可以用不同的進(jìn)位制來表示。比如:十進(jìn)數(shù)57,可以用二進(jìn)制表示為111001,也可以用八進(jìn)制表示為71、用十六進(jìn)制表示為39,它們所代表的數(shù)值都是一樣的。
把學(xué)過的數(shù)學(xué)知識再進(jìn)行學(xué)習(xí),以達(dá)到深入理解、融會貫通、精煉概括、牢固掌握的目的。復(fù)習(xí)應(yīng)與聽課緊密銜接、邊閱讀教材邊回憶聽課內(nèi)容或查看課堂筆記,及時解決存在的知識缺陷與疑問。
(1)復(fù)習(xí)筆記和卷紙。
對學(xué)習(xí)的內(nèi)容務(wù)求弄懂,切實理解掌握。不能僅停留在把已學(xué)的知識溫習(xí)記憶一遍的要求上,而要去努力思考新知識是怎樣產(chǎn)生的,是如何展開或得到證明的,其實質(zhì)是什么,應(yīng)用它如何拓展加寬等。要勤于復(fù)習(xí)(知識點、典型題等),經(jīng)??矗磸?fù)看---這就是心理學(xué)上講的艾賓浩斯遺忘曲線所揭示的道理。建議學(xué)生采用放電影的方法。
完成作業(yè)后,把書和筆記合上,回憶課堂上的內(nèi)容,如定律、公式及例題解答思路、方法等,盡量完整的在大腦中重現(xiàn)。再打開課本及筆記進(jìn)行對照,重點復(fù)習(xí)遺漏的知識點。這既鞏固了當(dāng)天上課內(nèi)容,也可查漏補缺。
準(zhǔn)備一個錯題本,記載做過的錯題再次演練。對于自己曾經(jīng)做錯的題目,回想一下為什么會錯、錯在什么地方。自己曾經(jīng)犯錯誤的地方,往往是自己最薄弱的地方,僅有當(dāng)時的訂正是不夠的,還要進(jìn)行適當(dāng)?shù)膹娀?xùn)練。
要經(jīng)常與同學(xué)研究,或問老師,不要積攢過多問題。更不要把不會做的題完全寄托在課堂上等待老師去講。
自然數(shù)是指用以計量事物的件數(shù)或表示事物次序的數(shù)。即用數(shù)碼0,1,2,3,4……所表示的數(shù)。自然數(shù)由0開始,一個接一個,組成一個無窮的集體。自然數(shù)有有序性,無限性。分為偶數(shù)和奇數(shù),合數(shù)和質(zhì)數(shù)等。
新概念2課件10篇
如果您需要相關(guān)的“新概念2課件”資料,可以在以下內(nèi)容中查找,同時,如果您覺得本文有用,也可以分享給身邊的朋友們哦。每一堂課上,老師都會準(zhǔn)備教案和課件,因此,大家也可以開始準(zhǔn)備自己的教案和課件,以此來提升自己的教學(xué)水平。教案是教師提高教學(xué)水平的一種有效手段。
新概念2課件【篇1】
設(shè)計意圖:
空間方面對孩子們來說是比較抽象的。為了讓幼兒通過游戲去自由探索空間方位的神秘,我就結(jié)合中班整合設(shè)計了以下活動,讓幼兒在玩中學(xué)。
活動目標(biāo):
1、引導(dǎo)幼兒學(xué)會辨別物體的空間位置,并能正確數(shù)出7以內(nèi)的數(shù)量。
2、培養(yǎng)幼兒辨別空間方位的能力。
3、體驗數(shù)學(xué)活動帶來的樂趣。
4、培養(yǎng)幼兒比較和判斷的能力。
5、激發(fā)幼兒學(xué)習(xí)興趣,體驗數(shù)學(xué)活動的快樂。
活動準(zhǔn)備:
幼兒操作材料(1、2)、范畫(1、2)、7以內(nèi)數(shù)量的圖片,錄音機、錄音帶《火車開來了》、課前教會幼兒唱《小貓歌》和會玩躲小貓的游戲。
活動過程:
一、游戲?qū)耄?/p>
1、聽音樂入室:《火車開來了》引起幼兒的興趣。
2、——“小朋友,看這里有很多椅子,我們找個位置坐下來?!?/p>
3、游戲:躲小貓“等一下老師和你們玩“躲小貓”的游戲,老師來做貓媽媽去抓小貓,你們做小貓去躲。貓媽媽找不到你們的話,等一下你們要告訴貓媽媽“你剛剛躲在哪里的什么地方?”
二、辨別空間方位:
1、提問:“有哪只小貓告訴我,你剛剛躲在哪里的什么地方?”
2、出示范畫(1):
(1)“誰來告訴我,你在圖片上看到什么,?有多少?”
(2)出示蝴蝶和蝸牛圖片:“誰也來了,它在哪里呢?有多少?”
3、出示范畫(2):“它是誰啊?”
今天喜洋洋也來和我們一起做游戲。
三、游戲:拼一拼
1、我這里有一些數(shù)字寶寶,等一下我會把數(shù)字寶寶放在喜洋洋頭不同的方位,讓你們根據(jù)所給的來拼。如:教師在喜洋洋頭的上面放數(shù)字寶寶2,我就在操作材料中找出與數(shù)2相同數(shù)量的拼在喜洋洋頭的上面。
2、幼兒拼一拼:
3、請個別幼兒來說說成品,教師小結(jié)。
四、寫一寫
1、出示范例:“今天老師出了一些題來考考小朋友,看看你們今天學(xué)的空間方位懂了多少。”
2、教師示范。
3、幼兒做題:
五、活動結(jié)束:火車開來了小朋友今天我們都學(xué)到了很多本領(lǐng),我們一起去當(dāng)小老師教一教弟弟妹妹吧。
活動反思:
孩子們對活動很感興趣,他們還很投入到活動中。他們都能積極舉手發(fā)言,還能用完整的話來回答。不過幼兒對辨別空間方位上還不大了解還得繼續(xù)培養(yǎng)和鞏固?;顒娱_展的時間有點長。以后我會吸取更多的教學(xué)方法爭取上的更好。
新概念2課件【篇2】
摘要:在日常教學(xué)中,結(jié)合對學(xué)生容易發(fā)生差錯的一些問題的分析,探討提高物理概念教學(xué)效率的策略和方法,以提高課堂教學(xué)效率和學(xué)生的解決物理問題的能力,從而激發(fā)學(xué)生學(xué)習(xí)物理的興趣,建立起學(xué)生學(xué)習(xí)物理的信心。
物理概念是物理知識的重要組成部分,是學(xué)好物理定律、公式和理論的基礎(chǔ)。在物理教學(xué)中正確建立物理概念是學(xué)生學(xué)習(xí)過程中一個質(zhì)的飛躍,是物理教學(xué)的任務(wù),也是提高物理教學(xué)質(zhì)量的關(guān)鍵。物理概念來源于物理實踐、物理事實,它是由實踐得來的感性認(rèn)識而上升成的理論認(rèn)識,再回到實踐中去,用來指導(dǎo)實踐,并予以檢驗和深化。若學(xué)生只知道物理事實,而不能上升到物理概念,就不能說學(xué)到了物理知識;若學(xué)生對物理概念不理解或理解片面,就談不上對物理概念的認(rèn)識掌握;若學(xué)生對物理概念理解不透、混淆不清,就難以進(jìn)行判斷、推理等抽象活動,更不能正確地應(yīng)用定理、公式來解決實際問題。
從認(rèn)識論的角度來看,物理學(xué)家探索物理的方法與物理教學(xué)的方法基本上是一致的。不過前者是物理學(xué)家尋覓直接經(jīng)驗,后者是學(xué)生在教材、教師的安排、引導(dǎo)下有目的地學(xué)習(xí)間接知識。所以物理教學(xué)不可能像物理學(xué)家創(chuàng)立概念、發(fā)現(xiàn)定律那樣親身經(jīng)歷、事事實驗。這就是說,一些比較抽象的物理概念的形成,就可能因無法通過實驗,而只能采用其它方法。
1、類比方法:如用水流類比電流,用水壓類比電壓,用電場類比磁場等。
3、演繹推理:如根據(jù)磁場對電流的作用力。公式推導(dǎo)出洛侖茲力公式等等。
4、比喻方法:如用地勢降落的陡度比喻電勢降落的陡度,使“電勢降落的陡度”這一概念一目了然。
5、理想化思維:在物理學(xué)中,實際研究對象和它所處的環(huán)境一般比較復(fù)雜,決定的因素和受約束的條件很多,如果不分主次輕重地考慮一切因素和條件,那么必然會使問題復(fù)雜化而無法研究。為了方便研究,暫時拋開次要的或非本質(zhì)的因素,割斷事物的某些聯(lián)系,保留實際對象的某些主要性質(zhì)和主要條件,加以概括,這種形成概念的方法,就稱為理想化思維。物理學(xué)中所研究的對象一般都是理想化的物理模型。研究物理學(xué)如果不采用適當(dāng)?shù)奈锢砟P停敲淳秃茈y理解物理現(xiàn)象的本質(zhì),一個物理模型勝過無數(shù)個事實。
學(xué)生掌握了物理概念后,在用它解決問題過程中,對概念的理解將會更深刻,內(nèi)容也會更豐富,且易于鞏固。
物理本身就是一門實踐性很強的自然學(xué)科,物理概念都是從實踐中總結(jié)出來的,所以只有把物理概念應(yīng)用于實踐,應(yīng)用于解決實際問題,才能體現(xiàn)出物理概念的`價值與作用,才能提高學(xué)生學(xué)習(xí)物理的興趣,使物理知識不在抽象、難懂。
根據(jù)人的記憶規(guī)律,如果把所學(xué)的概念納入一個網(wǎng)絡(luò),就不容易遺忘,而且在解決問題時也更容易快速檢索出所需的概念。在概念網(wǎng)絡(luò)中激活任意一個網(wǎng)點,都將引出相關(guān)的聯(lián)想。
概念圖是表示概念和概念之間相互關(guān)系的空間網(wǎng)絡(luò)結(jié)構(gòu)圖。概念圖包括概念、分支和層次、概念間的連接線和連接語、例子等幾部分。概念圖的制作可以用紙和筆,還可用專門的繪圖軟件。
雖然概念圖的制作沒有嚴(yán)格的程序規(guī)范,但要制作一個較完整的概念圖,一般有以下幾個步驟: 選取一個熟悉的知識領(lǐng)域,羅列出盡可能多的概念; 確定關(guān)鍵概念和概念等級; 初步擬定概念圖的縱向分層和橫向分支; 建立概念之間的連接,并在連線上用連接詞標(biāo)明兩者之間的關(guān)系。
通過制作概念圖可以促使學(xué)生積極動手和思考,使他們能夠從整體上掌握基本知識結(jié)構(gòu)和各個知識間的關(guān)系;通過制作概念圖,可促進(jìn)新舊概念的整合,形成概念網(wǎng)絡(luò);隨著知識的積累,網(wǎng)絡(luò)的編織將更加完整。
另外,概念圖的形成是學(xué)生經(jīng)歷一次頭腦風(fēng)暴的過程。這既是原有思維的呈現(xiàn),更是創(chuàng)造性思維的激發(fā)過程。當(dāng)用概念圖把知識展示出來時,知識結(jié)構(gòu)會變得更加清晰,這時很容易產(chǎn)生新想法。概念圖中的交叉連接需要橫向思維,是發(fā)現(xiàn)和形成概念間新的關(guān)系、產(chǎn)生新知識的重要一環(huán)。
實踐證明,制作概念圖是學(xué)生樂于接受的一種學(xué)習(xí)方式,因為它提供了一種有效的思維工具,為學(xué)生主動建構(gòu)概念開啟了一扇門。
物理概念按不同的劃分標(biāo)準(zhǔn),可分矢量和標(biāo)量,狀態(tài)量和過程量,特性量和屬性量等。掌握了概念的種類后,學(xué)生對概念就會有更深的理解。概念的種類是概念教學(xué)中不可或缺的一步,如果講得不清、不透徹就會影響學(xué)生解決相關(guān)物理問題的能力。如講授加速度概念時,首先讓學(xué)生知道這是一個人們?yōu)榱搜芯窟\動規(guī)律的需要,通過對運動現(xiàn)象的觀察、分析、抽象概括出來的概念。再引導(dǎo)學(xué)生將加速度和速度兩個概念用比較法進(jìn)行分析。此外,提醒學(xué)生要明確加速度跟速度、速度增量的聯(lián)系與區(qū)別:加速度的方向決定于物體所受合力的方向,跟速度增量的方向一致,但不一定跟速度的方向一致;負(fù)加速度不一定就是勻減速運動,反之亦然。
綜上所述,物理概念教學(xué)是物理教學(xué)中最重要的環(huán)節(jié),只有搞好物理概念教學(xué),才能提高學(xué)生學(xué)習(xí)物理的興趣,為進(jìn)一步學(xué)習(xí)物理規(guī)律和定律打下良好的基礎(chǔ)。
新概念2課件【篇3】
二面角的概念是普通高中課程標(biāo)準(zhǔn)人教A版數(shù)學(xué)必修2第2章第3節(jié)兩個平面垂直的判定中的內(nèi)容。它是在學(xué)生學(xué)習(xí)了異面直線所稱的角、直線與平面所成的角之后,有一個要學(xué)習(xí)的空間角,而二面角的本質(zhì)特征時候從度量的角度,通過二面角的平面角揭示了平面與平面的位置關(guān)系(垂直關(guān)系是其中的一種特殊關(guān)系),它是為以后從度量角研究面與面的非垂直關(guān)系奠定了基礎(chǔ),因此二面角的內(nèi)容在教材中起到了一個承上啟下的作用,同時,通過本節(jié)課的學(xué)習(xí),學(xué)生的空間想象能力和邏輯思維能力進(jìn)一步得到提升。
高一學(xué)生知識經(jīng)驗已較為豐富,他們的智力發(fā)展已到了形式運演階段,具備了較強的抽象思維能力和演繹推理能力,針對學(xué)生主觀能動性強,思維活躍的特點,我在授課中主要以問題為紐帶引導(dǎo)學(xué)生發(fā)現(xiàn)問題―類比聯(lián)想―解決問題。
能正確概述“二面角”、“二面角的平面角”的概念,會做二面角的平面角。
利用類比的方法推理二面角的有關(guān)概念,提升知識遷移的能力。
營造和諧、輕松的學(xué)習(xí)氛圍,通過學(xué)生之間,師生之間的交流、合作和評價達(dá)成共識、共享、共進(jìn),實現(xiàn)教學(xué)相長和共同發(fā)展。
數(shù)學(xué)是一門培養(yǎng)人思維,發(fā)展人思維的重要學(xué)科。因此,在教學(xué)中,不僅要使學(xué)生“知其然”而且要使學(xué)生“知其所以然”。所以在學(xué)生為主體,教師為主導(dǎo)的原則下,要充分揭示獲取知識和方法的思維過程。因此本節(jié)課我以建構(gòu)主義的“創(chuàng)設(shè)問題情境―提出數(shù)學(xué)問題―嘗試解決問題―驗證解決方法”為主,主要采用觀察、啟發(fā)、類比、引導(dǎo)、探索相結(jié)合的教學(xué)方法。在教學(xué)手段上,則采用多媒體與模型相結(jié)合,將抽象問題形象化,使教學(xué)目標(biāo)體現(xiàn)的更加完美。
首先我會用多媒體課件展示生活中的一些模型,請學(xué)生觀察:
1.打開書本的過程;
2.發(fā)射人造地球衛(wèi)星,要根據(jù)需要使衛(wèi)星的軌道平面與地球的赤道平面成一定的角度;
3.修筑水壩時,為了使水壩堅固耐久,須使水壩坡面與水平面成適當(dāng)?shù)慕嵌?
引導(dǎo)學(xué)生說出書本的兩個面、水壩面與底面,衛(wèi)星軌道面與地球赤道面均是呈一定的角度關(guān)系。
【設(shè)計意圖】通過一系列的模型與動畫展示,從生活中提取模型,讓學(xué)生由感性認(rèn)識出發(fā),從多種模型中抽象出二面角的概念,這符合認(rèn)知的一般規(guī)律。同時,也讓學(xué)生體會到數(shù)學(xué)來源于生活,也服務(wù)于生活,增加學(xué)生學(xué)習(xí)本節(jié)內(nèi)容的興趣
利用多媒體展示初中所學(xué)的'平面角的形成過程,并向?qū)W生提問,可否根據(jù)平面內(nèi)角的定義給上述的這些圖形下一個定義。
在提問過程中注意引導(dǎo)學(xué)生進(jìn)行類比,大膽概括。同時,對學(xué)生的表現(xiàn)加以肯定,注意規(guī)范學(xué)生的語言。最后引出二面角的概念。在此要注意講解半平面的概念,即平面內(nèi)的一條直線把平面分成兩部分,這兩部分通常稱為半平面。并根據(jù)具體模型講解二面角的棱,面等相關(guān)概念。
接下來注意講解二面角表示法:α-a-β或α-AB-β.在此要注意分析講解三個量的含義。
然后是師生同步,練習(xí)畫二面角。著重練習(xí)近平臥式和直立式,可請學(xué)生同桌之間互相點評,強調(diào)平行關(guān)系。
一般地說,量角器只能測量“平面角”讓學(xué)生大膽猜想如何去測量二面角的大小。學(xué)生類比平面角,會想到將空間角化為平面角.
教師給出二面角的平面交的定義:以二面角的棱上任意一點為端點,在兩個面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角.
教師進(jìn)一步對定義進(jìn)行深化,請學(xué)生找出“二面角的平面角”的定義三個主要特征,即點在棱上、線在面內(nèi)、與棱垂直
并通過實物展示讓學(xué)生認(rèn)識直二面角。
接下來,師生同步,共同作出某一二面角的平面角,注意點P的三種情況:
【設(shè)計意圖】培養(yǎng)學(xué)生的觀察能力,學(xué)生會發(fā)現(xiàn)身邊很多的圖形都和教師展示的模型一樣。同時,這樣的教學(xué)也符合認(rèn)識事物的一般規(guī)律:由感性認(rèn)識到理性認(rèn)識,再到感性認(rèn)識,再到理性認(rèn)識。
提問二面角的取值范圍,強調(diào)一般規(guī)定為[0,π]。重點要讓學(xué)生理解0和的區(qū)別。
為了讓學(xué)生切實掌握二面角的概念及其求法,設(shè)計兩個環(huán)節(jié):通過例題講解讓學(xué)生學(xué)會運用。通過課堂作業(yè),讓學(xué)生鞏固新知。
首先是基礎(chǔ)題,利用概念判斷命題的真假,如:
(2)角的兩邊分別在二面角的兩個面內(nèi),則這個角是二面角的平面角。( )
【設(shè)計意圖】通過這幾道判斷題,鞏固學(xué)生對二面角概念的理解。
此外我會在添加兩道以正方體為模型,求解兩個平面的二面角的題目,抽取兩位同學(xué)在黑板上扮演,我將會在巡視過程中對部分學(xué)生加以指導(dǎo)。最后對黑板上的兩名學(xué)生的解題過程加以分析完善,規(guī)范的書寫格式。
教師口頭提問:
(1)這節(jié)課學(xué)習(xí)的主要內(nèi)容是什么?
(2)在數(shù)學(xué)問題的解決過程中運用了哪些數(shù)學(xué)思想?
設(shè)計意圖:啟發(fā)式的課堂小結(jié)方式能讓學(xué)生主動回顧本節(jié)課所學(xué)的知識點。也促使學(xué)生對知識網(wǎng)絡(luò)進(jìn)行主動建構(gòu)。
作業(yè):以正方體為模型請找出一個所成角度為四十五度的二面角,并證明。
設(shè)計意圖:利用正方體模型,激發(fā)學(xué)生的探索欲望,體現(xiàn)分層教學(xué)的思想,才能達(dá)到因材施教的目的。
新概念2課件【篇4】
教學(xué)目標(biāo):
1、知識與技能:
1)了解導(dǎo)數(shù)概念的實際背景;
2)理解導(dǎo)數(shù)的概念、掌握簡單函數(shù)導(dǎo)數(shù)符號表示和基本導(dǎo)數(shù)求解方法;
3)理解導(dǎo)數(shù)的幾何意義;
4)能進(jìn)行簡單的導(dǎo)數(shù)四則運算。
2、過程與方法:
先理解導(dǎo)數(shù)概念背景,培養(yǎng)觀察問題的能力;再掌握定義和幾何意義,培養(yǎng)轉(zhuǎn)化問題的能力;最后求切線方程及運算,培養(yǎng)解決問題的能力。
3、情態(tài)及價值觀;
讓學(xué)生感受數(shù)學(xué)與生活之間的聯(lián)系,體會數(shù)學(xué)的美,激發(fā)學(xué)生學(xué)習(xí)興趣與主動性。
教學(xué)重點:
1、導(dǎo)數(shù)的求解方法和過程;
2、導(dǎo)數(shù)公式及運算法則的熟練運用。
教學(xué)難點:
1、導(dǎo)數(shù)概念及其幾何意義的理解;
2、數(shù)形結(jié)合思想的靈活運用。
教學(xué)課型:復(fù)習(xí)課(高三一輪)
教學(xué)課時:約1課時
新概念2課件【篇5】
《任意角》教案
教學(xué)目標(biāo):要求學(xué)生掌握用“旋轉(zhuǎn)”定義角的概念,理解任意角的概念,學(xué)會在平面內(nèi)建立適當(dāng)?shù)淖鴺?biāo)系來討論角;并進(jìn)而理解“正角”“負(fù)角”“象限角”“終邊相同的角”的含義。
教學(xué)重點:理解“正角”“負(fù)角”“象限角”“終邊相同的角”的含義
教學(xué)難點:“旋轉(zhuǎn)”定義角
課標(biāo)要求:了解任意角的概念
教學(xué)過程:
一、引入
同學(xué)們在初中時,曾初步接觸過三角函數(shù),那時的運用僅限于計算一些特殊的三角函數(shù)值、研究一些三角形中簡單的邊角關(guān)系等。三角函數(shù)也是高中數(shù)學(xué)的一個重要內(nèi)容,在今后的學(xué)習(xí)中大家會發(fā)現(xiàn)三角學(xué)有著極其豐富的內(nèi)容,它能夠簡單地解決許多數(shù)學(xué)問題,在中學(xué)數(shù)學(xué)中有著非常廣泛的應(yīng)用。
二、新課
1.回憶:初中是任何定義角的?
(從一個點出發(fā)引出的兩條射線構(gòu)成的幾何圖形)這種概念的優(yōu)點是形象、直觀、容易理解,但它的弊端在于“狹隘”
師:初中時,我們已學(xué)習(xí)了0○~360○角的概念,它是如何定義的呢?
生:角可以看成平面內(nèi)一條射線繞著端點從一個位置旋轉(zhuǎn)到另一個位置所成的圖形。
師:如圖1,一條射線由原來的位置OA,繞著它的端點O按逆時針方向旋轉(zhuǎn)到終止位置OB,就形成角α。旋轉(zhuǎn)開始時的射線OA叫做角的始邊,OB叫終邊,射線的端點O叫做叫α的頂點。
師:在體操比賽中我們經(jīng)常聽到這樣的術(shù)語:“轉(zhuǎn)體720o”(即轉(zhuǎn)體2周),“轉(zhuǎn)體1080o”(即轉(zhuǎn)體3周);再如時鐘快了5分鐘,現(xiàn)要校正,需將分針怎樣旋轉(zhuǎn)?如果慢了5分鐘,又該如何校正?
生:逆時針旋轉(zhuǎn)300;順時針旋轉(zhuǎn)300.師:(1)用扳手?jǐn)Q螺母;(2)跳水運動員身體旋轉(zhuǎn).說明旋轉(zhuǎn)第二周、第三周……,則形成了更大范圍內(nèi)的角,這些角顯然超出了我們已有的認(rèn)識范圍。本節(jié)課將在已掌握 ~ 角的范圍基礎(chǔ)上,重新給出角的定義,并研究這些角的分類及記法.
2.角的概念的推廣:
角可以看成平面內(nèi)一條射線繞著端點從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形 3.正角、負(fù)角、零角概念
師:為了區(qū)別起見,我們把按逆時針方向旋轉(zhuǎn)所形成的角叫正角,如圖2中的角為正角,它00等于30與750;我們把按逆時針方向旋轉(zhuǎn)所形成的角叫正角,那么同學(xué)們猜猜看,負(fù)角怎么規(guī)定呢?零角呢?
生:按順時針方向旋轉(zhuǎn)所形成的角叫負(fù)角,如果一條射線沒有作任何旋轉(zhuǎn),我們稱它形成了一個零角。
00師:如圖3,以O(shè)A為始邊的角α=-150,β=-660。特別地,當(dāng)一條射線沒有作任何旋轉(zhuǎn)時,我們也認(rèn)為這是形成了一個角,并把這個角稱為零角。師:好,角的概念經(jīng)過這樣的推廣之后,就應(yīng)該包
括正角、負(fù)角、零角。這里還有一點要說明:為了簡單起見,在不引起混淆的前提下,“角α”或“∠α”可簡記為α.4.象限角
師:在今后的學(xué)習(xí)中,我們常在直角坐標(biāo)系內(nèi)討論角,為此我們必須了解象限角這個概念。同學(xué)們已經(jīng)經(jīng)過預(yù)習(xí),請一位同學(xué)回答什么叫:象限角?
生:角的頂點與原點重合,角的始邊與x軸的非負(fù)半軸重合。那么,角的終邊(除端點外)在第幾象限,我們就說這個角是第幾象限角。
師:很好,從剛才這位同學(xué)的回答可以知道,她已經(jīng)基本理解了“象限角”的概念了。下面請大家將書上象限角的定義劃好,同時思考這么三個問題:
1.定義中說:角的始邊與x軸的非負(fù)半軸重合,如果改為與x軸的正半軸重合行不行,為什么?
2.定義中有個小括號,內(nèi)容是:除端點外,請問課本為什么要加這四個字? 3.是不是任意角都可以歸結(jié)為是象限角,為什么? 處理:學(xué)生思考片刻后回答,教師適時予以糾正。答:1.不行,始邊包括端點(原點); 2.端點在原點上;
3.不是,一些特殊角終邊可能落在坐標(biāo)軸上;如果角的終邊落在坐標(biāo)軸上,就認(rèn)為這個角不屬于任一象限。
師:同學(xué)們一定要學(xué)會看數(shù)學(xué)書,特別是一些重要的概念、定理、性質(zhì)要斟字酌句,每個字都要弄清楚,這樣的預(yù)習(xí)才是有效果的。
00000師生討論:好,按照象限角定義,圖中的30,390,-330角,都是第一象限角;300,-60
0角,都是第四象限角;585角是第三象限角。師:很好,不過老師還有幾事不明,要請教大家:(1)銳角是第一象限角嗎?第一象限角是銳角嗎?為什么?
生:銳角是第一象限角,第一象限角不一定是銳角;
0師:(2)銳角就是小于90的角嗎?
0生:小于90的角可能是零角或負(fù)角,故它不一定是銳角;
00師:(3)銳角就是0~90的角嗎?
000000生:銳角:{θ|0
0000(1)420;
(2)-75;
(3)855;
(4)-510.答:(1)第一象限角;(2)第四象限角;(3)第二象限角;(4)第三象限角.5.終邊相同的角的表示法
師:觀察下列角你有什么發(fā)現(xiàn)? 390?
?330?
30?
1470?
?1770? 生:終邊重合.0師:請同學(xué)們思考為什么?能否再舉三個與30角同終邊的角?
0000000000生:圖中發(fā)現(xiàn)390,-330與30相差360的整數(shù)倍,例如,390=360+30,-330=-360+30;000與30角同終邊的角還有750,-690等。
0師:好!這位同學(xué)發(fā)現(xiàn)了兩個同終邊角的特征,即:終邊相同的角相差360的整數(shù)倍。例0000000如:750=2×360+30;-690=-2×360+30。那么除了這些角之外,與30角終邊相同的角還有:
3×360+30
-3×360+30
0000
4×360+30
-4×360+30
??,??,000由此,我們可以用S={β|β=k×360+30,k∈Z}來表示所有與30角終邊相同的角的集合。6.例題講評
例1 設(shè)E?{小于90o的角},F(xiàn)?{銳角},G={第一象限的角},那么有(D 0000).
(
)
D.
A.例2用集合表示:
B.
C.
(1)各象限的角組成的集合.
(2)終邊落在
o
o
o
軸右側(cè)的角的集合.
解:(1)第一象限角:{α|k360π<α<k360+90,k∈Z}
oooo第二象限角:{α|k360+90<α<k360+180,k∈Z}
oooo第三象限角:{α|k360+180<α<k360+270,k∈Z}
ooo第四象限角:{α|k360+270o<α<k360+360 ,k∈Z}
三.本課小結(jié)
本節(jié)課我們學(xué)習(xí)了正角、負(fù)角和零角的概念,象限角的概念,要注意如果角的終邊在坐標(biāo)軸上,就認(rèn)為這個角不屬于任何象限,本節(jié)課的重點是學(xué)習(xí)終邊相同的角的表示法。判斷一個角 么 是第幾象限角,只要把
改寫成
與角,適合關(guān)系:,那,在第幾象限,則、就是第幾象限角,若角
與 終邊相同;若角 適合關(guān)系:
則、終邊互為反向延長線.判斷一個角所有象限或不同角之間的終邊關(guān)系,可首先把,這種模式(),然后只要考查 的相關(guān)它們化為:
問題即可.另外,數(shù)形結(jié)合思想、運動變化觀點都是學(xué)習(xí)本課內(nèi)容的重要思想方法.
四.作業(yè):
新概念2課件【篇6】
1.1.1任意角
一、教材分析
“任意角的三角函數(shù)”是本章教學(xué)內(nèi)容的基本概念,它又是學(xué)好本章教學(xué)內(nèi)容的關(guān)鍵。它是學(xué)生在學(xué)習(xí)了銳角三角函數(shù)后,對三角函數(shù)有一定的了解的基礎(chǔ)上,進(jìn)行的推廣。它又是下面學(xué)習(xí)習(xí)近平面向量、解析幾何等內(nèi)容的必要準(zhǔn)備。并且,通過這部分內(nèi)容的學(xué)習(xí),可以幫助學(xué)生更加深入理解函數(shù)這一基本概念。
二、教學(xué)目標(biāo)
1.理解任意角的概念;
2.學(xué)會建立直角坐標(biāo)系討論任意角,判斷象限角,掌握終邊相同角的集合的書寫。
三、教學(xué)重點難點
1.判斷已知角所在象限;
2.終邊相同的角的書寫。
四、學(xué)情分析
五、教學(xué)方法
1.本節(jié)教學(xué)方法采用教師引導(dǎo)下的討論法,通過多媒體課件在教師的帶領(lǐng)下,學(xué)生發(fā)現(xiàn)就概念、就方法的不足之處,進(jìn)而探索新的方法,形成新的概念,突出數(shù)形結(jié)合思想與方法在概念形成與形式化、數(shù)量化過程中的作用,是一節(jié)體現(xiàn)數(shù)學(xué)的邏輯性、思想性比較強的課.2.學(xué)案導(dǎo)學(xué):見后面的學(xué)案。
3.新授課教學(xué)基本環(huán)節(jié):預(yù)習(xí)檢查、總結(jié)疑惑→情境導(dǎo)入、展示目標(biāo)→合作探究、精講點撥→反思總結(jié)、當(dāng)堂檢測→發(fā)導(dǎo)學(xué)案、布置預(yù)習(xí)
六、課前準(zhǔn)備
七、課時安排:1課時
八、教學(xué)過程
(一)復(fù)習(xí)引入:
1.初中所學(xué)角的概念。
2.實際生活中出現(xiàn)一系列關(guān)于角的問題。
(二)新課講解:
1.角的定義:一條射線繞著它的端點,從起始位置旋轉(zhuǎn)到終止位置,形成 一個角,點 是角的頂點,射線分別是角的終邊、始邊。
說明:在不引起混淆的前提下,“角”或“”可以簡記為. 2.角的分類:
正角:按逆時針方向旋轉(zhuǎn)形成的角叫做正角; 負(fù)角:按順時針方向旋轉(zhuǎn)形成的角叫做負(fù)角;
零角:如果一條射線沒有做任何旋轉(zhuǎn),我們稱它為零角。說明:零角的始邊和終邊重合。3.象限角:
在直角坐標(biāo)系中,使角的頂點與坐標(biāo)原點重合,角的始邊與軸的非負(fù)軸重合,則(1)象限角:若角的終邊(端點除外)在第幾象限,我們就說這個角是第幾象限角。
例如:都是第一象限角;是第四象限角。
(2)非象限角(也稱象限間角、軸線角):如角的終邊在坐標(biāo)軸上,就認(rèn)為這個角不屬于任何象限。例如:等等。說明:角的始邊“與軸的非負(fù)半軸重合”不能說成是“與軸的正半軸重合”。因為
軸的正半軸不包括原點,就不完全包括角的始邊,角的始邊是以角的頂點為其端點的射線。
4.終邊相同的角的集合:由特殊角看出:所有與角終邊相同的角,連同角 自身在內(nèi),都可以寫成的形式;反之,所有形如的角都與角的終邊相同。從而得出一般規(guī)律:
所有與角終邊相同的角,連同角在內(nèi),可構(gòu)成一個集合,即:任一與角終邊相同的角,都可以表示成角與整數(shù)個周角的和。說明:終邊相同的角不一定相等,相等的角終邊一定相同。5.例題分析:
例1 在與范圍內(nèi),找出與下列各角終邊相同的角,并判斷它們是第幾象限角?
(1)(2)(3)解:(1),所以,與角終邊相同的角是,它是第三象限角;
(2),所以,與角終邊相同的角是角,它是第四象限角;(3),所以,角終邊相同的角是角,它是第二象限角。例2 若,試判斷角所在象限。解:∵
∴與終邊相同,所以,在第三象限。
寫出下列各邊相同的角的集合,并把中適合不等式的元素 寫出來:(1);(2);(3). 解:(1),中適合的元素是(2),S中適合的元素是(3)
S中適合的元素是
(三)反思總結(jié),當(dāng)堂檢測。
教師組織學(xué)生反思總結(jié)本節(jié)課的主要內(nèi)容,并進(jìn)行當(dāng)堂檢測。設(shè)計意圖:引導(dǎo)學(xué)生構(gòu)建知識網(wǎng)絡(luò)并對所學(xué)內(nèi)容進(jìn)行簡單的反饋糾正。(課堂實錄)
(四)發(fā)導(dǎo)學(xué)案、布置預(yù)習(xí)。
九、板書設(shè)計
十、教學(xué)反思
以學(xué)生的學(xué)習(xí)為視角,可以對這節(jié)課的教學(xué)進(jìn)行如下反思:
(1)學(xué)生對課堂提問,回答是否積極?學(xué)生能否獨立或通過合作探索出問題的結(jié)果?
(2)學(xué)生處理課堂練習(xí)題情況如何?可能的原因是什么?(3)教學(xué)任務(wù)是否完成?
下面我們著重分析一下提問的效果。
在回答教學(xué)設(shè)計中的各項提問時,大多數(shù)學(xué)生存在一定困難,特別是“問題1:任意畫一個銳角α,借助三角板,找出sinα的近似值.”和“問題5:現(xiàn)在,角的范圍擴大了,由銳角擴展到了0°~360°內(nèi)的角,又?jǐn)U展到了任意角,并且在直角坐標(biāo)系中,使得角的頂點與原點重合,始邊與x軸的正半軸重合.在這樣的環(huán)境中,你認(rèn)為,對于任意角α,sinα怎樣定義好呢?”
對于問題1,除了由于時間久而遺忘有關(guān)知識外,學(xué)生不熟悉獨立地由一個銳角α,構(gòu)造直角三角形并求銳角三角函數(shù)的過程是主要原因,他們更習(xí)慣于在給定的直角三角形中解決問題。
對于問題5,教師強調(diào)“在坐標(biāo)系下怎么樣?”后,有學(xué)生開始嘗試回答。這說明這個問題要求的思維概括水平較高,學(xué)生僅利用銳角三角函數(shù)的有關(guān)知識,難以形成當(dāng)前研究任意角三角函數(shù)的思想方法。因此,教師必須要提供必要的腳手架。
在后面的教學(xué)過程中會繼續(xù)研究本節(jié)課,爭取設(shè)計的更科學(xué),更有利于學(xué)生的學(xué)習(xí),也希望大家提出寶貴意見,共同完善,共同進(jìn)步!
新概念2課件【篇7】
學(xué)習(xí)目標(biāo)是教學(xué)中最先要考慮的因素,明晰學(xué)習(xí)目標(biāo),做到有的放矢,是課堂教學(xué)的第一要素。我從以下幾個方面考慮來制定本節(jié)課的學(xué)習(xí)目標(biāo):(1)明確《課程標(biāo)準(zhǔn)》要求;(2)分析教材;(3)分析學(xué)情。
1、本節(jié)課的《課程標(biāo)準(zhǔn)》要求:
(1)在問題情境中了解數(shù)系的擴充過程,體會實際需求與數(shù)學(xué)內(nèi)部的矛盾(數(shù)的運算規(guī)則、方程求根)在數(shù)系擴充過程中的作用,感受人類理性思維的作用以及與現(xiàn)實世界的聯(lián)系。
(2)理解復(fù)數(shù)的基本概念以及復(fù)數(shù)相等的充要條件。
(3)了解復(fù)數(shù)的代數(shù)表示法及其幾何意義。
復(fù)數(shù)的引入實現(xiàn)了中學(xué)階段數(shù)系的最后一次擴充.但是,復(fù)數(shù)它完全沒有按照教科書所描述的邏輯連續(xù)性.實際的需要使實數(shù)具有某種實在感.可是,復(fù)數(shù)的情形卻不一樣,是純理論的創(chuàng)造.
新課程中復(fù)數(shù)內(nèi)容突出復(fù)數(shù)的代數(shù)表示,同時也強調(diào)了復(fù)數(shù)的幾何意義.它的內(nèi)容是分層設(shè)計的:先將復(fù)數(shù)看成是有序?qū)崝?shù)對,再把復(fù)數(shù)看成是直角坐標(biāo)系下平面上的點或向量,最后介紹復(fù)數(shù)代數(shù)形式的加、減運算的幾何意義.同時,復(fù)數(shù)作為一種新的數(shù)學(xué)語言,也為我們今后用代數(shù)的方法解決幾何問題提供了新的工具和方法,體現(xiàn)了數(shù)形結(jié)合思想.
本節(jié)課的學(xué)習(xí),一方面讓學(xué)生回憶數(shù)系擴充的過程,體會虛數(shù)引入的必要性和合理性.另一方面,讓學(xué)生理解復(fù)數(shù)的有關(guān)概念,掌握復(fù)數(shù)相等的充要條件,為今后的學(xué)習(xí)奠定基礎(chǔ).因此,本節(jié)課具有承前啟后的作用,是本章的重點內(nèi)容.
在學(xué)習(xí)本節(jié)之前,學(xué)生對數(shù)的概念已經(jīng)擴充到實數(shù),也已清楚各種數(shù)集之間的包含關(guān)系等內(nèi)容,但知識是零碎、分散的,對數(shù)的生成發(fā)展的歷史和規(guī)律缺乏整體認(rèn)識與理性思考,知識體系還未形成。另一方面學(xué)生對方程解的問題會默認(rèn)為在實數(shù)集中進(jìn)行,缺乏嚴(yán)謹(jǐn)?shù)乃季S習(xí)慣。 基于以上分析,本節(jié)課的學(xué)習(xí)目標(biāo)如下:
(1)通過回憶數(shù)系的擴充過程,觀察所列舉的復(fù)數(shù)能簡述復(fù)數(shù)的定義,并能說出復(fù)數(shù)的實部與虛部。
(2)通過小組討論能將復(fù)數(shù)歸類,并能用語言或圖形表達(dá)復(fù)數(shù)的分類,會解決含有字母的復(fù)數(shù)的分類問題。
(3)通過比較給出的兩個復(fù)數(shù)能歸納出復(fù)數(shù)相等的充要條件,并能解決與例題相似的題目。
1、 通過課堂檢測1檢測目標(biāo)1的達(dá)成。
2、 通過例1、課堂檢測2檢測目標(biāo)2的達(dá)成。
3、 通過例2、課堂檢測3檢測目標(biāo)3的達(dá)成。
設(shè)計意圖:通過過程性評價和結(jié)果性評價來激發(fā)學(xué)生的學(xué)習(xí)興趣,提過課堂效率。同時能及時反饋學(xué)生信息,了解學(xué)生的學(xué)習(xí)效果。
三 重點、難點分析:
本節(jié)課是人教版《選修1-2》第三章第一課時,復(fù)數(shù)的概念為學(xué)生學(xué)習(xí)復(fù)數(shù)的表示、復(fù)數(shù)的運算及后繼知識奠定了堅實的基礎(chǔ),因此,復(fù)數(shù)的概念是本節(jié)課學(xué)習(xí)的重點。
2象x=-1這樣的方程沒有實數(shù)解在學(xué)生心目中已成定論,負(fù)數(shù)不能開平方是學(xué)生固有的思維模式,而虛數(shù)單位i的引入會引起學(xué)生認(rèn)知上的沖突、心理上的排斥。故虛數(shù)單位i的引入是學(xué)生學(xué)習(xí)中的難點。
結(jié)合以上分析,本節(jié)課的教法主要采用問題驅(qū)動教學(xué)模式.通過設(shè)置問題串,讓學(xué)生形成認(rèn)知沖突;通過設(shè)置問題串,引領(lǐng)學(xué)生追溯歷史,提煉數(shù)系擴充的原則;通過設(shè)置問題串,幫助學(xué)生合乎情理的建立新的認(rèn)知結(jié)構(gòu),讓數(shù)學(xué)理論自然誕生在學(xué)生的思想中。
從建構(gòu)主義的角度來看,數(shù)學(xué)學(xué)習(xí)是指學(xué)生自己建構(gòu)數(shù)學(xué)知識的活動.在數(shù)學(xué)活動過程中,學(xué)生與教材及教師產(chǎn)生交互作用,形成了數(shù)學(xué)知識、技能和能力,發(fā)展了情感態(tài)度和思維品質(zhì).基于這一理論,我把這一節(jié)課的教學(xué)程序分成四個環(huán)節(jié)來進(jìn)行,下面我向各位專家作詳細(xì)說明: 1 創(chuàng)設(shè)情境
從學(xué)生已有的知識入手,提出問題串:
問題1 從小到大,我們認(rèn)識了各種各樣的數(shù)。進(jìn)入高中,我們學(xué)習(xí)了集合,你知道的數(shù)集有哪些?分別用什么記號表示?
問題3 “?”能換成“ ? ”嗎?為什么? ?
設(shè)計意圖:一方面從學(xué)生已有的認(rèn)知入手,便于學(xué)生快速進(jìn)入學(xué)習(xí)狀態(tài),激發(fā)他們的學(xué)習(xí)熱情,培養(yǎng)學(xué)生的歸納、概括與表達(dá)能力;另一方面為引入虛數(shù)單位“i”埋下伏筆,引入課題。 2 建構(gòu)理論
問題4 我們常說的運算,是指加、減、乘、除、乘方、開方等運算,思考一下,這些運算在各個數(shù)集中總能實施嗎?
設(shè)計意圖:讓學(xué)生思考數(shù)集擴充的原因,在此基礎(chǔ)之上,幫助學(xué)生重新建構(gòu)數(shù)集的擴充過程,這是本節(jié)課的生長點.
問題5 那么在實數(shù)范圍內(nèi)加、減、乘、除、乘方、開方這些運算總能實施了嗎?
由此,追問:
問題6 需要添加什么樣的數(shù)呢?
設(shè)計意圖:教師引領(lǐng)學(xué)生采用類比的思想,將問題轉(zhuǎn)化為找一個數(shù)的平方為-1,從而讓“引入新數(shù)”水到渠成.
此時,教師適時介紹與虛數(shù)單位i有關(guān)歷史,,從而激發(fā)學(xué)生學(xué)習(xí)的興趣,強化對i的認(rèn)識,并讓學(xué)生感受到科學(xué)上每一步的邁出是多么的艱辛!
引入i后,給出問題串:
問題7 添加的新數(shù)僅僅是i嗎?
問題8 你還能寫出其他含有i的數(shù)嗎?
問題9 你能寫出一個形式,把剛才所寫出來的數(shù)都包含在內(nèi)嗎?
設(shè)計意圖:學(xué)生通過問題7、8的鋪墊,引導(dǎo)學(xué)生由特殊到一般,抽象概括出復(fù)數(shù)的代數(shù)形
式,幫助學(xué)生主動建構(gòu)復(fù)數(shù)的代數(shù)形式.
問題10 實數(shù)集與擴充后的復(fù)數(shù)集是什么關(guān)系呢?
設(shè)計意圖:學(xué)生通過討論自然而然地想到要對復(fù)數(shù)進(jìn)行分類,從而深化對復(fù)數(shù)概念的理解,攻克本節(jié)課的重點.
問題11 復(fù)數(shù)集、實數(shù)集、虛數(shù)集、純虛數(shù)集它們之間是什么關(guān)系呢?你能用圖表的形式畫出來嗎?
設(shè)計意圖:讓學(xué)生直觀地感受復(fù)數(shù)的分類,進(jìn)一步深化復(fù)數(shù)的概念。
為了檢測學(xué)生對復(fù)數(shù)有關(guān)概念的理解,對應(yīng)三個目標(biāo)我分別設(shè)置了下列三組練習(xí): 例1、指出下列復(fù)數(shù)的實部和虛部
(1)4 (2)2-3i(3)-6i(4)0(5)1i(6)2 ?2
例2、實數(shù)m取什么值時,復(fù)數(shù)z=m(m-1)+(m-1)i 是:
(1)實數(shù)? (2)虛數(shù)?(3)純虛數(shù)?
設(shè)計意圖:例題1主要是前后照應(yīng),采用概念同化的方式完善認(rèn)知結(jié)構(gòu);例題2主要是鞏固復(fù)數(shù)的分類標(biāo)準(zhǔn).讓學(xué)生在解決問題的過程中內(nèi)化復(fù)數(shù)有關(guān)概念,起到及時反饋、學(xué)以致用的功效.
并追問:對于復(fù)數(shù)z1?a?bi,z2?c?di(a,b,c,d?R),你認(rèn)為在什么情況下相等呢? 從而為在直角坐標(biāo)系中用點表示復(fù)數(shù)提供了可能.并設(shè)置了:
例3已知復(fù)數(shù)z1= (x + y) + (x-2y)i ,復(fù)數(shù)z2= (2x-5) + (3x+y)i , 若z1 = z2 ,求實數(shù)x,y的值.
設(shè)計意圖:強化復(fù)數(shù)相等的充要條件,并讓學(xué)生感受到復(fù)數(shù)問題可以化歸為實數(shù)問題來求解.
拋出問題:實數(shù)能用數(shù)軸上的點來表示,所有的復(fù)數(shù)也能用數(shù)軸上的點來表示嗎?
設(shè)計意圖:通過學(xué)生總結(jié)、教師提煉,深化內(nèi)容,讓學(xué)生體會數(shù)系擴充過程中蘊含的創(chuàng)新精神和實踐能力。提出問題激發(fā)學(xué)生對復(fù)數(shù)的后續(xù)學(xué)習(xí)的欲望。 六、反思:
本節(jié)課教學(xué),采用問題驅(qū)動教學(xué)模式,從概念產(chǎn)生的背景到概念的建立、辨析再到概念的應(yīng)用,層層深入,最后完成評價檢測目標(biāo)的達(dá)成。這樣教學(xué),符合 “感知—辨認(rèn)—概括—定義—應(yīng)用”的概念學(xué)習(xí)模式。此外,復(fù)數(shù)的概念,并不是通過教師的講授來實現(xiàn)的,而是讓學(xué)生在問題解決中感悟、體驗。
當(dāng)然,在本設(shè)計中,有些問題還有值得思考的必要。比如,由于虛數(shù)單位i的概念非常抽象,又與學(xué)生原有知識沖突,學(xué)生能否順利接受從而理解復(fù)數(shù)的概念?學(xué)生能否將復(fù)數(shù)分類并能準(zhǔn)確表示?評價方案是否切合學(xué)生實際?如果這些學(xué)習(xí)目標(biāo)無法順利實現(xiàn),在教學(xué)過程中還要做哪些知識鋪墊?這都是值得研究的。
以上是我對數(shù)系的擴充的第一課時的構(gòu)思與設(shè)計,請各位專家批評指正.謝謝!
新概念2課件【篇8】
尊敬的各位領(lǐng)導(dǎo)、老師:
大家好!今天說課的內(nèi)容是人教版義務(wù)教育教科書七年級數(shù)學(xué)(上)3.1.1一元一次方程(第1課時)。下面,我將從以下五個方面對本節(jié)課的設(shè)計進(jìn)行說明.
從數(shù)學(xué)科學(xué)本身看,方程是代數(shù)學(xué)的核心內(nèi)容,正是對于它的研究推動了整個代數(shù)學(xué)的發(fā)展,從代數(shù)中關(guān)于方程的分類看,一元一次方程是最簡單的代數(shù)方程,也是 所有代數(shù)方程的基礎(chǔ).教科書將本節(jié)內(nèi)容安排在第一節(jié),一方面是對小學(xué)學(xué)段已經(jīng)學(xué)過的有關(guān)算術(shù)方法解題和簡單方程的運用的進(jìn)一步發(fā)展,另一方面考慮引入一元 一次方程后,可以盡早滲透模型化的思想,使學(xué)生盡早接觸利用一元一次方程解決實際問題的方法.
《課程標(biāo)準(zhǔn)》對本課時的要求是通過具體實例歸納出方程及一元一次方程的概念,根據(jù)相等關(guān)系列出方程.讓學(xué)生在歸納和總結(jié)的過程中,初步建立數(shù)學(xué)模型思想,訓(xùn)練學(xué)生主動探究的能力,能結(jié)合情境發(fā)現(xiàn)并提出問題,體會在解決問題中與他人合作的重要性,獲得解決問題的經(jīng)驗.
2、教學(xué)目標(biāo):
根據(jù)課標(biāo)的要求和本節(jié)內(nèi)容的特點,我從知識技能、數(shù)學(xué)思考、情感價值觀三個方面確定本節(jié)課的目標(biāo):
①通過對實際問題的分析,讓學(xué)生體驗從算術(shù)方法到代數(shù)方法是一種進(jìn)步,歸納并理解一元一次方程的概念,領(lǐng)悟一元一次方程的意義和作用.
②在學(xué)生根據(jù)問題尋找相等關(guān)系、根據(jù)相等關(guān)系列出方程的過程中,培養(yǎng)學(xué)生獲取信息、分析問題、處理問題的能力.
③使學(xué)生經(jīng)歷把實際問題抽象為數(shù)學(xué)方程的過程,認(rèn)識到方程是刻畫現(xiàn)實世界的一種有效的數(shù)學(xué)模型,初步體會建立數(shù)學(xué)模型的思想.
用字母表示未知數(shù),找出相等關(guān)系,將實際問題抽象為數(shù)學(xué)問題,通過列方程解決.
情感價值目標(biāo):
讓學(xué)生體會到從算式到方程是數(shù)學(xué)的進(jìn)步,滲透化未知為已知的重要數(shù)學(xué)思想.體驗數(shù)學(xué)與日常生活密切相關(guān),認(rèn)識到許多實際問題可以用數(shù)學(xué)方法解決,激發(fā)學(xué)習(xí)數(shù)學(xué)的熱情.
3、重點、難點:
結(jié)合以上目標(biāo),我在認(rèn)真研究教材的基礎(chǔ)上,立足學(xué)生發(fā)展的宗旨,確定了本節(jié)課的教學(xué)重難點.
教學(xué)重點:知道什么是方程、一元一次方程,找相等關(guān)系列方程.
教學(xué)難點:思維習(xí)慣的轉(zhuǎn)變,分析數(shù)量關(guān)系,找相等關(guān)系。
二、教學(xué)策略:
如何突出重點,突破難點,從而達(dá)到教學(xué)目標(biāo)的實現(xiàn)呢?在教學(xué)過程我運用了如下教法與手段:
1.生活引路,感知概念背景;
2.比較方法,明確意義;
3.感受過程,形成核心概念;
4.運用新知,鞏固方法;
5.歸納總結(jié),鞏固發(fā)展.
本節(jié)課利用多媒體教學(xué)平臺,從學(xué)生熟悉的實際問題開始,將實際問題“數(shù)學(xué)化”建立方程模型.采用教師引導(dǎo),學(xué)生自主探索、觀察、歸納的教學(xué)方式。
三、學(xué)情分析:
根據(jù)本節(jié)課的內(nèi)容特點及學(xué)生的心理特征,在學(xué)法上,極力倡導(dǎo)了新課程的自主探究、合作交流的學(xué)習(xí)方法.通過對學(xué)生原有知識水平的分析,創(chuàng)設(shè)情境,使數(shù)學(xué)回 到生活,鼓勵學(xué)生思考,探索情境中的所包含的數(shù)量關(guān)系,學(xué)生在經(jīng)歷“建立方程模型”這一數(shù)學(xué)化的過程后,理解學(xué)習(xí)方程和一元一次方程的意義,培養(yǎng)學(xué)生抽象 概括等能力.
四、教學(xué)過程:
本節(jié)課的教學(xué)過程我設(shè)計了以下六個環(huán)節(jié):
在這個環(huán)節(jié)中我提出了三個問題:
在這個環(huán)節(jié)中,我首先提出一個問題:“如果設(shè)中山市到深圳市的`路程為x千米,怎樣用式子表示中山市與東莞市的距離以及中山市與惠州市的距離?”,這樣,學(xué)生就會主動結(jié)合圖形,根據(jù)在《整式的加減》中學(xué)到的知識解決問題.
通過上述思考過程,學(xué)生已經(jīng)初步了解到尋找已知量與未知量之間存在的相等關(guān)系是利用方程解決實際問題的關(guān)鍵所在.
然后我結(jié)合上面的過程簡單歸納列方程解決實際問題的步驟并給出方程的概念.
解決實際問題的步驟:(1)用字母表示問題中的未知數(shù);(2)根據(jù)問題中的相等關(guān)系,列出方程.(17世紀(jì)的法國數(shù)學(xué)家迪卡爾最早使用x,y,z等字母表 示未知數(shù),而我國古代則用“天元、地元、人元、物元”等表示未知數(shù),而且要比西方早1000多年,這說明我們中華民族是一個充滿智慧和才干的偉大民族.)
在這里我介紹了字母表示未知數(shù)的文化背景,其目的就是在文化層面上讓學(xué)生進(jìn)一步理解數(shù)學(xué)、喜愛數(shù)學(xué),展示數(shù)學(xué)的文化魅力,這正是培養(yǎng)學(xué)生情感價值觀的體現(xiàn).
方程的概念:含有未知數(shù)的等式叫方程.小學(xué)里已經(jīng)給出了方程的概念,這里可適當(dāng)處理.
在這里我開始向?qū)W生滲透列方程解決實際問題的思考程序.
列算式:只用已知數(shù),表示計算程序,依據(jù)是間題中的數(shù)量關(guān)系;
列方程:可用未知數(shù),表示相等關(guān)系,依據(jù)是問題中的等量關(guān)系。
通過討論,學(xué)生體會到了:用算術(shù)方法解題時,列出的算式只能用已知數(shù),而列方程時,方程中既含有已知數(shù),又含有用字母表示的未知數(shù),這就是說,在方程中未知數(shù)(字母)可以和已知數(shù)一起表示問題中的數(shù)量關(guān)系.
而且隨著學(xué)習(xí)的深入,學(xué)生會逐步體會到從算式到方程是數(shù)學(xué)的進(jìn)步。
緊接著的思考讓全班學(xué)生參與學(xué)習(xí)的過程,從而進(jìn)一步地拓寬了學(xué)生的思維.
討論2:對于上面的問題,你還能列出其他方程嗎?如果能,你依據(jù)的是哪個相等關(guān)系?
在這個討論活動中,我采取了先小組合作交流后全班交流.
通過交流后,學(xué)生中出現(xiàn)如下結(jié)果:
從學(xué)生的分析所得,這兩種設(shè)未知數(shù)的方法就是在以后學(xué)習(xí)中將遇到的直接設(shè)元和間接設(shè)元兩種設(shè)元.
要求出路程,只要解出方程中的x即可,我們在以后幾節(jié)課中再來學(xué)習(xí).
在這個環(huán)節(jié)里,問題的開放有利于培養(yǎng)學(xué)生的發(fā)散思維。這樣安排的目的是使所有的學(xué)生都有獨立思考的時間和合作交流的時間。
學(xué)生在小學(xué)已經(jīng)學(xué)過簡易方程,通過以下的例題和練習(xí)可以回顧已經(jīng)學(xué)過的知識,并為一元一次方程提供素材。
(1)用一根長24㎝的鐵絲圍成一個正方形,正方形的邊長是多少?
(2)一臺計算機已使用1700小時,預(yù)計每月再使用150小時,經(jīng)過多少月這臺計算機的使用時間達(dá)到規(guī)定的檢修時間2450小時?
(3)某校女生占全體學(xué)生數(shù)的52%,比男生多80人,這個學(xué)校有多少學(xué)生?
2、課堂練習(xí):這一組例題和課堂練習(xí)的設(shè)置,其目的是讓學(xué)生更進(jìn)一步加強列方程解決實際問題的能力。
提取例題和練習(xí)中出現(xiàn)的方程請學(xué)生觀察方程它們有什么共同的特點?然后達(dá)成共識:只含有一個未知數(shù);未知數(shù)的次數(shù)是1.
教師總結(jié):只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,這樣的方程叫做一元一次方程.
思考:下列式子中,哪些是一元一次方程?通過思考辨析,使學(xué)生鞏固一元一次方程的概念,把握住概念的本質(zhì).
讓學(xué)生先歸納,然后教師補充方式進(jìn)行,主要圍繞以下問題:
本節(jié)課學(xué)習(xí)了哪些主要內(nèi)容?一元一次方程的三個特征是什么?從實際問題中列出方程的步驟及關(guān)鍵是什么?
本節(jié)課著力體現(xiàn)以下幾個方面:
1、突出問題的應(yīng)用意識。在各個環(huán)節(jié)的安排上都設(shè)計成一個個問題,使學(xué)生能圍繞問題展開討思考、討論,進(jìn)行學(xué)習(xí)。
2、體現(xiàn)學(xué)生的主體意識。讓學(xué)生通過列算式與列方程的比較,分別歸納出它們的特點,從而感受到從算術(shù)方法到代數(shù)方法是數(shù)學(xué)的進(jìn)步;讓學(xué)生通過合作交流,得出問題的不同解法;讓學(xué)生對一節(jié)課的學(xué)習(xí)內(nèi)容、方法、注意點等進(jìn)行歸納。
3、體現(xiàn)學(xué)生思維的層次性。教師首先引導(dǎo)學(xué)生嘗試用算術(shù)方法解決問題,然后再引導(dǎo)學(xué)生列出含未知數(shù)的式了,尋找相等關(guān)系列出方程,在尋找相等關(guān)系、設(shè)未知數(shù)及作業(yè)的布置等環(huán)節(jié)中都注意了學(xué)生思維的層次性。
4、滲透建模思想。把實際問題中的數(shù)量關(guān)系用方程形式表示出來,就是建立一種數(shù)學(xué)模型,教師有意識地按設(shè)未知數(shù)、列方程等步驟組織學(xué)生學(xué)習(xí),就是培養(yǎng)學(xué)生由實際問題抽象出方程模型的能力。
新概念2課件【篇9】
何為望遠(yuǎn)鏡思維?顧名思義,我們要打破部分的局限、狹隘的視野,用向外部看、向遠(yuǎn)方看、向整體看的思維來看待單元整體設(shè)計。由于所對應(yīng)的大概念大小不一,我們可以把單元分為宏觀單元、中觀單元和微觀單元。宏觀單元是整個學(xué)科高位的大概念或跨學(xué)科的大概念組織的集合,中觀單元圍繞某一學(xué)科的大概念展開,那微觀單元自然是學(xué)科教材中的現(xiàn)有單元。按照劉徽老師的觀點,望遠(yuǎn)鏡思維即要形成一個“從宏觀到微觀的總體框架”,運用統(tǒng)整法或基點法思考單元與單元、單元與學(xué)科、單元與跨學(xué)科、單元與現(xiàn)實世界之間的關(guān)聯(lián)。
以單元與單元的關(guān)聯(lián)為例,統(tǒng)編版教材中,各單元以人文主題+學(xué)習(xí)任務(wù)群的雙線組元形式編排。針對這一編排形式,我們可以以學(xué)習(xí)任務(wù)群為線索,建立單元與單元的關(guān)聯(lián)。比如統(tǒng)編教材必修上下冊中,議論文寫作隸屬于思辨性閱讀與表達(dá)任務(wù)群,涉及三個單元的寫作主題和寫作任務(wù),分別是議論要有針對性、如何闡述自己的觀點、如何論證。在教學(xué)中,我們就可以展開前后勾連、逐級進(jìn)階的關(guān)聯(lián)式作文教學(xué)。“議論要有針對性”主要落實“針對”的四個維度,引導(dǎo)學(xué)生在寫作上增強問題意識、讀者意識、說理意識、目的意識,從整體上進(jìn)行議論文寫作框架的打造?!叭绾侮U述自己的觀點”主要解決多維度闡述觀點的問題,以提升元認(rèn)知能力?!叭绾握撟C”則主要解決論證結(jié)構(gòu)和論證方法的問題。這樣,在“議論文寫作中,學(xué)生針對某現(xiàn)實問題,在特定的讀者對象面前,運用說理思路和說理方法,多維度闡述自我觀點,以說服對方”這一大概念的統(tǒng)籌之下,寫作教學(xué)在單元的關(guān)聯(lián)中循序漸進(jìn)、有序展開,學(xué)生的寫作能力逐級提升。
再如單元與跨學(xué)科的關(guān)聯(lián)。著名語言學(xué)家張志公先生有一句名言:“語文是百科之母?!闭Z文學(xué)科的很多知識與能力要輻射到其他科目的學(xué)習(xí)。比如學(xué)生對語段的分析能力強的話,數(shù)學(xué)的應(yīng)用題相對會更得心應(yīng)手;對文言文的理解能力強的話,歷史的史料分析題得分會更高等等。以選必中冊“邏輯的力量”為例,思維形式是人們進(jìn)行思維活動時對特定對象進(jìn)行反映的基本方式,即概念、判斷和推理。這一大概念涉及單元與跨學(xué)科的關(guān)聯(lián)。把握了概念之間的全同關(guān)系、并列關(guān)系、包含關(guān)系、交叉關(guān)系、矛盾關(guān)系、反對關(guān)系,不僅有利于病句題的分析、現(xiàn)代文閱讀的解讀,還能順利掌握數(shù)學(xué)集合的相關(guān)知識,輕松完成政治的客觀題分析。
新概念2課件【篇10】
作為建筑工程項目開展中的一個重要環(huán)節(jié),建筑結(jié)構(gòu)設(shè)計不但會關(guān)系到建筑工程項目的順利開展,而且還會影響到整個建筑工程質(zhì)量。所以,相關(guān)單位要充分重視建筑結(jié)構(gòu)設(shè)計工作,并且采取科學(xué)有效的方法有效提高建筑結(jié)構(gòu)設(shè)計水平。在其中合理地運用概念設(shè)計方法,可以有效地優(yōu)化建筑結(jié)構(gòu)設(shè)計方案,提高建筑結(jié)構(gòu)設(shè)計水平。因此,設(shè)計人員要在建筑結(jié)構(gòu)設(shè)計中要積極、合理地運用概念設(shè)計方法。
所謂的概念設(shè)計即為在尚未經(jīng)過數(shù)值計算,特別是在一些很難通過相關(guān)的規(guī)范制度做出明確規(guī)定或者是很難進(jìn)行精確理性分析的問題當(dāng)中,根據(jù)整體結(jié)構(gòu)體系以及分體系彼此之間存在的力學(xué)關(guān)系、試驗現(xiàn)象等總結(jié)獲得的設(shè)計思想與設(shè)計原則,以此來從整體上來完成對建筑結(jié)構(gòu)的總體規(guī)劃與布置,有效管理與控制抗震細(xì)部方法等[1]。在建筑設(shè)計方案制定的時期,這一設(shè)計方法可以更加科學(xué)、合理地完成對結(jié)構(gòu)體系的構(gòu)思、建立以及選擇等,進(jìn)而能夠獲得更加準(zhǔn)確以及概念清晰的方案,從而為后期的設(shè)計奠定堅實的基礎(chǔ),進(jìn)而提升其經(jīng)濟性以及安全、可靠性。
在采用計算機完成建筑結(jié)構(gòu)設(shè)計方案的時候是會存在許多缺陷的,其無法正常完成方案初步設(shè)計工作。這是由于計算機設(shè)計往往會為設(shè)計師造成一定的錯覺,會使得設(shè)計人員覺得計算機程序的運用簡單易行,因此就會對計算機軟件產(chǎn)生過度依賴的心理,于是就不會去專心地研究與學(xué)習(xí)結(jié)構(gòu)概念的相關(guān)知識,進(jìn)而影響到其設(shè)計能力的`提升。另外,一些設(shè)計人員會存在一種習(xí)慣,即會在設(shè)計過程中應(yīng)用分析程序。然而其卻沒有充分意識到假如采用正確的軟件會使得設(shè)計效率與設(shè)計水平得到有效提升,而假如選擇的軟件是錯誤的,那么就會造成結(jié)構(gòu)設(shè)計發(fā)生問題,會留下潛在的隱患。因此,為了能夠有效彌補計算機設(shè)計存在的缺陷,那么就應(yīng)該合理運用概念設(shè)計,要鼓勵與引導(dǎo)設(shè)計人員積極地學(xué)習(xí)結(jié)構(gòu)概念的相關(guān)知識,進(jìn)而充分利用概念設(shè)計的基本原則制定出最為理想化的結(jié)構(gòu)方案。
對于每位建筑設(shè)計人員而言,其都需要充分地了解與掌握結(jié)構(gòu)概念。因為利用結(jié)構(gòu)概念可以幫助其創(chuàng)造出新的靈感以及更加準(zhǔn)確、清晰的思路,可以幫助設(shè)計人員在充分遵循正確設(shè)計基本原則的基礎(chǔ)上,有效地防止概念混亂以及定性不正確等諸多問題的出現(xiàn)[2]。除此以外,工作人員在面對一些技術(shù)問題的時候,假如其可以充分了解概念設(shè)計,那么就能夠準(zhǔn)確地找到問題的原因所在,然后再采取科學(xué)、有效的方法解決問題。在當(dāng)前實行的《建筑結(jié)構(gòu)設(shè)計統(tǒng)一標(biāo)準(zhǔn)》當(dāng)中就涉及到概念理論,而且標(biāo)準(zhǔn)中明確提出了一個圍繞概念理論而制定的結(jié)構(gòu)極限狀態(tài)設(shè)計準(zhǔn)則,這一種設(shè)計方法會更加科學(xué)、嚴(yán)謹(jǐn),進(jìn)而可以有效提高結(jié)構(gòu)設(shè)計的完善性與可靠性,有效地實現(xiàn)結(jié)構(gòu)設(shè)計方案的優(yōu)化。
為了可以有效地提升建筑結(jié)構(gòu)設(shè)計的有效性與科學(xué)性,那么就必須要做好建筑場地的選擇工作,因為只有充分保證建筑場地的科學(xué)、合理性,那么才可以也使得后續(xù)建筑設(shè)計工作更加順利地開展,有效地確保其工作價值的實現(xiàn)。因此,在選擇建筑場地的過程中要合理應(yīng)用概念設(shè)計。具體而言,必須充分注意以下要素:(1)地形因素。因為不同的地形也會對建筑結(jié)構(gòu)產(chǎn)生不盡相同的影響,而且在大多數(shù)的情況下還會對其產(chǎn)生極大的制約,所以在開展建筑結(jié)構(gòu)設(shè)計的過程中,必須要充分考慮到建筑結(jié)構(gòu)設(shè)計的要求,考慮到建筑的實際情況,進(jìn)而綜合考慮選擇出最為合適的地形。(2)地質(zhì)因素。由于地質(zhì)因素也會在很大程度上影響的建筑結(jié)構(gòu)設(shè)計稅票,特別是對基礎(chǔ)結(jié)構(gòu)設(shè)計具有較大的影響。因此,在選擇建筑場地的過程中,需要積極地開展全面、科學(xué)合理的評估以及分析,進(jìn)而充分確保施工場地的地質(zhì)能夠有效地滿足建筑施工的要求[3]。(3)抗震性因素。由于抗震性也會在很大程度上影響到建筑結(jié)構(gòu)設(shè)計水平,因為只有在充分確保建筑結(jié)構(gòu)有著良好的抗震能力以后,那么才能夠有效地確保建筑的使用安全。因此,在選擇建筑場地的時候,也要合理地應(yīng)用概念設(shè)計,進(jìn)而盡量防止在在那些極易發(fā)生震動的地方開展建筑操作。
建筑結(jié)構(gòu)的設(shè)計人員根據(jù)建筑物的具體結(jié)構(gòu)形式以及所處的地理位置,然后再充分遵循概念設(shè)計的基本原則,對基礎(chǔ)設(shè)計類型進(jìn)行選擇。例如筏型基礎(chǔ)以及箱型基礎(chǔ)等等[4]。在具體采用箱型基礎(chǔ)的過程中,需要充分確保建筑物的負(fù)載能力,可以及時、均勻地傳遞給地基,這樣就能夠?qū)Φ鼗痪鶆虺两惮F(xiàn)象產(chǎn)生有效地抵御作用,而且使其可以有效地完成對周圍土體的協(xié)作互助,進(jìn)而有效地提升建筑物的抗風(fēng)以及抗震能力。在選擇使用筏型基礎(chǔ)的時候,就會使得建筑物上部結(jié)構(gòu)存在著非常大的荷載。對于建筑而言,其具有非常小的承載能力,這一結(jié)構(gòu)類型能夠使得建筑物上部得到有效的分散,而且使得地基獲得更大的承載能力,在此狀況下就會使得極不均勻沉降現(xiàn)象得到了有效的避免。
在受到水平負(fù)荷作用時候,會造成高層建筑結(jié)構(gòu)側(cè)移現(xiàn)象的發(fā)生,這是高層建筑設(shè)計的一個重點與難點問題,每位建筑設(shè)計工作人員都必須要給予充分重視。在具體開展結(jié)構(gòu)設(shè)計工作的過程中,設(shè)計人員要充分遵循概念設(shè)計基本原則,不但要充分考慮相關(guān)的要求與標(biāo)準(zhǔn),與此同時還必須要選擇更加科學(xué)、合理的抗側(cè)力體系,不但要對建筑物四周存在的其他建筑物的位置、結(jié)構(gòu)等進(jìn)行綜合、全面的分析與考量,而且還要對這些建筑物對所要建設(shè)建筑物的風(fēng)壓布局所、造成的影響進(jìn)行綜合的考量[5],進(jìn)而要在具體開展結(jié)構(gòu)設(shè)計的時候,采取有效的措施努力提升建筑物的豎向荷載及其抵抗力,要合理地運用概念設(shè)計基本原則,努力加強建筑結(jié)構(gòu)的抗震力,使其能夠保證平面結(jié)構(gòu)的簡單性以及規(guī)范性??傊?,在當(dāng)前科學(xué)技術(shù)快速發(fā)展的時代背景下,也使得我國建筑行業(yè)獲得了跨越式的發(fā)展。然而,其在建筑結(jié)構(gòu)設(shè)計方面還存在著諸多問題,那么為了能夠有效地提升建筑結(jié)構(gòu)設(shè)計水平,就應(yīng)該合理地應(yīng)用概念設(shè)計方法,以此來有效地提升結(jié)構(gòu)設(shè)計的完善性與可靠性,有效彌補在結(jié)構(gòu)設(shè)計中存在的問題,優(yōu)化結(jié)構(gòu)設(shè)計方案,有效促進(jìn)建筑結(jié)構(gòu)設(shè)計水平的不斷提升。
參考文獻(xiàn):
[1]張宸瑞.概念設(shè)計在建筑結(jié)構(gòu)設(shè)計中的應(yīng)用分析[J].城市建設(shè)理論研究:電子版,(22):89-90.