二元一次方程課件教案
發(fā)布時間:2023-07-06 二元一次方程課件教案二元一次方程課件教案(合集12篇)。
前輩告訴我們,做事之前提前下功夫是成功的一部分。身為一位人民教師,我們都希望孩子們能學(xué)到知識,為了將學(xué)生的效率提上來,老師會準備一份教案,教案有助于讓同學(xué)們很好的吸收課堂上所講的知識點。你知道如何去寫好一份優(yōu)秀的幼兒園教案呢?小編特別從網(wǎng)絡(luò)上整理了二元一次方程課件教案(合集12篇),相信會對你有所幫助!
二元一次方程課件教案 篇1
知識要點
1、二元一次方程:含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是一次的整式方程叫做~
2、二元一次方程的解:適合二元一次方程的一組未知數(shù)的值叫做這個二元一次方程的一個解;
3、二元一次方程組:由幾個一次方程組成并含有兩個未知數(shù)的方程組叫做二元一次方程組
4、二元一次方程組的解:適合二元一次方程組里各個方程的一對未知數(shù)的值,叫做這個方程組里各個方程的公共解,也叫做這個方程組的解(注意:①書寫方程組的解時,必需用“”把各個未知數(shù)的值連在一起,即寫成的形式;②一元方程的解也叫做方程的根,但是方程組的解只能叫解,不能叫根)
5、解方程組:求出方程組的解或確定方程組沒有解的過程叫做解方程組
6、解二元一次方程組的基本方法是代入消元法和加減消元法(簡稱代入法和加減法)
(1)代入法解題步驟:把方程組里的一個方程變形,用含有一個未知數(shù)的代數(shù)式表示另一個未知數(shù);把這個代數(shù)式代替另一個方程中相應(yīng)的未知數(shù),得到一個一元一次方程,可先求出一個未知數(shù)的值;把求得的這個未知數(shù)的值代入第一步所得的式子中,可求得另一個未知數(shù)的值,這樣就得到了方程的解
(2)加減法解題步驟:把方程組里一個(或兩個)方程的兩邊都乘以適當?shù)臄?shù),使兩個方程里的某一個未知數(shù)的系數(shù)的絕對值相等;把所得到的兩個方程的兩邊分別相加(或相減),消去一個未知數(shù),得到含另一個未知數(shù)的一元一次方程(以下步驟與代入法相同)
一、例題精講
分別用代入法和加減法解方程組
解:代入法:由方程②得:③
將方程③代入方程①得:
解得x=2
將x=2代入方程②得:4-3y=1
解得y=1
所以方程組的解為
加減法:
例2.從少先隊夏令營到學(xué)校,先下山再走平路,一少先隊員騎自行車以每小時12公里的速度下山,以每小時9公里的速度通過平路,到學(xué)校共用了55分鐘,回來時,通過平路速度不變,但以每小時6公里的速度上山,回到營地共花去了1小時10分鐘,問夏令營到學(xué)校有多少公里?
分析:路程分為兩段,平路和坡路,來回路程不變,只是上山和下山的轉(zhuǎn)變導(dǎo)致時間的不同,所以設(shè)平路長為x公里,坡路長為y公里,表示時間,利用兩個不同的過程列兩個方程,組成方程組
解:設(shè)平路長為x公里,坡路長為y公里
依題意列方程組得:
解這個方程組得:
經(jīng)檢驗,符合題意
x+y=9
答:夏令營到學(xué)校有9公里二、課堂小結(jié):
回顧本章內(nèi)容,總結(jié)二元一次方程組的解法和應(yīng)用。
三、作業(yè)布置:
P25A組習(xí)題
二元一次方程課件教案 篇2
教學(xué)目標:
1.會用加減消元法解二元一次方程組.
2.能根據(jù)方程組的特點,適當選用代入消元法和加減消元法解二元一次方程組.
3.了解解二元一次方程組的消元方法,經(jīng)歷從“二元”到“一元”的轉(zhuǎn)化過程,體會解二元一次方程組中化“未知”為“已知”的“轉(zhuǎn)化”的思想方法.
教學(xué)重點:
加減消元法的理解與掌握
教學(xué)難點:
加減消元法的靈活運用
教學(xué)方法:
引導(dǎo)探索法,學(xué)生討論交流
教學(xué)過程:
一、情境創(chuàng)設(shè)
買3瓶蘋果汁和2瓶橙汁共需要23元,買5瓶蘋果汁和2瓶橙汁共需33元,每瓶蘋果汁和每瓶橙汁售價各是多少?
設(shè)蘋果汁、橙汁單價為x元,y元。
我們可以列出方程3x+2y=23
5x+2y=33
問:如何解這個方程組?
二、探索活動
活動一:1、上面“情境創(chuàng)設(shè)”中的方程,除了用代入消元法解以外,還有其他方法求解嗎?
2、這些方法與代入消元法有何異同?
3、這個方程組有何特點?
解法一:3x+2y=23①
5x+2y=33②
由①式得③
把③式代入②式
33
解這個方程得:y=4
把y=4代入③式
則
所以原方程組的解是x=5
y=4
解法二:3x+2y=23①
5x+2y=33②
由①—②式:
3x+2y-(5x+2y)=23-33
3x-5x=-10
解這個方程得:x=5
把x=5代入①式,
3×5+2y=23
解這個方程得y=4
所以原方程組的解是x=5
y=4
把方程組的兩個方程(或先作適當變形)相加或相減,消去其中一個未知數(shù),把解二元一次方程組轉(zhuǎn)化為解一元一次方程,這種解方程組的方法叫做加減消元法,簡稱加減法.
三、例題教學(xué):
例1.解方程組x+2y=1①
3x-2y=5②
解:①+②得,4x=6
將代入①,得
解這個方程得:
所以原方程組的解是
鞏固練習(xí)(一):練一練1.(1)
例2.解方程組5x-2y=4①
2x-3y=-5②
解:①×3,得
15x-6y=12③
②×3,得
4x-6y=-10④
③—④,得:
11x=22
解這個方程得x=2
將x=2代入①,得
5×2-2y=4
解這個方程得:y=3
所以原方程組的解是x=2
y=3
鞏固練習(xí)(二):練一練1.(2)(3)(4)2
四、思維拓展:
解方程組:
五、小結(jié):
1、掌握加減消元法解二元一次方程組
2、靈活選用代入消元法和加減消元法解二元一次方程組
六、作業(yè)
習(xí)題10.31.(3)(4)2
二元一次方程課件教案 篇3
各位評委、老師:
大家好!
我說課的題目是《二元一次方程組的解法——代入消元法》,內(nèi)容選自人教版九年義務(wù)教育七年級數(shù)學(xué)下冊第八章第二節(jié)第一課時。
一、說教材
(一)地位和作用
本節(jié)主要內(nèi)容是在上節(jié)已認識二元一次方程(組)和二元一次方程(組)的解等概念的基礎(chǔ)上,來學(xué)習(xí)解方程組的第一種方法——代入消元法。并初步體會解二元一次方程組的基本思想“消元”。二元一次方程組的求解,不但用到了前面學(xué)過的一元一次方程的解法,是對過去所學(xué)知識的一個回顧和提高,同時,也為后面的利用方程組來解決實際問題打下了基礎(chǔ)。初中階段要掌握的二元一次方程組的解法有代入消元法和加減消元兩種,教材都是按先求解后應(yīng)用的順序安排,這樣安排既可以在前一小節(jié)中有針對性的學(xué)習(xí)解法,又可在后一小節(jié)的應(yīng)用中鞏固前面的知識,但教材相對應(yīng)的練習(xí)安排很少,不過這樣也給了我們一較大的發(fā)揮空間。
(二)課程目標
1、知識與技能目標
(1)會用代入法解二元一次方程組
(2)初步體會解二元一次方程組的基本思想“消元”。
(3)通過對方程組中的未知數(shù)特點的觀察和分析,明確解二元一次方程組的主要思路是“消元”,從而促成由未知向已知轉(zhuǎn)化,培養(yǎng)學(xué)生觀察能力和體會化歸思想:
(4)通過用代入消元法解二元一次方程組的訓(xùn)練,及選用合理、簡捷的方法解方程組,培養(yǎng)學(xué)生的運算能力。
2、情感目標:
通過研究探討解決問題的方法,培養(yǎng)學(xué)生會作交流意識與探究精神。
(三)教學(xué)重點、難點
重點:用代入消元法解二元一次方程組。
難點:探索如何用代入消元法將“二元”轉(zhuǎn)化為“一元”的過程。
二、說教法
針對本節(jié)特點,在教學(xué)過程中采用自主、探究、合作交流的教學(xué)方法,由教師提出明確問題,學(xué)生積極參與討論探究、合作交流,進行總結(jié),使學(xué)生從中獲取知識。鑒于本節(jié)所學(xué)知識的特點,抽象教學(xué)、學(xué)生生搬硬套的學(xué)習(xí)方式將難取得理想效果,因此教師在引入課題時要利用好遠程教育設(shè)施及資源創(chuàng)設(shè)情境,讓學(xué)生去經(jīng)歷由具體問題抽象出方程組的過程。并讓學(xué)生通過獨立觀察、合作交流來探討怎樣才能變“二元”為“一元”。然后利用單個二元一次方程的變形及時強化“代入”的本質(zhì)。
三、說學(xué)法
本節(jié)學(xué)生在獨立思考、自主探究中學(xué)習(xí)并對老師的問題展開討論與交流。如何用代入消元法將“二元”轉(zhuǎn)化為“一元”學(xué)生較難掌握,在提出消元思想后,應(yīng)對具體的消元解法的過程進行歸納,讓學(xué)生得到對代入法的基本步驟的概括,通過“把一個方程(必要時先做適當變形)代入另一個方程”實現(xiàn)消元。應(yīng)注意引導(dǎo)學(xué)生認識到為什么要實施這樣的步驟。把具體做法與消元結(jié)合,使學(xué)生明解其目的性。明確這樣做的依據(jù)是等量代換。七年級的學(xué)生已經(jīng)初步具備合作交流的能力??梢酝ㄟ^探究和合作來實現(xiàn)課程目標;此外,教學(xué)中,范例的講解和隨堂練習(xí)始終是學(xué)以對用的有效方法。隨堂練習(xí)時應(yīng)引導(dǎo)學(xué)生通過自我反省、小組評價來克服解題時的錯誤,必要時給與規(guī)范矯正。
四、說教學(xué)程序
本節(jié)課我將“自主、探究、合作、交流”運用到教學(xué)中,教學(xué)過程可以劃分為以下幾個環(huán)節(jié):
1、引入新知:利用多媒體教學(xué)手段,創(chuàng)設(shè)情境,通過籃球比賽問題引入教學(xué),情境活潑、自然。
2、探究新知:在籃球比賽問題中,首先可以用一元一次方程來解決實際問題,接著提出問題:能否設(shè)出兩個未知數(shù),列出兩個方程組成方程組呢?(學(xué)生獨立思考后分組探究討論)。在學(xué)生得出正確的方程組之后提出問題:怎樣解這個方程組呢?(學(xué)生分組討論,教師加以適當?shù)囊龑?dǎo)),各組派代表得出自己的結(jié)論,教師適時引導(dǎo)“消元”思想,對消元解法的過程予以歸納。
⑴變形:將其中一個方程的某個未知數(shù)用含有另一個未知數(shù)的式子表示。
⑵代入:將變形后的方程代入另一個方程中,消去一個未知數(shù),化二元一次方程組為一元一次方程。
⑶求解:求出一元一次方程的解。
⑷回代:將其代入到變形后的方程中,求出另一個未知數(shù)的解。
⑸結(jié)論:寫出方程組的解。
3、運用新知:在得出“代入消元”解二元一次方程組后,應(yīng)用“代入消元法”解決實際問題,在學(xué)生解題過程中著重強調(diào)、矯正、理清思路和步驟。然后師生一起“解后思”:在解題時應(yīng)注意什么?在隨堂練習(xí)時教師關(guān)鍵是反饋矯正、積極評價。
4、教學(xué)小結(jié),知識回顧:讓學(xué)生暢所欲言談本節(jié)課的得失,感到困惑和疑難的地方、解題的關(guān)鍵和步驟等。教師在學(xué)生發(fā)言的基礎(chǔ)上再進行提煉:①解二元一次方程組的主要思路是“消元”;②解二元一次方程組的一般步驟是:一變形、二代入、三求解。
5、課外作業(yè)。為進一步鞏固知識,布置適當?shù)?、具有代表性的作業(yè)。
二元一次方程課件教案 篇4
教學(xué)建議
一、重點、難點分析
本節(jié)的教學(xué)重點是使學(xué)生學(xué)會用代入法.教學(xué)難點在于靈活運用代入法,這要通過一定數(shù)量的練習(xí)來解決;另一個難點在于用代入法求出一個未知數(shù)的值后,不知道應(yīng)把它代入哪一個方程求另一個未知數(shù)的值比較簡便.
解二元一次方程組的關(guān)鍵在于消元,即將“二元”轉(zhuǎn)化為“一元”.我們是通過等量代換的方法,消去一個未知數(shù),從而求得原方程組的解.
二、知識結(jié)構(gòu)
三、教法建議
1.關(guān)于檢驗方程組的解的問題.教材指出:“檢驗時,需將所求得的一對未知數(shù)的值分別代入原方程組里的每一個方程中,看看方程的左、右兩邊是不是相等.”教學(xué)時要強調(diào)“原方程組”和“每一個”這兩點.檢驗的作用,一是使學(xué)生進一步明確代入法是求方程組的解的一種基本方法,通過代入消元的確可以求得方程組的解二是進一步鞏固二元一次方程組的解的概念,強調(diào)
這一對數(shù)值才是原方程組的解,并且它們必須使兩個方程左、右兩邊的值都相等;三是因為我們沒有用方程組的同解原理而是用代換(等式的傳遞)來解方程組的,所以有必要檢驗求出來的這一對數(shù)值是不是原方程組的解;四是為了杜絕變形和計算時發(fā)生的錯誤.檢驗可以口算或在草稿紙上演算,教科書中沒有寫出.
2.教學(xué)時,應(yīng)結(jié)合具體的例子指出這里解二元一次方程組的關(guān)鍵在于消元,即把“二元”轉(zhuǎn)化為“一元”.我們是通過等量代換的方法,消去一個未知數(shù),從而求得原方程組的解.早一些指出消元思想和把“二元”轉(zhuǎn)化為“一元”的方法,這樣,學(xué)生就能有較強的目的性.
3.教師講解例題時要注意由簡到繁,由易到難,逐步加深.隨著例題由簡到繁,由易到難,要特別強調(diào)解方程組時應(yīng)努力使變形后的方程比較簡單和代入后化簡比較容易.這樣不僅可以求解迅速,而且可以減少錯誤.
一、素質(zhì)教育目標
(一)知識教學(xué)點
1.掌握用代入法解二元一次方程組的步驟.
2.熟練運用代入法解簡單的二元一次方程組.
(二)能力訓(xùn)練點
1.培養(yǎng)學(xué)生的分析能力,能迅速在所給的二元一次方程組中,選擇一個系數(shù)較簡單的方程進行變形.
2.訓(xùn)練學(xué)生的運算技巧,養(yǎng)成檢驗的習(xí)慣.
(三)德育滲透點
消元,化未知為已知的數(shù)學(xué)思想.
(四)美育滲透點
通過本節(jié)課的學(xué)習(xí),滲透化歸的數(shù)學(xué)美,以及方程組的解所體現(xiàn)出來的奇異的數(shù)學(xué)美.
二、學(xué)法引導(dǎo)
1.教學(xué)方法:引導(dǎo)發(fā)現(xiàn)法、練習(xí)法,嘗試指導(dǎo)法.
2.學(xué)生學(xué)法:在前面已經(jīng)學(xué)過一元一次方程的解法,求二元一次方程組的解關(guān)鍵是化二元方程為一元方程,故在求解過程當中始終應(yīng)抓住消元的思想方法.
三、重點、難點、疑點及解決辦法
(-)重點
使學(xué)生會用代入法解二元一次方程組.
(二)難點
靈活運用代入法的技巧.
(三)疑點
如何“消元”,把“二元”轉(zhuǎn)化為“一元”.
(四)解決辦法
一方面復(fù)習(xí)用一個未知量表示另一個未知量的方法,另一方面學(xué)會選擇用一個系數(shù)較簡單的方程進行變形:
四、課時安排
一課時.
五、教具學(xué)具準備
電腦或投影儀、自制膠片.
六、師生互動活動設(shè)計
1.教師設(shè)問怎樣用一個未知量表示另一個未知量,并比較哪種表示形式更簡單,如 等.
2.通過課本中香蕉、蘋果的應(yīng)用問題,引導(dǎo)學(xué)生列出一元一次方程或二元一次方程組,并通過比較、嘗試,探索出化二元為一元的解方程組的方法.
3.再通過比較、嘗試,探索出選一個系數(shù)較簡單的方程變形,通過代入法求方程組解的辦法更簡便,并尋找出求解的規(guī)律.
七、教學(xué)步驟
(-)明確目標
本節(jié)課我們將學(xué)習(xí)用代入法求二元一次方程組的解.
(二)整體感知
從復(fù)習(xí)用一個未知量表達另一個未知量的方法,從而導(dǎo)入運用代入法化二元為一元方程的求解過程,即利用代入消元法求二元一次方程組的解的辦法.
(三)教學(xué)步驟
1.創(chuàng)設(shè)情境,復(fù)習(xí)導(dǎo)入
(1)已知方程 ,先用含 的代數(shù)式表示 ,再用含 的代數(shù)式表示 .并比較哪一種形式比較簡單.
(2)選擇題:
二元一次方程組 的解是
A. B. C. D.
第(1)題為用代入法解二元一次方程組打下基礎(chǔ);第(2)題既復(fù)習(xí)了上節(jié)課的重點,又成為導(dǎo)入新課的材料.
通過上節(jié)課的學(xué)習(xí),我們會檢驗一對數(shù)值是否為某個二元一次方程組的解.那么,已知一個二元一次方程組,應(yīng)該怎樣求出它的解呢?這節(jié)課我們就來學(xué)習(xí).
這樣導(dǎo)入,可以激發(fā)學(xué)生的求知欲.
2.探索新知,講授新課
香蕉的售價為5元/千克,蘋果的售價為3元/千克,小華共買了香蕉和蘋果9千克,付款33元,香蕉和蘋果各買了多少千克?
學(xué)生活動:分別列出一元一次方程和二元一次方程組,兩個學(xué)生板演.
設(shè)買了香蕉 千克,那么蘋果買了 千克,根據(jù)題意,得
設(shè)買了香蕉 千克,買了蘋果 千克,得
上面的一元一次方程我們會解,能否把二元一次方程組轉(zhuǎn)化為一元一次方程呢,由方程①可以得到 ③,把方程②中的 轉(zhuǎn)換成 ,也就是把方程③代入方程②,就可以得到 .這樣,我們就把二元一次方程組轉(zhuǎn)化成了一元一次方程,由這個方程就可以求出 了.
解:由①得: ③
把③代入②,得:
∴
把 代入③,得:
∴
解二元一次方程組與解一元一次方程相比較,向?qū)W生展示了知識的發(fā)生過程,這對于學(xué)生知識的形成十分重要.
上面解二元一次方程組的方法,就是代入消元法.你能簡單說說用代入法解二元一次方程組的基本思路嗎?
學(xué)生活動:小組討論,選代表發(fā)言,教師進行指導(dǎo).糾正后歸納:設(shè)法消去一個未知數(shù),把二元一次方程組轉(zhuǎn)化為一元一次方程.
例1 解方程組
(1)觀察上面的方程組,應(yīng)該如何消元?(把①代入②)
(2)把①代入②后可消掉 ,得到關(guān)于 的一元一次方程,求出 .
(3)求出 后代入哪個方程中求 比較簡單?(①)
學(xué)生活動:依次回答問題后,教師板書
解:把①代入②,得
∴
把 代入①,得
∴
如何檢驗得到的結(jié)果是否正確?
學(xué)生活動:口答檢驗.
教師:要把所得結(jié)果分別代入原方程組的每一個方程中.
給出例1后提出的三個問題,恰好是學(xué)生的思維過程,明確了解題思路;教師板演例1,規(guī)范了解二元一次方程組的解題格式;通過檢驗,可使學(xué)生養(yǎng)成嚴謹認真的學(xué)習(xí)習(xí)慣.
例2 解方程組
要把某個方程化成如例1中方程①的形式后,代入另一個方程中才能消元.方程②中 的系數(shù)是1,比較簡單.因此,可以先將方程②變形,用含 的代數(shù)式表示 ,再代入方程①求解.
學(xué)生活動:嘗試完成例2.
教師巡視指導(dǎo),發(fā)現(xiàn)并糾正學(xué)生的問題,把書寫過程規(guī)范化.
解:由②,得 ③
把③代入①,得
∴
∴
把 代入③,得
∴
∴
檢驗后,師生共同討論:
(1)由②得到③后,再代入②可以嗎?(不可以)為什么?(得到的是恒等式,不能求解)
(2)把 代入①或②可以求出 嗎?(可以)代入③有什么好處?(運算簡便)
學(xué)生活動:根據(jù)例1、例2的解題過程,嘗試總結(jié)用代入法解二元一次方程組的一般步驟,討論后選代表發(fā)言.之后,看課本第12頁,用幾個字概括每個步驟.
教師板書:
(1)變形( )
(2)代入消元( )
(3)解一元一次方程得( )
(4)把 代入 求解
練習(xí):P13 1.(1)(2);P14 2.(1)(2).
3.變式訓(xùn)練,培養(yǎng)能力
①由 可以得到用 表示 .
②在 中,當 時, ;當 時, ,則 ; .
③選擇:若 是方程組 的解,則( )
A. B. C. D.
(四)總結(jié)、擴展
1.解二元一次方程組的思想:
2.用代入法解二元一次方程組的步驟.
3.用代入法解二元一次方程組的技巧:①變形的技巧②代入的技巧.
通過這節(jié)課的學(xué)習(xí),我們要熟練運用代入法解二元一次方程組,并能檢驗結(jié)果是否正確.
八、布置作業(yè)
(一)必做題:P15 1.(2)(4),2.(1)(2)(3)(4).
(二)選做題:P15 B組1.
二元一次方程課件教案 篇5
教學(xué)目標
1.會列二元一次方程組解簡單的應(yīng)用題并能檢驗結(jié)果的合理性。
2.提高分析問題、解決問題的能力。
3.體會數(shù)學(xué)的應(yīng)用價值。
教學(xué)重點
根據(jù)實際問題列二元一次方程組。
教學(xué)難點
1.找實際問題中的相等關(guān)系。
2.徹底理解題意。
教學(xué)過程
一、引入。
本節(jié)課我們繼續(xù)學(xué)習(xí)用二元一次方程組解決簡單實際問題。
二、新課。
例1. 小琴去縣城,要經(jīng)過外祖母家,頭一天下午從她家走到個祖母家里,第二天上午,從外外祖母家出發(fā)勻速前進,走了2小時、5小時后,離她自己家分別為13千米、25千米。你能算出她的速度嗎?還能算出她家與外祖母家相距多遠嗎?
探究: 1. 你能畫線段表示本題的數(shù)量關(guān)系嗎?
2.填空:(用含S、V的代數(shù)式表示)
設(shè)小琴速度是V千米/時,她家與外祖母家相距S千米,第二天她走2小時趟的路程是______千米。此時她離家距離是______千米;她走5小時走的路程是______千米,此時她離家的距離是________千米20xx年-20xx學(xué)年七年級數(shù)學(xué)下冊全冊教案(人教版)教案。
3.列方程組。
4.解方程組。
5.檢驗寫出答案。
討論:本題是否還有其它解法?
三、練習(xí)。
1.建立方程模型。
(1)兩在相距280千米,一般順流航行需14小時,逆流航行需20小時,求船在靜水中速度,水流的速度
(2)420個零件由甲、乙兩人制造。甲先做2天后,乙加入合作再做2天完成,乙先做2天,甲加入合作,還需3天完成。問:甲、乙每天各做多少個零件?
2.P38練習(xí)第2題。
3.小組合作編應(yīng)用題:兩個寫一方程組,另兩人根據(jù)方程組編應(yīng)用題。
四、小結(jié)。
本節(jié)課你有何收獲?
二元一次方程課件教案 篇6
教學(xué)目標:
1、會用代入法解二元一次方程組
2、會闡述用代入法解二元一次方程組的基本思路——通過“代入”達到“消元”的目的,從而把解二元一次方程組轉(zhuǎn)化為解一元一次方程。
此外,在用代入法解二元一次方程組的知識發(fā)生過程中,讓學(xué)生從中體會“化未知為已知”的重要的數(shù)學(xué)思想方法。
引導(dǎo)性材料:
本節(jié)課,我們以上節(jié)課討論的求甲、乙騎自行車速度的問題為例,探求二元一次方程組的解法。前面我們根據(jù)問題“甲、乙騎自行車從相距60千米的兩地相向而行,經(jīng)過兩小時相遇。已知乙的速度是甲的速度的2倍,求甲、乙兩人的速度?!痹O(shè)甲的速度為X千米/小時,由題意可得一元一次方程2(X+2X)=60;設(shè)甲的速度為X千米/小時,乙的速度為Y千米/小時,由題意可得二元一次方程組 2(X+Y)=60
Y=2X 觀察
2(X+2X)=60與 2(X+Y)=60 ①
Y=2X ② 有沒有內(nèi)在聯(lián)系?有什么內(nèi)在聯(lián)系?
(通過較短時間的觀察,學(xué)生通常都能說出上面的二元一次方程組與一元一次方程的內(nèi)在聯(lián)系——把方程①中的“Y”用“2X”去替換就可得到一元一次方程。)
知識產(chǎn)生和發(fā)展過程的教學(xué)設(shè)計
問題1:從上面的二元一次方程組與一元一次方程的內(nèi)在聯(lián)系的研究中,我們可以得到什么啟發(fā)?把方程①中的“Y”用“2X”去替換,就是把方程②代入方程①,于是我們就把一個新問題(解二元一次方程組)轉(zhuǎn)化為熟悉的問題(解一元一次方程)。
解方程組 2(X+Y)=60 ①
Y=2X ②
解:把②代入①得:
2(X+2X)=60,
6X=60,
X=10
把X=10代入②,得
Y=20
因此: X=10
Y=20
問題2:你認為解方程組 2(X+Y)=60 ①
Y=2X ② 的關(guān)鍵是什么?那么解方程組
X=2Y+1
2X—3Y=4 的關(guān)鍵是什么?求出這個方程組的解。
上面兩個二元一次方程組求解的基本思路是:通過“代入”,達到消去一個未知數(shù)(即消元)的目的,從而把解二元一次方程組轉(zhuǎn)化為解一元一次方程,這種解二元一次方程組的方法叫“代入消元法”,簡稱“代入法”。
問題3:對于方程組 2X+5Y=-21 ①
X+3Y=8 ② 能否像上述兩個二元一次方程組一樣,把方程組中的一個方程直接代入另一個方程從而消去一個未知數(shù)呢?
(說明:從學(xué)生熟悉的列一元一次方程求解兩個未知數(shù)的問題入手來研究二元一次方程組的解法,有利于學(xué)生建立新舊知識的聯(lián)系和培養(yǎng)良好的學(xué)習(xí)習(xí)慣,使學(xué)生逐步學(xué)會把一個還不會解決的問題轉(zhuǎn)化為一個已經(jīng)會解決的問題的思想方法,對后續(xù)的解三無一次方程組、一元二次方程、分式方程等,學(xué)生就有了求解的策略。)
例題解析
例:用代入法將下列解二元一次方程組轉(zhuǎn)化為解一元一次方程:
(1)X=1-Y ①
3X+2Y=5 ②
將①代入②(消去X)得:
3(1-Y)+2Y=5
(2)5X+2Y-25.2=0 ①
3X-5=Y ②
將②代入①(消去Y)得:
5X+2(3X-5)-25.2=0
(3)2X+Y=5 ①
3X+4Y=2 ②
由①得Y=5-2X,將Y=5-2X代入②消去Y得:
3X+4(5-2X)=2
(4)2S-T=3 ①
3S+2T=8 ②
由①得T=2S-3,將T=2S-3代入②消去T得:
3S+2(2S-3)=8
課內(nèi)練習(xí):
解下列方程組。
(1)2X+5Y=-21 (2)3X-Y=2
X+3Y=8 3X=11-2Y
小結(jié):
1、用代入法解二元一次方程組的關(guān)鍵是“消元”,把新問題(解二元一次方程組)轉(zhuǎn)化為舊知識(解一元一次方程)來解決。
2、用代入法解二元一次方程組,常常選用系數(shù)較簡單的方程變形,這用利于正確、簡捷的消元。
3、用代入法解二元一次方程組,實質(zhì)是數(shù)學(xué)中常用的重要的“換元”,比如在求解例(1)中,把①代入②,就是把方程②中的元“X”用“1-Y”去替換,使方程②中只含有一個未知數(shù)Y。
課后作業(yè):
教科書第14頁練習(xí)題2(1)、(2)題,第15頁習(xí)題5.2A組2(1)、(2)、(4)題。
二元一次方程課件教案 篇7
【教學(xué)目標】
【知識目標】
了解二元一次方程、二元一次方程組及其解等有關(guān)概念,并會判斷一組數(shù)是不是某個二元一次方程組的解。
【能力目標】
通過討論和練習(xí),進一步培養(yǎng)學(xué)生的觀察、比較、分析的能力。
【情感目標】
通過對實際問題的分析,使學(xué)生進一步體會方程是刻畫現(xiàn)實世界的有效數(shù)學(xué)模型,培養(yǎng)學(xué)生良好的數(shù)學(xué)應(yīng)用意識。
【重點】
二元一次方程組的含義
【難點】
判斷一組數(shù)是不是某個二元一次方程組的解,培養(yǎng)學(xué)生良好的數(shù)學(xué)應(yīng)用意識。
【教學(xué)過程】
一、引入、實物投影
1、師:在一望無際呼倫貝爾大草原上,一頭老牛和一匹小馬馱著包裹吃力地行走著,老牛喘著氣吃力地說:“累死我了”,小馬說:“你還累,這么大的個,才比我多馱2個”老牛氣不過地說:“哼,我從你背上拿來一個,我的包裹就是你的2倍!”,小馬天真而不信地說:“真的?!”同學(xué)們,你們能否用數(shù)學(xué)知識幫助小馬解決問題呢?
2、請每個學(xué)習(xí)小組討論(討論2分鐘,然后發(fā)言)
這個問題由于涉及到老牛和小馬的馱包裹的兩個未知數(shù),我們設(shè)老牛馱x個包裹,小馬馱y個包裹,老牛的包裹數(shù)比小馬多2個,由此得方程x-y=2,若老牛從小馬背上拿來1個包裹,這時老牛的包裹是小馬的2倍,得方程:x+1=2(y-1)
師:同學(xué)們能用方程的方法來發(fā)現(xiàn)、解決問題這很好,上面所列方程有幾個未知數(shù)?含未知數(shù)的項的次數(shù)是多少?(含有兩個未知數(shù),并且所含未知數(shù)項的次數(shù)是1)
師:含有兩個未知數(shù),并且含未知數(shù)項的次數(shù)都是1的方程叫做二元一次方程
注意:這個定義有兩個地方要注意①、含有兩個未知數(shù),②、含未知數(shù)的次數(shù)是一次
練習(xí)(投影)
下列方程有哪些是二元一次方程
+2y=1xy+x=13x-=5x2-2=3x
xy=12x(y+1)=c2x-y=1x+y=0
二、議一議、
師:上面的方程中x-y=2,x+1=2(y-1)的x含義相同嗎?y呢?
師:由于x、y的含義分別相同,因而必同時滿足x-y=2和x+1=2(y-1),我們把這兩個方程用大括號聯(lián)立起來,寫成
x-y=2
x+1=2(y-1)
像這樣含有兩個未知數(shù)的兩個一次方程所組成的一組方程,叫做二元一次方程組。
如:2x+3y=35x+3y=8
x-3y=0x+y=8
三、做一做、
1、x=6,y=2適合方程x+y=8嗎?x=5,y=3呢?x=4,y=4呢?你還能找到其他x,y值適合x+y=8方程嗎?
2、X=5,y=3適合方程5x+3y=34嗎?x=2,y=8呢?
你能找到一組值x,y同時適合方程x+y=8和5x+3y=34嗎?
x=6,y=2是方程x+y=8的一個解,記作x=6同樣,x=5
y=2y=3
也是方程x+y=8的一個解,同時x=5又是方程5x+3y=34的一個解,
y=3
四、隨堂練習(xí)(P103)
五、小結(jié):
1、含有兩未知數(shù),并且含有未知數(shù)的項的次數(shù)是一次的整式方程叫做二元一次方程。
2、二元一次方程的解是一個互相關(guān)聯(lián)的兩個數(shù)值,它有無數(shù)個解。
3、含有兩個未知數(shù)的兩個二元一次方程組成的一組方程,叫做二元一次方程組,它的解是兩個方程的公共解,是一組確定的值。
二元一次方程課件教案 篇8
一、復(fù)習(xí)引入
1.已知方程x2-ax-3a=0的一個根是6,則求a及另一個根的值.
2.由上題可知一元二次方程的系數(shù)與根有著密切的關(guān)系.其實我們已學(xué)過的求根公式也反映了根與系數(shù)的關(guān)系,這種關(guān)系比較復(fù)雜,是否有更簡潔的關(guān)系?
3.由求根公式可知,一元二次方程ax2+bx+c=0(a≠0)的兩根為x1=-b+b2-4ac2a,x2=-b-b2-4ac2a.觀察兩式右邊,分母相同,分子是-b+b2-4ac與-b-b2-4ac.兩根之間通過什么計算才能得到更簡潔的關(guān)系?
二、探索新知
解下列方程,并填寫表格:
方程 x1 x2 x1+x2 x1?x2
x2-2x=0
x2+3x-4=0
x2-5x+6=0
觀察上面的表格,你能得到什么結(jié)論?
(1)關(guān)于x的方程x2+px+q=0(p,q為常數(shù),p2-4q≥0)的兩根x1,x2與系數(shù)p,q之間有什么關(guān)系?
(2)關(guān)于x的方程ax2+bx+c=0(a≠0)的兩根x1,x2與系數(shù)a,b,c之間又有何關(guān)系呢?你能證明你的猜想嗎?
解下列方程,并填寫表格:
方程 x1 x2 x1+x2 x1?x2
2x2-7x-4=0
3x2+2x-5=0
5x2-17x+6=0
小結(jié):根與系數(shù)關(guān)系:
(1)關(guān)于x的方程x2+px+q=0(p,q為常數(shù),p2-4q≥0)的兩根x1,x2與系數(shù)p,q的關(guān)系是:x1+x2=-p,x1?x2=q(注意:根與系數(shù)關(guān)系的前提條件是根的判別式必須大于或等于零.)
(2)形如ax2+bx+c=0(a≠0)的方程,可以先將二次項系數(shù)化為1,再利用上面的結(jié)論.
即:對于方程 ax2+bx+c=0(a≠0)
∵a≠0,∴x2+bax+ca=0
∴x1+x2=-ba,x1?x2=ca
(可以利用求根公式給出證明)
例1 不解方程,寫出下列方程的兩根和與兩根積:
(1)x2-3x-1=0 (2)2x2+3x-5=0
(3)13x2-2x=0 (4)2x2+6x=3
(5)x2-1=0 (6)x2-2x+1=0
例2 不解方程,檢驗下列方程的解是否正確?
(1)x2-22x+1=0 (x1=2+1,x2=2-1)
(2)2x2-3x-8=0 (x1=7+734,x2=5-734)
例3 已知一元二次方程的兩個根是-1和2,請你寫出一個符合條件的方程.(你有幾種方法?)
例4 已知方程2x2+kx-9=0的一個根是-3,求另一根及k的值.
變式一:已知方程x2-2kx-9=0的兩根互為相反數(shù),求k;
變式二:已知方程2x2-5x+k=0的兩根互為倒數(shù),求k.
三、課堂小結(jié)
1.根與系數(shù)的關(guān)系.
2.根與系數(shù)關(guān)系使用的前提是:(1)是一元二次方程;(2)判別式大于等于零.
四、作業(yè)布置
1.不解方程,寫出下列方程的兩根和與兩根積.
(1)x2-5x-3=0 (2)9x+2=x2 (3)6x2-3x+2=0
(4)3x2+x+1=0
2.已知方程x2-3x+m=0的一個根為1,求另一根及m的值.
3.已知方程x2+bx+6=0的一個根為-2,求另一根及b的值
二元一次方程課件教案 篇9
教學(xué)目標:
1、使學(xué)生會借助二元一次方程組解決簡單的實際問題,讓學(xué)生再次體會二元一次方程組與現(xiàn)實生活的聯(lián)系和作用2、通過應(yīng)用題教學(xué)使學(xué)生進一步使用代數(shù)中的方程去反映現(xiàn)實世界中等量關(guān)系,體會代數(shù)方法的優(yōu)越性。
重點:能根據(jù)題意列二元一次方程組;根據(jù)題意找出等量關(guān)系;
難點:正確發(fā)找出問題中的兩個等量關(guān)系
教學(xué)過程:
一、復(fù)習(xí)
列方程解應(yīng)用題的步驟是什么?
審題、設(shè)未知數(shù)、列方程、解方程、檢驗并答
新課:
看一看課本99頁探究1
問題:
1題中有哪些已知量?哪些未知量?
2題中等量關(guān)系有哪些?
3如何解這個應(yīng)用題?
本題的等量關(guān)系是(1)30只母牛和15只小牛一天需用飼料為675kg
(2)(30+12只母牛和(15+5)只小牛一天需用飼料為940
練一練:
1、某所中學(xué)現(xiàn)在有學(xué)生4200人,計劃一年后初中在樣生增加8%,高中在校生增加11%,這樣全校學(xué)生將增加10%,這所學(xué)?,F(xiàn)在的初中在校生和高中在校生人數(shù)各是多少人?
2、有大小兩輛貨車,兩輛大車與3輛小車一次可以支貨15。50噸,5輛大車與6輛小車一次可以支貨35噸,求3輛大車與5輛小車一次可以運貨多少噸?
3、某工廠第一車間比第二車間人數(shù)的少30人,如果從第二車間調(diào)出10人到第一車間,則第一車間的人數(shù)是第二車間的,問這兩車間原有多少人?
4、某運輸隊送一批貨物,計劃20天完成,實際每天多運送5噸,結(jié)果不但提前2天完成任務(wù)并多運了10噸,求這批貨物有多少噸?原計劃每天運輸多少噸?
二元一次方程課件教案 篇10
教學(xué)目標
1.會列出二元一次方程組解簡單應(yīng)用題,并能檢驗結(jié)果的合理性。
2.知道二元一次方程組是反映現(xiàn)實世界量之間相等關(guān)系的一種有效的數(shù)學(xué)模型20xx年-20xx學(xué)年七年級數(shù)學(xué)下冊全冊教案(人教版)20xx年-20xx學(xué)年七年級數(shù)學(xué)下冊全冊教案(人教版)。
3.引導(dǎo)學(xué)生關(guān)注身邊的數(shù)學(xué),滲透將來未知轉(zhuǎn)達化為已知的辯證思想。
教學(xué)重點
1.列二元一次方程組解簡單問題。
2.徹底理解題意
教學(xué)難點
找等量關(guān)系列二元一次方程組。
教學(xué)過程
一、情境引入。
小剛與小玲一起在水果店買水果,小剛買了3千克蘋果,2千克梨,共花了18.8元。小玲買了2千克蘋果,3千克梨,共花了18.2元?;丶衣飞?,他們遇上了好朋友小軍,小軍問蘋果、梨各多少錢1千克?他們不講,只講各自買的幾千克水果和總共的錢,要小軍猜。聰明的同學(xué)們,小軍能猜出來嗎?
二、建立模型。
1.怎樣設(shè)未知數(shù)?
2.找本題等量關(guān)系?從哪句話中找到的?
3.列方程組。
4.解方程組。
5.檢驗寫答案。
思考:怎樣用一元一次方程求解?
比較用一元一次方程求解,用二元一次方程組求解誰更容易?
三、練習(xí)。
1.根據(jù)問題建立二元一次方程組。
(1)甲、乙兩數(shù)和是40差是6,求這兩數(shù)。
(2)80班共有64名學(xué)生,其中男生比女生多8人,求這個班男生人數(shù),女生人數(shù)。
(3)已知關(guān)于求x、y的方程,
是二元一次方程。求a、b的值。
2.P38練習(xí)第1題。
四、小結(jié)。
小組討論:列二元一次方程組解應(yīng)用題有哪些基本步驟?
五、作業(yè)。
P42。習(xí)題2.3A組第1題。
后記:
2.3二元一次方程組的應(yīng)用(2)
二元一次方程課件教案 篇11
各位評委、老師大家好:
我說課的題目是《二元一次方程組的解法----代入消元法》,內(nèi)容選自人教版九年義務(wù)教育七年級數(shù)學(xué)下冊第八章第二節(jié)第一課時。
一、說教材
(一)地位和作用
本節(jié)主要內(nèi)容是在上節(jié)已認識二元一次方程(組)和二元一次方程(組)的解等概念的基礎(chǔ)上,來學(xué)習(xí)解方程組的第一種方法——代入消元法。并初步體會解二元一次方程組的基本思想“消元”。二元一次方程組的求解,不但用到了前面學(xué)過的一元一次方程的解法,是對過去所學(xué)知識的一個回顧和提高,同時,也為后面的利用方程組來解決實際問題打下了基礎(chǔ)。初中階段要掌握的二元一次方程組的解法有代入消元法和加減消元兩種,教材都是按先求解后應(yīng)用的順序安排,這樣安排既可以在前一小節(jié)中有針對性的學(xué)習(xí)解法,又可在后一小節(jié)的應(yīng)用中鞏固前面的知識,但教材相對應(yīng)的練習(xí)安排很少,不過這樣也給了我們一較大的發(fā)揮空間。
(二)課程目標
1、知識目標
(1)、了解解二元一次方程組的“消元”思想,體會學(xué)習(xí)數(shù)學(xué)中的“化未知為已知”,“化復(fù)雜為簡單”的化歸思想。
(2)、了解代入法的概念,掌握代入法的基本步驟。
(3)、會用代入法求二元一次方程組的解。
2、能力目標
培養(yǎng)學(xué)生動手操作、探索、觀察、分析、劃歸獲得數(shù)學(xué)思想的能力;培養(yǎng)學(xué)生轉(zhuǎn)化獨立獲取知識的方法并解決問題的能力。
3、情感目標
(1)、在學(xué)生了解二元一次方程組的“消元”思想,從初步理解化“未知”為“已知和化復(fù)雜問題為簡單問題的劃歸思想中,享受學(xué)習(xí)數(shù)學(xué)的興趣、提高學(xué)習(xí)數(shù)學(xué)的信心。
(三)教學(xué)重點、難點
重點:用代入消元法解二元一次方程組。
難點:探索如何用代入消元法將“二元”轉(zhuǎn)化為“一元”的過程。
二、說教法
針對本節(jié)特點,在教學(xué)過程中采用自主、探究、合作交流的教學(xué)方法,由教師提出明確問題,學(xué)生積極參與討論探究、合作交流,進行總結(jié),使學(xué)生從中獲取知識。鑒于本節(jié)所學(xué)知識的特點,抽象教學(xué)、學(xué)生生搬硬套的學(xué)習(xí)方式將難取得理想效果,因此教師在引入課題時要合理創(chuàng)設(shè)問題情境,讓學(xué)生去經(jīng)歷由具體問題抽象出方程組的過程。并讓學(xué)生通過獨立觀察、合作交流來探討怎樣才能變“二元”為“一元”。然后利用單個二元一次方程的變形及時強化“代入”的本質(zhì)。
三、說學(xué)法
本節(jié)學(xué)生在獨立思考、自主探究中學(xué)習(xí)并對老師的問題展開討論與交流。如何用代入消元法將“二元”轉(zhuǎn)化為“一元”學(xué)生較難掌握,在提出消元思想后,應(yīng)對具體的消元解法的過程進行歸納,讓學(xué)生得到對代入法的基本步驟的概括,通過“把一個方程(必要時先做適當變形)代入另一個方程”實現(xiàn)消元。應(yīng)注意引導(dǎo)學(xué)生認識到為什么要實施這樣的步驟。把具體做法與消元結(jié)合,使學(xué)生明解其目的性。明確這樣做的依據(jù)是等量代換。七年級的學(xué)生已經(jīng)初步具備合作交流的能力。可以通過探究和合作來實現(xiàn)課程目標;此外,教學(xué)中,范例的講解和隨堂練習(xí)始終是學(xué)以對用的有效方法。隨堂練習(xí)時應(yīng)引導(dǎo)學(xué)生通過自我反省、小組評價來克服解題時的錯誤,必要時給與規(guī)范矯正。
四、說教學(xué)程序
本節(jié)課我將“自主、探究、合作、交流”運用到教學(xué)中,教學(xué)過程可以劃分為以下幾個環(huán)節(jié):
1、引入新知:利用多媒體教學(xué)手段,創(chuàng)設(shè)情境,通過籃球比賽問題引入教學(xué),情境活潑、自然。
2、探究新知:在籃球比賽問題中,首先可以用一元一次方程來解決實際問題,接著提出問題:能否設(shè)出兩個未知數(shù),列出兩個方程組成方程組呢?(學(xué)生獨立思考后分組探究討論)。在學(xué)生得出正確的方程組之后提出問題:怎樣解這個方程組呢?(學(xué)生分組討論,教師加以適當?shù)囊龑?dǎo)),各組派代表得出自己的結(jié)論,教師適時引導(dǎo)“消元”思想,對消元解法的過程予以歸納。
3、運用新知:在得出“代入消元”解二元一次方程組后,應(yīng)用“代入消元法”解決實際問題,在學(xué)生解題過程中著重強調(diào)、矯正、理清思路和步驟。然后師生一起“解后思”:在解題時應(yīng)注意什么?在隨堂練習(xí)時教師關(guān)鍵是反饋矯正、積極評價。
4、教學(xué)小結(jié),知識回顧:讓學(xué)生暢所欲言談本節(jié)課的得失,感到困惑和疑難的地方、解題的關(guān)鍵和步驟等。教師在學(xué)生發(fā)言的基礎(chǔ)上再進行提煉:解二元一次方程組的主要思路是“消元”;解二元一次方程組的一般步驟是:“一變、二代、三求、四代、五定”。
5、課外作業(yè)。為進一步鞏固知識,布置適當?shù)摹⒕哂写硇缘淖鳂I(yè)。
五、說應(yīng)用
《數(shù)學(xué)課程標準》指出:“數(shù)學(xué)來源于生活”“數(shù)學(xué)服務(wù)于生活”“數(shù)學(xué)問題要生活化”,“讓數(shù)學(xué)走進生活”已是一種全新的教育理念,它有利于實現(xiàn)“不同人在數(shù)學(xué)上得到不同的發(fā)展?!睘榇?,在數(shù)學(xué)課堂教學(xué)中,教師要善于創(chuàng)設(shè)教學(xué)情境,為學(xué)生創(chuàng)造一個輕松、愉悅的學(xué)習(xí)氛圍,集中學(xué)生的注意力,把學(xué)生思緒帶進特定的學(xué)習(xí)情境中去,激發(fā)他們濃厚的學(xué)習(xí)興趣和強烈的求知欲望。同時,教師設(shè)計教學(xué)活動時,要充分利用現(xiàn)代遠程教育資源結(jié)合本班的實際和知識水平,精心為學(xué)生創(chuàng)設(shè)貼進生活的學(xué)習(xí)情境,讓學(xué)生有身臨其境的感覺,從而激發(fā)學(xué)生的學(xué)習(xí)興趣和求知欲。
總之,在數(shù)學(xué)教學(xué)中合理運用多媒體教學(xué)平臺,能極大地方便教學(xué),減輕教師的負擔,更好地優(yōu)化課堂結(jié)構(gòu),促進教學(xué)質(zhì)量的提高。學(xué)生的學(xué)習(xí)方式不再單一,學(xué)習(xí)興趣明顯提高,能自主地學(xué)習(xí),真正成為學(xué)習(xí)的主體。
二元一次方程課件教案 篇12
一、說教材
首先談?wù)勎覍滩牡睦斫猓抖淮畏匠探M》是人教版初中數(shù)學(xué)七年級下冊第八章第一節(jié)的內(nèi)容,本節(jié)課的內(nèi)容是二元一次方程組的概念以及二元一次方程組的解。在此之前學(xué)習(xí)了一元一次方程和解方程的步驟,為本節(jié)課打下了良好的基礎(chǔ)。學(xué)了本節(jié)課為后面的解二元一次方程的方法做下鋪墊。因此本節(jié)課有著承上啟下的作用。
二、說學(xué)情
接下來談?wù)剬W(xué)生的實際情況。新課標指出學(xué)生是教學(xué)的主體,所以要成為符合新課標要求的教師,深入了解所面對的學(xué)生可以說是必修課。本階段的學(xué)生已經(jīng)具備了一定的分析能力,與類比學(xué)習(xí)能力。而且在生活中也為本節(jié)課積累了很多經(jīng)驗。所以,學(xué)生對于二元一次方程組概念理解較為容易,找出方程組的解,相對來說有難度,需要教師多引導(dǎo)。
三、說教學(xué)目標
根據(jù)以上對教材的分析以及對學(xué)情的把握,我制定了如下三維教學(xué)目標:
(一)知識與技能
掌握二元一次方程與二元一次方程組的概念,并了解它們的解,能正確地找出二元一次方程組的解。
(二)過程與方法
通過類比學(xué)習(xí)、自主探究、合作交流的過程,提升類比學(xué)習(xí)的能力、培養(yǎng)探究的意識。
(三)情感態(tài)度價值觀
感受數(shù)學(xué)與生活的密切聯(lián)系,培養(yǎng)學(xué)習(xí)數(shù)學(xué)的興趣。
四、說教學(xué)重難點
我認為一節(jié)好的數(shù)學(xué)課,從教學(xué)內(nèi)容上說一定要突出重點、突破難點。而教學(xué)重點的確立與我本節(jié)課的內(nèi)容肯定是密不可分的。那么根據(jù)授課內(nèi)容可以確定本節(jié)課的教學(xué)重點是:二元一次方程與二元一次方程組的概念以及方程與方程組的解。教學(xué)難點是:二元一次方程組解的探究。
五、說教法和學(xué)法
現(xiàn)代教學(xué)理論認為,在教學(xué)過程中,學(xué)生是學(xué)習(xí)的主體,教師是學(xué)習(xí)的組織者、引導(dǎo)者,教學(xué)的一切活動都必須以強調(diào)學(xué)生的主動性、積極性為出發(fā)點。根據(jù)這一教學(xué)理念,結(jié)合本節(jié)課的內(nèi)容特點和學(xué)生的年齡特征,本節(jié)課我采用講授法、練習(xí)法、小組合作等教學(xué)方法。
六、說教學(xué)過程
下面我將重點談?wù)勎覍虒W(xué)過程的設(shè)計。
(一)新課導(dǎo)入
首先是導(dǎo)入環(huán)節(jié),我采用情境導(dǎo)入:展示籃球聯(lián)賽圖片,給出評分標準。并提出問題:這個隊伍勝負場數(shù)分別是多少?
根據(jù)學(xué)生回答追問:用列方程解決問題,題中有幾個未知數(shù)呢?從而引出本節(jié)課的課題《二元一次方程組》
這樣設(shè)計的好處是:利用籃球聯(lián)賽的圖片導(dǎo)入,并講清楚評分規(guī)則,不僅可以吸引學(xué)生探索的興趣,還可以培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識。
(二)新知探索
接下來是教學(xué)中最重要的新知探索環(huán)節(jié),主要通過三個活動展開學(xué)習(xí)。
活動一:學(xué)生嘗試列方程解決問題,看看在列方程過程中遇到了什么困難?同桌之間互相交流。
學(xué)生分析題意,發(fā)現(xiàn)有未知數(shù),可以使用列方程的方法解決問題。當讓學(xué)生自己動手練習(xí)時,他們會發(fā)現(xiàn),勝負的場數(shù)都是未知的。
此時教師可以引導(dǎo)學(xué)生發(fā)現(xiàn)和思考:要求的是兩個未知數(shù),能不能根據(jù)題意直接設(shè)兩個未知數(shù),使列方程變得容易呢?學(xué)生在這樣的提示下會有一定的想法,但對于列出二元一次方程組來說還是比較困難的。
教師板書表格示意圖,引導(dǎo)學(xué)生通過題意,發(fā)現(xiàn)題干中包含的必須同時滿足的條件,得到兩組關(guān)系式并設(shè)出未知數(shù)完成表格。
活動二:學(xué)生觀察兩個方程特點,與一元一次方程有什么不同?并試著下定義。
在這里學(xué)生通過類比學(xué)習(xí),能夠歸納出二元一次方程的概念:每個方程都含有兩個未知數(shù),并且含有未知數(shù)的項的次數(shù)都是1。了解了二元一次方程后,對于二元一次方程組的概念就可以很好的展開了,對于本題列了兩個二元一次方程解決問題,像這樣的方程組叫做二元一次方程組。
師生共同總結(jié)出二元一次方程與二元一次方程組的定義。
列出了二元一次方程組,要解決籃球聯(lián)賽的問題,就要求出方程組的解,接下來進行第三個活動。
活動三:完成表格,以二元一次方程組中的一個方程為例。小組合作,找出幾組整數(shù)解,并觀察哪一組解也符合另一個方程。
在這里解二元一次方程組,可以先將問題簡單化,先研究一個方程的解,找到幾組解后,再看哪一組解也符合第二個方程。也就是兩個方程的公共解。教師給出表格,小組在進行合作時,教師應(yīng)引導(dǎo)學(xué)生思考結(jié)合題意,兩個未知數(shù)應(yīng)取正整數(shù)。填完表格后,師生共同總結(jié)出二元一次方程解的定義。
教師繼續(xù)追問,哪一組的值也滿足第二個方程。師生共同總結(jié)出什么叫做二元一次方程組的解。
得到方程組的解,回歸情景得出實際問題的答案。
設(shè)計意圖:通過三個活動展開本節(jié)課,不僅符合新課改的理念:學(xué)生是學(xué)習(xí)的主體,教師是教學(xué)活動中的組織者、引導(dǎo)者、合作者,還能通過小組活動、類比學(xué)習(xí)等活動豐富課堂。
(三)課堂練習(xí)
接下來是鞏固提高環(huán)節(jié)。
練習(xí):對下面的問題,列出二元一次方程組,并根據(jù)問題的實際意義,找出問題的解。
加工某種產(chǎn)品需經(jīng)兩道工序,第一道工序每人每天可完成900件,第二道工序每人每天可完成1200件?,F(xiàn)有7位工人參加這兩道工序,應(yīng)怎樣安排人力,才能使每天第一、第二道工序所完成的件數(shù)相等?
設(shè)計這道題可以讓學(xué)生感受數(shù)學(xué)與生活的密切聯(lián)系,學(xué)以致用。教師可以及時掌握學(xué)生本節(jié)課的學(xué)習(xí)情況,給予補充糾正。
(四)小結(jié)作業(yè)
在課程的最后我會提問:今天有什么收獲?
引導(dǎo)學(xué)生回顧:二元一次方程組的定義與二元一次方程組的解。
本節(jié)課的課后作業(yè)我設(shè)計為:
思考除了用列表找二元一次方程組的解,還有什么方法能找出解,能不能將它變成我們熟悉的一元一次方程求解。
設(shè)計意圖:本節(jié)課學(xué)生通過列表觀察得到了方程組的解,作業(yè)設(shè)計為讓學(xué)生思考解二元一次方程組的方法,并提示能不能把它變成熟悉的一元一次方程求解,為下節(jié)課的學(xué)習(xí)做下鋪墊。
Yjs21.Com更多幼兒園教案擴展閱讀
解一元一次方程課件集合十篇
老師在正式上課之前需要寫好本學(xué)期教學(xué)教案課件,現(xiàn)在著手準備教案課件也不遲。老師上課時應(yīng)以教案課件為依據(jù),如何寫優(yōu)質(zhì)課的教案?無法理解“解一元一次方程課件”幼兒教師教育網(wǎng)小編來給您講講,本文僅供閱讀參考切勿抄襲!
解一元一次方程課件(篇1)
教學(xué)目標:
知識與技能:
1、理解一元一次方程,以及一元一次方程解的概念。
2、會從題目中找出包含題目意思的一個相等關(guān)系,列出簡單的方程。
3、掌握檢驗?zāi)硞€數(shù)值是不是方程解的方法。
過程與方法:
在實際問題的過程中探討概念,數(shù)量關(guān)系,列出方程的方法,訓(xùn)練學(xué)生運用
新知識解決實際問題的能力。
情感態(tài)度和價值觀:
讓學(xué)生體會到從算式到方程是數(shù)學(xué)的進步,體現(xiàn)數(shù)學(xué)和日常生活密切相關(guān),
認識到許多實際問題可以用數(shù)學(xué)方法解決,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情。
教學(xué)重點:建立一元一次方程的概念,尋找相等關(guān)系,列出方程。
教學(xué)過程與方法:
在實際問題的過程中探討概念,數(shù)量關(guān)系,列出方程的方法,訓(xùn)練學(xué)生運用新知識解決實際問題的能力。
情感態(tài)度和價值觀:
讓學(xué)生體會到從算式到方程是數(shù)學(xué)的進步,體現(xiàn)數(shù)學(xué)和日常生活密切相關(guān),認識到許多實際問題可以用數(shù)學(xué)方法解決,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情。
教學(xué)重點:建立一元一次方程的概念,尋找相等關(guān)系,列出方程。
教學(xué)難點:根據(jù)具體問題中的相等關(guān)系,列出方程。
教學(xué)準備:多媒體教室,配套課件。
教學(xué)過程:
設(shè)計理念:
數(shù)學(xué)教學(xué)要從學(xué)生的經(jīng)驗和已有的知識出發(fā),創(chuàng)設(shè)有助于學(xué)生自主學(xué)習(xí)的問題情景,在數(shù)學(xué)教學(xué)活動中要創(chuàng)造性地使用數(shù)學(xué)教材。課程標準的建議要求教師不再是“教教材”而是“用教材”。本節(jié)課在抓住主要目標,用活教材,針對學(xué)生實際、激活學(xué)生學(xué)習(xí)熱情等方面做了有益的探索,現(xiàn)就幾個教學(xué)片斷進行探討。
一、游戲?qū)?,設(shè)置懸念
師:同學(xué)們,老師學(xué)會了一個魔術(shù),情你們配合表演。請看大屏幕,這是2006年10月的日歷,請你用正方形任意框出四個日期,并告訴老師這四個數(shù)字的和,老師馬上就告訴你這四個數(shù)字。
生1:24,師:2,3,9,10生2:84師:17,18,24,25
師:同學(xué)們想學(xué)會這個魔術(shù)嗎?生:想!
師:通過這節(jié)課的學(xué)習(xí),同學(xué)們一定能學(xué)會!
【一些教師常用教材的章前圖或者行程問題情景導(dǎo)入,但章前圖過于平淡且較難,不易激發(fā)學(xué)生興趣,本次課用游戲?qū)爰ぐl(fā)學(xué)生的求知欲,其實質(zhì)是列一元一次方程x+(x+1)+(x+7)+(x+8)=任意框出的四個日期的和,x是第一個日期,這是本次課的第一個變化?!?/p>
二、突出主題,突出主體
1、師:看大屏幕,獨立思考下列問題,根據(jù)條件列出式子。
(1)x的2倍與3的差是5,
(2)長方形的的長為a,寬比長少5,周長為36,則=36
(3)A、B兩地相距180千米,甲乙兩車分別從A、B兩地出發(fā),相向而行,甲車每小時行駛30千米,乙車得速度是甲車速度的1.5倍,經(jīng)過t小時相遇,則=180
生:(1)2x-3=5(2)2(a+a-5)=36(3)30t+1.5(30t)=180
師:這些式子小學(xué)學(xué)習(xí)過,它們是()?生:方程。
師:對,含有未知數(shù)的等式叫做方程,等號的兩邊分別叫做方程的左邊和右邊。(現(xiàn)實,學(xué)生齊讀)
【這又是一個變化,從小學(xué)已有知識出發(fā),提前給出方程的概念,避免課堂中的邏輯矛盾,同時為學(xué)習(xí)列方程打下基礎(chǔ)?!?/p>
2、師:小學(xué)我們學(xué)過簡易方程,并用簡易方程解決應(yīng)用題,對于比較復(fù)雜的實際應(yīng)用題,用方程解答起來更加方便。請自己閱讀課本P/79—81,(課本內(nèi)容略)并把課本空空填寫完整,不懂的和你的同學(xué)交流。還要回答下列問題:
(1)你是如何理解“列方程時,要先設(shè)字母表示未知數(shù),然后根據(jù)問題中的相等關(guān)系,寫出含有未知數(shù)的等式——方程”?
(2)什么叫一元一次方程?
(3)什么是的解?你找到驗證的方法嗎?
師:在閱讀P/80例題1時老師做出友情提示:
(1)選擇一個未知數(shù)x
(2)對于這三個問題,分別考慮:
用含x的未知數(shù)分別表示正方形的邊長;
用含x的未知數(shù)表示這臺計算機的檢修時間;
用含x的未知數(shù)分別表示男、女生人數(shù)。
(3)找一個問題中的相等關(guān)系列出方程
學(xué)生討論出上述答案后
師:大屏幕顯示上述問題的答案
【以前我在上這節(jié)課時,總是犯了和大多數(shù)老師一樣的毛病,擔心內(nèi)容多,學(xué)生自己不會弄懂,滿堂灌,結(jié)果我講的筋疲力盡,學(xué)生還是糊里糊涂;這次我放開手,讓學(xué)生自主學(xué)習(xí),帶著問題學(xué)習(xí),和同學(xué)合作學(xué)習(xí),結(jié)果學(xué)生情緒高漲,問題迎刃而解,重點內(nèi)容也都清晰化。這一變化,把我徹底從課堂解放出來,再不是學(xué)生心中“喋喋不休”的數(shù)學(xué)老師了,真正做到了學(xué)生學(xué)得愉快,老師教得輕松!】
三、體現(xiàn)新時代教師是學(xué)生學(xué)習(xí)的合作者
在大多數(shù)學(xué)生完成課本閱讀和解答好課本問題、上述問題的基礎(chǔ)上,請幾名代表學(xué)生匯報所列方程,并解釋方程等號左右兩邊式子的含義。
師:(強調(diào))(1)方程兩邊表示的是同一個數(shù);
(2)左右兩邊表示的方法不同。
【這一小小的點撥,有畫龍點睛之作用,突出方程的實質(zhì)性含義,為以后列出更復(fù)雜的方程打下基礎(chǔ)】
四、給學(xué)生一個展示自己精彩的舞臺
師:本節(jié)知識也學(xué)完了,你能解釋課前老師魔術(shù)中的幾多秘密?
設(shè)任意框出的四個數(shù)字的第一個為x,則:
生1:x+(x+1)+(x+7)+(x+8)=24;
生2:x+(x+1)+(x+7)+(x+8)=84
師:很好!如何算出x的值,是我們下一節(jié)課要探討的問題(繼續(xù)設(shè)疑,激發(fā)學(xué)生的學(xué)習(xí)興趣),但老師想當堂檢測一下誰掌握的最多,最好,請看大屏幕。
解一元一次方程課件(篇2)
一。教學(xué)目標:
1。知識目標:了解一元一次方程的概念,掌握含括號的一元一次方程的解法。
2。能力目標:培養(yǎng)學(xué)生的運算能力與解題思路。
3。情感目標:通過主動探索,合作學(xué)習(xí),相互交流,體會數(shù)學(xué)的嚴謹,感受數(shù)學(xué)的魅力,增加學(xué)習(xí)數(shù)學(xué)的興趣。
二。教學(xué)的重點與難點:
1。重點:了解一元一次方程的概念,解含有括號的一元一次方程的解法。
2。難點:括號前面是負號時,去括號時忘記變號。移項法則的靈活運用。
三。教學(xué)方法:
1。教 法:講課結(jié)合法
2。學(xué) 法:看中學(xué),講中學(xué),做中學(xué)
3。教學(xué)活動:講授
四。課 型:新授課
五。課 時:第一課時
六。教學(xué)用具:彩色粉筆,小黑板,多媒體
七。教學(xué)過程
1。創(chuàng)設(shè)情景:
今天讓我們一起做個小小的游戲,這個游戲的名字叫:猜猜你心中的她
心里想一個數(shù)
將這個數(shù)+2
將所得結(jié)果
最后+7
將所得的結(jié)果告訴老師
(抽一個同學(xué),讓他把他計算的結(jié)果告訴老師,由老師通過計算得到他最開始所想的數(shù)字。)
老師:同學(xué)們知道老師是怎樣猜到的嗎?
同學(xué):不知道。
老師:那同學(xué)們想知道老師是怎樣猜到的嗎?這就是我們今天所要學(xué)習(xí)的內(nèi)容解一元一次方程。
2。探究新知:
一元一次方程的概念:
前面我們遇到的一些方程,例如 3
老師:大家觀察這些方程,它們有什么共同特征?
(提示:觀察未知數(shù)的個數(shù)和未知數(shù)的次數(shù)。)
(抽同學(xué)起來回答,然后再由老師概括。)
只含有一個未知數(shù),并且含有未知數(shù)的式子都是整式,未知數(shù)的'次數(shù)是l,像這樣的方程叫做一元一次方程。
老師:同學(xué)們從這個概念中,能找出關(guān)鍵的字嗎?能用它來判斷一個式子是否是一元一次方程嗎?
再次強調(diào)特征:
(1)只含一個未知數(shù);
(2)未知數(shù)的次數(shù)為1;
(3)是一個整式。
(注意:這幾個特征必須同時滿足,缺一不可。)
3。例題講解:
例1判斷如下的式子是一元一次方程嗎?
(寫在小黑板上,讓學(xué)生判斷,并分別抽同學(xué)起來回答,如果不是,要說出理由。)
① ② ③
④ ⑤⑥
準確答案:①③
下面我們再一起來解幾個一元一次方程。
例2。解方程
(1)
解法一:解法二:
提醒:去括號的時候,如果括號外面是負號,去括號時,括號里面要變號
(提示第二種解法:先移項,再去括號。即是把 看成整體的一元一次方程的求解。)
(2)
解:
提示
1)。在我們前面學(xué)過的知識中,什么知識是關(guān)于有括號的。
2)。復(fù)習(xí)乘法分配律: ,強調(diào)去括號時把括號外的因數(shù)分別乘以括號內(nèi)的每一項,若括號前面是—號,注意去掉括號,要改變括號內(nèi)的每一項的符號。
3)。問同學(xué)們能不能運用這個知識來去掉這個括號,如果能該怎么去呢?抽一個同學(xué)起來回答。
4)。問:去了括號的式子,又該做什么呢?我們前面見過此類的方程的,引出移項,并強調(diào)移項時注意符號的變化。此處運用了等式的性質(zhì)。
5)。一起回顧合并同類項的法則:未知數(shù)的系數(shù)相加。
6)。系數(shù)化為1,運用了等式的性質(zhì)。
(求解的每一步的時候,抽同學(xué)起來回答,該怎么進行,運用了什么知識,同學(xué)敘述,老師寫,同學(xué)說完后,老師在點評,最后歸納解含括號的一元一次方程的步驟,并強 調(diào)解題格式。)
方程(1)該怎樣解?由學(xué)生獨立探索解法,并互相交流。
解一元一次方程的步驟:去括號,移項,合并同類項,系數(shù)化為1。
4。鞏固練習(xí)
(1)解方程(2)當y為何值時,2(3y+4)的值比5(2y—7)的值大3?解5(x+2)=2(5x—1)
(鞏固練習(xí),抽兩個同學(xué)上黑板去完成,其余的同學(xué)在演草紙上完成,待同學(xué)們完成后給予點評。)
5小結(jié):和同學(xué)們一起回顧我們這節(jié)課學(xué)習(xí)了什么?
解一元一次方程
概念
含括號的一元一次方程的解法的解法
作業(yè):1。P12 。1
2。預(yù)習(xí)下一節(jié)課的內(nèi)容,
3。復(fù)習(xí)此節(jié)課的內(nèi)容,并完成一下兩道思考題。
思考:(1) 解方程: 。
說明:方程中有多重括號時,一般應(yīng)按先去小括號,再去中括號,最后去大括號的方法去括號,每去一層括號合并同類項一次,以簡便運算。
(2) 該怎么求解?
解一元一次方程課件(篇3)
一、教材分析
1、教材地位和作用
本節(jié)課是預(yù)初第二學(xué)期第六章《一元一次方程及其解法》中第一節(jié)課的內(nèi)容。是小學(xué)與初中知識的銜接點,學(xué)生在小學(xué)已經(jīng)初步接觸過方程,了解了什么是方程,什么是方程的解。并在前一章剛學(xué)過有理數(shù)的概念及其運算的基礎(chǔ)上,本節(jié)課將帶領(lǐng)學(xué)生繼續(xù)學(xué)習(xí)方程、一元一次方程等內(nèi)容。要求教師幫助學(xué)生在現(xiàn)實情境中,通過對多種實際問題的分析,感受方程作為刻畫現(xiàn)實世界的模型的意義,建立方程歸納得出一元一次方程的概念并用嘗試檢驗法來求解,同時也為學(xué)生進一步學(xué)習(xí)一元一次方程的解法和應(yīng)用起到鋪墊作用。
2、教學(xué)目標
綜上分析及教學(xué)大綱要求,本課時教學(xué)目標制定如下:
⒈會運用等式的兩條基本性質(zhì)對等式進行變形;運用等式的性質(zhì)和移項法則解一元一次方程;
⒉會根據(jù)簡單數(shù)量關(guān)系列方程,通過觀察、歸納一元一次方程的概念。
⒊體會解決問題的一種重要的思想方法----嘗試檢驗法。
3、情感目標:
培養(yǎng)學(xué)生由算術(shù)解法過渡到代數(shù)解法的`解方程的基本能力,滲透化未知為已知的重要數(shù)學(xué)思想。
4、教學(xué)重點和難點
1.運用等式的基本性質(zhì)對等式進行變形。
2.移項法則及方程解的檢驗。
二、教法與學(xué)法分析
教法方法與手段:
本節(jié)課利用多媒體教學(xué)平臺,在概念教學(xué)設(shè)計中,注意遵循人們認識事物的規(guī)律,從具體到抽象,從特殊到一般,由淺入深。從學(xué)生熟悉的實際問題開始,將實際問題“數(shù)學(xué)化”建立方程模型。采用教師引導(dǎo),學(xué)生自主探索、觀察、歸納的教學(xué)方式。利用多媒體和天平演示等教學(xué)設(shè)備輔助教學(xué),充分調(diào)動學(xué)生的積極性。
學(xué)法指導(dǎo):
根據(jù)本節(jié)課的內(nèi)容特點及學(xué)生的心理特征,在學(xué)法上,極力倡導(dǎo)了新課程的自主探究、合作交流的學(xué)習(xí)方法。通過對學(xué)生原有知識水平的分析,創(chuàng)設(shè)情境,使數(shù)學(xué)回到生活,鼓勵學(xué)生思考,探索情境中的所包含的數(shù)量關(guān)系,學(xué)生在經(jīng)歷“建立方程模型”這一數(shù)學(xué)化的過程后,理解學(xué)習(xí)方程和一元一次方程的意義,培養(yǎng)學(xué)生抽象概括等能力。
三、教學(xué)設(shè)計
根據(jù)以上綜合分析,這節(jié)課的教學(xué)流程為:
聯(lián)系實際,創(chuàng)設(shè)情境——觀察歸納,建構(gòu)新知——交流對話,自我探索——理解性質(zhì),應(yīng)用鞏固——總結(jié)反思,布置作業(yè)。
解一元一次方程課件(篇4)
教學(xué)目標:
1、能說出什么叫一元一次方程;
2、知道“元”和“次”的含義;
3、熟練掌握最簡一元一次方程的解法及理論依據(jù);
能力目標:
1、培養(yǎng)學(xué)生準確運算的能力;
2、培養(yǎng)學(xué)生觀察、分析和概括的能力;
3、通過解方程的教學(xué),了解化歸的數(shù)學(xué)思想。
德育目標:
1、滲透由特殊到一般的辯證唯物主義思想;
2、通過對方程的解進行檢驗的習(xí)慣的培養(yǎng),培養(yǎng)學(xué)生嚴謹、細致的學(xué)習(xí)習(xí)慣和責任感;
3、在學(xué)習(xí)和探索知識中提高學(xué)生的學(xué)習(xí)能力、合作精神及勇于探索的精神;
重點:
1、一元一次方程的概念;
2、最簡方程的解法;
難點:正確地解最簡方程。
教學(xué)方法:引導(dǎo)發(fā)現(xiàn)法
教學(xué)過程
一、舊知識的復(fù)習(xí):
1、什么叫等式?等式具有哪些性質(zhì)?
2、什么叫方程?方程的解?解方程?
二、新知識的教學(xué):
(1)只含有一個未知數(shù);
(2)未知數(shù)的次數(shù)都是一次。
想一想:
(1)你認為最簡單的一元一次方程是什么樣的?
(2)怎樣求最簡方程(其中是未知數(shù))的解?
三、鞏固練習(xí)
1、通過練習(xí),請你總結(jié)一下,解方程(是未知數(shù))把系數(shù)化為1時,怎樣運用等式的性質(zhì)2,使計算比較簡單。
2、檢測:
3、課堂小結(jié):
四、本節(jié)學(xué)習(xí)的主要內(nèi)容
1、一元一次方程定義;
2、最簡方程(其中是未知數(shù));
3、解最簡方程的主要思路和解題的關(guān)鍵步驟及依據(jù)。
五、課堂作業(yè)。
解一元一次方程課件(篇5)
教學(xué)目標:
知識與技能目標:
會從實際問題中抽象出數(shù)學(xué)模型;會用一元一次方程解決一些實際問題。
過程與方法目標:
通過觀察、實踐、討論等活動經(jīng)歷從實際中抽象數(shù)學(xué)模型的過程。
情感與態(tài)度目標:
在積極參與教學(xué)活動過程中,初步體驗一元一次方程的使用價值,形成實事求是地態(tài)度和獨立思考的習(xí)慣。
教學(xué)重點:弄清題意,用列方程的方法解決實際問題。
教學(xué)難點:尋找實際問題中的等量關(guān)系,建立數(shù)學(xué)模型。
教輔工具:多媒體課件
教學(xué)程序設(shè)計:
程序
教師活動
學(xué)生活動
設(shè)計意圖
復(fù)
習(xí)
回
顧
前面我們學(xué)習(xí)了:解方程時有括號一般要先去括號,請問去括號時要注意什么要點?
問題1:解下列方程
(1)5X+2(3X-3)=11-(X+5)
(2)10x-4(3-x)-5(2+7x)=15x-9(x-2)
請學(xué)生回答之后就5分鐘練習(xí)
復(fù)習(xí)回顧有括號的方程的解法。
創(chuàng)
設(shè)
情
境
例2:出示問題:一艘船從甲碼頭到乙碼頭順流行駛,用了2小時;從乙碼頭返回甲碼頭逆流行駛,用了2.5小時。已知水流的速度是3千米/時,求船在靜水中的速度?
出示幻燈,學(xué)生先獨立思考
通過解決生活中的實際問題來進一步學(xué)習(xí)有括號的方程的解法
探
究
學(xué)
習(xí)
1.情境解決
問題1:一般情況下可以認為這艘船往返的路程相等,由此可填空:順流速度________順流時間________逆流速度_________逆流時間
問題2:教師引導(dǎo)學(xué)生尋找相等關(guān)系,列出方程。
設(shè)船在靜水中的速度為x千米/時,則順流速度為(x+3)千米/時,逆流速度為(x-3)千米/時,列方程,得
2(x+3)=2.5(x-3).
問題3:同學(xué)們自己解之后,請一位同學(xué)出來展示自己的計算情況
2(x+3)=2.5(x-3)。
去括號,得2x+6=2.5x-7.5
移項,得2x-2.5x=-7.5-6
合并同類項,得-0.5x=-13.5
系數(shù)化為1,得x=27
答:船在靜水中的速度為27千米/時。
例3:某車間22名工人生產(chǎn)螺釘和螺母,每人每天平均生產(chǎn)螺釘1200個或螺母2000個,一個螺釘要配兩個螺母。為了使每天的產(chǎn)品剛好配套,應(yīng)該分配多少名工人生產(chǎn)螺釘,多少名工人生產(chǎn)螺母?
分析:解決問題的關(guān)鍵:
1.如果設(shè)x名工人生產(chǎn)螺釘,則_______名工人生產(chǎn)螺母;
2.為了使每天的產(chǎn)品剛好配套,應(yīng)使生產(chǎn)的螺母恰好是螺釘數(shù)量的________.
解:設(shè)分配x名工人生產(chǎn)螺釘,其余(22-x)名工人生產(chǎn)螺母,根據(jù)螺母數(shù)量與螺釘數(shù)量的關(guān)系,列方程,得
2脳1200x=2000(22-x)
去括號,得2400x=44000-2000x
移項及合并同類項,得4400x=44000
系數(shù)化為1,得x=10
生產(chǎn)螺母的人數(shù)為22-x=12.
答:應(yīng)分配10名工人生產(chǎn)螺釘,12名工人生產(chǎn)螺母。
小組討論后回答問題,并找出等量關(guān)系,作出解答
師生共同歸納出解題的方法,抓住合適的等量關(guān)系
出示幻燈,學(xué)生先獨立思考,老師提問
小組討論后回答問題,并找出等量關(guān)系,作出解答
教師邊教邊引導(dǎo),讓學(xué)生明白需找出哪些關(guān)鍵量,建立怎樣的等量關(guān)系
教師邊教邊引導(dǎo),讓學(xué)生明白需找出哪些關(guān)鍵量,建立怎樣的等量關(guān)系
鞏固
練習(xí)
1、1、一架飛機在兩城之間航行,風速為24千米/時,順風飛行要2小時50分,逆風飛行要3小時,求兩城距離?
2、2、某隊有55人,每人每天平均挖土2.5方或運土3方,為合理安排勞力,使挖出的土及時運走,應(yīng)如何分配挖土和運土人數(shù)?
學(xué)生動手自行解決問題,個別學(xué)生展現(xiàn)解答并講解
加強對于數(shù)量關(guān)系的理解和應(yīng)用
鞏固提高這類問題的閱讀理解能力和解題能力。
應(yīng)用提高
1、兩個水池共貯有水50噸,甲池用去水5噸,乙池注進水8噸后,這時甲池的水比乙池的水少3噸,甲、乙水池原來各有水多少噸
3、2、某車間每天能生產(chǎn)甲種零件120個,或者乙種零件100個。3個甲種零件和2個乙種零件才能配成一套,要在30天內(nèi)生產(chǎn)最多的成套產(chǎn)品,問怎樣安排生產(chǎn)甲、乙兩種零件的天數(shù)?
學(xué)生自行思考,解答出來
學(xué)生小組探討,教師給予適當?shù)闹笇?dǎo)
展示學(xué)生的答案
鞏固提高這類問題的閱讀理解能力和解題能力。
小結(jié)
1、本節(jié)課你學(xué)習(xí)了什么?
水流問題,順水的速度=靜水中的速度+水流的速度
逆水的速度=靜水中的速度--水流的速度
一個螺釘要配兩個螺母鈥澥鍬菽傅母鍪鍬荻じ鍪牧獎?/p>
我還學(xué)會了用一元一次方程去解決水流問題和配對問題
2、通過今天的學(xué)習(xí),你想進一步探究的問題是什么課?還想學(xué)習(xí)有分母的方程的解法
師生共同小結(jié)
讓學(xué)生自主發(fā)現(xiàn)學(xué)習(xí)配套問題應(yīng)注意的方面
布置
作業(yè)
1.本102頁習(xí)題3.3第5、7題
2、預(yù)習(xí)問題和例4、例5
課后
反思
解一元一次方程課件(篇6)
學(xué)習(xí)目標
1. 會設(shè)未知數(shù),并利用問題中的相等關(guān)系 列方程,且正確求解
2. 會用一元一次方程解決工程問題
重點難點
重點:建立一 元一次方程解決 實際問題
難點:探究實際問題與一元一次方程的關(guān)系
教學(xué)流程
師生活動 時間
復(fù)備標注
一、 復(fù)習(xí):
解下列方程:
1.9-3y=5y+5
2.
二、新授
例5 整理 一批圖書,由一個人做要40小時完成?,F(xiàn)在計劃由一部 分人先做4小時,再增加2人和他們一起做8小時,完成這項工作。假設(shè)這些人的工作效率相同,具體應(yīng)安排多少人工作?
分析:這里可以把總工作量看做1。思考
人均效率(一個人做1小時完成的工作量)為 。
由x人先做4小時,完成的工 作量為 。再增加2人和前一部分人一起做8小時,完成的工作量為 。
這項工作分兩 段完成,兩段完成的'工作量之和為 。
解:設(shè)先安排x人工作4小時。
根據(jù)兩段工作量之和應(yīng)是總工作量,得
.
去分母, 得 4x+8(x+2)=-1701
去括號,得 4x+8x+16=40
移項及合并同類項,得
12x=24
系數(shù)化為1,得 X=-243.
所以 -3x=729
9x=-2187.
答:這三個數(shù)是-243,729,-2187。
師生小結(jié):對于規(guī)律問題,首先找到各個數(shù)之間的關(guān)系,發(fā)現(xiàn)規(guī)律,在根據(jù)問題找等量關(guān)系,設(shè)未知數(shù),列方程,解方程,解答實際 問題。轉(zhuǎn)化為方程來解決
例4 根據(jù)下面的兩種移動電話計費方式表,考慮下列問題。
方式一 方 式二
月租費 30元/月 0
本地通話費 0.30元/月 0.40元/分
(1)一個月內(nèi)在本地通話20 0分和350分,按方式一需交費多少元?按方式二呢?
(2)對于某個本地通話時 間,會出現(xiàn)按兩種計費方式收費一樣多嗎?
解:(1)
方式一 方式二
200分 90元 80元
350分 135元 140元
( 2)設(shè)累計通話t分,則按方式一要收費(30+0.3t)元,按方式二要收費0.4t元。如果兩種計費方式的收費一樣,則
0.4t=30+0.3t
移項,得 0. 4t -0.3t =30
合并同類項,得 0.1t=30
系數(shù)化為1,得 t=300
由上可知,如果一個月內(nèi)通話300分,那么兩種計費方式相同。
思考:你知道怎樣選擇計費方式更省錢嗎?
解后反思:對于有表格實際問題,首先讀清表格提供的信息,再根據(jù)問題找等量關(guān)系,設(shè)未知數(shù),列方程,解方程,以求出問題的解.也就是把實際問題轉(zhuǎn)化為數(shù)學(xué)問題.
歸納:用一元一次方程分析和解決實際問題的基本過程如下
三、鞏固練習(xí):94頁9、10
四、達標測試 :《名?!?5頁1.2.3.
五、課堂小結(jié):
(1) 這節(jié) 課我有哪些收獲?
(2) 我應(yīng)該注意什么問題?
六、作業(yè): 課本第94頁第9題 學(xué)生作業(yè),教師巡視幫助需要幫助的學(xué)生。在學(xué)生解答后的講評中圍繞兩個問題:
(1)每一步的依據(jù)分別是什么?
(2)求方程的解就是把方程化成什么形式?
先讓學(xué)生讀題分析規(guī)律,然后教師進行引導(dǎo):
允許學(xué)生在討論后再回答.
在學(xué)生弄清題意后,教師引導(dǎo)學(xué)生說出規(guī)律,設(shè)一個未知數(shù),表示其余未知數(shù)
學(xué)生獨立解方程方程的解是不是應(yīng)用題的解
教師強調(diào)解決 問題的分析思路
學(xué)生讀題,分析表格中的信息
教 師根據(jù)學(xué)生的分析再做補充
學(xué)生思考問題
教師根據(jù)學(xué)生的解答,進行規(guī)范分析和解答
解一元一次方程課件(篇7)
蘭州城市學(xué)院
《一元一次方程 》
的教學(xué)設(shè)計
[2014/4/10]
數(shù)學(xué)學(xué)院112本 馬保清
《一元一次方程》教學(xué)設(shè)計
一. 教材:人教版七年級數(shù)學(xué)(上冊). 二. 課時安排:45分鐘(一節(jié)課).三. 教學(xué)對象:七年級學(xué)生.
四. 授課老師:數(shù)學(xué)學(xué)院112本 馬保清.
五. 教學(xué)目標:
1、知識與技能:了解方程和方程的解以及一元一次方程的概念,從而會判斷一元一次方程
2、過程與方法:使學(xué)生從簡單的實際問題中建立一元一次方程的模型;
3、情感態(tài)度價值觀:經(jīng)歷把具體問題轉(zhuǎn)化成一元一次方程的過程。 七.教學(xué)重點和難點:
重點:一元一次方程的概念,正確列出一元一次方程。 難點:正確列出一元一次方程。
八.教學(xué)過程:
1. 創(chuàng)設(shè)情境,引入新課:
課始,老師問學(xué)生:“你們知道前段時間很多市民搶購純凈水嗎?你們有沒有搶購純凈水呢?”這樣一問引起學(xué)生極大的興趣,學(xué)生各抒己見紛紛舉手爭搶發(fā)言。
生1:我買了三瓶升的康師傅礦泉水,一瓶要5元錢。 生2:我沒有買,但我聽說周圍的同學(xué)買了一箱純凈水花了一百多元錢呢。 生3:學(xué)校通知完后,我去超市沒有買到水.生4:大家搶購純凈水都是受了有些傳謠,是騙人的。 師:同學(xué)們,你們知道為什么會出現(xiàn)這種造謠嗎?
生5:因為蘭州水質(zhì)的問題,大家都但心飲水問題,所以進行了搶水,其實政府在發(fā)現(xiàn)水質(zhì)出現(xiàn)問題之前已經(jīng)有了解決方案,不知道的人都在盲目的搶購純凈水。
師:這位同學(xué)回答的非常好。因為人們聽信謠言,盲目搶購純凈水,使得本地區(qū)的純凈水供不應(yīng)求,一些商販乘機哄抬純凈水價格,使得一時純凈水的價格暴漲。政府對這個問題非常重視,一方面通過媒體向人們宣傳不要聽信謠言;一方面加緊市場整治,維護消費者的利益,同時緊急從其他地方調(diào)運純凈水,滿足人們?nèi)粘I畹男枨蟆?/p>
師:同學(xué)們,現(xiàn)在我們一起探討如下問題。(教師將事先準備好的題目貼
于黑板上。)
問題1:甲地純凈水緊缺,現(xiàn)有3萬瓶,乙地還有純凈水27萬瓶,為了調(diào)解市場,問從乙地調(diào)運多少純凈水到甲地,才能使兩地的純凈水數(shù)量相等。
師:請同學(xué)們講出自己的想法。 生1:(27?3)?2?3?12(萬瓶) 生2:(27?3)?2?12(萬瓶)
27?3?27?15?12(萬瓶) 生3:27?2生4:(27?2)?(3?2)?15,15?3?12(萬瓶) 生5:(27?2)?(3?2)???12(萬瓶) 師:請同學(xué)們判斷一下,這幾位同學(xué)的做法正確嗎?他們采用了什么方法。 生:答案都正確,他們用小學(xué)學(xué)過的的直接列算式求出答案的。
師:回答的非常好,同學(xué)們都是用小學(xué)學(xué)過的的直接列算式求出答案的。那同學(xué)們有沒有什么其他方法呢?
生:設(shè)未知數(shù)。
師:對,這位同學(xué)很聰明。接下來我們就看怎樣通過設(shè)未知數(shù),求解這個問題。
這時提出方法的概念:含有未知數(shù)的等式叫方程。
注:等式的分類:
1.等號兩端總是相等,這類等式叫做絕對等式,也叫恒等式。如:5=5 2.只有當x等于某個數(shù)時,兩端才相等,這種等式叫做條件等式。如:x?3?5
3.等號兩端總不相等,這種等式叫做假等式。如:5=3 練一練:
判斷下列各式是不是方程,并講明理由。
(1)-2+5=3 (2)3x?1?7
(3) x?y?8 (4)2a?b 繼續(xù)進入問題1 1.設(shè)從乙地應(yīng)調(diào)水x萬瓶到甲地。 (設(shè)未知數(shù))
2.乙地水的瓶數(shù)= 甲地水的瓶數(shù) (找出等量關(guān)系) ?x?3?x(萬瓶) (列出方程) 2.建立一元一次方程模型:
根據(jù)下列問題,設(shè)未知數(shù)并列出方程: 章節(jié)圖中的汽車勻速行駛經(jīng)王家莊、青山、秀水三地的時間表如表所示,翠湖在青山、秀水兩地之間,距青山50千米,距秀水70千米。王家莊到翠湖的路程有多遠?
解:設(shè)王家莊到翠湖的路程為x千米。 (設(shè)未知數(shù))
萬家莊到青山的速度=萬家莊到秀水的速度。(找出等量關(guān)系)
x?50x?70?
(km/h) (列出方程) 35師:老師接著繼續(xù)給大家寫出三個例子請同學(xué)們按照我們解問題1的方法列出等式。(小組討論) ① 用一根長24cm的鐵絲圍成一個正方形,正方形的邊長是多少? 解:(1)設(shè)未知數(shù):設(shè)正方形的邊長為xcm (2)等量關(guān)系:4*邊長=24 (3)列出方程:4?x?24
② 一臺計算機已使用1700小時,預(yù)計每月再使用150小時,經(jīng)過多少月這臺計算機的使用時間達到規(guī)定的檢修時間2450小時?
解:(1)設(shè)未知數(shù):設(shè)x月后這臺計算機的使用時間達到規(guī)定的檢修時間2450小時。
(2)等量關(guān)系:這臺計算機的使用時間。 (3)列出方程:1700?150x?2450
③某校的女生占全體學(xué)生數(shù)的52%,比男生多80人,這個學(xué)校有多少學(xué)生?
解:(1)設(shè)未知數(shù):設(shè)這個學(xué)校的學(xué)生人數(shù)為x人,則女生為人,男生人數(shù)為(1?)x人。
(2)等量關(guān)系:女生人數(shù)-男生人數(shù)=80 (3)列出方程:?(1?)x?80 3.一元一次方程的認識:
請同學(xué)們比較一下剛才你們列的三個方程,有什么樣的特點? ?x?24 1700+150x=2450 ?(1?)x?80 注意:方程兩邊都是整式;
只含有一個未知數(shù)(元);
未知數(shù)的指數(shù)(次數(shù))是一次。
給出定義:只含有一個未知數(shù)(元),未知數(shù)的次數(shù)是1,這樣的方程叫做一元一次方程
問題①:一元一次方程中元指的是什么?次指的是什么?
②判斷下列成員是否是一元一次方程家庭成員,能否進入家庭聚會之門?若不行,請說明理由。
第一組: 1).5x?0 (2).1?3x
3).y2?4y (4).3m?2?1?n
第二組: 若2xb?4,(a?1)x2?x?3也想?yún)⒓泳蹠?a,b應(yīng)滿足什么條件?
九、鞏固練習(xí):
(1)-1=4是方程嗎?(是) 1x
(2)列式表示a與3的差等于-2。(a?3??2)
(3)上題列出的式子是方程嗎?如果是,未知數(shù)是什么?并說明自己的理由。 (4)綜合題:天平的兩個盤A、B分別盛有51g,45g鹽,應(yīng)該從盤A內(nèi)拿出多少g鹽到盤B內(nèi),才能使兩者所盛鹽的質(zhì)量相等? 解:設(shè)應(yīng)該從盤A內(nèi)拿出a克鹽到B盤內(nèi)。 51?a?45?a
十.教學(xué)方法:教練結(jié)合,討論交流,引導(dǎo)探究。 十一.教學(xué)手段:ppt,計算機,板書。
解一元一次方程課件(篇8)
一元一次方程的復(fù)習(xí)
復(fù)習(xí)目標:
(1)了解方程、一元一次方程以及方程的解等基本概念。
(2)會解一元一次方程。
(3)會根據(jù)具體問題中的數(shù)量關(guān)系列出一元一次方程并求解。
重點、難點:
1. 重點:
一元一次方程及方程的解的基本概念。
一元一次方程的解法。
會用一元一次方程解決實際問題。
2. 難點:
一元一次方程的解法的靈活應(yīng)用。
尋找實際問題中的等量關(guān)系。
【典型例題】
例1.
分析:明確一元一次方程的概念。方程中含有一個未知數(shù),未知數(shù)的次數(shù)是1,且含有未知數(shù)的式子為整式,未知數(shù)的系數(shù)不為0。
在這里特別注意:未知數(shù)的次數(shù)及系數(shù)。
這三個方程中含有兩個未知數(shù)x、y,要想成為一元一次方程就要使其中一個未知數(shù)的系數(shù)為0。
解:
例2.
分析:此題要明確兩點:(1)當方程中含有多個字母時,指出關(guān)于哪個字母的方程,這個字母就是方程的未知數(shù),而其它的字母是代替已知數(shù)的字母系數(shù),這類方程也叫字母系數(shù)方程。(2)方程的解,即使方程左右兩邊相等的未知數(shù)的值。
此題從問題出發(fā),求解關(guān)于x的方程即要求出x的值,而要求x的值要先求出m的值,如何求m的值呢?已知y=1是關(guān)于y的方程的解,即關(guān)于y的方程中字母y=1,因此可將y=1代入方程,從而求出m的值。
解:
將m=1代入關(guān)于x的方程,得:
例3.
解:
注意:解一元一次方程的一般步驟為以上五步,但在解方程時,要注意靈活運用。
例4.
分析:此題的括號較多,如果按照一般的做法先去小括號,再去中括號,最后去大括號的方法比較麻煩,所以要觀察分析方程找一種比較簡單的方法。
解:
例5.
分析:此題中分母出現(xiàn)小數(shù),如果用一般的方法先去分母,則比較麻煩,公分母就不好找,所以采取一個巧妙的方法,先利用“分數(shù)的基本性質(zhì)”將方程中分母中的小數(shù)化為整數(shù),再用去分母……解之。
解:
注:用分數(shù)的基本性質(zhì)化簡用的是分子、分母擴大相同倍數(shù)分數(shù)值不變,與去分母不同。
解:
例6. 已知某鐵路橋長1000米,現(xiàn)有列火車從橋上通過,測得火車從開始上橋到完全過橋共用1分鐘,整個火車完全在橋上的時間為40秒,求火車的速度。
分析:列方程解應(yīng)用題的關(guān)鍵要找出題目中的等量關(guān)系,而由題意可知,此題有兩個不變的量,即車的速度和車身的長度。在題目中不變的量,即可為等量,從而列出方程。例如以車身長度為等量,可列方程,設(shè)車的速度為x m/s,60x-1000=1000-40x,以車的速度為等量,可列方程,設(shè)車身長為x m
解一:設(shè)車的速度為x m/s
經(jīng)檢驗,符合題意。
答:車的速度為20m/s。
解二:設(shè)車身的長度為x m
經(jīng)檢驗,符合題意。
答:車的速度為(1000+200)/60=20m/s
例7. 某音樂廳五月初決定在暑假期間舉辦學(xué)生專場音樂會,入場券分為團體票和零售票
售票的一半。如果在六月份內(nèi),團體票按每張16元出售,并計劃在六月份售完全部余票,那么零售票應(yīng)按每張多少元出售才能使兩個月的票款收入持平?
分析:此題的等量關(guān)系比較好找,即五六月份的票款相等,但團體票及零售票的張數(shù)不知道,可用字母表示出來,設(shè)而不求。
解:設(shè)團體票共2a張,零售票共a張,零售票價x元
經(jīng)檢驗,符合題意。
答:零售票價為19.2元。
【模擬試題】
一。 填空題。
1. 已知方程 的解比關(guān)于x的方程 的解大2,則 _________。
2. 關(guān)于x的方程 的解為整數(shù),則 __________。
3. 若 是關(guān)于x的一元一次方程,則k=_________,x=_________。
4. 若代數(shù)式 與 的值互為相反數(shù),則m=_________。
5. 一元一次方程 的解為x=0,那么a、b應(yīng)滿足的條件是__________。
二。 解方程。
1.
2.
3.
4.
三。 列方程解應(yīng)用題。
1. 一商販以每個雞蛋0.24元購進一批雞蛋,但在途中不慎碰壞12個,剩下的雞蛋以每個0.28元售出,結(jié)果獲利11.2元,問該商販當初買進多少個雞蛋?
2. 分別戴著紅色和黃色旅行帽的若干同學(xué)坐一只船,在公園內(nèi)劃船,突然間,一個戴紅帽子的同學(xué)說:“我看到的我們船上的紅帽子和黃帽子一樣多?!边@時一個戴黃帽子的同學(xué)說:“不對,你錯了,我看到的紅帽子是黃帽子的2倍?!眴枺捍骷t帽子和黃帽子的同學(xué)各有多少人?
【試題答案】
一。 填空題。
1. ??????????????????? 2.
3. 1,1???????????????????? 4. ????????????????? 5.
二。 解方程。
1. ???????????????????? 2.
3. ?????????????????? 4.
三。 列方程解應(yīng)用題。
1. 買364個雞蛋
2. 戴紅帽子4人,黃帽子3人
一元一次方程的復(fù)習(xí)
復(fù)習(xí)目標:
(1)了解方程、一元一次方程以及方程的解等基本概念。
(2)會解一元一次方程。
(3)會根據(jù)具體問題中的數(shù)量關(guān)系列出一元一次方程并求解。
重點、難點:
1. 重點:
一元一次方程及方程的解的基本概念。
一元一次方程的解法。
會用一元一次方程解決實際問題。
2. 難點:
一元一次方程的解法的靈活應(yīng)用。
尋找實際問題中的等量關(guān)系。
【典型例題】
例1.
分析:明確一元一次方程的概念。方程中含有一個未知數(shù),未知數(shù)的次數(shù)是1,且含有未知數(shù)的式子為整式,未知數(shù)的系數(shù)不為0。
在這里特別注意:未知數(shù)的次數(shù)及系數(shù)。
這三個方程中含有兩個未知數(shù)x、y,要想成為一元一次方程就要使其中一個未知數(shù)的系數(shù)為0。
解:
例2.
分析:此題要明確兩點:(1)當方程中含有多個字母時,指出關(guān)于哪個字母的方程,這個字母就是方程的未知數(shù),而其它的字母是代替已知數(shù)的字母系數(shù),這類方程也叫字母系數(shù)方程。(2)方程的解,即使方程左右兩邊相等的未知數(shù)的值。
此題從問題出發(fā),求解關(guān)于x的方程即要求出x的值,而要求x的值要先求出m的值,如何求m的值呢?已知y=1是關(guān)于y的方程的解,即關(guān)于y的方程中字母y=1,因此可將y=1代入方程,從而求出m的值。
解:
將m=1代入關(guān)于x的方程,得:
例3.
解:
注意:解一元一次方程的一般步驟為以上五步,但在解方程時,要注意靈活運用。
例4.
分析:此題的括號較多,如果按照一般的做法先去小括號,再去中括號,最后去大括號的方法比較麻煩,所以要觀察分析方程找一種比較簡單的方法。
解:
例5.
分析:此題中分母出現(xiàn)小數(shù),如果用一般的方法先去分母,則比較麻煩,公分母就不好找,所以采取一個巧妙的方法,先利用“分數(shù)的基本性質(zhì)”將方程中分母中的小數(shù)化為整數(shù),再用去分母……解之。
解:
注:用分數(shù)的基本性質(zhì)化簡用的是分子、分母擴大相同倍數(shù)分數(shù)值不變,與去分母不同。
解:
例6. 已知某鐵路橋長1000米,現(xiàn)有列火車從橋上通過,測得火車從開始上橋到完全過橋共用1分鐘,整個火車完全在橋上的時間為40秒,求火車的速度。
分析:列方程解應(yīng)用題的關(guān)鍵要找出題目中的等量關(guān)系,而由題意可知,此題有兩個不變的量,即車的速度和車身的長度。在題目中不變的量,即可為等量,從而列出方程。例如以車身長度為等量,可列方程,設(shè)車的速度為x m/s,60x-1000=1000-40x,以車的速度為等量,可列方程,設(shè)車身長為x m
解一:設(shè)車的速度為x m/s
經(jīng)檢驗,符合題意。
答:車的速度為20m/s。
解二:設(shè)車身的長度為x m
經(jīng)檢驗,符合題意。
答:車的速度為(1000+200)/60=20m/s
例7. 某音樂廳五月初決定在暑假期間舉辦學(xué)生專場音樂會,入場券分為團體票和零售票
售票的一半。如果在六月份內(nèi),團體票按每張16元出售,并計劃在六月份售完全部余票,那么零售票應(yīng)按每張多少元出售才能使兩個月的票款收入持平?
分析:此題的等量關(guān)系比較好找,即五六月份的票款相等,但團體票及零售票的張數(shù)不知道,可用字母表示出來,設(shè)而不求。
解:設(shè)團體票共2a張,零售票共a張,零售票價x元
經(jīng)檢驗,符合題意。
答:零售票價為19.2元。
【模擬試題】
一。 填空題。
1. 已知方程 的解比關(guān)于x的方程 的解大2,則 _________。
2. 關(guān)于x的方程 的解為整數(shù),則 __________。
3. 若 是關(guān)于x的一元一次方程,則k=_________,x=_________。
4. 若代數(shù)式 與 的值互為相反數(shù),則m=_________。
5. 一元一次方程 的解為x=0,那么a、b應(yīng)滿足的條件是__________。
二。 解方程。
1.
2.
3.
4.
三。 列方程解應(yīng)用題。
1. 一商販以每個雞蛋0.24元購進一批雞蛋,但在途中不慎碰壞12個,剩下的雞蛋以每個0.28元售出,結(jié)果獲利11.2元,問該商販當初買進多少個雞蛋?
2. 分別戴著紅色和黃色旅行帽的若干同學(xué)坐一只船,在公園內(nèi)劃船,突然間,一個戴紅帽子的同學(xué)說:“我看到的我們船上的紅帽子和黃帽子一樣多?!边@時一個戴黃帽子的同學(xué)說:“不對,你錯了,我看到的紅帽子是黃帽子的2倍?!眴枺捍骷t帽子和黃帽子的同學(xué)各有多少人?
【試題答案】
一。 填空題。
1. ??????????????????? 2.
3. 1,1???????????????????? 4. ????????????????? 5.
二。 解方程。
1. ???????????????????? 2.
3. ?????????????????? 4.
三。 列方程解應(yīng)用題。
1. 買364個雞蛋
2. 戴紅帽子4人,黃帽子3人
解一元一次方程課件(篇9)
課題
一元一次方程與實際問題——配套問題
課型
習(xí)題課
教材
人教版
對象
初一學(xué)生
執(zhí)教者
教材分析
作為實際問題中的重要部分,配套問題是學(xué)生進入實際問題的關(guān)鍵環(huán)節(jié)。在對一元一次方程的解法進行了充分學(xué)習(xí)之后,如何將剛學(xué)到的知識投入到學(xué)習(xí)中是至關(guān)重要的過程,這決定了學(xué)生的學(xué)習(xí)質(zhì)量與思維拓展。盡管在方程解法的學(xué)習(xí)中學(xué)生已經(jīng)思考并嘗試將其投入到實際問題的解決中,但往往這樣的投入是在為學(xué)習(xí)方程解法服務(wù)。在這一部分,學(xué)生將進一步練習(xí)如何將實際問題轉(zhuǎn)化為數(shù)學(xué)模型,利用方程將其合理解決。
學(xué)情分析
對于學(xué)生而言,盡管已經(jīng)學(xué)習(xí)了方程的解法,但是在面對一些實際問題時,很多學(xué)生依然不習(xí)慣使用方程方法,而是依然使用小學(xué)的算數(shù)方法,雖然在一些簡單的問題中,算數(shù)方法更有優(yōu)勢,計算更簡便,但是在本節(jié)課以及之后的一些實際問題中,使用算數(shù)方法將無從下手或非常復(fù)雜,因此學(xué)習(xí)如何使用一元一次方程來解決實際問題成為本階段的重點。
教學(xué)目標
1、基本會用一元一次方程解決配套問題;
2、培養(yǎng)學(xué)生運用一元一次方程分析和解決實際問題的能力;
3、體現(xiàn)一元一次方程與實際生活的密切聯(lián)系,滲透建模和轉(zhuǎn)化的數(shù)學(xué)思想。
教學(xué)重點
用一元一次方程解決配套問題
教學(xué)難點
分析配套問題數(shù)量關(guān)系,尋找等量關(guān)系列出方程
教學(xué)過程
教學(xué)環(huán)節(jié)
教學(xué)內(nèi)容
預(yù)設(shè)意圖
創(chuàng)設(shè)情景
提出問題
復(fù)習(xí)鞏固:解此方程:x-
例
問題1:思考解決實際問題的步驟應(yīng)該是什么?
審題(抓信息)-找關(guān)系(等量關(guān)系)-列方程(用含未知數(shù)的式子)-解決問題
問題2:在此題目中,每天生產(chǎn)的螺釘數(shù)量與每天生產(chǎn)的螺母數(shù)量該怎么表示?
(每天生產(chǎn)的螺釘數(shù)量=生產(chǎn)螺釘?shù)墓と藬?shù)量×每人每天可以生產(chǎn)的螺釘數(shù)量,同理每天生產(chǎn)的螺母數(shù)量=生產(chǎn)螺母的工人數(shù)量×每人每天可以生產(chǎn)的螺母數(shù)量)
問題3:根據(jù)題目,每天生產(chǎn)的螺釘和螺母如果想剛好配套,它們之間應(yīng)該滿足怎樣的數(shù)量關(guān)系?
(每
問題4:總結(jié)以上關(guān)系,思考我們應(yīng)該設(shè)怎樣的未知數(shù)才更方便于解決這個問題?
(由問題
問題5:根據(jù)以上分析,此方程可以如何列出?
從解方程開始,復(fù)習(xí)鞏固方程的解法,并引出實際問題的解決方法,在此過程中,將問題逐步拆解,分解為一個個小的問題,再層層遞進,得出最后的答案,在此過程中逐步感受配套問題乃至實際問題的基本思路。
探究歸納
變式探究:(僅需列出方程)
1、若每1個螺釘與3個螺母配成一套,則需要怎么安排生產(chǎn)螺釘和螺母的工人?
2、若每2個螺釘與3個螺母配成一套,則需要怎樣安排生產(chǎn)螺釘和螺母的工人?
思考:解決配套問題中,我們應(yīng)該怎樣尋找數(shù)量關(guān)系?
從已有的知識結(jié)構(gòu)出發(fā),不讓學(xué)生在思維上出現(xiàn)跳躍,逐層遞進,通過剛思考過的例子作為依據(jù),進行相同類型題目的變式聯(lián)系,將探究作為切入點,再對一般的情況進行歸納總結(jié),從具體的數(shù)字到一般的情況,逐步推進,體會將未知化為已知的數(shù)學(xué)探究的樂趣。
跟蹤練習(xí)
例桌腿剛好配套,共可生產(chǎn)多少張方桌?(一張方桌有1個桌面,4條桌腿)
思考:等量關(guān)系是什么?如何設(shè)未知數(shù)并列出方程?(
解:設(shè)用x立方米的木材做桌面,則用(10-x)立方米的木材做桌腿。
根據(jù)題意,得4×50x = 300(10-x),解得x =6,所以10-x = 4,可做方桌為50×6=300(張)。
答:用6立方米的木材做桌面,4立方米的木材做桌腿,可做300張方桌。
例(
解:設(shè)用x米布料生產(chǎn)上衣,那么用(米布料生產(chǎn)褲子恰好配套。
根據(jù)題意,得:
x=。
答:應(yīng)該用360米布料生產(chǎn)上衣,用240米布料生產(chǎn)褲子恰好配套。
在得出一般化的方法后,再利用學(xué)到的知識對問題進行解決,這是數(shù)學(xué)學(xué)習(xí)的一般辦法,也是解決問題的重要手段,在實際問題這一部分的學(xué)習(xí)中,這樣的思考尤為重要。
課堂小結(jié)
課外作業(yè)
總結(jié):本節(jié)課你有哪些收獲?(
1、思路上,對解決實際問題的一般方法有了大致的感受,對于配套問題的等量關(guān)系的尋找有了方向,體會了用方程解決實際問題的便利性。
2、方法上,體會如何利用題目給的信息并分析題目的含義,合理地設(shè)未知數(shù)來解決實際性的問題。
當堂檢測:(
完成《課堂小練習(xí)》
作業(yè):
限時作業(yè)一張
讓學(xué)通過自己的語言表達學(xué)習(xí)的收獲,在本節(jié)課即將結(jié)束的時候,讓學(xué)生自我總結(jié),加深印象,培養(yǎng)學(xué)生的自我總結(jié)能力,也幫助學(xué)生重新回顧重點知識和數(shù)學(xué)思想。
板書設(shè)計
一元一次方程與實際問題——配套問題
例1:
解:設(shè)應(yīng)安排x名工人生產(chǎn)螺釘,(22-x)名工人生產(chǎn)螺母
依題意,得
20xx(22-x)=2×1200x
解方程,得x=10.
所以22-x=12
答:應(yīng)安排10名工人生產(chǎn)螺釘,12名工人生產(chǎn)螺母
配套問題數(shù)量關(guān)系:若每n個螺釘與m個螺母配成一套,則m×螺釘數(shù)量=n×螺母數(shù)量
解一元一次方程課件(篇10)
教學(xué)目標
1.在具體情境中,進一步體會方程是刻畫現(xiàn)實世界的重要數(shù)學(xué)模型。
2.知道什么是一元一次方程的標準形式,會通過移項、合并同類項把方程化為標準形式,然后利用等式的性質(zhì)解方程。
教學(xué)重、難點
重點:把方程轉(zhuǎn)化為標準形式。
難點:解方程的應(yīng)用。
教學(xué)過程
一激情引趣,導(dǎo)入新課
1解方程:9x+3=8+8x
2(1)上面解方程的過程中,每一步的依據(jù)是什么?
(2)什么叫移項?移項要注意什么?
(3)2-4x+6+5x=8,變形為:-4x+5x+2+6=8,是不是移項?
二合作交流,探究新知
1動腦筋:
某實驗中學(xué)舉行田徑運動會,初一年級甲班和丙班參加的人數(shù)的.和是乙班參加的人數(shù)的3倍,甲班有40人參加,乙班參加的人數(shù)比丙班參加的人數(shù)少10人,你能算出乙班參加校運會的人數(shù)嗎?
觀察你解方程的過程,原方程做了哪些變形?
形如ax=b(a≠0)的方程叫一元一次方程的_____形式。
2訓(xùn)練
(1)解方程:①11x-2=8x-8,②
(2)下列方程求解正確的是()
A-2x=3,解得:x=,B解得:x=
C3x+4=4x-5解得:x=-9,D2x=3x+1,解得x=-1
三應(yīng)用遷移,鞏固提高
1方程的轉(zhuǎn)化
例1已知x=-2是方程的解,求m的值。
例2若方程2x+a=,與方程的解相同,求a的值。
2實踐應(yīng)用
例3甲倉庫有某種糧食120噸,乙倉庫有同樣的糧食96噸,甲倉庫每天賣出糧食15噸,乙倉庫每天賣出糧食9噸,多少天后,兩倉庫剩下的糧食相等?
例4百年問題:我們明代數(shù)學(xué)家程大為曾提出過一個有趣的問題,有一個人趕著一群羊在前面走,另一個人牽著一頭羊跟在后面,后面的人問趕羊的人說:“你這群羊有一百只嗎?”趕羊人回答“我再得這么一群羊,再得這群羊的一半,再得這群羊的四分之一,把你牽的羊
也給我,我恰好有一百只羊”,請問這群羊有多少只?
四沖刺奧賽
例5當b=1時,關(guān)于x的方程a(3x-2)+b(2x-3)=8x-7,有無窮多個解,則a=()
A2B–2CD不存在
例6解方程:3x+=4
例7用一隊卡車運一批貨物,若每輛卡車裝7噸貨物,則尚余10噸貨物裝不完,若每輛卡車裝8噸貨物,則最后一輛卡車只裝3噸貨物就裝完了這批貨物,那么這批貨物共有多少噸?
五課堂練習(xí),鞏固提高
P1121
六反思小結(jié),拓展提高
1什么叫一元一次方程的標準形式?解一元一次方程一般要轉(zhuǎn)化成什么形式?
一元一次方程課件教案(集錦5篇)
教案課件是老師上課做的提前準備,因此我們老師需要認認真真去寫。寫好教案課件,讓重點內(nèi)容不至于漏掉,大家是不是在為寫教案課件發(fā)愁呢?幼兒教師教育網(wǎng)小編為大家精心整理了一元一次方程課件教案,敬請您閱讀并收藏本文!
一元一次方程課件教案【篇1】
解一元一次方程
【教學(xué)任務(wù)分析】教學(xué)目標知識技能
1.用一元一次方程解決“數(shù)字型”問題;
2.能熟練的通過合并,移項解一元一次方程;
3.進一步學(xué)習(xí)、體會用一元一次方程解決實際問題.
過程
方法通過學(xué)生自主探究,師生共同研討,體驗將實際問題轉(zhuǎn)化成數(shù)學(xué)問題,學(xué)會探索數(shù)列中的規(guī)律,建立等量關(guān)系并加以解決,同時進一步滲透化歸思想.
情感
態(tài)度經(jīng)歷運用方程解決實際問題的過程,發(fā)展抽象、概括、分析和解決問題的能力,體會數(shù)學(xué)對實踐的指導(dǎo)意義.
重點建立一元一次方程解決實際問題的模型.
難點探索并發(fā)現(xiàn)實際問題中的等量關(guān)系,并列出方程.
【教學(xué)環(huán)節(jié)安排】
環(huán)節(jié)教學(xué)問題設(shè)計教學(xué)活動設(shè)計
情
境
引
入牽線搭橋,解下列方程:
(1)-5x+5=-6x;(2);
(3)0.5x+0.7=1.9x;
總結(jié)解“ax+b=cx+d”類型的一元一次方程的步驟方法.
引出問題即課本例3
問:你能利用所學(xué)知識解決有關(guān)數(shù)列的問題嗎?教師:出示題目,提出要求.
學(xué)生:獨立完成,根據(jù)講評核對、自我評價,了解掌握情況.
探究一:數(shù)字問題
例3有一列數(shù),按一定規(guī)律排列成1,-3,9,-27,81,-243……其中某三個相鄰數(shù)的和是-1701,這三個數(shù)各是多少?
【分析】1.引導(dǎo)學(xué)生觀察這列數(shù)有什么規(guī)律?
①數(shù)值變化規(guī)律?②符號變化規(guī)律?
結(jié)論:后面一個數(shù)是前一個數(shù)的-3倍.
2.怎樣求出這三個數(shù)?
①設(shè)三個相鄰數(shù)中的第一個數(shù)為x,那么其它兩個數(shù)怎么表示?
②列出方程:根據(jù)三個數(shù)的和是-1701列出方程.
③解略
變式:你能設(shè)其它的數(shù)列方程解出嗎?試一試.比比較哪種設(shè)法簡單.
探究二:百分比問題(習(xí)題3.2第8題)
【問題】某鄉(xiāng)改種玉米為種優(yōu)質(zhì)雜糧后,今年農(nóng)民人均收入比去年提高20%.今年人均收入比去年的1.5倍少1200元.這個鄉(xiāng)去年農(nóng)民人均收入是多少元?
【分析】①若設(shè)這個鄉(xiāng)去年農(nóng)民人均收入是x元,今年人均收入比去年提高20%,那么今年的收入是_________元;
②因為今年的人均收入比去年的1.5倍少1200元,所以今年的收入又可以表示為_________元.
③根據(jù)“表示同一個量的兩個式子相等”可以列出方程為________________________.
解答略教師:引導(dǎo)學(xué)生分析.
2.本例是有關(guān)數(shù)列的數(shù)學(xué)問題,題要求出三個未知數(shù),這需要學(xué)生觀察發(fā)現(xiàn)它們的排列規(guī)律,問題具有一定的挑戰(zhàn)性,能激發(fā)學(xué)生學(xué)習(xí)探索規(guī)律類型的問題.
學(xué)生:觀察、討論、闡述自己的發(fā)現(xiàn),并互相交流.
根據(jù)分析列出方程并解出,求出所求三個數(shù).
備注:尋找數(shù)的排列規(guī)律是難點,可讓學(xué)生小組內(nèi)討論發(fā)現(xiàn)、解決.
變換設(shè)法,列出方程,比較優(yōu)劣、闡述發(fā)現(xiàn)和體會.
教師:出示題目,引導(dǎo)學(xué)生,讓學(xué)生嘗試分析,多鼓勵.
學(xué)生:根據(jù)引導(dǎo)思考、回答、闡述自己的觀點和認識.
根據(jù)共同的分析,列出方程并解出,
(說明:此題目數(shù)以百分比、增長率問題可根據(jù)實際情況安排,若沒時間,可在習(xí)題課上處理)
嘗試應(yīng)用
1、填空
(1)有個三位數(shù),個位上的數(shù)字是a,十位上的數(shù)字是b,百位上的數(shù)字是c,則這個三位數(shù)是:_______________.
(2)有一數(shù)列,按一定規(guī)律排成1,-2,3,2,-4,6,3,-6,9,接下來的三個數(shù)為_____________________.
(3)三個連續(xù)偶數(shù),設(shè)第一個為2x,那么第二個為_______,第三個為______,它們的和是__________;若設(shè)中間的一個為x,那么第一個為_____,第三個為______,它們的和是__________.
2.一個三位數(shù),三個數(shù)位上的數(shù)字的`和為17,百位上的數(shù)字比十位上的數(shù)字大7,個位上的數(shù)字是十位上數(shù)字的3倍,你能求出這個三位數(shù)嗎?這是最經(jīng)常出現(xiàn)的一類數(shù)字問題:引導(dǎo)學(xué)生分析已知各位上的數(shù)字,怎么表示這個數(shù),理解為什么不能表示成cba?這是解決這類問題的基礎(chǔ).
通過(3)題理解連續(xù)數(shù)的表示法,并感受怎么表示最簡單.
通過2題讓學(xué)生理解怎么設(shè)?以及怎么設(shè)簡單(舍都有聯(lián)系的一個),并感受用未知數(shù)表示多個未知量,順藤摸瓜,從而列出方程的順向思維方式.
教師:結(jié)合完成題目,匯總講解,重點在于解法.
成果
展示1.通過本節(jié)所學(xué)你有哪些收獲?
2.談?wù)勀阏莆盏姆椒ê蛯W(xué)習(xí)的感受,以及你對應(yīng)用方程解決問題的體會.學(xué)生自我闡述,教師評價鼓勵、補充總結(jié).
補償提高1.有一數(shù)列,按一定規(guī)律排成0,2,6,12,20,30,…,則第8個數(shù)為______,第n個數(shù)為_____.
2.下面給出的是20xx年3月份的日歷表,任意圈出一豎列上相鄰的三個數(shù),請你運用方程思想來研究,圈出的三個數(shù)的和不可能是( ).
A.69B.54C.27D.40
通過練習(xí),掌握數(shù)字問題的分類及不同解法,鞏固、體會用方程解決問題的思路和思維方式,學(xué)會用方程解決問題.
題目設(shè)置是對前面學(xué)生所出現(xiàn)的問題進行針對性的補償和補充,也可對學(xué)有余力的學(xué)生拓展提高.
根據(jù)學(xué)生完成情況靈活設(shè)置問題.
作業(yè)
設(shè)計作業(yè):
必做題:課本4、5、第94頁6題.
選做題:同步探究.教師布置作業(yè),并提出要求.
學(xué)生課下獨立完成,延續(xù)課堂.
授課教師:
20xx年10月31日
一元一次方程課件教案【篇2】
學(xué)習(xí)目標
1. 會設(shè)未知數(shù),并利用問題中的相等關(guān)系 列方程,且正確求解
2. 會用一元一次方程解決工程問題
重點難點
重點:建立一 元一次方程解決 實際問題
難點:探究實際問題與一元一次方程的關(guān)系
教學(xué)流程
師生活動 時間
復(fù)備標注
一、 復(fù)習(xí):
解下列方程:
1.9-3y=5y+5
2.
二、新授
例5 整理 一批圖書,由一個人做要40小時完成?,F(xiàn)在計劃由一部 分人先做4小時,再增加2人和他們一起做8小時,完成這項工作。假設(shè)這些人的工作效率相同,具體應(yīng)安排多少人工作?
分析:這里可以把總工作量看做1。思考
人均效率(一個人做1小時完成的工作量)為 。
由x人先做4小時,完成的工 作量為 。再增加2人和前一部分人一起做8小時,完成的工作量為 。
這項工作分兩 段完成,兩段完成的'工作量之和為 。
解:設(shè)先安排x人工作4小時。
根據(jù)兩段工作量之和應(yīng)是總工作量,得
.
去分母, 得 4x+8(x+2)=-1701
去括號,得 4x+8x+16=40
移項及合并同類項,得
12x=24
系數(shù)化為1,得 X=-243.
所以 -3x=729
9x=-2187.
答:這三個數(shù)是-243,729,-2187。
師生小結(jié):對于規(guī)律問題,首先找到各個數(shù)之間的關(guān)系,發(fā)現(xiàn)規(guī)律,在根據(jù)問題找等量關(guān)系,設(shè)未知數(shù),列方程,解方程,解答實際 問題。轉(zhuǎn)化為方程來解決
例4 根據(jù)下面的兩種移動電話計費方式表,考慮下列問題。
方式一 方 式二
月租費 30元/月 0
本地通話費 0.30元/月 0.40元/分
(1)一個月內(nèi)在本地通話20 0分和350分,按方式一需交費多少元?按方式二呢?
(2)對于某個本地通話時 間,會出現(xiàn)按兩種計費方式收費一樣多嗎?
解:(1)
方式一 方式二
200分 90元 80元
350分 135元 140元
( 2)設(shè)累計通話t分,則按方式一要收費(30+0.3t)元,按方式二要收費0.4t元。如果兩種計費方式的收費一樣,則
0.4t=30+0.3t
移項,得 0. 4t -0.3t =30
合并同類項,得 0.1t=30
系數(shù)化為1,得 t=300
由上可知,如果一個月內(nèi)通話300分,那么兩種計費方式相同。
思考:你知道怎樣選擇計費方式更省錢嗎?
解后反思:對于有表格實際問題,首先讀清表格提供的信息,再根據(jù)問題找等量關(guān)系,設(shè)未知數(shù),列方程,解方程,以求出問題的解.也就是把實際問題轉(zhuǎn)化為數(shù)學(xué)問題.
歸納:用一元一次方程分析和解決實際問題的基本過程如下
三、鞏固練習(xí):94頁9、10
四、達標測試 :《名?!?5頁1.2.3.
五、課堂小結(jié):
(1) 這節(jié) 課我有哪些收獲?
(2) 我應(yīng)該注意什么問題?
六、作業(yè): 課本第94頁第9題 學(xué)生作業(yè),教師巡視幫助需要幫助的學(xué)生。在學(xué)生解答后的講評中圍繞兩個問題:
(1)每一步的依據(jù)分別是什么?
(2)求方程的解就是把方程化成什么形式?
先讓學(xué)生讀題分析規(guī)律,然后教師進行引導(dǎo):
允許學(xué)生在討論后再回答.
在學(xué)生弄清題意后,教師引導(dǎo)學(xué)生說出規(guī)律,設(shè)一個未知數(shù),表示其余未知數(shù)
學(xué)生獨立解方程方程的解是不是應(yīng)用題的解
教師強調(diào)解決 問題的分析思路
學(xué)生讀題,分析表格中的信息
教 師根據(jù)學(xué)生的分析再做補充
學(xué)生思考問題
教師根據(jù)學(xué)生的解答,進行規(guī)范分析和解答
一元一次方程課件教案【篇3】
教學(xué)目標:
1.知識目標
(1)通過運用算術(shù)和列方程兩種方法解決實際問題的過程,使學(xué)生體會到列方程解應(yīng)用題更簡潔明了,省時省力。
(2)掌握去括號解一元一次方程的方法,能熟練求解一元一次方程(數(shù)字系數(shù)),并判別解的合理性。
2.能力目標
(1)通過學(xué)生觀察、獨立思考等過程,培養(yǎng)學(xué)生歸納、概括的能力;
(2)進一步讓學(xué)生感受到并嘗試尋找不同的解決問題的方法。
3.情感目標:
(1)激發(fā)學(xué)生濃厚的學(xué)習(xí)興趣,使學(xué)生有獨立思考、勇于創(chuàng)新的精神,養(yǎng)成按客觀規(guī)律辦事的良好習(xí)慣;
(2)培養(yǎng)學(xué)生嚴謹?shù)乃季S品質(zhì);
(3)通過學(xué)生間的互相交流、溝通,培養(yǎng)他們的協(xié)作意識。
教學(xué)重點:
1.弄清列方程解應(yīng)用題的思想方法;
2.用去括號解一元一次方程。
教學(xué)難點:
1.括號前面是-號,去括號時,應(yīng)如何處理,括號前面是-號的,去括號時,括號內(nèi)的各項要改變符號。
2.在小學(xué)根深蒂固用算術(shù)方法解應(yīng)用題的基礎(chǔ)上,讓學(xué)生逐步樹立列方程解應(yīng)用題的思想。
教學(xué)過程:
一、 創(chuàng)設(shè)情境,提出問題
問題1:我手中有6、x、30三張卡片,請同學(xué)們用他們編個一元一次方程,比一比看誰編的又快又對。
學(xué)生思考,根據(jù)自己對一元一次方程的理解程度自由編題。
問題2:解方程5(x-2)=8
解:5x=8+2,x=2,看一下這位同學(xué)的解法對嗎?相信學(xué)完本節(jié)內(nèi)容后,就知道其中的`奧秘。
問題3:某工廠加強節(jié)能措施,去年下半年與上半年相比,月平均用電減少20xx度,全年用電15萬度,這個工廠去年上半年每月平均用電多少度?
(教學(xué)說明:給學(xué)生充分的交流空間,在學(xué)習(xí)過程中體會取長補短的涵義,以求在共同學(xué)習(xí)中得到進步,同時提高語言組織能力及邏輯推理能力)
二、 探索新知
1. 情境解決
問題1 :設(shè)上半年每月平均用電x度,則下半年每月平均用電________度;上半年共用電__________度,下半年共用電_________度。
問題2:教師引導(dǎo)學(xué)生尋找相等關(guān)系,列出方程。
根據(jù)全年用電15萬度,列方程,得6x+6(x-20xx)=150000.
問題3:怎樣使這個方程向x=a的形式轉(zhuǎn)化呢?
6x+6(x-20xx)=150000
去括號
6x+6x-12000=150000
移項
6x+6x=150000+12000
合并同類項
12x=162000
系數(shù)化為1
x=13500
問題4:本題還有其他列方程的方法嗎?
用其他方法列出的方程應(yīng)怎樣解?
設(shè)下半年每月平均用電x度,則6x+6(x+20xx)=150000.(學(xué)生自己進行解題)
歸納結(jié)論:方程中有帶括號的式子時,根據(jù)乘法分配律和去括號法則化簡。(括號前面是+號,把+號和括號去掉,括號內(nèi)各項都不改變符號;括號前面是-號,把-號和括號去掉,括號內(nèi)各項都改變符號。)
去括號時要注意:(1)不要漏乘括號內(nèi)的任何一項;(2)若括號前面是-號,記住去括號后括號內(nèi)各項都變號。
2. 解一元一次方程去括號
例題:解方程3x-7(x-1)=3-2(x+3)
解:去括號,得3x-7x+7=3-2x-6
移項,得 3x-7x+2x=3-6-7
合并同類項,得 -2x=-10
系數(shù)化為1,得x=5
三、 課堂練習(xí)
1.課本97頁練習(xí)
2.學(xué)校團委組織65名團員為學(xué)校建花壇搬磚,初一同學(xué)每人搬6塊,其它年級同學(xué)每人搬8塊,總共搬了400塊,問初一同學(xué)有多少人參加了搬磚?
四、總結(jié)反思
1.本節(jié)課你學(xué)習(xí)了什么?
2.通過今天的學(xué)習(xí),你想進一步探究的問題是什么?
( 由學(xué)生自主歸納,最后老師總結(jié))
四、 作業(yè)布置
1. 課本102頁習(xí)題3.3第1、4題
2. 配套資料相關(guān)練習(xí)
教學(xué)反思:本節(jié)課突出數(shù)學(xué)的應(yīng)用意識。教師首先用學(xué)生感興趣的游戲和實際問題引入課題,然后逐步給出答案。在各環(huán)節(jié)的安排上都設(shè)計成一個個的問題,使學(xué)生能圍繞問題展開思考、討論,進行學(xué)習(xí)
一元一次方程課件教案【篇4】
一、教學(xué)目標:
1、知識目標:了解一元一次方程的概念,掌握含括號的一元一次方程的解法。
2、能力目標:培養(yǎng)學(xué)生的運算能力與解題思路。
3、情感目標:通過主動探索,合作學(xué)習(xí),相互交流,體會數(shù)學(xué)的嚴謹,感受數(shù)學(xué)的魅力,增加學(xué)習(xí)數(shù)學(xué)的興趣。
二、教學(xué)的重點與難點:
1、重點:了解一元一次方程的概念,解含有括號的一元一次方程的解法。
2、難點:括號前面是負號時,去括號時忘記變號。移項法則的靈活運用。
三、教學(xué)方法:
1、教 法:講課結(jié)合法
2、學(xué) 法:看中學(xué),講中學(xué),做中學(xué)
3、教學(xué)活動:講授
四、課 型:新授課
五、課 時:第一課時
六、教學(xué)用具:彩色粉筆,小黑板,多媒體
七、教學(xué)過程
1、創(chuàng)設(shè)情景:
今天讓我們一起做個小小的游戲,這個游戲的名字叫:猜猜你心中的“她”
心里想一個數(shù)
將這個數(shù)+2
將所得結(jié)果
最后+7
將所得的結(jié)果告訴老師
(抽一個同學(xué),讓他把他計算的結(jié)果告訴老師,由老師通過計算得到他最開始所想的數(shù)字。)
老師:同學(xué)們知道老師是怎樣猜到的嗎?
同學(xué):不知道。
老師:那同學(xué)們想知道老師是怎樣猜到的嗎?這就是我們今天所要學(xué)習(xí)的內(nèi)容——解一元一次方程。
2、探究新知:
一元一次方程的概念:
前面我們遇到的一些方程,例如 3
老師:大家觀察這些方程,它們有什么共同特征?
(提示:觀察未知數(shù)的個數(shù)和未知數(shù)的次數(shù)。)
(抽同學(xué)起來回答,然后再由老師概括。)
只含有一個未知數(shù),并且含有未知數(shù)的式子都是整式,未知數(shù)的次數(shù)是l,像這樣的方程
叫做一元一次方程。
老師:同學(xué)們從這個概念中,能找出關(guān)鍵的字嗎?能用它來判斷一個式子是否是一元一次
方程嗎?
再次強調(diào)特征:
(1)只含一個未知數(shù);
(2)未知數(shù)的次數(shù)為1;
(3)是一個整式。
(注意:這幾個特征必須同時滿足,缺一不可。)
3、例題講解:
例1判斷如下的式子是一元一次方程嗎?
(寫在小黑板上,讓學(xué)生判斷,并分別抽同學(xué)起來回答,如果不是,要說出理由。)
① ② ③
④ ⑤⑥
準確答案:①③
下面我們再一起來解幾個一元一次方程。
例2、解方程
(1)
解法一:解法二:
提醒:去括號的時候,如果括號外面是負號,去括號時,括號里面要變號
(提示第二種解法:先移項,再去括號。即是把 看成整體的一元一次方程的求解。)
(2)
解:
提示
1)、在我們前面學(xué)過的知識中,什么知識是關(guān)于有括號的。
2)、復(fù)習(xí)乘法分配律: ,強調(diào)去括號時把括號外的因數(shù)分別乘以括號
內(nèi)的每一項,若括號前面是“-”號,注意去掉括號,要改變括號內(nèi)的每一項的符號。
3)、問同學(xué)們能不能運用這個知識來去掉這個括號,如果能該怎么去呢?抽一個同學(xué)起
來回答。
4)、問:去了括號的式子,又該做什么呢?我們前面見過此類的方程的,引出移項,并強調(diào)移項時注意符號的變化。此處運用了等式的`性質(zhì)。
5)、一起回顧合并同類項的法則:未知數(shù)的系數(shù)相加。
6)、系數(shù)化為1,運用了等式的性質(zhì)。
(求解的每一步的時候,抽同學(xué)起來回答,該怎么進行,運用了什么知識,同學(xué)敘述,老師寫,同學(xué)說完后,老師在點評,最后歸納解含括號的一元一次方程的步驟,并強 調(diào)解題格式。)
方程(1)該怎樣解?由學(xué)生獨立探索解法,并互相交流。
解一元一次方程的步驟:
去括號,移項,合并同類項,系數(shù)化為1。
4、鞏固練習(xí)
(1)解方程(2)當y為何值時,2(3y+4)的值比5(2y—7)的值大3?解5(x+2)=2(5x—1)
(鞏固練習(xí),抽兩個同學(xué)上黑板去完成,其余的同學(xué)在演草紙上完成,待同學(xué)們完成后給予點評。)
5小結(jié):和同學(xué)們一起回顧我們這節(jié)課學(xué)習(xí)了什么?
解一元一次方程
概念
含括號的一元一次方程的解法
作業(yè):
1、P12 。1
2、預(yù)習(xí)下一節(jié)課的內(nèi)容,
3、復(fù)習(xí)此節(jié)課的內(nèi)容,并完成一下兩道思考題。
思考:
(1) 解方程:
說明:方程中有多重括號時,一般應(yīng)按先去小括號,再去中括號,最后去大括
號的方法去括號,每去一層括號合并同類項一次,以簡便運算。
(2) 該怎么求解?
一元一次方程課件教案【篇5】
解一元一次方程
【教學(xué)任務(wù)分析】教學(xué)目標知識技能
1.用一元一次方程解決“數(shù)字型”問題;
2.能熟練的通過合并,移項解一元一次方程;
3.進一步學(xué)習(xí)、體會用一元一次方程解決實際問題.
過程
方法通過學(xué)生自主探究,師生共同研討,體驗將實際問題轉(zhuǎn)化成數(shù)學(xué)問題,學(xué)會探索數(shù)列中的規(guī)律,建立等量關(guān)系并加以解決,同時進一步滲透化歸思想.
情感
態(tài)度經(jīng)歷運用方程解決實際問題的過程,發(fā)展抽象、概括、分析和解決問題的能力,體會數(shù)學(xué)對實踐的指導(dǎo)意義.
重點建立一元一次方程解決實際問題的模型.
難點探索并發(fā)現(xiàn)實際問題中的等量關(guān)系,并列出方程.
【教學(xué)環(huán)節(jié)安排】
環(huán)節(jié)教學(xué)問題設(shè)計教學(xué)活動設(shè)計
情
境
引
入牽線搭橋,解下列方程:
(1)-5x+5=-6x;(2);
(3)0.5x+0.7=1.9x;
總結(jié)解“ax+b=cx+d”類型的一元一次方程的步驟方法.
引出問題即課本例3
問:你能利用所學(xué)知識解決有關(guān)數(shù)列的問題嗎?教師:出示題目,提出要求.
學(xué)生:獨立完成,根據(jù)講評核對、自我評價,了解掌握情況.
探究一:數(shù)字問題
例3有一列數(shù),按一定規(guī)律排列成1,-3,9,-27,81,-243……其中某三個相鄰數(shù)的和是-1701,這三個數(shù)各是多少?
【分析】1.引導(dǎo)學(xué)生觀察這列數(shù)有什么規(guī)律?
①數(shù)值變化規(guī)律?②符號變化規(guī)律?
結(jié)論:后面一個數(shù)是前一個數(shù)的-3倍.
2.怎樣求出這三個數(shù)?
①設(shè)三個相鄰數(shù)中的第一個數(shù)為x,那么其它兩個數(shù)怎么表示?
②列出方程:根據(jù)三個數(shù)的和是-1701列出方程.
③解略
變式:你能設(shè)其它的數(shù)列方程解出嗎?試一試.比比較哪種設(shè)法簡單.
探究二:百分比問題(習(xí)題3.2第8題)
【問題】某鄉(xiāng)改種玉米為種優(yōu)質(zhì)雜糧后,今年農(nóng)民人均收入比去年提高20%.今年人均收入比去年的1.5倍少1200元.這個鄉(xiāng)去年農(nóng)民人均收入是多少元?
【分析】①若設(shè)這個鄉(xiāng)去年農(nóng)民人均收入是x元,今年人均收入比去年提高20%,那么今年的收入是_________元;
②因為今年的人均收入比去年的1.5倍少1200元,所以今年的收入又可以表示為_________元.
③根據(jù)“表示同一個量的兩個式子相等”可以列出方程為________________________.
解答略教師:引導(dǎo)學(xué)生分析.
2.本例是有關(guān)數(shù)列的`數(shù)學(xué)問題,題要求出三個未知數(shù),這需要學(xué)生觀察發(fā)現(xiàn)它們的排列規(guī)律,問題具有一定的挑戰(zhàn)性,能激發(fā)學(xué)生學(xué)習(xí)探索規(guī)律類型的問題.
學(xué)生:觀察、討論、闡述自己的發(fā)現(xiàn),并互相交流.
根據(jù)分析列出方程并解出,求出所求三個數(shù).
備注:尋找數(shù)的排列規(guī)律是難點,可讓學(xué)生小組內(nèi)討論發(fā)現(xiàn)、解決.
變換設(shè)法,列出方程,比較優(yōu)劣、闡述發(fā)現(xiàn)和體會.
教師:出示題目,引導(dǎo)學(xué)生,讓學(xué)生嘗試分析,多鼓勵.
學(xué)生:根據(jù)引導(dǎo)思考、回答、闡述自己的觀點和認識.
根據(jù)共同的分析,列出方程并解出,
(說明:此題目數(shù)以百分比、增長率問題可根據(jù)實際情況安排,若沒時間,可在習(xí)題課上處理)
嘗試應(yīng)用
1、填空
(1)有個三位數(shù),個位上的數(shù)字是a,十位上的數(shù)字是b,百位上的數(shù)字是c,則這個三位數(shù)是:_______________.
(2)有一數(shù)列,按一定規(guī)律排成1,-2,3,2,-4,6,3,-6,9,接下來的三個數(shù)為_____________________.
(3)三個連續(xù)偶數(shù),設(shè)第一個為2x,那么第二個為_______,第三個為______,它們的和是__________;若設(shè)中間的一個為x,那么第一個為_____,第三個為______,它們的和是__________.
2.一個三位數(shù),三個數(shù)位上的數(shù)字的和為17,百位上的數(shù)字比十位上的數(shù)字大7,個位上的數(shù)字是十位上數(shù)字的3倍,你能求出這個三位數(shù)嗎?這是最經(jīng)常出現(xiàn)的一類數(shù)字問題:引導(dǎo)學(xué)生分析已知各位上的數(shù)字,怎么表示這個數(shù),理解為什么不能表示成cba?這是解決這類問題的基礎(chǔ).
通過(3)題理解連續(xù)數(shù)的表示法,并感受怎么表示最簡單.
通過2題讓學(xué)生理解怎么設(shè)?以及怎么設(shè)簡單(舍都有聯(lián)系的一個),并感受用未知數(shù)表示多個未知量,順藤摸瓜,從而列出方程的順向思維方式.
教師:結(jié)合完成題目,匯總講解,重點在于解法.
成果
展示1.通過本節(jié)所學(xué)你有哪些收獲?
2.談?wù)勀阏莆盏姆椒ê蛯W(xué)習(xí)的感受,以及你對應(yīng)用方程解決問題的體會.學(xué)生自我闡述,教師評價鼓勵、補充總結(jié).
補償提高1.有一數(shù)列,按一定規(guī)律排成0,2,6,12,20,30,…,則第8個數(shù)為______,第n個數(shù)為_____.
2.下面給出的是20xx年3月份的日歷表,任意圈出一豎列上相鄰的三個數(shù),請你運用方程思想來研究,圈出的三個數(shù)的和不可能是( ).
A.69B.54C.27D.40
通過練習(xí),掌握數(shù)字問題的分類及不同解法,鞏固、體會用方程解決問題的思路和思維方式,學(xué)會用方程解決問題.
題目設(shè)置是對前面學(xué)生所出現(xiàn)的問題進行針對性的補償和補充,也可對學(xué)有余力的學(xué)生拓展提高.
根據(jù)學(xué)生完成情況靈活設(shè)置問題.
作業(yè)
設(shè)計作業(yè):
必做題:課本4、5、第94頁6題.
選做題:同步探究.教師布置作業(yè),并提出要求.
學(xué)生課下獨立完成,延續(xù)課堂.
授課教師:
20xx年10月31日
一元一次方程課件(匯集十篇)
通常老師在上課之前會帶上教案課件,通常老師都會認真負責去設(shè)計好。教案是完成教學(xué)任務(wù)的重要途徑?!耙辉淮畏匠陶n件”是一個很有趣的話題讓我們來一起探討一下,感恩您的閱讀希望能給您提供幫助!
一元一次方程課件(篇1)
3. 會用等式的性質(zhì)解一元一 次昂成(數(shù)字系數(shù)),掌握解一元一次方程的基本方法
4. 能夠以一元一次方程為工具解決一些簡單的實際問題,包括列方程、求解方 程和解釋結(jié)果的實際意義及合理性,提高分析問題、解決問題的'能力
5. 初步學(xué)會用方程的思想思考問 題和解決問題的一些基本方法,學(xué)會用數(shù)學(xué)的方法觀察、分析、歸納和總結(jié) 現(xiàn)實情境中的實際問題。
一、結(jié)合課本112頁知識結(jié)構(gòu)圖和回顧與思 考中的問題,復(fù)習(xí)本章的知識點,形成框架,鞏固重點知識
1.一元一次方程的概念:
例1.試判斷下列方程是否為一元一次方程.
(1).x=5 (2). x2+3x=2 (3) .2x+3y=5
2.一元一次方程的解(根 ):
判斷下列x值是否為方程 3x-5=6x+4 的解.
3.解一 元一次方程的基本 思路 :
例5:整理一批 圖書,由一個人做要40小 時。現(xiàn)在計劃由一部分人先做4小 時,再增加2人和他們一起做8小時,完成這項工作。假設(shè)這些人 的工作效率下共同, 具體 應(yīng)先安排多少人工作?
解:設(shè)先安排x人工作4小時。根據(jù)兩段 工作量之和應(yīng)是總工作量,由此,列方程:
本題的關(guān)鍵是 要人均效率與人數(shù)和時 間之間的數(shù)量關(guān)系.
一元一次方程課件(篇2)
1.認識一維線性方程組(1)
——你多大了
1.教學(xué)目標
1.在分析實際問題情況的過程中感受方程模型的意義。2.用類比和歸納法歸納出一元線性方程的概念,并在歸納過程中體驗歸納法;
3.讓學(xué)生在分析實際問題情境的活動中,體驗數(shù)學(xué)與現(xiàn)實的緊密聯(lián)系。
2.教學(xué)過程 第1部分:閱讀章節(jié)前的圖片
內(nèi)容1:請學(xué)生閱讀關(guān)于“丟番圖”故事的章節(jié)前的圖片。 (約1分鐘)
丟番圖是古希臘數(shù)學(xué)家。他的生平事跡鮮為人知,但流傳著一段關(guān)于他生平的墓志銘:丟番圖被埋葬在墳?zāi)估?,多么神奇,它忠實地記錄了他的人生歷程。上帝給了他六分之一的童年,十二分之一后他的臉頰上長了胡須,再過七分之一,他點燃了婚禮蠟燭。五年后,他得到了一個寶貝兒子,可憐的遲到的寧馨兒,在她父親一半的時候進入了黃泉。悲傷只能通過數(shù)學(xué)研究來彌補。又過了四年,他也走完了人生的旅途。
——摘自《希臘詩集》第126題
目的:通過閱讀本章開頭圖片中的故事,激發(fā)學(xué)生探索詩歌的興趣。丟番圖時代,然后引導(dǎo)學(xué)生通過建立方程來解決問題,覺得方程可以用來解決實際問題,覺得方程是描述現(xiàn)實世界的有效模型。效果:同學(xué)們對丟番圖的故事很感興趣,有同學(xué)問:他幾歲?老師還趁機問了一個問題:用什么方法可以查出丟番圖的年齡?然后呈現(xiàn)內(nèi)容 2。
內(nèi)容2:回答以下3個問題:(約4分鐘) 1.你能找出問題中的等價關(guān)系并列出方程式嗎? 2. 你對方程了解多少?
3.用列方程解決實際問題的關(guān)鍵是什么?
目的:第一題考查學(xué)生根據(jù)等價關(guān)系建立方程的能力。不需要解方程。第二題旨在鼓勵學(xué)生用自己的語言描述方程,鍛煉他們的數(shù)學(xué)語言表達能力。第三個問題強調(diào)解決列方程應(yīng)用問題的關(guān)鍵是找到等價關(guān)系。
實際效果:第一個問題學(xué)生就可以完成問題。如下: 解:設(shè)丟番圖的年齡為x 歲,則:
第二個問題正好適合學(xué)生表達。教師可以使用標準語言再次強調(diào)方程是描述現(xiàn)實世界的有效方式。模型。第三個問題學(xué)生回答得更好。
內(nèi)容 3:閱讀 學(xué)習(xí)目標:
當你學(xué)習(xí)本章時,你會覺得方程是描述現(xiàn)實生活中等價關(guān)系的有效模型。掌握方程的基本性質(zhì),能夠解一元線性方程組。能夠用一維線性方程解決一些簡單的實際問題。在探索一維線性方程組解的過程中,感受思維的轉(zhuǎn)變。
目的:通過閱讀學(xué)習(xí)目標,學(xué)生了解本章的學(xué)習(xí)內(nèi)容由兩部分組成:求解單變量線性方程組和能夠求解單變量線性方程組的一些簡單實際問題.學(xué)生對本章學(xué)習(xí)的知識和數(shù)學(xué)思想有一個整體的概念。
實際效果:通過閱讀,學(xué)生目標明確,學(xué)習(xí)更有針對性。特別是,我意識到“轉(zhuǎn)變思想”的重要性。
第二課:自讀與學(xué)習(xí)
內(nèi)容:讓學(xué)生閱讀本節(jié)課本P132-P133習(xí)題前的內(nèi)容。結(jié)合教材以題串形式呈現(xiàn)內(nèi)容的特點,閱讀并完成書中的填空題。 (約10分鐘)
目的:通過閱讀的過程,讓學(xué)生首先回憶小學(xué)學(xué)過的方程和方程的概念,熟悉課文中設(shè)置的簡單、熟悉的例子。清晰地分析各種量的關(guān)系,找到等式關(guān)系,列出方程,體驗不同類型的方程。實際效果:通常,大多數(shù)學(xué)生都能分析課本示例中包含的各種數(shù)量關(guān)系,并列出方程式。在教學(xué)過程中,需要注意學(xué)生在本環(huán)節(jié)活動中表現(xiàn)出來的寫作中的不規(guī)范和錯誤的地方,并提醒學(xué)生注意。第三課:語境介紹
內(nèi)容:和學(xué)生一起分析課本中出現(xiàn)的三種情況:(1)如果小紅的年齡是x歲,那么“乘2減5”就是2x- 5、等式:2x-5 =21 組織活動:四人小組做猜年齡游戲,每組會有幾個不同的等式。例如:我的年齡乘以 2 減 5 等于 91,你知道老師的年齡嗎?學(xué)生算出老師48歲
(2)小李種了一棵樹苗。一開始樹苗的高度是40厘米。種植后,樹苗每周長約5cm,幾周后,樹苗長到1m高。 ?
如果x周后樹苗長到1m,則可以得到方程: 40+5x=100 (3) A、B兩地距離為22km。張大爺從A地出發(fā)到B地,比原計劃多走了1公里,所以提前12分鐘到了B地。張大爺原本打算走多少公里每小時?
假設(shè)張叔原計劃每小時步行xkm,可得方程:
目的:通過準確列舉三個方程,我感覺:1.用方程解題的關(guān)鍵是:2.三個方程可以分為三類:一元線性方程,分數(shù)方程,和一元二次方程。
注意:學(xué)生在做方程式時要注意以下幾個問題: 1.讓學(xué)生閱讀和復(fù)習(xí)題,鍛煉學(xué)生復(fù)習(xí)題的能力; 2. (2)中的單位換??算:1米=100厘米。等價關(guān)系為:最終樹高=初始樹高+周生長高度; 等價關(guān)系是:原計劃中使用的時間-現(xiàn)在使用的時間=提前期;
第四部分:總結(jié)一元線性方程的定義,理解一元線性方程解的意義
內(nèi)容:討論
< p> (1) 你從以上問題得到了哪些方程?您熟悉這些方程式中的哪一個?與您的伴侶交流。一共得到三個方程。其中,(1)和(2)只有一個未知數(shù),這在小學(xué)很常見。
(2) 方程2x-5=21, 40+5x=100, (1+%)x=8930有什么共同點?
它們都只包含一個未知數(shù),未知數(shù)的指數(shù)為1。 目的:從(1)中引導(dǎo)學(xué)生思考所列出的五個方程的特征:未知數(shù)的個數(shù)和位置是不同的;由(2)式得到一維線性方程的定義:方程中只有一個未知數(shù),且未知數(shù)的指數(shù)都為1,這樣的方程稱為一維線性方程。
實際效果:逐步引導(dǎo)學(xué)生研究方程的特點,讓學(xué)生自己陳述一維線性方程的定義,判斷以上五個方程只是三個一維線性方程。結(jié)論來源于學(xué)生在實際問題中的分析和不斷的綜合總結(jié),體現(xiàn)了學(xué)生思維的主動性。內(nèi)容二:方程解的含義:使方程左右兩邊的值相等的未知值,稱為方程的解。
x=2 是下面方程的解嗎?完成 (1) 3x+(10-x)=20; (2) 2+6=7x 目的:理解方程解的意義;判斷是否為方程解的方法:將解帶入原方程,計算左和右,看是否相等。等于原方程的解。
實際效果: 1. 學(xué)生有小學(xué)基礎(chǔ),能理解方程解的含義;
2.學(xué)生能熟練地將方程的解帶入方程進行驗證,得出結(jié)論。 第五課:合規(guī)性測試
內(nèi)容一:完成課本中的課堂練習(xí) 1. 根據(jù)題目意思,列出方程式: (1) 1600 年左右剩下的一卷BC 古埃及的紙莎草紙記錄了一些數(shù)學(xué)問題。其中一個問題翻譯為:“啊哈,全部,全部,其總和等于 19?!?/p>
你能在問題中找到“它”嗎?解:設(shè)“it”為x,則:
(2)A、B兩隊開始一場足球比賽,規(guī)定每隊一場得3分,一場得1分平局,輸1分。 0分。 A隊和B隊一共交手10場,A隊以22分保持不敗戰(zhàn)績。球隊贏了多少場比賽?抽了多少場比賽?
解決方案:假設(shè) A 隊贏了 x 場比賽,然后 B 隊贏了 (10-x) 場比賽。那么: 2. 標準做法:
下列公式中,方程為(只填序號)①2x=1②5-4=1③7m-n+1④3(x+y)=4 中下面的公式,是一維線性方程(只填序號) ①x-3y=1②x2+2x+3=0③x=7④x2-y=0 a的20%加100等于x??梢粤谐龇匠蹋?.half of a number 減去這個數(shù)等于6。如果這個數(shù)設(shè)置為x,方程可以列出。
一桶油和桶的重量是8公斤。油用完一半后,桶的重量為公斤。一桶油有多少公斤?假設(shè)桶里的原油是x公斤,可以列出方程 ___________________ 小英的父親今年44歲,是他的3倍,比小英大2歲,如果小明是x歲,可以列出方程: ___________________ 3 年以前,父親的年齡是兒子年齡的 4 倍。 3年后,父親的年齡是兒子年齡的3倍。這對父子今年幾歲?假設(shè)兒子的年齡是三年前的 x 歲,可以列出方程式: __________ 目的:鞏固本節(jié)的知識 實際效果: 1. 學(xué)生在課堂練習(xí)中基本能準確回答問題。 2. 學(xué)生選擇自己的小組代表發(fā)言,并在P133課堂練習(xí)1中解釋各種量及其含義,加深對背景數(shù)學(xué)模型的理解。
3.標準實踐中的問題可以選擇性地完成。 第六課:課堂總結(jié)
內(nèi)容:師生互動梳理本節(jié)內(nèi)容。 (本課你的收獲,你的疑惑)
目的:鼓勵學(xué)生結(jié)合課本內(nèi)容和之前的預(yù)習(xí),討論自己的收獲和感受,包括如何調(diào)整閱讀方式班級。 .實際效果:
一方面,同學(xué)們總結(jié)了:
本節(jié)給出四個知識點:方程(復(fù)習(xí)和鞏固),方程(給出描述性定義),一一維線性方程和一維線性解(根)。我覺得在解決實際問題時,列方程給出的思維方式和方法比小學(xué)算術(shù)更通用。列方程的核心:實際問題“數(shù)學(xué)化”,關(guān)鍵是找到等價關(guān)系。
另一方面:每個學(xué)生都適當?shù)卣{(diào)整自己的閱讀準備方法和自己獨立思考問題的方式。第 7 節(jié):布置作業(yè) 1,練習(xí) 2,思考:如何獲得列出的一個變量中的三個線性方程組的解? 5. 教學(xué)反思:
這個階段的學(xué)生自我發(fā)展意識比較強。 對于與自身主觀體驗相沖突的現(xiàn)象,教師只有正確、合理地解釋,才能得到學(xué)生的認可。 在教學(xué)中,應(yīng)盡量讓學(xué)生意識到使用方程建模的優(yōu)勢,這將使許多實際問題“數(shù)學(xué)化”的重要數(shù)學(xué)模型成為學(xué)生學(xué)習(xí)后續(xù)知識的自覺選擇。
讓學(xué)生在簡單的背景問題中一點一點地理解和分析已知量與未知量之間的定量關(guān)系,幫助他們解決問題,減少困難。 ,突破困難的目的。
一元一次方程課件(篇3)
3.3解一元一次方程(二) ―――去括號與去分母(第1課時) 教學(xué)目標: (1)知識目標: 在具體情境中體會去括號的必要性,能運用運算律去括號。 (2) 能力目標: 探索總結(jié)去括號法則,并能利用法則解決簡單的問題。 重點:去括號法則及其運用。 難點:括號前面是“―”號,去括號時,應(yīng)如何處理。 教學(xué)過程: (一)創(chuàng)設(shè)情景,導(dǎo)入新課 問題? 某工廠加強節(jié)能措施,去年下半年與上半年相比,月平均用電量減少2000度,全年用電15萬度。這個工廠去年上半年每月平均用電多少度? ? (三)典例教學(xué)? 例1.解方程 3x-7(x-1)=3-2(x+3) ? 例2.一艘船從甲碼頭到乙碼頭順流行駛,用了2小時;從乙碼頭返回甲碼頭逆流行駛,用了2.5小時.已知水流的`速度是3千米/小時,求船在靜水中的平均速度. ? 例3.某車間22名生產(chǎn)螺釘和螺母,每人每天平均生產(chǎn)螺釘1200個或螺母2000個,一個螺釘要配兩個螺母.為了使每天的產(chǎn)品剛好配套,應(yīng)該分配多少名工人生產(chǎn)螺釘,多少名工人生產(chǎn)螺母? ? (四)課堂練習(xí)1.(1)4x+3(2x-3)=12-(x+4) (2) ? 2.同步P79自我嘗試 (五)課堂小結(jié)? 去括號法則 (六)作業(yè) P102?習(xí)題3.3 第2題 ,? 同步學(xué)習(xí)P80開放性作業(yè) 教后思: ? ? ?
一元一次方程課件(篇4)
說教材
《認識一元一次方程》是北師大版七年級(上冊)第五章第一節(jié)的內(nèi)容,它是在學(xué)生學(xué)習(xí)了有理數(shù)的運算、代數(shù)式的基礎(chǔ)上,首次接觸有關(guān)方程的知識,是中學(xué)階段應(yīng)用數(shù)學(xué)知識解決實際問題的開端,也是今后學(xué)習(xí)用一次方程組、一元二次方程解決實際問題的基礎(chǔ),是學(xué)生體會數(shù)學(xué)價值觀、增強學(xué)數(shù)學(xué)、用數(shù)學(xué)意識的重要題材。
《認識一元一次方程》提取于學(xué)生的切身體會,其中滲透了數(shù)學(xué)結(jié)構(gòu)模式思想和歸納、化歸等數(shù)學(xué)思想方法,是學(xué)生必備的數(shù)學(xué)修養(yǎng)和素質(zhì)。本課時是一元一次方程第一課時的內(nèi)容,設(shè)計了切合學(xué)生興趣的問題情境,從而激發(fā)了學(xué)生的好奇心和主動學(xué)習(xí)的欲望。主動探究情境中包含的數(shù)量關(guān)系,體會方程是刻畫實際問題的一個有效的數(shù)學(xué)模型。
說教學(xué)目標
(1)知識與技能目標
①歸納出一元一次方程的概念;
②感受方程作為刻畫現(xiàn)實世界有效模型的意義。
(2) 過程與方法
①經(jīng)歷和體驗運用方程解決實際問題的過程,初步認識運用方程解決實際問題的關(guān)鍵是建立相等關(guān)系,提高思維水平和應(yīng)用數(shù)學(xué)知識分析問題、解決實際問題的能力。
②讓學(xué)生理解從特殊到一般的思維方法,培養(yǎng)學(xué)生綜合分析問題的能力及數(shù)學(xué)問題的嚴密性。
③嘗試在方程建模過程中,多角度地思考問題。
(3)情感、態(tài)度與價值觀
①體會數(shù)學(xué)與社會的密切聯(lián)系,了解數(shù)學(xué)的價值。
②敢于面對挑戰(zhàn)、大膽嘗試,從中獲得成功的體驗,激發(fā)學(xué)習(xí)數(shù)學(xué)的熱情。
教學(xué)重點
通過豐富的實例,建立一元一次方程,展現(xiàn)方程是刻畫現(xiàn)實生活的有效數(shù)學(xué)模型。
教學(xué)難點
根據(jù)具體問題中的數(shù)量關(guān)系列一元一次方程
說教學(xué)方法
給學(xué)生提供探索和交流的空間。使整個數(shù)學(xué)活動生動活潑、成為一個主動和富有個性的學(xué)習(xí)過程。借助多媒體輔助教學(xué),通過有色彩、有動感的畫面,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,提高學(xué)習(xí)的效果。
說教學(xué)過程
環(huán)節(jié)一:閱讀章前圖
內(nèi)容1:請一位同學(xué)閱讀章前圖中關(guān)于“丟番圖”的故事。(大約1分鐘)
丟番圖(Diphantus)是古希臘數(shù)學(xué)家。人們對他的生平事跡知道得很少,但流傳著一篇墓志銘敘述了他的生平:墳中安葬著丟番圖, 多么令人驚訝, 它忠實地記錄了其所經(jīng)歷的人生旅程。上帝賜予他的童年占六分之一, 又過十二分之一他兩頰長出了胡須, 再過七分之一,點燃了新婚的蠟燭。五年之后喜得貴子, 可憐遲到的寧馨兒, 享年僅及其父之半便入黃泉。悲傷只有用數(shù)學(xué)研究去彌補, 又過四年,他也走完了人生的旅途。
——出自《希臘詩文選》(T h e G r e e Anthlg)第 126 題
目的:通過閱讀章前圖中的故事,激發(fā)同學(xué)們探索丟番圖年齡的興趣,進而引導(dǎo)學(xué)生通過列方程解決問題,感受利用方程可以解決實際問題,感受方程是刻畫現(xiàn)實世界有效地模型。
內(nèi)容2:回答以下3個問題:(大約4分鐘)
1、你能找到題中的等量關(guān)系,列出方程嗎?
2、你對方程有什么認識?
3、列方程解決實際問題的關(guān)鍵是什么?
目的:第一個問題考查學(xué)生根據(jù)等量關(guān)系列方程的能力,對于解方程這里不做要求。第二個問題意在鼓勵學(xué)生用自己的語言對方程進行描述,鍛煉學(xué)生的數(shù)學(xué)語言表達能力。第三個問題強調(diào)列方程解應(yīng)用題的關(guān)鍵是:尋找等量關(guān)系。
環(huán)節(jié)二:情境引入
內(nèi)容:與學(xué)生共同分析完成課本呈現(xiàn)的五個情境:
(1)小游戲:猜年齡
第一個問題學(xué)生可通過算術(shù)方法和方程兩種方法解決;
第二個問題只能通過方程解決,體現(xiàn)方程的進步性。
(2)小穎種了一株樹苗,開始時樹苗高為 40 c,栽種后每周樹苗長高約 5 c,大約幾周后樹苗長高到 1 ?
如果設(shè) x 周后樹苗長高到 1 ,那么可以得到方程: 40 + 5 x = 100
一元一次方程課件(篇5)
本課是針對人民教育出版社出版的《七年級數(shù)學(xué)上冊》第三章一元一次方程中3。4實際問題與一元一次方程(行程問題應(yīng)用題歸類解析——追及問題)設(shè)計的內(nèi)容。
(一)知識與技能:
1、使學(xué)生進一步掌握列一元一次方程解應(yīng)用題的方法和步驟;
2、熟練掌握追及問題中的等量關(guān)系。
(二)過程與方法。
培養(yǎng)學(xué)生觀察能力,提高他們分析問題和解決實際問題的能力。
(三)情感態(tài)度價值觀:
培養(yǎng)學(xué)生勤于思考、樂于探究、敢于發(fā)表自己觀點的學(xué)習(xí)習(xí)慣,從實際問題中體驗數(shù)學(xué)的價值。體會觀察、分析、歸納對數(shù)學(xué)知識中獲取數(shù)學(xué)信息的重要作用,進一步掌握列一元一次方程解應(yīng)用題的方法和步驟,能在獨立思考和小組交流中獲益。
2、難點:將實際問題轉(zhuǎn)化為數(shù)學(xué)模型,并找出等量關(guān)系。
探究式。
一、創(chuàng)設(shè)問題情景,引入新課:
1、行程問題中有哪些基本量?它們間有什么關(guān)系?
2、行程問題有哪些基本類型?
二、知識應(yīng)用,拓展創(chuàng)新:
行程問題應(yīng)用題是中小學(xué)數(shù)學(xué)應(yīng)用題中很重要的一類,學(xué)生難以理解,不容易掌握。行程問題的題型千變?nèi)f化,導(dǎo)致許多學(xué)生感到束手無策,難以適從。其實認真分析,就會發(fā)現(xiàn)行程問題應(yīng)用題主要有三種基本類型:追及問題、相遇問題和航行問題,而且三個基本量之間的基本關(guān)系“路程=速度×?xí)r間”保持不變。
三、例題講解。
解:設(shè)x秒后乙能追上甲。
根據(jù)題意得5x—3x=100。
解得x=50。
答:50秒后乙能追上甲。
小結(jié):針對本題進行小結(jié)、歸納,它屬于行程問題應(yīng)用題(追及問題)。
中的同時不同地問題,以后遇到此類題,該如何解決。
分析:這個問題中,由于黃色馬先跑1s(此時棕色馬未出發(fā)),經(jīng)過1s后棕色馬再開始出發(fā)和黃色馬同向而行,后來棕色馬追上黃色馬了。因此兩馬所跑路程是相同的,但由于黃色馬先跑了1秒,所以就產(chǎn)生了路程差,那么這個問題就和前面例1一樣了。也可以這樣想:棕色馬的路程=黃色馬的路程+相隔距離。
解:設(shè)x秒后,棕色馬追上黃色馬,根據(jù)題意,得6x=5x+5解得x=5答:5秒后,棕色馬可以追上黃色馬。
小結(jié):針對本題進行小結(jié)、歸納,它屬于行程問題應(yīng)用題(追及問題)。
中的同地不同時問題。
歸納小結(jié):列方程解應(yīng)用題的一般步驟:
審—通過審題明確已知量、未知量,找出等量關(guān)系;
設(shè)—設(shè)出合理的未知數(shù)(直接或間接);
列—依據(jù)找到的等量關(guān)系,列出方程;
解—求出方程的解;
驗—檢驗求出的值是否為方程的解,并檢驗是否符合實際問題;
答—注意單位名稱。
解答由學(xué)生完成。
本節(jié)知識歸納:
1、追及問題的特點是同向而行,在直線運動中兩者路程之差等于兩者間的距離;
2、而在圓周運動中,若同時同地同向出發(fā),則二者路程之差等于跑道的周長。
3、用示意圖輔助分析數(shù)量間的關(guān)系便于我們列方程。
四、作業(yè)布置:(見補充題)。
通過本節(jié)課的學(xué)習(xí),使學(xué)生進一步掌握列一元一次方程解應(yīng)用題的方法和步驟,并能熟練尋找追及問題中的等量關(guān)系,列出方程,解決追及問題。
一元一次方程課件(篇6)
一、教學(xué)目標:
1、通過對多種實際問題的分析,感受方程作為刻畫現(xiàn)實世界有效模型的意義。
2、通過觀察,歸納一元一次方程的概念
3、積累活動經(jīng)驗。
二、重點和難點
重點:歸納一元一次方程的概念
難點:感受方程作為刻畫現(xiàn)實世界有效模型的意義
三、教學(xué)過程
1、課前訓(xùn)練一
(1)如果 || = 9,則= ;如果2 = 9,則=
(2)在數(shù)軸上距離原點4個單位長度的數(shù)為
(3)下列關(guān)于相反數(shù)的說法不正確的是( )
A、兩個相反數(shù)只有符號不同,并且它們到原點的距離相等。
B、互為相反數(shù)的兩個數(shù)的絕對值相等
C、0的相反數(shù)是0
D、互為相反數(shù)的兩個數(shù)的和為0(字母表示為、互為相反數(shù)則)
E、有理數(shù)的相反數(shù)一定比0小
(4)乘積為1的兩個數(shù)互為 倒數(shù) ,如:
(5)如果,則( )
A、互為倒數(shù)
B、互為相反數(shù)
C、都是0
D、至少有一個為0
2、由課本P149卡通圖畫引入新課
3、分組討論P149兩個練習(xí)
4、P150:某長方形的足球場的周長為310米,長與寬的差為25米,求這個足球場的長與寬各是多少米?設(shè)這個足球場的寬為米,那么長為(+25)米,依題意可列得方程為:( )
A、+25=310 B、+(+25)=310 C、2 [+(+25)]=310 D、[+(+25)]2=310
課本的寬為3厘米,長比寬多4厘米,則課本的面積為 平方厘米。
5、小芳買了2個筆記本和5個練習(xí)本,她遞給售貨員10元,售貨員找回0.8元。已知每個筆記本比練習(xí)本貴1.2元,求每個練習(xí)本多少元?
解:設(shè)每個練習(xí)本要元,則每個筆記本要 元,依題意可列得方程:
6、歸納方程、一元一次方程的概念
7、隨堂練習(xí)PO151
四、課外作業(yè)
P151習(xí)題5.1
一元一次方程課件(篇7)
第五章 一元一次方程
1.認識一元一次方程
(一)
一、學(xué)生起點分析
學(xué)生在小學(xué)期間已學(xué)過等式、等式的基本性質(zhì)以及方程、方程的解、解方程等知識,經(jīng)歷了分析簡單數(shù)量的關(guān)系,并根據(jù)數(shù)量關(guān)系列出方程、求解方程、檢驗結(jié)果的過程。對方程已有初步認識,但并沒有學(xué)習(xí)“一元一次方程”準確的理性的概念。
二、學(xué)習(xí)任務(wù)分析
本節(jié)從有趣的“猜年齡”游戲入手,通過對五個熟悉的實際問題的分析,學(xué)生結(jié)合已有知識,能得出一元一次方程。在此過程中,學(xué)生逐漸體會方程是刻畫現(xiàn)實世界、解決實際問題的有效數(shù)學(xué)模型.本節(jié)的重點:學(xué)生在實際問題中分析、找到等量關(guān)系,準確列出方程,并總結(jié)所列方程的共同特點,歸納出一元一次方程的概念。
本節(jié)的難點:由特殊的幾個方程的共同特點歸納一元一次方程的概念。
三、教學(xué)目標
1、在對實際問題情境的分析過程中感受方程模型的意義;
2、借助類比、歸納的方式概括一元一次方程的概念,并在概括的過程中體驗歸納方法;
3、使學(xué)生在分析實際問題情境的活動中體會數(shù)學(xué)與現(xiàn)實的密切聯(lián)系。
四、教學(xué)過程設(shè)計
環(huán)節(jié)一:閱讀章前圖
內(nèi)容1:請一位同學(xué)閱讀章前圖中關(guān)于“丟番圖”的故事。(大約1分鐘)丟番圖(Diophantus)是古希臘數(shù)學(xué)家.人們對他的生平事跡知道得很少,但流傳著一篇墓志銘敘述了他的生平:墳中安葬著丟番圖,多么令人驚訝,它忠實地記錄了其所經(jīng)歷的人生旅程.上帝賜予他的童年占六分之一,又過十二分之一他兩頰長出了胡須,再過七分之一,點燃了新婚的蠟燭.五年之后喜得貴子,可憐遲到的寧馨兒,享年僅及其父之半便入黃泉.悲傷只有用數(shù)學(xué)研究
去彌補,又過四年,他也走完了人生的旅途.——出自《希臘詩文選》(T h e G r e e kAnthology)第 126 題
目的:通過閱讀章前圖中的故事,激發(fā)同學(xué)們探索丟番圖年齡的興趣,進而引導(dǎo)學(xué)生通過列方程解決問題,感受利用方程可以解決實際問題,感受方程是刻畫現(xiàn)實世界有效地模型。
效果:學(xué)生對丟番圖的故事很感興趣,有的學(xué)生提出問題:他的年齡是多少呢?教師借機也提出問題:用什么方法可以求解丟番圖的年齡呢?緊接著呈現(xiàn)內(nèi)容2。
內(nèi)容2:回答以下3個問題:(大約4分鐘)
1、你能找到題中的等量關(guān)系,列出方程嗎?
2、你對方程有什么認識?
3、列方程解決實際問題的關(guān)鍵是什么?
目的:第一個問題考查學(xué)生根據(jù)等量關(guān)系列方程的能力,對于解方程這里不做要求。第二個問題意在鼓勵學(xué)生用自己的語言對方程進行描述,鍛煉學(xué)生的數(shù)學(xué)語言表達能力。第三個問題強調(diào)列方程解應(yīng)用題的關(guān)鍵是:尋找等量關(guān)系。
實際效果:第一個問題學(xué)生可以完成問題。如下:
1111解: 設(shè)丟番圖的年齡為x歲,則:x?x?x?5?x?4?x
第二個問題學(xué)生的表述合理即可,教師可以用規(guī)范的語言再次強調(diào):方程是刻畫現(xiàn)實世界有效地模型。第三個問題學(xué)生回答較好。
內(nèi)容3:閱讀學(xué)習(xí)目標:(大約2分鐘)
學(xué)習(xí)本章內(nèi)容,你將感受方程是刻畫現(xiàn)實生活中等量關(guān)系的有效模型。掌握等式的基本性質(zhì),能解一元一次方程。能用一元一次方程解決一些簡單的實際問題。在探索一元一次方程解法的過程中,感受轉(zhuǎn)化思想。
目的:通過閱讀學(xué)習(xí)目標,學(xué)生了解了本章知識的學(xué)習(xí)內(nèi)容共有兩部分:解一元一次方程和能用一元一次方程解決一些簡單的實際問題。學(xué)生對于本章知識的學(xué)習(xí)和數(shù)學(xué)思想有一個整體的概念。
實際效果:學(xué)生通過閱讀,目標明確了,學(xué)習(xí)更有針對性。尤其是認識了“轉(zhuǎn)化思想”的重要性。
環(huán)節(jié)二:自主閱讀、學(xué)習(xí)
內(nèi)容:讓學(xué)生閱讀本節(jié)教材P132-P133隨堂練習(xí)之前的內(nèi)容。結(jié)合課本多以問題串的形式呈現(xiàn)內(nèi)容的特點,粗讀并完成書上的填空題。(大約10分鐘)
目的:通過讀書的過程,首先讓學(xué)生回憶起小學(xué)學(xué)過的等式的概念、方程的概念,對課文所設(shè)置的較簡單又熟悉的實例中的各種量的關(guān)系分析清楚,找出等量關(guān)系,列出方程,體會不同類型的方程.實際效果:通常,多數(shù)學(xué)生能夠分析教材實例中所蘊含的各種數(shù)量關(guān)系,并列出方程。教學(xué)過程中需要注意學(xué)生在這個環(huán)節(jié)的活動中所表現(xiàn)出來的書寫不規(guī)范,錯誤的地方,提醒學(xué)生注意。環(huán)節(jié)三:情境引入
內(nèi)容:與學(xué)生共同分析完成課本呈現(xiàn)的五個情境:
(1)如果設(shè)小彬的年齡為 x 歲,那么“乘 2 再減 5 ”就是2 x5 = 21 組織活動:四人小組做猜年齡的游戲,每個小組會有幾個不同的等式.如:我的年齡乘2減5等于91,你知道老師多大了嗎?
學(xué)生算出老師48歲了
(2)小穎種了一株樹苗,開始時樹苗高為 40 cm,栽種后每周樹苗長高約 5 cm,大約幾周后樹苗長高到 1 m?
如果設(shè) x 周后樹苗長高到 1 m,那么可以得到方程: 40 + 5 x = 100(3)甲、乙兩地相距 22 km,張叔叔從甲地出發(fā)到乙地,每時比原計劃多行走
1 km,因此提前 12 min 到達乙地,張叔叔原計劃每時行走多少千米? 設(shè)張叔叔原計劃每時行走x km,可以得到方程:
?? xx?16(4)根據(jù)第六次全國人口普查統(tǒng)計數(shù)據(jù),截至 2010 年 11 月 1 日 0 時,全國每 10 萬人中具有大學(xué)文化程度的人數(shù)為 8 930 人,與 2000 年第五次全國人口普查相比增長了 %.
如果設(shè) 2000 年第五次全國人口普查時每 10 萬人中約有 x 人具有大學(xué)文化程度,那么可以得到方程:(1 + %)x = 8 930(5)某長方形操場的面積是 5 850m2,長和寬之差為 25 m,這個操場的長與
寬分別是多少米?
如果設(shè)這個操場的寬為 x m,那么長為(x + 25)m.可以得到方程x(x?25)?5850
目的:通過準確列五個方程,感受:
1、列方程解應(yīng)用題的關(guān)鍵是:尋找等量關(guān)系;
2、五個方程可分為三種類型:一元一次方程,分式方程,一元二次方程。
注意事項:學(xué)生在列方程時要注意以下問題:
1、讓學(xué)生讀題、審題,鍛煉學(xué)生的審題能力;
2、(2)中單位換算:1米=100厘米。等量關(guān)系為:最后樹高=初始樹高+每周生長高度;
13、(3)中單位換算:12分=小時。等量關(guān)系為:原計劃所用時間-現(xiàn)在所
6用時間=提前時間;
4、(4)中數(shù)字在前,字母在后。
環(huán)節(jié)四:歸納一元一次方程的定義,了解一元一次方程的解的含義 內(nèi)容1:P133 議一議
(1)由上面的問題你得到了哪些方程?其中哪些是你熟悉的方程?與同伴
進行交流.共得到五個方程。其中(1)、(2)、(4)都只有一個未知數(shù),在小學(xué)學(xué)習(xí)時常見。
(2)方程 2 xx)= 20;(2)2 x2 + 6 = 7 x
目的:了解方程的解的含義;判斷是否為方程的解的方法:將解帶入原方程,分別計算左和右,看是否相等。相等則為原方程的解。
環(huán)節(jié)五:達標檢測
內(nèi)容1:完成教材上的隨堂練習(xí)
1、根據(jù)題意,列出方程:
(1)在一卷公元前 1600 年左右遺留下來的古埃及紙草書中,記載著一些數(shù)學(xué)問題.其中一個問題翻譯過來是:“啊哈,它的全部,它的你能求出問題中的“它”嗎? 解:設(shè)“它”為x,則:x?1x?19 71,其和等于 19.” 7(2)甲、乙兩隊開展足球?qū)官?,?guī)定每隊勝一場得 3 分,平一場得 1 分,負一場得 0 分.甲隊與乙隊一共比賽了 10 場,甲隊保持了不敗記錄,一共得 了 22 分.甲隊勝了多少場?平了多少場?
解:設(shè)甲隊贏了x場,則乙隊贏了(10-x)場。則:3x??10?x??22
2、達標練習(xí):
1、如果5xm?2=8是一元一次方程,那么m =.2、下列各式中,是方程的是 (只填序號)
① 2x=1 ② 5-4=1 ③ 7m-n+1 ④ 3(x+y)=4
3、下列各式中,是一元一次方程的是 (只填序號)
① x-3y=1 ② x2+2x+3=0 ③ x=7 ④ x2-y=0
4、a的20%加上100等于x .則可列出方程:.15、某數(shù)的一半減去該數(shù)的等于6,若設(shè)此數(shù)為x,則可列出方程
36、一桶油連桶的重量為8千克,油用去一半后,連桶重量為千克,桶內(nèi)有油多少千克?設(shè)桶內(nèi)原有油x千克,則可列出方程___________________
7、小穎的爸爸今年44歲,是小穎年齡的3倍還大2歲,設(shè)小明今年x歲,則可列出方程:___________________
8、3年前,父親的年齡是兒子年齡的4倍,3年后父親的年齡是兒子年齡的3倍,求父子今年各是多少歲?設(shè)3年前兒子年齡為x歲,則可列出方程:______ ____ 目的:對本節(jié)知識進行鞏固練習(xí)
環(huán)節(jié)六:課堂小結(jié)
內(nèi)容:師生互動,梳理本節(jié)內(nèi)容。(本節(jié)課你的收獲,你的疑惑)
目的:鼓勵學(xué)生結(jié)合學(xué)習(xí)本節(jié)課本內(nèi)容及課前的預(yù)習(xí),談?wù)勛约旱氖斋@與感想,包括如何調(diào)整自己的讀書方法.環(huán)節(jié)七:布置作業(yè)
1、習(xí)題
2、思考:如何得到所列三個一元一次方程的解?
一元一次方程課件(篇8)
1、了解方程的概念和一元一次方程的概念;
2、知道什么是解方程,會檢驗?zāi)硞€值是不是方程的解;
3、培養(yǎng)學(xué)生根據(jù)問題尋找等量關(guān)系、根據(jù)等量關(guān)系列出方程的能力。
1、一元一次方程的概念及方程的解;
同學(xué)們:世界上最大的動物是藍鯨,一頭藍鯨重124t,比一頭大象體重的25倍少1t,你能計算出這頭大象的體重嗎?
如果設(shè)大象的體重為xt,藍鯨的體重應(yīng)如何表示呢?怎樣解決這個問題呢?(學(xué)生思考并回答:25x-1=124,)我們把這個式子給它起個名字,叫一元一次方程,這就是我們今天要學(xué)習(xí)的一元一次方程(板書課題),那——什么叫做一元一次方程——呢?,請同學(xué)們帶著這些問題,閱讀課本114頁-115頁練習(xí)前的內(nèi)容,對照課本找出自學(xué)提綱里問題的答案。
要求:先完成得請你幫幫沒有完成的同學(xué),不會做的同學(xué)請教會做的同學(xué)。
學(xué)生自學(xué)課本,并完成自學(xué)提綱。老師可以先進行板書準備,再到學(xué)生中進行巡視指導(dǎo),掌握學(xué)生的學(xué)習(xí)狀況,為展示歸納做準備。
1、什么是方程?請舉出1—2個例子。未知數(shù)通常用什么表示?
2、什么是一元一次方程?請舉出1—2個例子。
3、在課本“例1”中,你知道這些方程中等號兩邊各表示什么意思嗎?
4、什么是方程的解?x=1和x=-1中哪一個是方程x+3=2的解?為什么?
1、請有問題的同學(xué)逐個回答自學(xué)提綱中的問題,生說師寫;
2、發(fā)動學(xué)生進行評價、補充、完善;
3、教師根據(jù)展示情況進行必要的講解和強調(diào)。
1、2題口答,要求說理由;其它各題,先讓學(xué)生獨立完成,教師做必要的板書準備后,巡回指導(dǎo),了解情況,再讓學(xué)生匯報結(jié)果,并請同學(xué)評價、完善,然后教師根據(jù)需要進行重點強調(diào)。
1、下列各式中,哪些是一元一次方程?
(1)5x=0;(2)1+3x;(3)x2=4+x;(4)x+y=5;(5)3m+2=1-m;(6)x+2>1
2、請你說出一元一次方程2x=4的解是———,解是x=-2的一元一次方程:。
3、練習(xí)本每本0.8元,小明拿了10元錢買了y本,找回4.4元,列方程是
4、設(shè)某數(shù)為x,根據(jù)題意列出方程,不必求解:
(1)某數(shù)比它的2倍小3;
(2)某數(shù)與5的差比它的2倍少11;
(3)把某數(shù)增加它的10%后恰為80.
6、若x=1是方程kx-1=0的解,則k=.
通過本節(jié)課的學(xué)習(xí)你學(xué)到了什么?還有沒有要提醒同學(xué)們注意的?
課本83頁習(xí)題3.1第1題。
一元一次方程課件(篇9)
1.知道解一元一次方程的去分母步驟,并能熟練地解一元一次方程。
2.通過討論、探索解一元一次方程的一般步驟和容易產(chǎn)生的問題,培養(yǎng)學(xué)生觀察、歸納和概括能力。
二、重點:
解一元一次方程中去分母的方法;培養(yǎng)學(xué)生自己發(fā)現(xiàn)問題、解決問題的能力。
1、解方程:(1);(2)2(x-2)-(4x-1)=3(1-x)
3、(只列不解)為改善生態(tài)環(huán)境,避免水土流失,某村積極植樹造林,原計劃每天植樹60棵,實際每天植樹80棵,結(jié)果比預(yù)計時間提前4天完成植樹任務(wù),則計劃植樹_____棵。
(三)例題:
討論:小明是個“小馬虎”下面是他做的題目,我們看看對不對?如果不對,請幫他改正。
通過這幾節(jié)課的學(xué)習(xí),你能歸納小結(jié)一下解一元一次方程的一般步驟嗎?
2.依據(jù);
3.依據(jù);
4.化成的形式;依據(jù);
5.兩邊同除以未知數(shù)的系數(shù),得到方程的解;依據(jù);
四、小結(jié):
談?wù)勥@節(jié)課有什么收獲以及解帶有分母的一元一次方程要注意的一些問題。
五、課堂檢測:
1、去分母時,在方程的左右兩邊同時乘以各個分母的_____________,從而去掉分母,去分母時,每一項都要乘,不要漏乘,特別是不含分母的項,注意含分母的項約去分母分子必須加括號,由于分數(shù)線具有
2、解方程(1)2x+5=5x-7(2)4-3(2-x)=5x(3)=3x-1
一元一次方程課件(篇10)
一、內(nèi)容與內(nèi)容分析
內(nèi)容
一元一次方程—數(shù)學(xué)活動(人民教育出版社《義務(wù)教育課程標準實驗教科書`·數(shù)學(xué)》七年級上冊第三章第四節(jié)第五課時)。
內(nèi)容解析
通過前一階段“再探實際問題與一元一次方程”的學(xué)習(xí),學(xué)生基本掌握了銷售中的盈虧、用哪種燈節(jié)省以及球賽積分表問題。在現(xiàn)實生活中還會有由于各方面的原因,需要選擇解決問題的最佳方案,例如顧客在購買某種商品時有幾種打折的方法,顧客如何選擇最佳的優(yōu)惠方法;在各種工程的招標中,如何選擇最佳的投標方案,用較少的投資取得最佳的效益等等,這些問題有的可以應(yīng)用一元一次方程的知識加以解決。因此,本課既是對前一階段學(xué)習(xí)的鞏固,又是新的應(yīng)用和引伸,同時本課作為“數(shù)學(xué)活動”,這就為數(shù)學(xué)拓展了空間,可引導(dǎo)學(xué)生到生活中實際了解有關(guān)數(shù)學(xué)問題,嘗試應(yīng)用數(shù)學(xué)知識解決問題,從而使學(xué)生在學(xué)習(xí)中興趣盎然,獲得真知,培養(yǎng)求異思維和創(chuàng)新的精神。
數(shù)學(xué)來源于生活,數(shù)學(xué)教學(xué)應(yīng)走進生活,生活也應(yīng)走進數(shù)學(xué),數(shù)學(xué)與生活的結(jié)合,便會使問題變得具體、生動,學(xué)生就會產(chǎn)生親近感、探究欲,從而誘發(fā)內(nèi)在知識潛能,主動動手、動口、動腦。因此,在教學(xué)中,我們應(yīng)自覺地把生活作為課堂,讓數(shù)學(xué)回歸生活,服務(wù)生活。
教學(xué)重點
經(jīng)歷探索具體情境中的數(shù)量關(guān)系,體會一元一次方程與實際問題之間的數(shù)量關(guān)系,會用方程解決實際問題.
二、目標和目標解析
1.目標
(1)運用一元一次方程解決現(xiàn)實生活中的`問題,進一步體會“建?!彼枷敕椒ǎ?/p>
(2)通過數(shù)學(xué)活動使學(xué)生進一步體會一元一次方程和實際問題中的關(guān)系,通過分析問題中的數(shù)量關(guān)系,進行預(yù)測、判斷.
(3)運用所學(xué)過的數(shù)學(xué)知識進行一次市場調(diào)查,體會數(shù)學(xué)知識在社會活動中的應(yīng)用,提高應(yīng)用知識的能力和社會實踐能力.
(4)通過數(shù)學(xué)活動,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)興趣,增強自信心,進一步發(fā)展學(xué)生合作交流的意識和能力,體會數(shù)學(xué)與現(xiàn)實的聯(lián)系,培養(yǎng)學(xué)生求真的科學(xué)態(tài)度.
2.目標解析
(1)通過活動一,讓學(xué)生以新聞播報的形式引出本節(jié)課的活動1,創(chuàng)設(shè)問題情境,調(diào)動學(xué)習(xí)興趣,學(xué)生進一步體會一元一次方程和實際問題的關(guān)系;
(2)通過活動二,通過查閱資料,小組交流討論,探究了解未知的領(lǐng)域與知識!運用一元一次方程解決現(xiàn)實生活中的問題,進一步體會“建?!彼枷敕椒ǎぐl(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)興趣,增強自信心;
(3)通過活動三,把事先借的報刊、圖書拿出來,再收集一些數(shù)據(jù),分析其中的等量關(guān)系,編成問題,看看能不能用一元一次方程解決這些問題,使學(xué)生運用所學(xué)過的數(shù)學(xué)知識進行一次市場調(diào)查,體會數(shù)學(xué)知識在社會活動中的應(yīng)用,提高應(yīng)用知識的能力和社會實踐能力;
(4)通過活動四,了解了杠桿平衡規(guī)律,并運用規(guī)律求杠桿平衡時的支點位置;另一方面體會了數(shù)學(xué)實驗對學(xué)習(xí)的幫助與啟發(fā),進一步認識到方程在實際中的廣泛應(yīng)用,進一步發(fā)展學(xué)生合作交流的意識和能力,體會數(shù)學(xué)與現(xiàn)實的聯(lián)系,培養(yǎng)學(xué)生求真的科學(xué)態(tài)度。
三、教學(xué)問題診斷分析
在本節(jié)課的教學(xué)過程中,老師只是起到一個組織者,引導(dǎo)者,合作者的作用,所有結(jié)論由學(xué)生通過動手實驗、合作交流、主動發(fā)現(xiàn),這對學(xué)生的分析問題,解決問題,表達能力等各方面能力要求較高。本節(jié)課兩個活動學(xué)生生活中的經(jīng)驗不多,大多屬于陌生領(lǐng)域與知識,需要學(xué)生在實驗交流過程中動腦、動口、動手,需要邊學(xué)習(xí),邊應(yīng)用,有一定難度。由于生活中的數(shù)據(jù)較大,在計算上也會給學(xué)生帶來困難。
教學(xué)難點
明確問題中的已知量與未知量間的關(guān)系,尋找等量關(guān)系.
四.教學(xué)支持條件分析
ppt、白板交互、微課、實物投影
五、教學(xué)過程設(shè)計
1.數(shù)學(xué)活動1 創(chuàng)設(shè)情境,導(dǎo)入新課
播報員播報新聞報道:統(tǒng)計資料表明,山水市去年居民的人均收入為11664元,與前年相比增長8%,扣除價格上漲因素,實際增長6.5%.
你理解資料中有關(guān)數(shù)據(jù)的含義嗎?如果不明白,請通過查閱資料或請教他人弄懂它們,根據(jù)上面的數(shù)據(jù),試用一元一次方程求:
(1)山水市前年居民的人均收入為多少元?
(2)在山水市,去年售價為1000元的商品在前年的售價為多少元?(精確到0.1元)
(學(xué)生先獨立思考、再小組討論,幾分鐘后展示成果。本題學(xué)生對提議的理解有一定的困難,先理解本題不懂的數(shù)據(jù)含義)
師引導(dǎo):說說“增長8%”和“扣除價格因素,實際增長6.5%”的意思;
生回答:通過查閱資料或其他方式解釋.
師指明:你能利用這些數(shù)據(jù)之間的關(guān)系從中再計算出一些新的數(shù)據(jù)嗎?
生回答:(1)增長率的公式:(去年人均收入-前年人均收入)前年人均收入=8%,即去年人均收入=前年人均收入(1+8%)
(2)去年價格上漲率=8%-6.5%=1.5%
生獨立做,后展示結(jié)果.
(1)解:設(shè)山水第前年居民人均收入為x元
列方程(1+8%)x=11664
解得x=10800
答:山水市前年居民的人均收入為10800元.
(2)解:設(shè)前年的售價為x元
(1+1.5%)x=1000
解得x≈985.2元
答:在山水市,去年售價為1000元的商品在前年的售價為985.2元.
師生共同解決問題.
練習(xí):數(shù)據(jù)表明:從19xx年至20xx年,雖然國有企業(yè)的戶數(shù)減少了,但國有及國有控股工業(yè)企業(yè)完成的工業(yè)增加值在不斷增長,到20xx年底已經(jīng)升到14652億元,比上一年增長11.67%,比全國各行業(yè)的增加值年均增長高出2.37個百分點。
你能算出20xx年國有控股工業(yè)企業(yè)的工業(yè)總產(chǎn)值嗎?還能算出全國其它行業(yè)的工業(yè)產(chǎn)值的增長百分比嗎?經(jīng)調(diào)查,20xx年全國其它行業(yè)的工業(yè)產(chǎn)值是18895億元,你能計算出20xx年的總產(chǎn)值嗎?
【設(shè)計意圖】把生活中的新聞報道的內(nèi)容為問題,一方面鍛煉學(xué)生運用方程解決問題的能力,另一方面引導(dǎo)學(xué)生關(guān)注新聞中隱含的數(shù)學(xué)問題,進一步體會數(shù)學(xué)在生活中的應(yīng)用.這種形式也激發(fā)了學(xué)生自主學(xué)習(xí),深入探究的熱情,也有利于提高分析問題和解決問題的能力。
活動二.動手實踐、探索新知
播報員播報新聞報道:阿基米德曾說過:“假如給我一個支點,我就能撬動整個地球!”進而介紹阿基米德的杠桿原理.
用一根質(zhì)地均勻的木桿和一些等重的小物體,做下列實驗:
(1) 在木桿中間處栓繩,將木桿吊起并使其左右平衡,吊繩處為木桿的支點;
(2) 在木桿兩端各懸掛一重物,看看左右是否保持平衡;
(3) 在木桿左端小物體下加掛一重物,然后把這兩個重物一起向右移動,直至左右平衡,記錄此時支點到木桿左右兩邊掛重物處的距離;
(4) 在木桿左端兩小物體下再加掛一重物,然后把這三個重物一起向右移動,直至左右平衡,記錄此時支點到木桿左右兩邊掛重物處的距離;
(5) 在木桿左邊繼續(xù)加掛重物,并重復(fù)以上操作和記錄.
想想可以怎樣替代實驗?根據(jù)記錄你能發(fā)現(xiàn)什么規(guī)律?
師引導(dǎo):沒有木桿,重物等實驗用具,我們可以設(shè)計替代實驗。
生:小組交流設(shè)計,幾分鐘展示:1.支點不動,重物移動. 2.支點移動,重物不動
師介紹:展示兩種試驗方法,及數(shù)據(jù).
師問:根據(jù)記錄你能發(fā)現(xiàn)什么規(guī)律?
生:思考回答。
師問:1.(支點不動,重物移動)如圖,在木桿右端掛一個重物,支點左邊掛n個重物,并使左右平衡.設(shè)木桿長為l cm,支點在木桿中點處,支點到木桿左邊掛重物處的距離為x cm,把n,l作為已知數(shù),列出關(guān)于x的一元一次方程. x
l
2.(支點移動,重物不動)如果直尺一端放一枚棋子,另一端放n枚棋子,支點應(yīng)在直尺的哪個位置?設(shè)直尺長為L,用一元一次方程求解。
【設(shè)計意圖】
活動2是動手實驗與動腦分析相結(jié)合,通過簡單實驗發(fā)現(xiàn)杠桿的平衡條件,并根據(jù)這個條件,列一元一次方程,解決問題。問題中有字母n,l作為已知數(shù),進行推導(dǎo)計算,為物理學(xué)科的公式推導(dǎo)積累經(jīng)驗.
說明:本節(jié)課的教學(xué)是以創(chuàng)設(shè)情景——活動探究——展示交流——反思評價的方式展開。突出一個“活”字,重在一個“動”字,落實一個“用”字。通過活動,讓學(xué)生感受數(shù)學(xué)存在于生活又服務(wù)于生活。
布置作業(yè)。
請收集一些重要問題(例如氣候、節(jié)能、經(jīng)濟等)的有關(guān)數(shù)據(jù),經(jīng)過分析后編出可以利用一元一次方程解決的問題,并正確的表述問題及其解決過程.
六、目標檢測設(shè)計
小明和小紅到公園玩蹺蹺板游戲,可是他們倆坐在蹺板上怎么也平衡不了?,F(xiàn)在知道小明的體重是30千克,小紅的體重是27千克,蹺板長3.8米。你能幫他倆解決這個問題嗎?
【設(shè)計意圖】
對本節(jié)重點內(nèi)容進行現(xiàn)場檢測,及時了解教學(xué)目標的達成情況。
二元一次方程組課件(匯編十二篇)
居安思危,思則有備,有備無患。在上課時幼兒園的老師都想讓自己的課堂知識能夠吸引小朋友們的注意力,大部分的教案都是為了讓學(xué)生的學(xué)習(xí)效率得到提升,教案可以幫助學(xué)生更好地進入課堂環(huán)境中來。那么如何寫好我們的幼兒園教案呢?小編特地為你收集整理“二元一次方程組課件(匯編十二篇)”,在此溫馨提醒你在瀏覽器收藏本頁。
二元一次方程組課件(篇1)
會用代入消元法解二元一次方程組;理解解二元一次方程時的“消元”思想、“化未知為已知”的化歸思想。
運用代入消元法解二元一次方程;了解解二元一次方程時的“消元”思想,初步體會“化未知為已知”的化歸思想。
在學(xué)生了解解二元一次方程時的“消元”思想,從而初步理解化“未知”為“已知”和化復(fù)雜問題為簡單問題的化歸思想。感受學(xué)習(xí)數(shù)學(xué)的樂趣,提高學(xué)習(xí)數(shù)學(xué)的熱情;培養(yǎng)學(xué)生合作交流,自主探究的好習(xí)慣。
會用代入消元法解二元一次方程組;理解解二元一次方程時的“消元”思想、“化未知為已知”的化歸思想。
“消元”的思想;“化未知為已知”的化歸思想。
上次課我們學(xué)習(xí)了二元一次方程、二元一次方程組,以及二元一次方程、二元一次方程組的解的定義。下面請同學(xué)們回憶一下它們分別是怎樣定義的?(同學(xué)們說,說不完的教師利用ppt進行展示)
我們知道:適合一個二元一次方程組的一組未知數(shù)的值叫做這個二元一次方程組的解。那么,我們能不能求出它的解呢?要怎樣求呢?
(1)來看我們課本上的例子:
上次課我們 設(shè)老牛馱了x包,小馬馱了y包,并建立如下的方程組。
...........(1)?x?y?1.......... ?x?1?2(y?1)............(2)?
現(xiàn)在要求老牛和小馬到底各馱幾個包裹?就需要我們求出該方程組的解對吧?我們前面已經(jīng)學(xué)習(xí)了怎樣求解一元一次方程,下面請同學(xué)們討論怎樣通過已學(xué)的知識解這個方程組?(學(xué)生討論,教師巡視指導(dǎo))
通過同學(xué)們的討論我們已經(jīng)有了解題思想。首先,由方程(1)將x視為已知數(shù)解出y=x-2,由于方程組中相同的字母表示同一未知數(shù),所以可以用x-2代替方程(2)中的y,即將y=x-2代入方程(2)。這樣就可以把方程化為我們所熟悉的一元一次方程,進而求解這個一元一次方程得到y(tǒng)的值,帶回方程組求出x的'值,方程組的解就求出來了。
...........(1)?x?y?1.......... ?...(2)?x?1?2(y?1).........
因此,就求出了老牛馱了7個包裹,小馬馱了5個包裹。
來看我們的解題過程,首先將其中一個方程中的一個未知數(shù)用含有另一個未知數(shù)的代數(shù)式表示出來,再把得到的代數(shù)式代入另一個方程中,從而消去一個未知數(shù),化二元一次方程組為一元一次方程進行形求解。這種求解二元一次方程組的方法稱為代入消元法。
(2)下面再來看一個例子:
(1)?2x?3y?16.......... ?..(2)?x?4y?13......
....?x?5所以原方程的解為? y?2?
下面請同學(xué)們自己解下列方程組:
(1)?1)1)?x?y?11....(?3x?2y?9....( (2)? (2)?x?y?7......?x?2y?3......(2)
(讓兩位同學(xué)上黑板做,教師巡視、指導(dǎo)。做完后評講,給出解題過程)
這節(jié)課主要學(xué)習(xí)了用代入消元法解二元一次方程組,其本思想是消元,將未知轉(zhuǎn)化為已知。主要步驟為將其中一個方程中的一個未知數(shù)用含有另一個未知數(shù)的代數(shù)式表示出來,再把得到的代數(shù)式代入另一個方程中,從而消去一個未知數(shù),化二元一次方程組為一元一次方程進行求解。
課本習(xí)題7.2的1、2題。
思考還有其他求解二元一次方程組的方法沒有?若果有,怎樣解?
進行教學(xué)實踐后在進行總結(jié)、反思、改進。
二元一次方程組課件(篇2)
一、說教材
首先談?wù)勎覍滩牡睦斫?,《二元一次方程組》是人教版初中數(shù)學(xué)七年級下冊第八章第一節(jié)的內(nèi)容,本節(jié)課的內(nèi)容是二元一次方程組的概念以及二元一次方程組的解。在此之前學(xué)習(xí)了一元一次方程和解方程的步驟,為本節(jié)課打下了良好的基礎(chǔ)。學(xué)了本節(jié)課為后面的解二元一次方程的方法做下鋪墊。因此本節(jié)課有著承上啟下的作用。
二、說學(xué)情
接下來談?wù)剬W(xué)生的實際情況。新課標指出學(xué)生是教學(xué)的主體,所以要成為符合新課標要求的教師,深入了解所面對的學(xué)生可以說是必修課。本階段的學(xué)生已經(jīng)具備了一定的分析能力,與類比學(xué)習(xí)能力。而且在生活中也為本節(jié)課積累了很多經(jīng)驗。所以,學(xué)生對于二元一次方程組概念理解較為容易,找出方程組的解,相對來說有難度,需要教師多引導(dǎo)。
三、說教學(xué)目標
根據(jù)以上對教材的分析以及對學(xué)情的把握,我制定了如下三維教學(xué)目標:
(一)知識與技能
掌握二元一次方程與二元一次方程組的概念,并了解它們的解,能正確地找出二元一次方程組的解。
(二)過程與方法
通過類比學(xué)習(xí)、自主探究、合作交流的過程,提升類比學(xué)習(xí)的能力、培養(yǎng)探究的意識。
(三)情感態(tài)度價值觀
感受數(shù)學(xué)與生活的密切聯(lián)系,培養(yǎng)學(xué)習(xí)數(shù)學(xué)的興趣。
四、說教學(xué)重難點
我認為一節(jié)好的數(shù)學(xué)課,從教學(xué)內(nèi)容上說一定要突出重點、突破難點。而教學(xué)重點的確立與我本節(jié)課的內(nèi)容肯定是密不可分的。那么根據(jù)授課內(nèi)容可以確定本節(jié)課的教學(xué)重點是:二元一次方程與二元一次方程組的概念以及方程與方程組的解。教學(xué)難點是:二元一次方程組解的探究。
五、說教法和學(xué)法
現(xiàn)代教學(xué)理論認為,在教學(xué)過程中,學(xué)生是學(xué)習(xí)的主體,教師是學(xué)習(xí)的組織者、引導(dǎo)者,教學(xué)的一切活動都必須以強調(diào)學(xué)生的主動性、積極性為出發(fā)點。根據(jù)這一教學(xué)理念,結(jié)合本節(jié)課的內(nèi)容特點和學(xué)生的年齡特征,本節(jié)課我采用講授法、練習(xí)法、小組合作等教學(xué)方法。
六、說教學(xué)過程
下面我將重點談?wù)勎覍虒W(xué)過程的設(shè)計。
(一)新課導(dǎo)入
首先是導(dǎo)入環(huán)節(jié),我采用情境導(dǎo)入:展示籃球聯(lián)賽圖片,給出評分標準。并提出問題:這個隊伍勝負場數(shù)分別是多少?
根據(jù)學(xué)生回答追問:用列方程解決問題,題中有幾個未知數(shù)呢?從而引出本節(jié)課的課題《二元一次方程組》
這樣設(shè)計的好處是:利用籃球聯(lián)賽的圖片導(dǎo)入,并講清楚評分規(guī)則,不僅可以吸引學(xué)生探索的興趣,還可以培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識。
(二)新知探索
接下來是教學(xué)中最重要的新知探索環(huán)節(jié),主要通過三個活動展開學(xué)習(xí)。
活動一:學(xué)生嘗試列方程解決問題,看看在列方程過程中遇到了什么困難?同桌之間互相交流。
學(xué)生分析題意,發(fā)現(xiàn)有未知數(shù),可以使用列方程的方法解決問題。當讓學(xué)生自己動手練習(xí)時,他們會發(fā)現(xiàn),勝負的場數(shù)都是未知的。
此時教師可以引導(dǎo)學(xué)生發(fā)現(xiàn)和思考:要求的是兩個未知數(shù),能不能根據(jù)題意直接設(shè)兩個未知數(shù),使列方程變得容易呢?學(xué)生在這樣的提示下會有一定的想法,但對于列出二元一次方程組來說還是比較困難的。
教師板書表格示意圖,引導(dǎo)學(xué)生通過題意,發(fā)現(xiàn)題干中包含的必須同時滿足的條件,得到兩組關(guān)系式并設(shè)出未知數(shù)完成表格。
活動二:學(xué)生觀察兩個方程特點,與一元一次方程有什么不同?并試著下定義。
在這里學(xué)生通過類比學(xué)習(xí),能夠歸納出二元一次方程的概念:每個方程都含有兩個未知數(shù),并且含有未知數(shù)的項的次數(shù)都是1。了解了二元一次方程后,對于二元一次方程組的概念就可以很好的展開了,對于本題列了兩個二元一次方程解決問題,像這樣的方程組叫做二元一次方程組。
師生共同總結(jié)出二元一次方程與二元一次方程組的定義。
列出了二元一次方程組,要解決籃球聯(lián)賽的問題,就要求出方程組的解,接下來進行第三個活動。
活動三:完成表格,以二元一次方程組中的一個方程為例。小組合作,找出幾組整數(shù)解,并觀察哪一組解也符合另一個方程。
在這里解二元一次方程組,可以先將問題簡單化,先研究一個方程的解,找到幾組解后,再看哪一組解也符合第二個方程。也就是兩個方程的公共解。教師給出表格,小組在進行合作時,教師應(yīng)引導(dǎo)學(xué)生思考結(jié)合題意,兩個未知數(shù)應(yīng)取正整數(shù)。填完表格后,師生共同總結(jié)出二元一次方程解的定義。
教師繼續(xù)追問,哪一組的值也滿足第二個方程。師生共同總結(jié)出什么叫做二元一次方程組的解。
得到方程組的解,回歸情景得出實際問題的答案。
設(shè)計意圖:通過三個活動展開本節(jié)課,不僅符合新課改的理念:學(xué)生是學(xué)習(xí)的主體,教師是教學(xué)活動中的組織者、引導(dǎo)者、合作者,還能通過小組活動、類比學(xué)習(xí)等活動豐富課堂。
(三)課堂練習(xí)
接下來是鞏固提高環(huán)節(jié)。
練習(xí):對下面的問題,列出二元一次方程組,并根據(jù)問題的實際意義,找出問題的解。
加工某種產(chǎn)品需經(jīng)兩道工序,第一道工序每人每天可完成900件,第二道工序每人每天可完成1200件。現(xiàn)有7位工人參加這兩道工序,應(yīng)怎樣安排人力,才能使每天第一、第二道工序所完成的件數(shù)相等?
設(shè)計這道題可以讓學(xué)生感受數(shù)學(xué)與生活的密切聯(lián)系,學(xué)以致用。教師可以及時掌握學(xué)生本節(jié)課的學(xué)習(xí)情況,給予補充糾正。
(四)小結(jié)作業(yè)
在課程的最后我會提問:今天有什么收獲?
引導(dǎo)學(xué)生回顧:二元一次方程組的定義與二元一次方程組的解。
本節(jié)課的課后作業(yè)我設(shè)計為:
思考除了用列表找二元一次方程組的解,還有什么方法能找出解,能不能將它變成我們熟悉的一元一次方程求解。
設(shè)計意圖:本節(jié)課學(xué)生通過列表觀察得到了方程組的解,作業(yè)設(shè)計為讓學(xué)生思考解二元一次方程組的方法,并提示能不能把它變成熟悉的一元一次方程求解,為下節(jié)課的學(xué)習(xí)做下鋪墊。
二元一次方程組課件(篇3)
教學(xué)目的
1.使學(xué)生了解二元一次方程,二元一次方程組的概念。
2.使學(xué)生了解二元一次方程;二元一次方程組的解的含義,會檢驗一對數(shù)是不是它們的解。
3.通過引例的教學(xué),使學(xué)生進一步使用代數(shù)中的方程去反映現(xiàn)實世界中的等量關(guān)系,體會代數(shù)方法的優(yōu)越性。
重點:了解二元一次方程、二元一次方程組以及二元一次方程組的解的含
難點;了解二元一次方程組的解的含義。
導(dǎo)學(xué)提綱:
1.什么叫一元一次方程?什么叫一元一次方程的解?怎樣檢驗一個數(shù)是否是這個方程的解?
2.閱讀教材問題1思考下列問題
⑴.能否用我們已經(jīng)學(xué)過的知識來解決這個問題?
用算術(shù)法解答
用一元一次方程解答
解后反思:既然是求兩個未知量,那么能不能同時設(shè)兩個未知數(shù)?
⑵.此問題中有兩個問題如果分別設(shè)為x、y,怎樣列式呢?(完成教材中的表格)
⑶.對于方程x十y=73x+y=17請思考下列問題
①它們是一元一次方程嗎?
②這兩個方程有沒有共同特點/若有,有河共同特點?
③類比一元一次方程的概念,總結(jié)二元一次方程的概念
3.從教材中找出二元一次方程和二元一次方程組的概念(結(jié)合一元一次方程,二元一次方程對“元”和“次”作進一步的解釋)
注意二元一次方程組的書寫方式,方程組中的各方程中,同一個字母必須代表同一個量
4.與是否滿足方程①與是否滿足方程②類比一元一次方程的解總結(jié)二元一次方程組的解的概念
注意:(1)未知數(shù)的值必須同時滿足兩個方程時,才是方程組的解.若取,時,它們能滿足方程①,但不滿足方程②,所以它們不是方程組的解.
(2)二元一次方程組的解是一對數(shù),而不是一個數(shù),所以必須把與合起來,才是方程組的解.
5.思考討論在方程組①②③④
⑤⑥中,屬于二元一次方程組的有
達標檢測:
1.根據(jù)下列語句,分別設(shè)適當?shù)奈粗獢?shù),列出二元一次方程或方程組:
(1)甲數(shù)的比乙數(shù)的2倍少7:_____________________________;
(2)摩托車的時速是貨車的倍,它們的速度之和是200千米/時:________;
(3)某種時裝的價格是某種皮裝的價格的1.4倍,5件皮裝比3件時裝貴700元:______________________________.
2.下列方程是二元一次方程的是()
A、2x+x=1B、x-3yC、x+x-3=0D、x+y=2
3.下列不是二元一次方程組的是()
x+3y=5m+3m=152x+3x=0m+n=5
A、B、C、D、
2x-3x=3+=3-5y=02m+n=6
x=2
4.在方程3x-ky=0中,如果是它的一個解,則k的值為_______.
y=-3
5.若mxy+9x+3y=-9是關(guān)于x、y的二元一次方程,則m=_______n=_______.
二元一次方程組課件(篇4)
一、閱讀教材P96-P98的內(nèi)容
二、獨立思考:
1、滿足方程組 的x的值是-1,則方程組的解是_____________.
2、用代入法解方程組 比較容易的變形是( )、
A、由①得 B、由①得
C、由得 D、則得
3、用代入消元法解方程 以下各式正確的是( )
A、 B、
C、 D、
4、如果 是二元一次方程,則 的值是多少?
互動教學(xué)過程
探究一:用代入法解方程組 。
探究二:用代入法解二元一次方程組的一般步驟:
步驟 名稱 具體做法 目的
1 變形 變形為
2 代入
3 求一元
4 求另一元
5 寫出解
探究三:根據(jù)市場調(diào)查,某種消毒液的大瓶裝(500g)和小瓶裝(250g)兩種產(chǎn)品的銷售數(shù)量(按瓶計算)比為
2:5,某廠每天生產(chǎn)這種消毒液22.5噸,這些消毒液應(yīng)該分裝大、小兩種產(chǎn)品各多少瓶?
自我能力評估
一、課堂練習(xí)
教材P98練習(xí)1、2題,P99練習(xí)第3、4題
解下列方程組
(1) (2) (3)
二、作業(yè)布置
教材P103習(xí)題8.2第1、2、4、6題。
三、自我檢驗
(一)填空題
1、在方程 中,若用x表示y,則y=__________________,若用y表示x,則x=____________.
2、用代入法解方程組 較簡單的解法步驟為:先把方程______變?yōu)開________________,再代入方程________,求得_______的值,然后再求_________的值。
3、二元一次方程組 的解為_______________。
4、若 是方程組 的解,則m=_________,n=__________。
5、在方程 中,若x與y互為相反數(shù),則x=_______,y=___________。
6、從方程組 中消去m,得x與y的關(guān)系式為_____________________。
7、如果方程組 的解是方程 的一個解,則m=________________。
8、用代入法解方程組 由得到用x的式子表示y是:_______________________。
(二)選擇題
1、用代入法解方程組 使得代入后化簡比較容易的變形是( )
A、由得 B、由得 C、由得 D、由得
2、用代入法解方程組 時,代入正確的是( )
A、 B、 C、 D、
3、解方程組 的最佳方法是( )
A、由得 再代入 B、由得 再代入
C、由得 再代入 D、由得 再代入
4、方程 的一個解與方程組 的解相同,由m等于( )
A、4 B、3 C、2 D、1
5、如果 是方程組 的解,那 之間的關(guān)系是( )
A、 B、 C、 D、
6、在式子 中,當 時,其值為3,當 時,其值是4,當 時,其值為( )
A、 B、 C、 D、
7、某校八年級學(xué)生在會議室開會,若每排坐12人,則有11人無處從,若每排從14人,則余1人獨從一排,則這個年級的學(xué)生總數(shù)為( )
A、133 B、144 C、155 D、166
(三)解答題
1、用代入消元法解下列方程組:
(1) (2) (3)
2、已知方程組 的解中x與y互為相反數(shù),求m的值。
3、已知方程組 的解是方程 的一個解,求a的值。
4、已知方程組 與方程組 有相同的解,求a、b的值。
5、解下列方程組的過程中,是否有錯誤,如有錯誤,請指出來。
解方程組
解:由①得
把代入中,
y是任意數(shù)
x是任意數(shù)
因此方程組有無數(shù)個解
6、若 求 的值。
7、一個兩位數(shù),十位上的數(shù)字比個位數(shù)字大2,若將十位數(shù)了和個位數(shù)字交換位置,所得的數(shù)比原數(shù)的 多3,求這個兩位數(shù)。
8、甲、乙兩人同解方程組 ,甲正確解得 ,乙因抄錯C,解得 ,求A、B、C的值。
9、已知等式 對于一切數(shù)都成立,求A、B的值。
10、根據(jù)有關(guān)信息求解:
(1)根據(jù)圖中給出的信息,求每件T恤衫和每
瓶礦泉水的價格。
(2)用八塊相同的長方形地磚拼成了一個大長
方形,求每塊地磚的長和寬。
二元一次方程組課件(篇5)
各位老師、同學(xué):
大家好!
今天我說課的內(nèi)容是人教版義務(wù)教育課程標準實驗教科書初中數(shù)學(xué)七年級下冊第八章《二元一次方程組》第一節(jié)內(nèi)容。我主要從教材分析、教法、學(xué)法、教學(xué)過程四個方面向大家匯報我對這節(jié)課的認識與理解。
一、教材分析
1、教材的地位
二元一次方程組是最簡單的多元(未知數(shù)的個數(shù)不止一個)方程組,通過對它的學(xué)習(xí),可以了解的多元一次方程組的概念和解法的基本思路。一元一次方程的知識是學(xué)習(xí)二元一次方程組的基礎(chǔ)。本節(jié)課是在七年級上冊已有的“一元一次方程”的基礎(chǔ)上進一步討論方程(組),為學(xué)生初中階段學(xué)好必備的代數(shù),幾何的基礎(chǔ)與基本技能,解決實際問題打下基礎(chǔ),同時提高學(xué)生能力,培養(yǎng)他們對數(shù)學(xué)的興趣,以及對他們進行思想教育方面有獨特的意義,同時,對后續(xù)教學(xué)內(nèi)容起到奠基作用。
2、教學(xué)目標
使學(xué)生掌握二元一次方程、二元一次方程組的概念,會把二元一次方程化為用一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的形式。使學(xué)生了解二元一次方程、二元一次方程組的解的含義,會檢驗一對數(shù)是不是它們的解。
3、重點、難點
重點:是學(xué)生認識到一對數(shù)必須同時滿足兩個二元一次方程,才是相應(yīng)的二元一次方程組的解。掌握檢驗一對數(shù)是否是某個二元一次方程的解的書寫格式。
難點:理解二元一次方程組的解的含義。
二、教法
啟發(fā)誘導(dǎo)學(xué)生自主探究、充分發(fā)揮學(xué)生的主體地位、借助多媒體增加課堂容量。
三、學(xué)法
“問題”是數(shù)學(xué)教學(xué)的心臟,活動是數(shù)學(xué)教學(xué)中的靈魂。所以我在學(xué)生思維最近發(fā)展區(qū)內(nèi)設(shè)置并提出一系列問題,通過數(shù)學(xué)活動,引導(dǎo)學(xué)生:自主性學(xué)習(xí),合作式學(xué)習(xí),探究式學(xué)習(xí)等,激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生的數(shù)學(xué)思維和參與度,力求學(xué)生在“雙基”數(shù)學(xué)能力和理性精神方面得到一定發(fā)展。
四、教學(xué)過程
1、教與學(xué)互動設(shè)計:通過“籃球比賽積分問題”讓學(xué)生感受到用二元一次方程組能夠很好的刻畫問題中的數(shù)量關(guān)系,為二元一次方程和二元一次方程組做準備。通過小組討論的方法,來調(diào)動學(xué)生學(xué)習(xí)的積極性。
2、合作交流,解讀探究:通過上述的兩個方程對新的知識讓學(xué)生進行討論交流。呼應(yīng)新課標理念中讓學(xué)生“動”起來,教師引導(dǎo)、學(xué)生自主學(xué)習(xí)的理念,進行新課的學(xué)習(xí)。
3、課堂練習(xí):用幻燈片展示的習(xí)題,學(xué)生通過習(xí)題鞏固本節(jié)課知識,更加充分的理解二元一次方程組的相關(guān)內(nèi)容。
4、課堂小結(jié)及布置作業(yè):通過小結(jié)及做習(xí)題反饋學(xué)生對本節(jié)課的收獲。
五、教學(xué)反思
生命在活動中豐富,為孩子的一生幸福奠定基礎(chǔ),是活動教學(xué)的終極價值追求;課堂在活動中精彩,強調(diào)通過師生之間豐富多彩的主體活動“喚醒”沉睡的課堂,實現(xiàn)課堂教學(xué)的重建;學(xué)生在活動中發(fā)展,教師在活動中成長。由于我能力有限,還請各位領(lǐng)導(dǎo)、老師和同學(xué)批評指正。
附:板書設(shè)計
8、1二元一次方程組
xy=222xy=40
二元一次方程二元一次方程組
二元一次方程的解二元一次方程組的解
二元一次方程組課件(篇6)
教學(xué)目標
知識與技能
掌握二元一次方程和二元一次方程組及它們的解的概念,會用消元法解方程組。
過程與方法
能根據(jù)方程組的特點選擇合適的方法解方程組;并能把相應(yīng)問題轉(zhuǎn)化為解方程組
情感、態(tài)度與價值觀
培養(yǎng)學(xué)生分析問題,解決問題的能力,體驗學(xué)習(xí)數(shù)學(xué)的快樂。
重點:
掌握二元一次方程和二元一次方程組及它們的解的概念,會用消元法解方程組。
難點:
選擇合適的方法解方程組;并能把相應(yīng)問題轉(zhuǎn)化為解方程組。
教學(xué)手段
多媒體,小組評比。
教學(xué)過程
一、知識梳理
以小組為單位討論二元一次方程組已經(jīng)學(xué)了哪些知識?
1、什么是二元一次方程?什么是二元一次方程的解?
2、什么是二元一次方程組?什么是二元一次方程組的解?
3、解二元一次方程組的基本思想是什么?消元的方法有哪些?
設(shè)計意圖:知識回顧,掌握知識要點,為順利完成練習(xí)打下基礎(chǔ)
二、基礎(chǔ)訓(xùn)練
教學(xué)手段與方法:每小組必答題,答對為小組的一分,調(diào)動學(xué)習(xí)的積極性。
設(shè)計意圖:
基礎(chǔ)知識達標訓(xùn)練。
教學(xué)手段與方法:
毎小組選代表講解為小組加分,充分調(diào)動學(xué)生的積極性。學(xué)生講解不到位的老師補充。
設(shè)計意圖:
對二元一次方程組解法的靈活應(yīng)用。
二元一次方程組課件(篇7)
一、 關(guān)于教材地位和作用的分析
《 二元一次方程組的解法(5)》是在前面學(xué)習(xí)了列一元一次方程解應(yīng)用題及二元一次方程組的解法(代入消元法和加減消元法)基礎(chǔ)上的一節(jié)綜合實際應(yīng)用課。借助二元一次方程組解決一些簡單的實際問題,這是數(shù)學(xué)聯(lián)系實際的一個重要方面。對于含有多個未知數(shù)的實際問題,利用方程組去解決,其分析方法和解題步驟與列一元一次方程類似,而在列方程方面常比列一元一次方程容易些。教材在讓學(xué)生在掌握了二元一次方程組的解法后,再次體驗二元一次方程組與現(xiàn)實生活的聯(lián)系和作用。通過本節(jié)課的教學(xué),可使學(xué)生領(lǐng)悟到數(shù)學(xué)來源與實踐,又反過來作用于實踐的辨證唯物主義思想。這對學(xué)生進一步學(xué)習(xí)數(shù)學(xué),將起到積極的作用。
二、 關(guān)于教學(xué)目標的確定
(一) 目標分析
知識和技能目標:
1、 會根據(jù)具體問題中的數(shù)量關(guān)系列出二元一次方程組及求解
2、 能檢驗結(jié)果是否符合實際意義
過程和方法目標
1、 通過使用代數(shù)中的方程去反映現(xiàn)實中的相等關(guān)系,體會代數(shù)方法的優(yōu)越性
2、 在列方程組解應(yīng)用題的過程中,體會列方程組往往比列一元一次方程容易。
3、 通過解應(yīng)用題的學(xué)習(xí),滲透把未知轉(zhuǎn)化為已知的辨證思想,從而培養(yǎng)學(xué)生分析問題和解決問題的能力
情感與態(tài)度目標
1、 學(xué)生在與同伴交流的學(xué)習(xí)過程中,形成良好的學(xué)習(xí)方式和學(xué)習(xí)態(tài)度,樹立學(xué)習(xí)數(shù)學(xué)的自信心。
2、 通過列方程組解應(yīng)用題的學(xué)習(xí),認識到數(shù)學(xué)的價值。
(二) 重難點分析
教學(xué)重點:根據(jù)實際問題的數(shù)量關(guān)系,找出兩個等量關(guān)系,列出二元一次方程組。
教學(xué)難點:正確找出兩個實際問題中的兩個等量關(guān)系,并把他們列成兩個方程。
難點突破采取的措施:
1、 可多種方法解決的實際問題引入,然后由師生共同尋找兩個等量關(guān)系,多次體驗列二元一次方程組解決實際問題的優(yōu)越性
2、 用填空和選擇的多種題型來尋找題目中的等量關(guān)系
3、 例題中兩個問題將它們分列開,將難點分散
三、 關(guān)于教學(xué)方法的說明
從一題多解的和尚吃饅頭的引入開始,引導(dǎo)學(xué)生尋找等量關(guān)系,在合作中尋找解題途徑,教師在此過程中做好一個組織者,合作者,引導(dǎo)者的作用,關(guān)注學(xué)生在此過程中的生命成長。幫助學(xué)生在方程探案中尋找等量關(guān)系,然后找到等量關(guān)系后,讓學(xué)生嘗試根據(jù)等量關(guān)系來列二元一次方程組解決問題,接著讓學(xué)生在填空和選擇中尋找等量關(guān)系,列方程組,最后是課本例題的教學(xué),讓學(xué)生自己尋找問題和分析問題,課外,讓學(xué)生自己編題,領(lǐng)悟方法,這種教學(xué)方法符合以下教育過程的規(guī)律:
1、 遵循由舊引新,由淺入深,由特殊到一般再到特殊。體現(xiàn)掌握知識和發(fā)展智力相統(tǒng)一的規(guī)律。
2、 創(chuàng)設(shè)問題情境,教師不斷啟發(fā)和引導(dǎo)學(xué)生思考,由易到難,化整為簡,體現(xiàn)教師在教學(xué)過程中的組織者、合作者和引導(dǎo)者的作用。
(二)學(xué)法分析
這種教學(xué)方法實際上也教給了學(xué)生一種學(xué)習(xí)方法,使學(xué)生學(xué)會觀察,注意生活中的實際問題,學(xué)會自己探究知識分析問題,解決問題,學(xué)會尋找、發(fā)現(xiàn),學(xué)會歸納總結(jié),逐步掌握獲取知識的能力。
(三)教學(xué)手段
通過多媒體輔助教學(xué),擴大教學(xué)容量,提高課堂教學(xué)效率。
四、 關(guān)于教學(xué)過程的設(shè)計。
(一) 導(dǎo)入設(shè)計
先用輕松的師生對白,讓學(xué)生進入問題,討論多種方法解決實際問題,激活學(xué)生的思維細胞,讓學(xué)生進入學(xué)習(xí)的狀態(tài),通過體驗新知識的優(yōu)越性,激發(fā)學(xué)生學(xué)習(xí)新知識的積極性。
(二) 嘗試練習(xí)
通過導(dǎo)入中的體驗,讓學(xué)生初步嘗試解決問題的能力,在此過程中,有學(xué)生成功了,他們嘗到了學(xué)習(xí)新知識的一種成就感,有學(xué)生失敗了,鼓勵他們繼續(xù)學(xué)習(xí),培養(yǎng)克服困難的信心和勇氣。
嘗試練習(xí)
1、方程探案記: 你知道盜賊如何分贓嗎
一幫強盜搶來一批布匹,躲在了樹林里分贓,由于傍晚天色太黑,看不清他們有多少人,只聽見帶頭的一個強盜喊著說:“每人分布六匹,還剩5匹,每人分布7匹,又少8匹?!罢埬愀鶕?jù)他的說話聲來判斷,究竟有多少強盜,多少布匹?
大家一起探討
(三) 范例設(shè)計
通過對課本例題的難點進行分解,把一個較復(fù)雜的問題,分解成兩個小問題,將難點分解。
某蔬菜公司收購到某種蔬菜140噸,準備加工后上市銷售。該公司的加工能力是:每天可以精加工6噸或粗加工16噸。現(xiàn)計劃用15天完成加工任務(wù)。
問:
1、該公司應(yīng)安排幾天粗加工,幾天精加工, 才能按期完成任務(wù)?
2、如果每噸蔬菜粗加工后的利潤為1000元,精加工后為2000元,那么照此安排,該公司出售這些加工后的蔬菜共可獲利多少元?
(四)反饋練習(xí)
通過多種題型:填空、選擇及問答的多種形式,培養(yǎng)學(xué)生從多角度地分析問題、解決問題的能力。最后,讓學(xué)生根據(jù)課題來自編應(yīng)用題,體現(xiàn)了數(shù)學(xué)在實際中的應(yīng)用價值。
(五) 歸納小結(jié)
教師啟發(fā),學(xué)生歸納列二元一次方程組解應(yīng)用題的一般步驟和方法。
二元一次方程組課件(篇8)
一、說教材分析
1.教材的地位和作用
二元一次方程組是初中數(shù)學(xué)的重點內(nèi)容之一,是一元一次方程知識的延續(xù)和提高,又是學(xué)習(xí)其他數(shù)學(xué)知識的基礎(chǔ)。本節(jié)課是在學(xué)生學(xué)習(xí)了一元一次方程的基礎(chǔ)上,繼續(xù)學(xué)習(xí)另一種方程及方程組,它是學(xué)生系統(tǒng)學(xué)習(xí)二元一次方程組知識的前提和基礎(chǔ)。通過類比,讓學(xué)生從中充分體會二元一次方程組,理解并掌握解二元一次方程組的基本概念,為以后函數(shù)等知識的學(xué)習(xí)打下基礎(chǔ)。
2.教學(xué)目標
知識目標:通過實例了解二元一次方程和它的解,二元一次方程組和它的解。
能力目標:會判斷一組未知數(shù)的值是否為二元一次方程及方程組的解。會在實際問題中列二元一次方程組。
情感目標:使學(xué)生通過交流、合作、討論獲取成功體驗,激發(fā)學(xué)生學(xué)習(xí)知識的興趣,增強學(xué)生的自信心。
3.重點、難點
重點:二元一次方程和二元一次方程的解,二元一次方程組和二元一次方程組的解的概念。
難點:在實際生活中二元一次方程組的應(yīng)用。
二、教法
現(xiàn)代教學(xué)理論認為,在教學(xué)過程中,學(xué)生是學(xué)習(xí)的主體,教師是學(xué)習(xí)的組織者、言道者,教學(xué)的一切活動必須以強調(diào)學(xué)生的主動性、積極性為出發(fā)點。根據(jù)這一教學(xué)理念,結(jié)合本節(jié)課的內(nèi)容特點和學(xué)生的年齡特征,本節(jié)課我采用啟發(fā)式、討論式以及講練結(jié)合的教學(xué)方法,以問題的提出、問題的解決為主線,始終在學(xué)生知識的“最近發(fā)展區(qū)”設(shè)置問題,倡導(dǎo)學(xué)生主動參與教學(xué)實踐活動,以獨立思考和相互交流的形式,在教師的指導(dǎo)下發(fā)現(xiàn)、分析和解決問題,在引導(dǎo)分析時,給學(xué)生留出足夠的思考時間和空間,讓學(xué)生去聯(lián)想、探索,從真正意義上完成對知識的自我建構(gòu)。
另外,在教學(xué)過程中,我采用多媒體輔助教學(xué),以直觀呈現(xiàn)教學(xué)素材,從而更好發(fā)激發(fā)學(xué)生的學(xué)習(xí)興趣,增大教學(xué)容量,提高教學(xué)效率。
三、學(xué)法
“問題”是數(shù)學(xué)教學(xué)的心臟,活動是數(shù)學(xué)教學(xué)中的靈魂。所以我在學(xué)生思維最近發(fā)展區(qū)內(nèi)設(shè)置并提出一系列問題,通過數(shù)學(xué)活動,引導(dǎo)學(xué)生:自主性學(xué)習(xí),合作式學(xué)習(xí),探究式學(xué)習(xí)等,激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生的數(shù)學(xué)思維和參與度,力求學(xué)生在“雙基”數(shù)學(xué)能力和理性精神方面得到一定發(fā)展。
四、教學(xué)過程
新課標指出,數(shù)學(xué)教學(xué)過程是教師引導(dǎo)學(xué)生進行學(xué)習(xí)活動的過程,是教師和學(xué)生間互動的過程,是師生共同發(fā)展的過程。為有序、有效地進行教學(xué),本節(jié)課我主要安排以下教學(xué)環(huán)節(jié):
(1)復(fù)習(xí)舊知,溫故知新
籃球聯(lián)賽中,每場比賽都要分出勝負,每隊勝一場得2分.負一場得1分,某隊為了爭取較好的名次,想在全部10場比賽中得到16分,那么這個隊勝負場數(shù)分別是多少?
設(shè)計意圖:構(gòu)建注意主張教學(xué)應(yīng)從學(xué)生已有的知識體系出發(fā),方程是本節(jié)課深入研究二元一次方程組的認知基礎(chǔ),這樣設(shè)計有利于引導(dǎo)學(xué)生順利地進入學(xué)習(xí)情境。
(2)創(chuàng)設(shè)情境,提出問題
這個問題中包含了哪些必須同時滿足的條件?設(shè)勝的場數(shù)是x,負的場數(shù)是y,你能用方程把這些條件表示出來嗎?
由問題知道,題中包含兩個必須同時滿足的條件:
勝的場數(shù)+負的場數(shù)=總場數(shù),
勝場積分+負場積分=總積分。
這兩個條件可以用方程
x+y=10
2x+y=16
表示:
上面兩個方程中,每個方程都含有兩個未知數(shù)(x和y),并且未知數(shù)的指數(shù)都是1,像這樣的方程叫做二元一次方程.
把兩個方程合在一起,寫成
x+y=10
2x+y=16
像這樣,把兩個二元一次方程合在一起,就組成了一個二元一次方程組。
設(shè)計意圖:以問題串的形式創(chuàng)設(shè)情境,引起學(xué)生的認知沖突,使學(xué)生對舊知識產(chǎn)生設(shè)疑,從而激發(fā)學(xué)生的學(xué)習(xí)興趣和求知欲望,通過情境創(chuàng)設(shè),學(xué)生已激發(fā)了強烈的求知欲望,產(chǎn)生了強勁的學(xué)習(xí)動力,此時我把學(xué)生帶入下一環(huán)節(jié)。
(3)發(fā)現(xiàn)問題,探求新知
滿足方程①,且符合問題的實際意義的x、y的值有哪些?把它們填入表中。
x xy
y
上表中哪對x、y的值還滿足方程②。
一般地,使二元一次方程兩邊的值相等的兩個未知數(shù)的值,叫做二元一次方程的解。
二元一次方程組的兩個方程的公共解,叫做二元一次方程組的解。
設(shè)計意圖:現(xiàn)代數(shù)學(xué)教學(xué)論指出,數(shù)學(xué)知識的教學(xué)必須在學(xué)生自主探索,經(jīng)驗歸納的基礎(chǔ)上獲得,教學(xué)中必須展現(xiàn)思維的過程性,在這里,通過學(xué)習(xí)用坐標表示平移觀察分析、獨立思考、小組交流等活動,引導(dǎo)學(xué)生歸納。
(4)分析思考,加深理解
通過前面的學(xué)習(xí),學(xué)生已基本把握了本節(jié)所要學(xué)習(xí)的內(nèi)容,此時,他們急于尋找一塊用武之地,以展示自我,體驗成功,于是我把學(xué)生導(dǎo)入第五個環(huán)節(jié)。
(5)強化訓(xùn)練,鞏固雙基
課堂練習(xí):
設(shè)計意圖:幾道練習(xí)題由淺入深、由易到難、各有側(cè)重,體現(xiàn)新課標提出的讓不同的學(xué)生在數(shù)學(xué)上得到不同發(fā)展的教學(xué)理念。這一環(huán)節(jié)總的設(shè)計意圖是反饋教學(xué),升華知識。
練習(xí)2:已知下列三對數(shù)值:
哪一對是下列方程組的解?
(設(shè)計意圖:數(shù)學(xué)教學(xué)論指出,數(shù)學(xué)知識要明確其內(nèi)涵和外延(條件、結(jié)論、應(yīng)用范圍等),通過對二元一次方程組的幾個重要方面的闡述,使學(xué)生的認知結(jié)構(gòu)得到優(yōu)化,知識體系得到完善,使學(xué)生的數(shù)學(xué)理解又一次突破思維的難點。
(6)小結(jié)歸納,拓展深化
我的理解是,小結(jié)歸納不應(yīng)該僅僅是知識的簡單羅列,而應(yīng)該是優(yōu)化認知結(jié)構(gòu),完善知識體系的一種有效手段,為充分發(fā)揮學(xué)生的主體作用,從學(xué)習(xí)的指示、方法、體驗是那個方面進行歸納,我設(shè)計了這個問題:
①通過本節(jié)課的學(xué)習(xí),你學(xué)會了哪些知識;
(7)布置作業(yè),提高升華
教科書第89頁1、第90頁第1題。
以作業(yè)的鞏固性和發(fā)展性為出發(fā)點,我設(shè)計了兩個題,不僅是對本節(jié)課內(nèi)容的一個反饋,也是對本節(jié)課知識的一個鞏固??偟脑O(shè)計意圖是反饋教學(xué),鞏固提高。
以上幾個環(huán)節(jié)環(huán)環(huán)相扣,層層深入,并充分體現(xiàn)教師與學(xué)生的交流互動,在教師的整體調(diào)控下,學(xué)生通過動腦思考、層層遞進,對知識的理解逐步深入,使課堂效益達到狀態(tài)。
五、評價與反思
本節(jié)課是在學(xué)生學(xué)習(xí)了一元一次方程基礎(chǔ)上進行的,主要是引導(dǎo)學(xué)生運用類比思想,依次經(jīng)過比較、歸納等活動,最終探索出二元一次方程組。下面是關(guān)于本節(jié)課的幾點說明:
1、本節(jié)課對教材的內(nèi)容進行了優(yōu)化處理,為跳躍較大的知識點作充分的鋪墊,密切聯(lián)系新舊知識,讓學(xué)生借助已有的知識和方法主動探索新知識,擴大知識結(jié)構(gòu),發(fā)展能力,完善人格,從而使課堂教學(xué)真正落實到學(xué)生的發(fā)展上,體現(xiàn)了以教師為主導(dǎo)、學(xué)生為主體,以思想為導(dǎo)向、知識為載體,以方法為中介、訓(xùn)練為主干,以培養(yǎng)學(xué)生的思維能力為中心、操作為動力的教學(xué)理念。
2、在課堂教學(xué)中為學(xué)生提供充分的探索空間,注重引導(dǎo)學(xué)生分工合作,獨立思考,形成主見并進行交流,創(chuàng)設(shè)民主、寬松和諧的課堂氣氛,讓學(xué)生暢所欲言,同時進行實驗操作,使課堂教學(xué)靈活直觀,新鮮有趣,從而使課堂教學(xué)實現(xiàn)教學(xué)思想的先進性、教學(xué)目標的整體性、教學(xué)過程的有序性、教學(xué)方法的靈活性、教學(xué)手段的多樣性、教學(xué)效果的可靠性。
3、注重量化評價與質(zhì)懷評價相結(jié)合,充分利用課堂觀察評價、問題討論評價、學(xué)生自我評價等多元化評價,通過幾組習(xí)題,將學(xué)生水平層次記錄在案,為學(xué)生的學(xué)習(xí)評價提供充分的科學(xué)依據(jù),從而綜合檢驗學(xué)生對數(shù)學(xué)知識、技能的理解,以及學(xué)生在學(xué)習(xí)數(shù)學(xué)的`過程在情感和態(tài)度的形成和發(fā)展。
二元一次方程組課件(篇9)
第五章 一元一次方程
2.解方程(二)
山西省實驗中學(xué) 賈麟香
一、學(xué)生起點分析: 學(xué)生在上一節(jié)已經(jīng)掌握了用移項法則解一元一次方程,用等式的基本性質(zhì)二將方程中未知數(shù)的系數(shù)化為1,從而轉(zhuǎn)化方程為x=a(a為常數(shù))的形式,也做的很好.
二、學(xué)習(xí)任務(wù)分析:
第一課時要求學(xué)生完成用等式基本性質(zhì)一解方程,分析、觀察、歸納出用移項法則,從而簡化解方程的步驟.第二課時,讓學(xué)生體會當方程左右兩邊含有括號時,如何通過去括號法則將方程化簡再運用等式的基本性質(zhì)一、二使方程變形到“x=a(a為常數(shù))”的形式.
三、教學(xué)目標
知識與技能:
1、學(xué)習(xí)含有括號的一元一次方程的解法.2、進一步體會解方程是運用方程解決實際問題重要環(huán)節(jié).過程與方法:通過觀察、思考,使學(xué)生探索方程的解法,經(jīng)歷和體驗用多種方法解方程,提高解決問題的能力.情感態(tài)度與價值觀:通過對與學(xué)生生活貼近的數(shù)學(xué)問題的探討,使學(xué)生在動手、獨立思考、的過程中,進一步體會方程模型的作用,體會學(xué)習(xí)數(shù)學(xué)的實用性.
四、教學(xué)過程設(shè)計:
環(huán)節(jié)一:小組討論,引入課題
內(nèi)容:設(shè)置問題串,請同學(xué)回答
1.上課時解一元一次方程的題型有什么特點? 2.本節(jié)課的一元一次方程有什么特點?與上課時的題型差異何在?
1 / 4 目的:因為解一元一次方程不同類型的方程簡化方程到“x=a(a為常數(shù))”的手段不同,所以必須培養(yǎng)學(xué)生善于分析觀察題中所給信息的習(xí)慣及能力. 我們知道,一個優(yōu)秀學(xué)生的首要標志就是“不懼生”,即對生面孔的題目總有自己的分 析方式,處理策略,解決辦法,那么這些能力的培養(yǎng)是離不開教師在教學(xué)過程中,盡可能多地設(shè)置讓學(xué)生自主發(fā)現(xiàn)、獨立探索思考的機會的.即便錯誤很多,只要思考就是好的開始. 實際效果:
同學(xué)能很清楚地用自己的語言說出自己的看法.認為:
1.課時的內(nèi)容與課本上的內(nèi)容有承接關(guān)系. 2.本課時增加了方程中含有括號的表達形式,需先去括號,這樣就化成上課時所學(xué)內(nèi)容了. 3.去括號要注意括號系數(shù)為負系數(shù)的問題.
環(huán)節(jié)二:合作學(xué)習(xí)
內(nèi)容:請同學(xué)們分析理解156頁圖解題.1.由同學(xué)根據(jù)圖示編出一道合理的應(yīng)用題.2.比較此題與本章節(jié)第一節(jié)引例的實際問題有何區(qū)別?
目的:進一步讓學(xué)生體會數(shù)學(xué)中問題的提出大都是因人們的生活實踐需要,因社會的發(fā)展需要,實際問題的“數(shù)學(xué)化”,數(shù)學(xué)服務(wù)于生活實際隨處可見. 在學(xué)生由圖示內(nèi)容編題過程中,讓學(xué)生強化“三種語言”的互話能力.即:文字語言,符號語言和圖例語言之間的互相轉(zhuǎn)化.學(xué)生著方面能力的培養(yǎng)在教師授課的過程中需要引起關(guān)注,將是一個事半功倍的方法,尤其是設(shè)法充分利用教材中所呈現(xiàn)內(nèi)容這一資源,顯得尤為重要. 調(diào)動學(xué)生自主分析及合作學(xué)習(xí)的積極性,由學(xué)生觀察分析得出本例與以前北京題目的差
異,發(fā)展學(xué)生的自主分析能力及強化差異意識,不失為此例的一個功能,即使應(yīng)給予關(guān)注.實際效果:
1、同學(xué)完整編出此題:
小林到超市,準備買1聽果奶和4聽可樂,小明告訴他一聽可樂比一聽果奶貴5角錢, 小林給了營業(yè)員20元錢,找回了3元,大家?guī)椭×炙闼阋宦牴?,一聽可樂各是多少錢?
完成的過程體現(xiàn)出學(xué)生對圖例中已知、未知等相關(guān)方面的信息掌握全面,梳理清晰,表達準確.
2 / 4 3、本例及本章節(jié)的背景問題,學(xué)生們發(fā)現(xiàn)設(shè)問中的未知量由原來的一個增加到現(xiàn)在的兩個,并給出完整的解答過程。這些方面學(xué)生都能很完整、準確地給予書面語言的表達,完成得非常好,為后續(xù)課程的學(xué)習(xí)奠定了很好的基礎(chǔ).
環(huán)節(jié)三:探索交流,深化認識
內(nèi)容:1.課本157頁,例4解方程 -2(x-1)=學(xué)生自編一個類似例4的題目,用不同的方法給予解答.目的:一方面讓學(xué)生繼續(xù)鞏固含括號的一元一次方程的解法;另一方面讓學(xué)生感受將(x-1)或其他的未知數(shù)的代數(shù)式看成整體的數(shù)學(xué)思想.實際效果:
學(xué)生在解答此類問題時,總是習(xí)慣先去括號,轉(zhuǎn)化成第一課時的方程形式求解,用整體的觀念解方程還不夠熟練. 編題:解方程:
1、1-(x+1)=、2(2x-1)-1=3(2x-1)+、
32(1?x)?3?(1?x)?有些學(xué)生在編題過程中能表現(xiàn)出他們對此類問題理解的準確性與深刻性;知識體系自建的合理性與健全性.知識內(nèi)化的深入與到位也是非常令人高興的.
環(huán)節(jié)四:鞏固提高
內(nèi)容:課本175頁隨堂練習(xí) 方式:條測
實際效果:學(xué)生基本能夠準確解答此類含括號的一元一次方程,用整體的思想解答問題,這一點學(xué)生使用的比較習(xí)慣,說明學(xué)生對此處滲透的接受程度較高.
環(huán)節(jié)五:課堂小結(jié)
內(nèi)容:學(xué)生之間交流后,將課堂小結(jié)謄寫在筆記本上.目的:學(xué)生的課堂小結(jié)看似簡單,但是卻反映學(xué)生知識內(nèi)化的重要方面,這個過程的實現(xiàn),通過學(xué)生的書面表達完成,更能體現(xiàn)了學(xué)生的綜合能力.
3 / 4
環(huán)節(jié)六:布置作業(yè)
課后反思: 創(chuàng)造性地使用教材,是教師的主導(dǎo)作用的體現(xiàn).本課時教材在使用時至少有三處貫穿了這樣的思想.教師這個“教練”、“導(dǎo)演”應(yīng)該引導(dǎo)學(xué)生充分利用其課文內(nèi)在的資源,使其發(fā)揮最大的作用.如:
(1)開始引例“圖示”的內(nèi)容,讓學(xué)生用其素材編題.(2)本例解題過程回答題中兩個未知量的解答環(huán)節(jié).(3)通過讓學(xué)生自編用整體思想解答的方程.這些環(huán)節(jié)的設(shè)置,對系統(tǒng)地、全面地培養(yǎng)學(xué)生捕捉信息、分析信息和處理信息的能力有非常大的作用,對學(xué)生課上反思、課上內(nèi)化知識的能力提高.作為教師,應(yīng)該長期堅持與學(xué)生在這方面切磋、探索,把課堂充分還給學(xué)生,充分尊重學(xué)生的個性思維,引導(dǎo)學(xué)生構(gòu)建自己的認知結(jié)構(gòu),并給予適時調(diào)控和指導(dǎo).
4 / 4
二元一次方程組課件(篇10)
教學(xué)目標:通過學(xué)生積極思考,互相討論,經(jīng)歷探索事物之間的數(shù)量關(guān)系,形成方程模型,解方程和運用方程解決實際問題的過程進一步體會方程是刻劃現(xiàn)實世界的有效數(shù)學(xué)模型
重點:讓學(xué)生實踐與探索,運用二元一次方程解決有關(guān)配套與設(shè)計的應(yīng)用題
難點:尋找等量關(guān)系
教學(xué)過程:
看一看:課本99頁探究2
問題:1“甲、乙兩種作物的單位面積產(chǎn)量比是1:1、5”是什么意思?
2、“甲、乙兩種作物的總產(chǎn)量比為3:4”是什么意思?
3、本題中有哪些等量關(guān)系?
提示:若甲種作物單位產(chǎn)量是a,那么乙種作物單位產(chǎn)量是多少?
思考:這塊地還可以怎樣分?
練一練
一、某農(nóng)場300名職工耕種51公頃土地,計劃種植水稻、棉花、和蔬菜,已知種植植物每公頃所需的勞動力人數(shù)及投入的設(shè)備獎金如下表:
農(nóng)作物品種每公頃需勞動力每公頃需投入獎金
水稻4人1萬元
棉花8人1萬元
蔬菜5人2萬元
已知該農(nóng)場計劃在設(shè)備投入67萬元,應(yīng)該怎樣安排這三種作物的種植面積,才能使所有職工都有工作,而且投入的資金正好夠用?
問題:題中有幾個已知量?題中求什么?分別安排多少公頃種水稻、棉花、和蔬菜?
教材106頁:探究3:如圖,長青化工廠與A、B兩地有公路、鐵路相連,這家工廠從A地購買一批每噸1000元的原料運回工廠,制成每噸8000元的產(chǎn)品運到B地。公路運價為1、5元/(噸?千米),鐵路運價為1、2元/(噸?千米),這兩次運輸共支出公路運費15000元,鐵路運費97200元。這批產(chǎn)品的銷售款比原料費與運輸費的和多多少元?
二元一次方程組課件(篇11)
小明買了兩份水果,一份是3kg蘋果、2kg香蕉,共用去13.2元;另一份是2kg蘋果、5kg香蕉,共用去19.8元。設(shè)蘋果x元/kg,香蕉y元/kg.列出方程。
新課講解:
列出方程組
1、解方程組
分析:關(guān)鍵的`出方程〈1〉中的2y與方程〈2〉中的-2y互為相反數(shù)。想象出如果相加兩個方程,會是什么結(jié)果?
板演:
解:〈1〉+〈2〉得:
4x=6
x=
把x= 代入〈1〉得
+2y=1
解出這個方程,得
y=
所以原方程組的解是
2、解方程組
通過議一議,讓學(xué)生都有感覺消去含x或y的項都可以,但哪個更簡便?
解:〈1〉 3,得
15x-6y=12 〈3〉
〈2〉 2,得
4x-6y=-10 〈4〉
〈3〉-〈4〉,得
11x=22
x=2
將x=2代入〈1〉,得
5 2-2y=4
y=3
所以原方程組的解是
加減消元法:把方程組的兩個防城(或先作適當變形)相加或相減,消去其中一個未知數(shù),把解二元一次方程組轉(zhuǎn)化為解一元一次方程。
練一練:
解方程組
小結(jié):
加減消元法關(guān)鍵是如何消元,化二元為一元。
先觀察后確定消元。
教學(xué)素材:
A組題:解下列方程組:
(1)
(2)
(3)
(4)
(5)
B組題:運用轉(zhuǎn)化的思想方法,你能解下面的三元一次方程組嗎?
(1)
(2)
學(xué)生讀題,議一議
學(xué)生想一想,如感到困難則看道簡單題。
由學(xué)生觀察,如何求出x,y的值,學(xué)生再討論。
試一試。學(xué)生口述。
老師板演
得到一元一次方程
學(xué)生再觀察,議一議
①消去哪個未知數(shù)
②怎樣消去?
P112 1(1)(2)(3)(4)
作業(yè)習(xí)題11.3 P112 1(3)(4) 3 , 4
二元一次方程組課件(篇12)
教學(xué)目標
1、進一步經(jīng)歷用方程組解決實際問題的過程,體會方程組是刻畫現(xiàn)實世界的有效數(shù)學(xué)模型;
2、會用列表的方式分析問題中所蘊涵的數(shù)量關(guān)系,列出二元一次方程組;
3、培養(yǎng)分析問題、解決問題的能力,進一步體會二元一次方程組的應(yīng)用價值。
教學(xué)難點
借助列表分問題中所蘊含的數(shù)量關(guān)系。
知識重點
用列表的方式分析題目中的各個量的'關(guān)系。
教學(xué)過程
(師生活動)設(shè)計理念
創(chuàng)設(shè)情境最近幾年,全國各地普遍出現(xiàn)了夏季用電緊張的局面,為疏導(dǎo)電價矛盾,促進居民節(jié)約用電、合理用電,各地出臺了峰谷電價試點方案。
電力行業(yè)中峰谷的含義是用山峰和山谷來形象地比喻用電負荷特性的變化幅度一般白天的用電比較集中、用電功率比較大,而夜里人們休息時用電比較小,所以通常白天的用電稱為是高峰用電,即8:00~22:00,深夜的用電是低谷用電即22:00~次日8:00.若某地的高峰電價為每千瓦時0.56元;低谷電價為每千瓦時。28元八月份小彬家的總用電量為125千瓦時,總電費為49元,你知道他家高峰用電量和低谷用電量各是多少千瓦時嗎?
學(xué)生獨立思考,容易解答,以一道生活熱點問題引入,具有現(xiàn)實意義,激發(fā)學(xué)生學(xué)習(xí)興趣,同時培養(yǎng)學(xué)生節(jié)約、合理用電的意識。
理解題意是關(guān)健,通過該題,旨在培養(yǎng)學(xué)生的讀題能力和收集信息能力。
探索分析
解決問題(出示例題)如圖,長青化工廠與A,B兩地有公路、鐵路相連,這家工廠從A地購買一批每噸1000元的原料運回工廠,制成每噸8000元的產(chǎn)品運到B地,公路運價為1.5元(噸·千米),鐵路運價為1.2元(噸·千米),這兩次運輸共支出公路運費15000元,鐵路運費97200元,這批產(chǎn)品的銷售款比原料費與運輸費的和多多少元?
(圖見教材115頁,圖8.3-2)
學(xué)生自主探索、合作交流。
設(shè)問1.如何設(shè)未知數(shù)?
銷售款與產(chǎn)品數(shù)量有關(guān),原料費與原料數(shù)量有關(guān),而公路運費和鐵路運費與產(chǎn)品數(shù)量和原料數(shù)量都有關(guān),因此設(shè)產(chǎn)品重x噸,原料重y噸。
設(shè)問2.如何確定題中數(shù)量關(guān)系?
列表分析
產(chǎn)品x噸
原料y噸
合計
公路運費(元)
鐵路運費(元)
價值(元)
由上表可列方程組
解這個方程組,得
因為毛利潤-銷售款-原料費-運輸費
所以這批產(chǎn)品的銷售款比原料費與運輸?shù)暮投?887800元。
引導(dǎo)學(xué)生討論以上列方程組解決實際問題的
學(xué)生討論、分析:合理設(shè)定未知數(shù),找出相等關(guān)系。本例所涉及的數(shù)據(jù)較多,數(shù)量關(guān)系較為復(fù)雜,具有一定挑戰(zhàn)性,能激發(fā)學(xué)生探索的熱情。
通過討論讓學(xué)生認識到合理設(shè)定未知數(shù)的愈義。
借助表格輔助分析題中較復(fù)雜的數(shù)量關(guān)系,不失為一種好方法。
課堂練習(xí)
反饋調(diào)控某瓜果基地生產(chǎn)一種特色水果,若在市場上每噸利潤為1000元;經(jīng)粗加工后銷售,每噸利潤增為4500元;經(jīng)精加工后銷售,每噸利潤可達7500元。一食品公司
購到這種水果140噸,準備加工后上市銷售,該公司的加工能力是:每天可以精加工6噸或者粗加工16噸,但兩種加工方式不能同時進行,受季節(jié)等條件限制,公司必須將這批水果全部銷售或加工完畢,為此公司研制二種可行的方案:
方案一:將這批水果全部進行粗加工;
方案二:盡可能多對水果進行精加工,沒來得及加工的水果在市場上銷售;
方案三:將部分水果進行精加工,其余進行粗加工,并恰好15天完成。
你認為選擇哪種方案獲利最多?為什么?
學(xué)生合作討論完成
選擇經(jīng)濟領(lǐng)城問題讓學(xué)生展開討論,增強市場經(jīng)濟意識和決策能力,同時鞏固二元一次方程組的應(yīng)用。
小結(jié)與作業(yè)
小結(jié)提高
1、在用一元一次方程組解決實際問題時,你會怎樣設(shè)定未知數(shù),可借助哪些方式輔助分析問題中的相等關(guān)系?
2、小組討論,試用框圖概括“用一元一次方程組分析和解決實際問題”的基本過程。
學(xué)生思考、討論、整理。
這是第一次比較完整地用框圖反映實際問題與二元一次方程組的關(guān)系。
讓學(xué)生結(jié)合自己的解題過
程概括整理,幫助理解,培養(yǎng)模
型化的思想和應(yīng)用數(shù)學(xué)于現(xiàn)實
生活的意識。
布置作業(yè)16、必做題:教科書116頁習(xí)題8.3第2、6題。
17、選做題:教科書117頁習(xí)題8.3第9題。
18、備19、選題:
(1)一批蔬菜要運往某批發(fā)市場,菜農(nóng)準備租用汽車公司的甲、乙兩種貨車,已知過去兩次租用這兩種貨車的記錄如下表所示。
甲種貨車(輛)乙種貨車(輛)總量(噸)
第1次
4528.5
第2次
3627
這批蔬菜需租用5輛甲種貨車、2輛乙種貨車剛好一次運完,如果每噸付20元運費,問:菜農(nóng)應(yīng)付運費多少元?
(2)某學(xué)?,F(xiàn)有學(xué)生數(shù)1290人,與去年相比,男生增加20%,女生減少10%,學(xué)生總數(shù)增加7.5%,問現(xiàn)在學(xué)校中男、女生各是多少?
本課教育評注(課堂設(shè)計理念,實際教學(xué)效果及改進設(shè)想)
本課探究的問題信息量大,數(shù)量關(guān)系復(fù)雜,未知數(shù)不容易設(shè)定,對學(xué)生來說是一種挑戰(zhàn),因此安排學(xué)生合作學(xué)習(xí),學(xué)生先獨立思考,自主探索,然后在小組討論中合理設(shè)定未知數(shù),借助表格分析題中的數(shù)量關(guān)系,列出方程組求得問題的解,在本節(jié)的小結(jié)中,讓學(xué)生結(jié)合自己的解題過程概括整理實際問題與二元一次方程組的關(guān)系,并比較完整地用框圖反映,培養(yǎng)模型化的思想。
同時本節(jié)向?qū)W生提供了社會熱點問題、經(jīng)濟問題等現(xiàn)實、具有挑戰(zhàn)性的、富有數(shù)學(xué)意義的學(xué)習(xí)素材,讓學(xué)生展開數(shù)學(xué)探究,合作交流,樹立數(shù)學(xué)服務(wù)于生活、應(yīng)用于生活的意識。