幼兒教師教育網(wǎng),為您提供優(yōu)質(zhì)的幼兒相關(guān)資訊

高中數(shù)學(xué)教案

發(fā)布時(shí)間:2023-04-30 高中數(shù)學(xué)教案

高中數(shù)學(xué)教案6篇。

在我看來《高中數(shù)學(xué)教案》是眾多文章中的絕美之作。在老師日常工作中,教案課件也是其中一種,不過教案課件里知識(shí)點(diǎn)要設(shè)計(jì)好。教案是為加強(qiáng)教育教學(xué)團(tuán)隊(duì)建設(shè)和職業(yè)發(fā)展提供的有效支持。歡迎你參考,希望對(duì)你有所助益!

高中數(shù)學(xué)教案 篇1

教材分析:

三角函數(shù)的誘導(dǎo)公式是普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(人教B版)數(shù)學(xué)必修四,第一章第二節(jié)內(nèi)容,其主要內(nèi)容是公式(一)至公式(四)。本節(jié)課是第二課時(shí),教學(xué)內(nèi)容是公式(三)。教材要求通過學(xué)生在已經(jīng)掌握的任意角的三角函數(shù)定義和公式(一)(二)的基礎(chǔ)上,發(fā)現(xiàn)他們與單位圓的交點(diǎn)坐標(biāo)之間關(guān)系,進(jìn)而發(fā)現(xiàn)三角函數(shù)值的關(guān)系。同時(shí)教材滲透了轉(zhuǎn)化與化歸等數(shù)學(xué)思想方法。

教案背景:

通過學(xué)生在已經(jīng)掌握的任意角的三角函數(shù)定義和公式(一)(二)的基礎(chǔ)上,發(fā)現(xiàn)他們與單位圓的交點(diǎn)坐標(biāo)之間關(guān)系,進(jìn)而發(fā)現(xiàn)三角函數(shù)值的關(guān)系。同時(shí)教材滲透了轉(zhuǎn)化與化歸等數(shù)學(xué)思想方法,為培養(yǎng)學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣提出了要求。因此本節(jié)內(nèi)容在三角函數(shù)中占有非常重要的地位.

教學(xué)方法:

以學(xué)生為主題,以發(fā)現(xiàn)為主線,盡力滲透類比、化歸、數(shù)形結(jié)合等數(shù)學(xué)思想方法,采用提出問題、啟發(fā)引導(dǎo)、共同探究、綜合應(yīng)用等教學(xué)模式。

教學(xué)目標(biāo):

借助單位圓探究誘導(dǎo)公式。

能正確運(yùn)用誘導(dǎo)公式將任意角的三角函數(shù)化為銳角三角函數(shù)。

教學(xué)重點(diǎn):

誘導(dǎo)公式(三)的推導(dǎo)及應(yīng)用。

教學(xué)難點(diǎn):

誘導(dǎo)公式的應(yīng)用。

教學(xué)手段:

多媒體。

教學(xué)情景設(shè)計(jì):

一.復(fù)習(xí)回顧:

1. 誘導(dǎo)公式(一)(二)。

2. 角 (終邊在一條直線上)

3. 思考:下列一組角有什么特征?( )能否用式子來表示?

二.新課:

已知 由

可知

而 (課件演示,學(xué)生發(fā)現(xiàn))

所以

于是可得: (三)

設(shè)計(jì)意圖:結(jié)合幾何畫板的演示利用同一點(diǎn)的坐標(biāo)變換,導(dǎo)出公式。

由公式(一)(三)可以看出,角 角 相等。即:

.

公式(一)(二)(三)都叫誘導(dǎo)公式。利用誘導(dǎo)公式可以求三角函數(shù)式的值或化簡三角函數(shù)式。

設(shè)計(jì)意圖:結(jié)合學(xué)過的公式(一)(二),發(fā)現(xiàn)特點(diǎn),總結(jié)公式。

1. 練習(xí)

(1)

設(shè)計(jì)意圖:利用公式解決問題,發(fā)現(xiàn)新問題,小組研究討論,得到新公式。

(學(xué)生板演,老師點(diǎn)評(píng),用彩色粉筆強(qiáng)調(diào)重點(diǎn),引導(dǎo)學(xué)生總結(jié)公式。)

三.例題

例3:求下列各三角函數(shù)值:

(1)

(2)

(3)

(4)

例4:化簡

設(shè)計(jì)意圖:利用公式解決問題。

練習(xí):

(1)

(2) (學(xué)生板演,師生點(diǎn)評(píng))

設(shè)計(jì)意圖:觀察公式特點(diǎn),選擇公式解決問題。

四.課堂小結(jié):將任意角三角函數(shù)轉(zhuǎn)化為銳角三角函數(shù),體現(xiàn)轉(zhuǎn)化化歸,數(shù)形結(jié)合思想的應(yīng)用,培養(yǎng)了學(xué)生分析問題、解決問題的能力,熟練應(yīng)用解決問題。

五.課后作業(yè):課后練習(xí)A、B組

六.課后反思與交流

很榮幸大家來聽我的課,通過這課,我學(xué)習(xí)到如下的東西:

1.要認(rèn)真的研讀新課標(biāo),對(duì)教學(xué)的目標(biāo),重難點(diǎn)把握要到位

2.注意板書設(shè)計(jì),注重細(xì)節(jié)的東西,語速需要改正

3.進(jìn)一步的學(xué)習(xí)網(wǎng)頁制作,讓你的網(wǎng)頁更加的完善,學(xué)生更容易操作

4.盡可能讓你的學(xué)生自主提出問題,自主的思考,能夠化被動(dòng)學(xué)習(xí)為主動(dòng)學(xué)習(xí),充分享受學(xué)習(xí)數(shù)學(xué)的樂趣

5.上課的生動(dòng)化,形象化需要加強(qiáng)

聽課者評(píng)價(jià):

1.評(píng)議者:網(wǎng)絡(luò)輔助教學(xué),起到了很好的效果;教態(tài)大方,作為新教師,開設(shè)校際課,勇氣可嘉!建議:感覺到老師有點(diǎn)緊張,其實(shí)可以放開點(diǎn)的,相信效果會(huì)更好的!重點(diǎn)不夠清晰,有引導(dǎo)數(shù)學(xué)時(shí),最好值有個(gè)側(cè)重點(diǎn);網(wǎng)絡(luò)設(shè)計(jì)上,網(wǎng)頁上公開的推導(dǎo)公式為上,留有更大的空間讓學(xué)生來思考。

2.評(píng)議者:網(wǎng)絡(luò)教學(xué)效果良好,給學(xué)生自主思考,學(xué)習(xí)的空間發(fā)揮,教學(xué)設(shè)計(jì)得好;建議:課堂講課聲音,語調(diào)可以更有節(jié)奏感一些,抑揚(yáng)頓挫應(yīng)注意課堂例題練習(xí)可以多兩題。

3.評(píng)議者:學(xué)科網(wǎng)絡(luò)平臺(tái)的使用;建議:應(yīng)重視引導(dǎo)學(xué)生將一些唾手可得的有用結(jié)論總結(jié)出來,并形成自我的經(jīng)驗(yàn)。

4.評(píng)議者:引導(dǎo)學(xué)生通過網(wǎng)絡(luò)進(jìn)行探究。

建議:課件制作在線測(cè)評(píng)部分,建議不能重復(fù)選擇,應(yīng)全部做完后,顯示結(jié)果,再重復(fù)測(cè)試;多提問學(xué)生。

( 1)給學(xué)生思考的時(shí)間較長,語調(diào)相對(duì)平緩,總結(jié)時(shí),給學(xué)生一些激勵(lì)的語言更好

( 2)這樣子的教學(xué)可以提高上課效率,讓學(xué)生更多的時(shí)間思考

( 3)網(wǎng)絡(luò)平臺(tái)的使用,使得學(xué)生的參與度明顯提高,存在問題:1.公式對(duì)稱性的誘導(dǎo),點(diǎn)與點(diǎn)的對(duì)稱的誘導(dǎo),終邊的關(guān)系的誘導(dǎo),要進(jìn)一步的修正;2.公式的概括要注意引導(dǎo)學(xué)生怎么用,學(xué)習(xí)這個(gè)誘導(dǎo)公式的作用

( 4)給學(xué)生答案,這個(gè)網(wǎng)頁要進(jìn)一步的修正,答案能否不要一點(diǎn)就出來

( 5)1.板書設(shè)計(jì)要進(jìn)一步的加強(qiáng),2.語速相對(duì)是比較快的3.練習(xí)量比較少

( 6)讓學(xué)生多探究,課堂會(huì)更熱鬧

( 7)注意引入的過程要帶有目的,帶著問題來教學(xué),學(xué)生帶著問題來學(xué)習(xí)

( 8)教學(xué)模式相對(duì)簡單重復(fù)

( 9)思路較為清晰,規(guī)范化的推理

高中數(shù)學(xué)教案 篇2

【教學(xué)目標(biāo)】

1.會(huì)用語言概述棱柱、棱錐、圓柱、圓錐、棱臺(tái)、圓臺(tái)、球的結(jié)構(gòu)特征。

2.能根據(jù)幾何結(jié)構(gòu)特征對(duì)空間物體進(jìn)行分類。

3.提高學(xué)生的觀察能力;培養(yǎng)學(xué)生的空間想象能力和抽象括能力。

【教學(xué)重難點(diǎn)】

教學(xué)重點(diǎn):讓學(xué)生感受大量空間實(shí)物及模型、概括出柱、錐、臺(tái)、球的結(jié)構(gòu)特征。

教學(xué)難點(diǎn):柱、錐、臺(tái)、球的結(jié)構(gòu)特征的概括。

【教學(xué)過程】

1.情景導(dǎo)入

教師提出問題,引導(dǎo)學(xué)生觀察、舉例和相互交流,提出本節(jié)課所學(xué)內(nèi)容,出示課題。

2.展示目標(biāo)、檢查預(yù)習(xí)

3.合作探究、交流展示

(1)引導(dǎo)學(xué)生觀察棱柱的幾何物體以及棱柱的圖片,說出它們各自的特點(diǎn)是什么?它們的共同特點(diǎn)是什么?

(2)組織學(xué)生分組討論,每小組選出一名同學(xué)發(fā)表本組討論結(jié)果。在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。有兩個(gè)面互相平行;其余各面都是平行四邊形;每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。

(3)提出問題:請(qǐng)列舉身邊的棱柱并對(duì)它們進(jìn)行分類

(4)以類似的方法,讓學(xué)生思考、討論、概括出棱錐、棱臺(tái)的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類以及表示。

(5)讓學(xué)生觀察圓柱,并實(shí)物模型演示,概括出圓柱的概念以及相關(guān)的概念及圓柱的表示。

(6)引導(dǎo)學(xué)生以類似的方法思考圓錐、圓臺(tái)、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實(shí)物模型演示引導(dǎo)學(xué)生思考、討論、概括。

(7)教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺(tái)與圓臺(tái)統(tǒng)稱為臺(tái)體,圓錐與棱錐統(tǒng)稱為錐體。

4.質(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問題,讓學(xué)生思考。

(1)有兩個(gè)面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明)

(2)棱柱的任何兩個(gè)平面都可以作為棱柱的底面嗎?

(3)圓柱可以由矩形旋轉(zhuǎn)得到,圓錐可以由直角三角形旋轉(zhuǎn)得到,圓臺(tái)可以由什么圖形旋轉(zhuǎn)得到?如何旋轉(zhuǎn)?

(4)棱臺(tái)與棱柱、棱錐有什么關(guān)系?圓臺(tái)與圓柱、圓錐呢?

(5)繞直角三角形某一邊的幾何體一定是圓錐嗎?

5.典型例題

例:判斷下列語句是否正確。

⑴有一個(gè)面是多邊形,其余各面都是三角形的幾何體是棱錐。

⑵有兩個(gè)面互相平行,其余各面都是梯形,則此幾何體是棱柱。

答案AB

6.課堂檢測(cè):

課本P8,習(xí)題1.1A組第1題。

7.歸納整理

由學(xué)生整理學(xué)習(xí)了哪些內(nèi)容

高中數(shù)學(xué)教案 篇3

1.1.1 任意角

教學(xué)目標(biāo)

(一) 知識(shí)與技能目標(biāo)

理解任意角的概念(包括正角、負(fù)角、零角) 與區(qū)間角的概念.

(二) 過程與能力目標(biāo)

會(huì)建立直角坐標(biāo)系討論任意角,能判斷象限角,會(huì)書寫終邊相同角的集合;掌握區(qū)間角的集合的書寫.

(三) 情感與態(tài)度目標(biāo)

1. 提高學(xué)生的推理能力;

2.培養(yǎng)學(xué)生應(yīng)用意識(shí). 教學(xué)重點(diǎn)

任意角概念的理解;區(qū)間角的集合的書寫. 教學(xué)難點(diǎn)

終邊相同角的集合的表示;區(qū)間角的集合的書寫.

教學(xué)過程

一、引入:

1.回顧角的定義

①角的第一種定義是有公共端點(diǎn)的兩條射線組成的圖形叫做角.

②角的第二種定義是角可以看成平面內(nèi)一條射線繞著端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形.

二、新課:

1.角的有關(guān)概念:

①角的定義:

角可以看成平面內(nèi)一條射線繞著端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形.

②角的名稱:

③角的分類: A

正角:按逆時(shí)針方向旋轉(zhuǎn)形成的角 零角:射線沒有任何旋轉(zhuǎn)形成的角

負(fù)角:按順時(shí)針方向旋轉(zhuǎn)形成的角

④注意:

⑴在不引起混淆的情況下,“角α ”或“∠α ”可以簡化成“α ”;

⑵零角的終邊與始邊重合,如果α是零角α =0°;

⑶角的概念經(jīng)過推廣后,已包括正角、負(fù)角和零角.

⑤練習(xí):請(qǐng)說出角α、β、γ各是多少度?

2.象限角的概念:

①定義:若將角頂點(diǎn)與原點(diǎn)重合,角的始邊與x軸的非負(fù)半軸重合,那么角的終邊(端點(diǎn)除外)在第幾象限,我們就說這個(gè)角是第幾象限角.

例1.在直角坐標(biāo)系中,作出下列各角,并指出它們是第幾象限的角.Yjs21.com

⑴ 60°; ⑵ 120°; ⑶ 240°; ⑷ 300°; ⑸ 420°; ⑹ 480°;

答:分別為1、2、3、4、1、2象限角.

3.探究:教材P3面

終邊相同的角的表示:

所有與角α終邊相同的角,連同α在內(nèi),可構(gòu)成一個(gè)集合S={ β | β = α +

k·360° ,

k∈Z},即任一與角α終邊相同的角,都可以表示成角α與整個(gè)周角的和. 注意: ⑴ k∈Z

⑵ α是任一角;

⑶ 終邊相同的角不一定相等,但相等的角終邊一定相同.終邊相同的角有無限個(gè),它們相差

360°的整數(shù)倍;

⑷ 角α + k·720°與角α終邊相同,但不能表示與角α終邊相同的所有角.

例2.在0°到360°范圍內(nèi),找出與下列各角終邊相等的角,并判斷它們是第幾象限角.

⑴-120°;

⑵640°;

⑶-950°12’.

答:⑴240°,第三象限角;

⑵280°,第四象限角;

⑶129°48’,第二象限角;

例4.寫出終邊在y軸上的角的集合(用0°到360°的角表示) . 解:{α | α = 90°+ n·180°,n∈Z}.

例5.寫出終邊在y?x上的角的集合S,并把S中適合不等式-360°≤β<720°的元素β寫出來.

4.課堂小結(jié)

①角的定義;

②角的分類:

正角:按逆時(shí)針方向旋轉(zhuǎn)形成的角 零角:射線沒有任何旋轉(zhuǎn)形成的角

負(fù)角:按順時(shí)針方向旋轉(zhuǎn)形成的角

③象限角;

④終邊相同的角的表示法.

5.課后作業(yè):

①閱讀教材P2-P5;

②教材P5練習(xí)第1-5題;

③教材P.9習(xí)題1.1第1、2、3題 思考題:已知α角是第三象限角,則2α,

解:??角屬于第三象限,

? k·360°+180°<α<k·360°+270°(k∈Z)

因此,2k·360°+360°<2α<2k·360°+540°(k∈Z) 即(2k +1)360°<2α<(2k +1)360°+180°(k∈Z)

故2α是第一、二象限或終邊在y軸的非負(fù)半軸上的角. 又k·180°+90°<

各是第幾象限角?

<k·180°+135°(k∈Z) .

<n·360°+135°(n∈Z) ,

當(dāng)k為偶數(shù)時(shí),令k=2n(n∈Z),則n·360°+90°<此時(shí),

屬于第二象限角

<n·360°+315°(n∈Z) ,

當(dāng)k為奇數(shù)時(shí),令k=2n+1 (n∈Z),則n·360°+270°<此時(shí),

屬于第四象限角

因此

屬于第二或第四象限角.

1.1.2弧度制

(一)

教學(xué)目標(biāo)

(二) 知識(shí)與技能目標(biāo)

理解弧度的意義;了解角的集合與實(shí)數(shù)集R之間的可建立起一一對(duì)應(yīng)的關(guān)系;熟記特殊角的弧度數(shù).

(三) 過程與能力目標(biāo)

能正確地進(jìn)行弧度與角度之間的換算,能推導(dǎo)弧度制下的弧長公式及扇形的面積公式,并能運(yùn)用公式解決一些實(shí)際問題

(四) 情感與態(tài)度目標(biāo)

通過新的度量角的單位制(弧度制)的引進(jìn),培養(yǎng)學(xué)生求異創(chuàng)新的精神;通過對(duì)弧度制與角度制下弧長公式、扇形面積公式的對(duì)比,讓學(xué)生感受弧長及扇形面積公式在弧度制下的簡潔美. 教學(xué)重點(diǎn)

弧度的概念.弧長公式及扇形的面積公式的推導(dǎo)與證明. 教學(xué)難點(diǎn)

“角度制”與“弧度制”的區(qū)別與聯(lián)系.

教學(xué)過程

一、復(fù)習(xí)角度制:

初中所學(xué)的角度制是怎樣規(guī)定角的度量的? 規(guī)定把周角的作為1度的角,用度做單位來度量角的制度叫做角度制.

二、新課:

1.引 入:

由角度制的定義我們知道,角度是用來度量角的, 角度制的度量是60進(jìn)制的,運(yùn)用起來不太方便.在數(shù)學(xué)和其他許多科學(xué)研究中還要經(jīng)常用到另一種度量角的制度—弧度制,它是如何定義呢?

2.定 義

我們規(guī)定,長度等于半徑的弧所對(duì)的圓心角叫做1弧度的角;用弧度來度量角的單位制叫做弧度制.在弧度制下, 1弧度記做1rad.在實(shí)際運(yùn)算中,常常將rad單位省略.

3.思考:

(1)一定大小的圓心角?所對(duì)應(yīng)的弧長與半徑的比值是否是確定的?與圓的半徑大小有關(guān)嗎?

(2)引導(dǎo)學(xué)生完成P6的探究并歸納: 弧度制的性質(zhì):

①半圓所對(duì)的圓心角為

②整圓所對(duì)的圓心角為

③正角的弧度數(shù)是一個(gè)正數(shù).

④負(fù)角的弧度數(shù)是一個(gè)負(fù)數(shù).

⑤零角的弧度數(shù)是零.

⑥角α的弧度數(shù)的絕對(duì)值|α|= .

4.角度與弧度之間的轉(zhuǎn)換:

①將角度化為弧度:

②將弧度化為角度:

5.常規(guī)寫法:

① 用弧度數(shù)表示角時(shí),常常把弧度數(shù)寫成多少π 的形式, 不必寫成小數(shù).

② 弧度與角度不能混用.

弧長等于弧所對(duì)應(yīng)的圓心角(的弧度數(shù))的絕對(duì)值與半徑的積.

例1.把67°30’化成弧度.

例2.把? rad化成度.

例3.計(jì)算:

(1)sin4

(2)tan1.5.

8.課后作業(yè):

①閱讀教材P6 –P8;

②教材P9練習(xí)第1、2、3、6題;

③教材P10面7、8題及B2、3題.

高中數(shù)學(xué)教案 篇4

教學(xué)目標(biāo)

1.掌握等差數(shù)列前 項(xiàng)和的公式,并能運(yùn)用公式解決簡單的問題.

(1)了解等差數(shù)列前 項(xiàng)和的定義,了解逆項(xiàng)相加的原理,理解等差數(shù)列前 項(xiàng)和公式推導(dǎo)的過程,記憶公式的兩種形式;

(2)用方程思想認(rèn)識(shí)等差數(shù)列前 項(xiàng)和的公式,利用公式求 ;等差數(shù)列通項(xiàng)公式與前 項(xiàng)和的公式兩套公式涉及五個(gè)字母,已知其中三個(gè)量求另兩個(gè)值;

(3)會(huì)利用等差數(shù)列通項(xiàng)公式與前 項(xiàng)和的公式研究 的最值.

2.通過公式的推導(dǎo)和公式的運(yùn)用,使學(xué)生體會(huì)從特殊到一般,再從一般到特殊的思維規(guī)律,初步形成認(rèn)識(shí)問題,解決問題的一般思路和方法.

3.通過公式推導(dǎo)的過程教學(xué),對(duì)學(xué)生進(jìn)行思維靈活性與廣闊性的訓(xùn)練,發(fā)展學(xué)生的思維水平.

4.通過公式的推導(dǎo)過程,展現(xiàn)數(shù)學(xué)中的對(duì)稱美;通過有關(guān)內(nèi)容在實(shí)際生活中的應(yīng)用,使學(xué)生再一次感受數(shù)學(xué)源于生活,又服務(wù)于生活的實(shí)用性,引導(dǎo)學(xué)生要善于觀察生活,從生活中發(fā)現(xiàn)問題,并數(shù)學(xué)地解決問題.

教學(xué)建議

(1)知識(shí)結(jié)構(gòu)

本節(jié)內(nèi)容是等差數(shù)列前 項(xiàng)和公式的推導(dǎo)和應(yīng)用,首先通過具體的例子給出了求等差數(shù)列前 項(xiàng)和的思路,而后導(dǎo)出了一般的公式,并加以應(yīng)用;再與等差數(shù)列通項(xiàng)公式組成方程組,共同運(yùn)用,解決有關(guān)問題.

(2)重點(diǎn)、難點(diǎn)分析

教學(xué)重點(diǎn)是等差數(shù)列前 項(xiàng)和公式的推導(dǎo)和應(yīng)用,難點(diǎn)是公式推導(dǎo)的思路.

推導(dǎo)過程的展示體現(xiàn)了人類解決問題的一般思路,即從特殊問題的解決中提煉一般方法,再試圖運(yùn)用這一方法解決一般情況,所以推導(dǎo)公式的過程中所蘊(yùn)含的思想方法比公式本身更為重要.等差數(shù)列前 項(xiàng)和公式有兩種形式,應(yīng)根據(jù)條件選擇適當(dāng)?shù)男问竭M(jìn)行計(jì)算;另外反用公式、變用公式、前 項(xiàng)和公式與通項(xiàng)公式的綜合運(yùn)用體現(xiàn)了方程(組)思想.

高斯算法表現(xiàn)了大數(shù)學(xué)家的智慧和巧思,對(duì)一般學(xué)生來說有很大難度,但大多數(shù)學(xué)生都聽說過這個(gè)故事,所以難點(diǎn)在于一般等差數(shù)列求和的思路上.

(3)教法建議

①本節(jié)內(nèi)容分為兩課時(shí),一節(jié)為公式推導(dǎo)及簡單應(yīng)用,一節(jié)側(cè)重于通項(xiàng)公式與前 項(xiàng)和公式綜合運(yùn)用.

②前 項(xiàng)和公式的推導(dǎo),建議由具體問題引入,使學(xué)生體會(huì)問題源于生活.

③強(qiáng)調(diào)從特殊到一般,再從一般到特殊的思考方法與研究方法.

④補(bǔ)充等差數(shù)列前 項(xiàng)和的值、最小值問題.

⑤用梯形面積公式記憶等差數(shù)列前 項(xiàng)和公式.

等差數(shù)列的前項(xiàng)和公式教學(xué)設(shè)計(jì)示例

教學(xué)目標(biāo)

1.通過教學(xué)使學(xué)生理解等差數(shù)列的前 項(xiàng)和公式的推導(dǎo)過程,并能用公式解決簡單的問題.

2.通過公式推導(dǎo)的教學(xué)使學(xué)生進(jìn)一步體會(huì)從特殊到一般,再從一般到特殊的思想方法,通過公式的運(yùn)用體會(huì)方程的思想.

教學(xué)重點(diǎn),難點(diǎn)

教學(xué)重點(diǎn)是等差數(shù)列的前 項(xiàng)和公式的推導(dǎo)和應(yīng)用,難點(diǎn)是獲得推導(dǎo)公式的思路.

教學(xué)用具

實(shí)物投影儀,多媒體軟件,電腦.

教學(xué)方法

講授法.

教學(xué)過程

一.新課引入

提出問題(播放媒體資料):一個(gè)堆放鉛筆的V形架的最下面一層放一支鉛筆,往上每一層都比它下面一層多放一支,最上面一層放100支.這個(gè)V形架上共放著多少支鉛筆?(課件設(shè)計(jì)見課件展示)

問題就是(板書)“ ”

這是小學(xué)時(shí)就知道的一個(gè)故事,高斯的算法非常高明,回憶他是怎樣算的.(由一名學(xué)生回答,再由學(xué)生討論其高明之處)高斯算法的高明之處在于他發(fā)現(xiàn)這100個(gè)數(shù)可以分為50組,第一個(gè)數(shù)與最后一個(gè)數(shù)一組,第二個(gè)數(shù)與倒數(shù)第二個(gè)數(shù)一組,第三個(gè)數(shù)與倒數(shù)第三個(gè)數(shù)一組,…,每組數(shù)的和均相等,都等于101,50個(gè)101就等于5050了.高斯算法將加法問題轉(zhuǎn)化為乘法運(yùn)算,迅速準(zhǔn)確得到了結(jié)果.

我們希望求一般的等差數(shù)列的和,高斯算法對(duì)我們有何啟發(fā)?

二.講解新課

(板書)等差數(shù)列前 項(xiàng)和公式

1.公式推導(dǎo)(板書)

問題(幻燈片):設(shè)等差數(shù)列 的首項(xiàng)為 ,公差為 , 由學(xué)生討論,研究高斯算法對(duì)一般等差數(shù)列求和的指導(dǎo)意義.

思路一:運(yùn)用基本量思想,將各項(xiàng)用 和 表示,得

,有以下等式

,問題是一共有多少個(gè) ,似乎與 的奇偶有關(guān).這個(gè)思路似乎進(jìn)行不下去了.

思路二:

上面的等式其實(shí)就是 ,為回避個(gè)數(shù)問題,做一個(gè)改寫 , ,兩式左右分別相加,得

,

于是有: .這就是倒序相加法.

思路三:受思路二的啟發(fā),重新調(diào)整思路一,可得 ,于是 .

于是得到了兩個(gè)公式(投影片): 和 .

2.公式記憶

用梯形面積公式記憶等差數(shù)列前 項(xiàng)和公式,這里對(duì)圖形進(jìn)行了割、補(bǔ)兩種處理,對(duì)應(yīng)著等差數(shù)列前 項(xiàng)和的兩個(gè)公式.

3.公式的應(yīng)用

公式中含有四個(gè)量,運(yùn)用方程的思想,知三求一.

例1.求和:(1) ;

(2) (結(jié)果用 表示)

解題的關(guān)鍵是數(shù)清項(xiàng)數(shù),小結(jié)數(shù)項(xiàng)數(shù)的方法.

例2.等差數(shù)列 中前多少項(xiàng)的和是9900?

本題實(shí)質(zhì)是反用公式,解一個(gè)關(guān)于 的一元二次函數(shù),注意得到的項(xiàng)數(shù) 必須是正整數(shù).

三.小結(jié)

1.推導(dǎo)等差數(shù)列前 項(xiàng)和公式的思路;

2.公式的應(yīng)用中的數(shù)學(xué)思想.

四.板書設(shè)計(jì)

高中數(shù)學(xué)教案 篇5

[學(xué)習(xí)目標(biāo)]

(1)會(huì)用坐標(biāo)法及距離公式證明Cα+β;

(2)會(huì)用替代法、誘導(dǎo)公式、同角三角函數(shù)關(guān)系式,由Cα+β推導(dǎo)Cα—β、Sα±β、Tα±β,切實(shí)理解上述公式間的關(guān)系與相互轉(zhuǎn)化;

(3)掌握公式Cα±β、Sα±β、Tα±β,并利用簡單的三角變換,解決求值、化簡三角式、證明三角恒等式等問題。

[學(xué)習(xí)重點(diǎn)]

兩角和與差的正弦、余弦、正切公式

[學(xué)習(xí)難點(diǎn)]

余弦和角公式的推導(dǎo)

[知識(shí)結(jié)構(gòu)]

1、兩角和的余弦公式是三角函數(shù)一章和、差、倍公式系列的基礎(chǔ)。其公式的證明是用坐標(biāo)法,利用三角函數(shù)定義及平面內(nèi)兩點(diǎn)間的距離公式,把兩角和α+β的余弦,化為單角α、β的三角函數(shù)(證明過程見課本)

2、通過下面各組數(shù)的值的比較:①cos(30°—90°)與cos30°—cos90°②sin(30°+60°)和sin30°+sin60°。我們應(yīng)該得出如下結(jié)論:一般情況下,cos(α±β)≠cosα±cosβ,sin(α±β)≠sinα±sinβ。但不排除一些特例,如sin(0+α)=sin0+sinα=sinα。

3、當(dāng)α、β中有一個(gè)是的整數(shù)倍時(shí),應(yīng)首選誘導(dǎo)公式進(jìn)行變形。注意兩角和與差的三角函數(shù)是誘導(dǎo)公式等的基礎(chǔ),而誘導(dǎo)公式是兩角和與差的三角函數(shù)的特例。

4、關(guān)于公式的正用、逆用及變用

高中數(shù)學(xué)教案 篇6

教學(xué)目標(biāo):

1.結(jié)合實(shí)際問題情景,理解分層抽樣的必要性和重要性;

2.學(xué)會(huì)用分層抽樣的方法從總體中抽取樣本;

3.并對(duì)簡單隨機(jī)抽樣、系統(tǒng)抽樣及分層抽樣方法進(jìn)行比較,揭示其相互關(guān)系.

教學(xué)重點(diǎn):

通過實(shí)例理解分層抽樣的方法.

教學(xué)難點(diǎn):

分層抽樣的步驟.

教學(xué)過程:

一、問題情境

1.復(fù)習(xí)簡單隨機(jī)抽樣、系統(tǒng)抽樣的概念、特征以及適用范圍.

2.實(shí)例:某校高一、高二和高三年級(jí)分別有學(xué)生名,為了了解全校學(xué)生的視力情況,從中抽取容量為的樣本,怎樣抽取較為合理?

二、學(xué)生活動(dòng)

能否用簡單隨機(jī)抽樣或系統(tǒng)抽樣進(jìn)行抽樣,為什么?

指出由于不同年級(jí)的學(xué)生視力狀況有一定的差異,用簡單隨機(jī)抽樣或系統(tǒng)抽樣進(jìn)行抽樣不能準(zhǔn)確反映客觀實(shí)際,在抽樣時(shí)不僅要使每個(gè)個(gè)體被抽到的機(jī)會(huì)相等,還要注意總體中個(gè)體的層次性.

由于樣本的容量與總體的個(gè)體數(shù)的比為100∶2500=1∶25,

所以在各年級(jí)抽取的個(gè)體數(shù)依次是,,,即40,32,28.

三、建構(gòu)數(shù)學(xué)

1.分層抽樣:當(dāng)已知總體由差異明顯的幾部分組成時(shí),為了使樣本更客觀地反映總體的情況,常將總體按不同的特點(diǎn)分成層次比較分明的幾部分,然后按各部分在總體中所占的比進(jìn)行抽樣,這種抽樣叫做分層抽樣,其中所分成的各部分叫“層”.

說明:①分層抽樣時(shí),由于各部分抽取的個(gè)體數(shù)與這一部分個(gè)體數(shù)的比等于樣本容量與總體的個(gè)體數(shù)的比,每一個(gè)個(gè)體被抽到的可能性都是相等的;

②由于分層抽樣充分利用了我們所掌握的信息,使樣本具有較好的代表性,而且在各層抽樣時(shí)可以根據(jù)具體情況采取不同的抽樣方法,所以分層抽樣在實(shí)踐中有著非常廣泛的應(yīng)用.

2.三種抽樣方法對(duì)照表:

類別

共同點(diǎn)

各自特點(diǎn)

相互聯(lián)系

適用范圍

簡單隨機(jī)抽樣

抽樣過程中每個(gè)個(gè)體被抽取的概率是相同的

從總體中逐個(gè)抽取

總體中的個(gè)體數(shù)較少

系統(tǒng)抽樣

將總體均分成幾個(gè)部分,按事先確定的規(guī)則在各部分抽取

在第一部分抽樣時(shí)采用簡單隨機(jī)抽樣

總體中的個(gè)體數(shù)較多

分層抽樣

將總體分成幾層,分層進(jìn)行抽取

各層抽樣時(shí)采用簡單隨機(jī)抽樣或系統(tǒng)

總體由差異明顯的幾部分組成

3.分層抽樣的步驟:

(1)分層:將總體按某種特征分成若干部分.

(2)確定比例:計(jì)算各層的個(gè)體數(shù)與總體的個(gè)體數(shù)的比.

(3)確定各層應(yīng)抽取的樣本容量.

(4)在每一層進(jìn)行抽樣(各層分別按簡單隨機(jī)抽樣或系統(tǒng)抽樣的方法抽?。C合每層抽樣,組成樣本.

四、數(shù)學(xué)運(yùn)用

1.例題.

例1(1)分層抽樣中,在每一層進(jìn)行抽樣可用_________________.

(2)①教育局督學(xué)組到學(xué)校檢查工作,臨時(shí)在每個(gè)班各抽調(diào)2人參加座談;

②某班期中考試有15人在85分以上,40人在60-84分,1人不及格.現(xiàn)欲從中抽出8人研討進(jìn)一步改進(jìn)教和學(xué);

③某班元旦聚會(huì),要產(chǎn)生兩名“幸運(yùn)者”.

對(duì)這三件事,合適的抽樣方法為()

A.分層抽樣,分層抽樣,簡單隨機(jī)抽樣

B.系統(tǒng)抽樣,系統(tǒng)抽樣,簡單隨機(jī)抽樣

C.分層抽樣,簡單隨機(jī)抽樣,簡單隨機(jī)抽樣

D.系統(tǒng)抽樣,分層抽樣,簡單隨機(jī)抽樣

例2某電視臺(tái)在因特網(wǎng)上就觀眾對(duì)某一節(jié)目的喜愛程度進(jìn)行調(diào)查,參加調(diào)查的總?cè)藬?shù)為12000人,其中持各種態(tài)度的人數(shù)如表中所示:

很喜愛

喜愛

一般

不喜愛

2435

4567

3926

1072

電視臺(tái)為進(jìn)一步了解觀眾的具體想法和意見,打算從中抽取60人進(jìn)行更為詳細(xì)的調(diào)查,應(yīng)怎樣進(jìn)行抽樣?

解:抽取人數(shù)與總的比是60∶12000=1∶200,

則各層抽取的人數(shù)依次是12.175,22.835,19.63,5.36,

取近似值得各層人數(shù)分別是12,23,20,5.

然后在各層用簡單隨機(jī)抽樣方法抽取.

答用分層抽樣的方法抽取,抽取“很喜愛”、“喜愛”、“一般”、“不喜愛”的人

數(shù)分別為12,23,20,5.

說明:各層的抽取數(shù)之和應(yīng)等于樣本容量,對(duì)于不能取整數(shù)的情況,取其近似值.

(3)某學(xué)校有160名教職工,其中教師120名,行政人員16名,后勤人員24名.為了了解教職工對(duì)學(xué)校在校務(wù)公開方面的某意見,擬抽取一個(gè)容量為20的樣本.

分析:(1)總體容量較小,用抽簽法或隨機(jī)數(shù)表法都很方便.

(2)總體容量較大,用抽簽法或隨機(jī)數(shù)表法都比較麻煩,由于人員沒有明顯差異,且剛好32排,每排人數(shù)相同,可用系統(tǒng)抽樣.

(3)由于學(xué)校各類人員對(duì)這一問題的看法可能差異較大,所以應(yīng)采用分層抽樣方法.

五、要點(diǎn)歸納與方法小結(jié)

本節(jié)課學(xué)習(xí)了以下內(nèi)容:

1.分層抽樣的概念與特征;

2.三種抽樣方法相互之間的區(qū)別與聯(lián)系.

yjs21.cOm更多幼兒園教案編輯推薦

高中數(shù)學(xué)教案


教案課件是老師需要精心準(zhǔn)備的東西,因此教案課件可能就需要每天都去寫。教案的編寫需要注意教學(xué)過程的連貫性和完整性。接下來為您分享的是本站幼兒教師教育網(wǎng)的編輯為您挑選的“高中數(shù)學(xué)教案”,如果你認(rèn)為這個(gè)想法值得推廣歡迎分享給你的社交圈!

高中數(shù)學(xué)教案 篇1

一、教學(xué)目標(biāo)

【知識(shí)與技能】

在掌握?qǐng)A的標(biāo)準(zhǔn)方程的基礎(chǔ)上,理解記憶圓的一般方程的代數(shù)特征,由圓的一般方程確定圓的圓心半徑,掌握方程x+y+Dx+Ey+F=0表示圓的條件。

【過程與方法】

通過對(duì)方程x+y+Dx+Ey+F=0表示圓的的條件的探究,學(xué)生探索發(fā)現(xiàn)及分析解決問題的實(shí)際能力得到提高。

【情感態(tài)度與價(jià)值觀】

滲透數(shù)形結(jié)合、化歸與轉(zhuǎn)化等數(shù)學(xué)思想方法,提高學(xué)生的整體素質(zhì),激勵(lì)學(xué)生創(chuàng)新,勇于探索。

二、教學(xué)重難點(diǎn)

【重點(diǎn)】

掌握?qǐng)A的一般方程,以及用待定系數(shù)法求圓的一般方程。

【難點(diǎn)】

二元二次方程與圓的一般方程及標(biāo)準(zhǔn)圓方程的關(guān)系。

三、教學(xué)過程

(一)復(fù)習(xí)舊知,引出課題

1、復(fù)習(xí)圓的標(biāo)準(zhǔn)方程,圓心、半徑。

2、提問1:已知圓心為(1,—2)、半徑為2的圓的方程是什么?

高中數(shù)學(xué)教案9

1.課題

填寫課題名稱(高中代數(shù)類課題)

2.教學(xué)目標(biāo)

(1)知識(shí)與技能:

通過本節(jié)課的學(xué)習(xí),掌握......知識(shí),提高學(xué)生解決實(shí)際問題的能力;

(2)過程與方法:

通過......(討論、發(fā)現(xiàn)、探究),提高......(分析、歸納、比較和概括)的能力;

(3)情感態(tài)度與價(jià)值觀:

通過本節(jié)課的學(xué)習(xí),增強(qiáng)學(xué)生的學(xué)習(xí)興趣,將數(shù)學(xué)應(yīng)用到實(shí)際生活中,增加學(xué)生數(shù)學(xué)學(xué)習(xí)的樂趣。

3.教學(xué)重難點(diǎn)

(1)教學(xué)重點(diǎn):本節(jié)課的知識(shí)重點(diǎn)

(2)教學(xué)難點(diǎn):易錯(cuò)點(diǎn)、難以理解的知識(shí)點(diǎn)

4.教學(xué)方法(一般從中選擇3個(gè)就可以了)

(1)討論法

(2)情景教學(xué)法

(3)問答法

(4)發(fā)現(xiàn)法

(5)講授法

5.教學(xué)過程

(1)導(dǎo)入

簡單敘述導(dǎo)入課題的方式和方法(例:復(fù)習(xí)、類比、情境導(dǎo)出本節(jié)課的課題)

(2)新授課程(一般分為三個(gè)小步驟)

①簡單講解本節(jié)課基礎(chǔ)知識(shí)點(diǎn)(例:奇函數(shù)的定義)。

②歸納總結(jié)該課題中的重點(diǎn)知識(shí)內(nèi)容,尤其對(duì)該注意的一些情況設(shè)置易錯(cuò)點(diǎn),進(jìn)行強(qiáng)調(diào)。可以設(shè)計(jì)分組討論環(huán)節(jié)(分組判斷幾組函數(shù)圖像是否為奇函數(shù),并歸納奇函數(shù)圖像的特點(diǎn)。設(shè)置定義域不關(guān)于原點(diǎn)對(duì)稱的函數(shù)是否為奇函數(shù)的易錯(cuò)點(diǎn))。

③拓展延伸,將所學(xué)知識(shí)拓展延伸到實(shí)際題目中,去解決實(shí)際生活中的問題。

(在新授課里面一定要表下出講課的大體流程,但是不必太過詳細(xì)。)

(3)課堂小結(jié)

教師提問,學(xué)生回答本節(jié)課的收獲。

(4)作業(yè)提高

布置作業(yè)(盡量與實(shí)際生活相聯(lián)系,有所創(chuàng)新)。

6.教學(xué)板書

2.高中數(shù)學(xué)教案格式

一.課題(說明本課名稱)

二.教學(xué)目的(或稱教學(xué)要求,或稱教學(xué)目標(biāo),說明本課所要完成的教學(xué)任務(wù))

三.課型(說明屬新授課,還是復(fù)習(xí)課)

四.課時(shí)(說明屬第幾課時(shí))

五.教學(xué)重點(diǎn)(說明本課所必須解決的關(guān)鍵性問題)

六.教學(xué)難點(diǎn)(說明本課的學(xué)習(xí)時(shí)易產(chǎn)生困難和障礙的知識(shí)傳授與能力培養(yǎng)點(diǎn))

七.教學(xué)方法要根據(jù)學(xué)生實(shí)際,注重引導(dǎo)自學(xué),注重啟發(fā)思維

八.教學(xué)過程(或稱課堂結(jié)構(gòu),說明教學(xué)進(jìn)行的內(nèi)容、方法步驟)

九.作業(yè)處理(說明如何布置書面或口頭作業(yè))

十.板書設(shè)計(jì)(說明上課時(shí)準(zhǔn)備寫在黑板上的內(nèi)容)

十一.教具(或稱教具準(zhǔn)備,說明輔助教學(xué)手段使用的工具)

十二.教學(xué)反思:(教者對(duì)該堂課教后的感受及學(xué)生的收獲、改進(jìn)方法)

高中數(shù)學(xué)教案 篇2

 一、基礎(chǔ)突破課本層面

其實(shí)很多同學(xué)在平時(shí)學(xué)習(xí)中也重視課本,概念公式也記住了但是任然感覺學(xué)習(xí)沒有多大效果,還不如多做兩道題目有意義,可是做題有無從思考,于是陷入了一個(gè)死循環(huán)。那么課本該怎么學(xué)呢?

①概念公式的拓展以及知識(shí)點(diǎn)之間的聯(lián)系

核心是概念的外延和概念之間的聯(lián)系,大家知道一般概念定理基本可以分成四塊:文字+圖形+式子+運(yùn)算,而一般的題目也是由這四塊文字+圖形+式子+運(yùn)算構(gòu)成的,這就是解題與課本學(xué)習(xí)之間的對(duì)應(yīng)的地方,所以概念學(xué)習(xí)就要從這四個(gè)方面入手挖掘突破,對(duì)于相關(guān)的學(xué)習(xí)挖掘方法我們給大家通過函數(shù)單調(diào)性做了一個(gè)簡單示范,可參見樊瑞軍相關(guān)視頻講解。

②課本題型歸納

大家知道高中數(shù)學(xué)的課本題目根據(jù)難易程度有A,B兩組,這些題目都是經(jīng)過專家組慎重選擇的,并不是胡亂選擇的,而且高考試題的編制基本是通過課本深度改編的,所以我們?cè)趯W(xué)習(xí)過程中首先要進(jìn)行題型方面的歸納梳理,掌握這些題目的深層含義,并在后續(xù)的練習(xí)中不斷深化和補(bǔ)充題型,那么所謂的基礎(chǔ)題型基本就沒有問題了。這就是課本學(xué)習(xí)中的第二個(gè)突破口基礎(chǔ)題型掌握,對(duì)于題型的梳理方法我們通過必修二直線與圓這部分給大家做了詳細(xì)示范,詳細(xì)可參見視頻講解。

③運(yùn)算提升

運(yùn)算是高中數(shù)學(xué)解題必須的一個(gè)過程,而且會(huì)直接關(guān)系到考試成績的好壞,但是運(yùn)算基本不會(huì)在課本直接呈現(xiàn),而是要通過解題不斷歸納總結(jié)梳理,樊瑞軍認(rèn)為高中數(shù)學(xué)運(yùn)算主要分四塊:

1、高中數(shù)學(xué)基本式子變形處理如整式類,分式類,根式類等;

2、初高中各類方程及方程組突破;

3、各類簡單,復(fù)雜及含參不等式突破;

4、特殊類式子處理。

④圖形突破

圖形特別是函數(shù)圖形不僅在高考的選擇題中直接考察更是解答題中必備的,但高考的考察一般都要高于課本,這就需要在課本學(xué)習(xí)的基礎(chǔ)上進(jìn)行拓展,圖形突破主要包括畫圖,認(rèn)識(shí)圖形,圖形拓展方法,圖形處理及圖形計(jì)算五個(gè)方面。

考試層面

一般的考試試卷和高考真題都是我們學(xué)習(xí)最好的積累歸納素材,考試試卷不僅能幫助我們把握學(xué)習(xí)方向,更能夠檢查學(xué)習(xí)效果。

二、把握做題方向重視歸納解題思考方法

高中數(shù)學(xué)的題目數(shù)量非常龐大,要想單純通過做題突破高考,對(duì)于絕大多數(shù)考生來說確實(shí)難以實(shí)現(xiàn),隨著高考的改革,高考已把考查的'重點(diǎn)放在創(chuàng)造型、能力型的考查上,因此要精做習(xí)題,學(xué)會(huì)選擇,有助于判斷高考題目與平時(shí)常見題目的異同,增強(qiáng)判斷題目信度的能力,在遇到即將來臨的期中期末考試和未來的高考中哪些內(nèi)容是高頻命題點(diǎn),哪些是冷門的,有哪些基本題型,一本書學(xué)完了哪些還沒有掌握好都要有一個(gè)大致標(biāo)記,以便于后續(xù)繼續(xù)學(xué)習(xí)歸納。當(dāng)你做完一道習(xí)題后可以思考:本題考查了什么知識(shí)點(diǎn)?什么方法?我們從中得到了解題的什么方法?這一類習(xí)題中有什么解題的通性?

高中數(shù)學(xué)的題目數(shù)量非常龐大,要想單純通過做題突破高考,對(duì)于絕大多數(shù)考生來說確實(shí)難以實(shí)現(xiàn),隨著高考的改革,高考已把考查的重點(diǎn)放在創(chuàng)造型、能力型的考查上,因此要精做習(xí)題,學(xué)會(huì)選擇,有助于判斷高考題目與平時(shí)常見題目的異同,增強(qiáng)判斷題目信度的能力,在遇到即將來臨的期中期末考試和未來的高考中哪些內(nèi)容是高頻命題點(diǎn),哪些是冷門的,有哪些基本題型,一本書學(xué)完了哪些還沒有掌握好都要有一個(gè)大致標(biāo)記,以便于后續(xù)繼續(xù)學(xué)習(xí)歸納。當(dāng)你做完一道習(xí)題后可以思考:本題考查了什么知識(shí)點(diǎn)?什么方法?我們從中得到了解題的什么方法?這一類習(xí)題中有什么解題的通性?

 三、時(shí)刻面向高考以高考為核心

不論我們是高一還是高二甚至是高三,高考都是我們最后的沖刺的目標(biāo),所以我們?cè)谄綍r(shí)的學(xué)習(xí)過程中要始終面向高考,經(jīng)常做高考題目,因?yàn)楦呖颊骖}在考查知識(shí)點(diǎn)時(shí)的切入點(diǎn),綜合程度以及題型與平時(shí)的練習(xí)題還是有一道差異,而且能幫助我們正確地的掌握高考知識(shí)點(diǎn)的難度和基本題型。我們平時(shí)的復(fù)習(xí)資料中,有相當(dāng)?shù)牧?xí)題已超出高考難度或者與高考方向偏離較大,針對(duì)這些題目我們可以舍棄,而集中精力突破真正我們?cè)撏黄频膬?nèi)容。

四、注重解題思路

學(xué)習(xí)數(shù)學(xué)核心在于如何思考,重視老師對(duì)該題目的分析和歸納,然而有很多同學(xué)往往忽視問題的分析,往往沉靜在老師講解的每一步計(jì)算、每一步推證過程。聽課雖然認(rèn)真,但費(fèi)力,聽完后滿腦子的計(jì)算過程,支離破碎。所以當(dāng)教師解答習(xí)題時(shí),學(xué)生要重視問題的思考分析。另外,當(dāng)題目的答案給出時(shí),并不代表問題的解答完畢,還要花一定的時(shí)間認(rèn)真總結(jié)、歸納理解。要把這些解題策略全部納入自己的腦海成為永久地記憶,變?yōu)樽约航鉀Q這一類型問題的經(jīng)驗(yàn)和技能。同時(shí)也解決了學(xué)生中會(huì)聽課而不會(huì)做題目的壞毛病。

五、積累考試經(jīng)驗(yàn)

對(duì)于每一次考試和單元模擬要積累一定的考試經(jīng)驗(yàn),掌握一定的考試技巧,在每一次考試中要鍛煉自己的承受能力、接受能力、解決問題以及應(yīng)對(duì)一些突發(fā)情況等綜合能力。只有在平時(shí)的考試中不斷總結(jié),那么在高考的考場(chǎng)上就會(huì)得心應(yīng)手,避免考試發(fā)揮失常等的發(fā)生。

六、歸納小題及解答題方法

高中數(shù)學(xué)考試中的選擇題、填空題是基礎(chǔ),共76分是整個(gè)考試得分的基礎(chǔ),在平時(shí)學(xué)習(xí)過程中不但要在會(huì)接的基礎(chǔ)上提高解題速度,還要?dú)w納總結(jié)選擇題的熱門題型,解題技巧等。

選擇題方法技巧主要通過選項(xiàng)布局特征,選擇題快速運(yùn)算技巧,選擇題題目特征與核心解法,選擇題中的結(jié)論這四個(gè)方面進(jìn)行歸納突破。

對(duì)于解答題而言高考的題型以及命題方式等都是非常成熟的,要在平時(shí)學(xué)習(xí)中對(duì)于解答題中的一般思考方法,熱門題型,基礎(chǔ)知識(shí)點(diǎn),體現(xiàn)的基本運(yùn)算,涵蓋的基本圖形以及書寫要點(diǎn)要求等六個(gè)方面進(jìn)行歸納,對(duì)于解題思考,運(yùn)算,圖形等相關(guān)方面我們?cè)谇懊娑甲隽艘恍┓治?,我們?cè)诤竺鎸⒗^續(xù)給大家總結(jié)歸納,相關(guān)可關(guān)注樊瑞軍微信公眾號(hào)或者個(gè)人微信號(hào),數(shù)學(xué)學(xué)科是能在短時(shí)間內(nèi)提高成績的一門學(xué)科,數(shù)學(xué)是高考中三科綜合科之中一門拉開綜合成績的重要學(xué)科,學(xué)數(shù)學(xué)要重視方法,不能盲目隨波逐流。

七、制定好學(xué)習(xí)計(jì)劃和復(fù)習(xí)策略

學(xué)好數(shù)學(xué)要制定好計(jì)劃,不但要有高中三年的計(jì)劃,也要有本學(xué)期大的規(guī)劃,還要有每月、每周、每天的小計(jì)劃,計(jì)劃要與老師的復(fù)習(xí)計(jì)劃吻合,不能相互沖突,不要急于求成每一天甚至一星期全面突破一個(gè)考點(diǎn),研究該知識(shí)點(diǎn)考查的不同側(cè)面、不同角度以及高考的難度,不斷地歸納、反思、回顧,集中精力提前突破高考中的??键c(diǎn)和重難點(diǎn)。

預(yù)習(xí)

如果你想把數(shù)學(xué)學(xué)好,單純地做學(xué)校發(fā)的資料是遠(yuǎn)遠(yuǎn)不夠的。去學(xué)校旁邊買一本側(cè)重講解的參考書。在老師講課之前,先把課本中要學(xué)習(xí)的內(nèi)容看一遍(用心看),定義、公式可能記不住對(duì)嗎?對(duì),看著寫著,一遍不行再來一遍,把這些基礎(chǔ)弄清楚為止。之后看你買的參考書,這比課本上所講解的又深了一個(gè)層次,每講解一個(gè)知識(shí)點(diǎn),都會(huì)有一兩個(gè)例題??赐旰?,把課本、參考書上面的知識(shí)點(diǎn)再回顧一遍,做課本后面的習(xí)題。

聽課

你的預(yù)習(xí)基本可以讓你明白90%了,至于課堂,有的放矢吧。你的選擇有很多,如果你的知識(shí)點(diǎn)掌握的已經(jīng)很好,你可以再進(jìn)行回顧,也可以自己找題做;如果你的知識(shí)點(diǎn)掌握的不是太好,你可以跟著老師再把知識(shí)點(diǎn)記憶一下。當(dāng)老師拓展新的知識(shí)點(diǎn)時(shí)要認(rèn)真聽,再聽一下,加深理解。

復(fù)習(xí)

對(duì)于各科而言,復(fù)習(xí)都很重要。拿數(shù)學(xué)來說,好多同學(xué)認(rèn)為就是不斷的刷題。其實(shí)不然,當(dāng)你要做課后習(xí)題的時(shí)候,首先應(yīng)先溫習(xí)教材知識(shí)點(diǎn),之后看你的課本后面是否有做錯(cuò)的題目,如果有,再做一遍,最后就是找題做了。

高中數(shù)學(xué)教案 篇3

一、向量的概念

1、既有又有的量叫做向量。用有向線段表示向量時(shí),有向線段的長度表示向量的,有向線段的箭頭所指的方向表示向量的

2、叫做單位向量

3、的向量叫做平行向量,因?yàn)槿我唤M平行向量都可以平移到同一條直線上,所以平行向量也叫做。零向量與任一向量平行

4、且的向量叫做相等向量

5、叫做相反向量

 二、向量的表示方法

幾何表示法、字母表示法、坐標(biāo)表示法。

三、向量的加減法及其坐標(biāo)運(yùn)算

四、實(shí)數(shù)與向量的乘積

定義:實(shí)數(shù)λ與向量的積是一個(gè)向量,記作λ

 五、平面向量基本定理

如果e1、e2是同一個(gè)平面內(nèi)的兩個(gè)不共線向量,那么對(duì)于這一平面內(nèi)的任一向量a,有且只有一對(duì)實(shí)數(shù)λ1,λ2,使a=λ1e1+λ2e2,其中e1,e2叫基底

六、向量共線/平行的充要條件

七、非零向量垂直的充要條件

 八、線段的定比分點(diǎn)

設(shè)是上的兩點(diǎn),P是上_________的任意一點(diǎn),則存在實(shí)數(shù),使_______________,則為點(diǎn)P分有向線段所成的比,同時(shí),稱P為有向線段的定比分點(diǎn)

定比分點(diǎn)坐標(biāo)公式及向量式

九、平面向量的數(shù)量積

(1)設(shè)兩個(gè)非零向量a和b,作OA=a,OB=b,則∠AOB=θ叫a與b的夾角,其范圍是[0,π],|b|cosθ叫b在a上的投影

(2)|a||b|cosθ叫a與b的數(shù)量積,記作a·b,即a·b=|a||b|cosθ

(3)平面向量的數(shù)量積的坐標(biāo)表示

十、平移

典例解讀

1、給出下列命題:①若|a|=|b|,則a=b;②若A,B,C,D是不共線的四點(diǎn),則AB=DC是四邊形ABCD為平行四邊形的充要條件;③若a=b,b=c,則a=c;④a=b的充要條件是|a|=|b|且a∥b;⑤若a∥b,b∥c,則a∥c

其中,正確命題的序號(hào)是______

2、已知a,b方向相同,且|a|=3,|b|=7,則|2a—b|=____

3、若將向量a=(2,1)繞原點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)得到向量b,則向量b的坐標(biāo)為_____

4、下列算式中不正確的是()

(A)AB+BC+CA=0(B)AB—AC=BC

(C)0·AB=0(D)λ(μa)=(λμ)a

5、若向量a=(1,1),b=(1,—1),c=(—1,2),則c=()

函數(shù)y=x2的圖象按向量a=(2,1)平移后得到的圖象的函數(shù)表達(dá)式為()

(A)y=(x—2)2—1(B)y=(x+2)2—1(C)y=(x—2)2+1(D)y=(x+2)2+1

7、平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),已知兩點(diǎn)A(3,1),B(—1,3),若點(diǎn)C滿足OC=αOA+βOB,其中a、β∈R,且α+β=1,則點(diǎn)C的軌跡方程為()

(A)3x+2y—11=0(B)(x—1)2+(y—2)2=5

(C)2x—y=0(D)x+2y—5=0

8、設(shè)P、Q是四邊形ABCD對(duì)角線AC、BD中點(diǎn),BC=a,DA=b,則PQ=_________

9、已知A(5,—1)B(—1,7)C(1,2),求△ABC中∠A平分線長

10、若向量a、b的坐標(biāo)滿足a+b=(—2,—1),a—b=(4,—3),則a·b等于()

(A)—5(B)5(C)7(D)—1

11、若a、b、c是非零的平面向量,其中任意兩個(gè)向量都不共線,則()

(A)(a)2·(b)2=(a·b)2(B)|a+b|>|a—b|

(C)(a·b)·c—(b·c)·a與b垂直(D)(a·b)·c—(b·c)·a=0

12、設(shè)a=(1,0),b=(1,1),且(a+λb)⊥b,則實(shí)數(shù)λ的值是()

(A)2(B)0(C)1(D)—1/2

16、利用向量證明:△ABC中,M為BC的中點(diǎn),則AB2+AC2=2(AM2+MB2)

17、在三角形ABC中,=(2,3),=(1,k),且三角形ABC的一個(gè)內(nèi)角為直角,求實(shí)數(shù)k的值

18、已知△ABC中,A(2,—1),B(3,2),C(—3,—1),BC邊上的高為AD,求點(diǎn)D和向量

高中數(shù)學(xué)教案 篇4

學(xué)習(xí)目標(biāo)

明確排列與組合的聯(lián)系與區(qū)別,能判斷一個(gè)問題是排列問題還是組合問題;能運(yùn)用所學(xué)的排列組合知識(shí),正確地解決的實(shí)際問題.

學(xué)習(xí)過程

一、學(xué)前準(zhǔn)備

復(fù)習(xí):

1.(課本P28A13)填空:

(1)有三張參觀卷,要在5人中確定3人去參觀,不同方法的種數(shù)是 ;

(2)要從5件不同的禮物中選出3件分送3為同學(xué),不同方法的種數(shù)是 ;

(3)5名工人要在3天中各自選擇1天休息,不同方法的種數(shù)是 ;

(4)集合A有個(gè) 元素,集合B有 個(gè)元素,從兩個(gè)集合中各取1個(gè)元素,不同方法的種數(shù)是 ;

二、新課導(dǎo)學(xué)

探究新知(復(fù)習(xí)教材P14~P25,找出疑惑之處)

問題1:判斷下列問題哪個(gè)是排列問題,哪個(gè)是組合問題:

(1)從4個(gè)風(fēng)景點(diǎn)中選出2個(gè)安排游覽,有多少種不同的方法?

(2)從4個(gè)風(fēng)景點(diǎn)中選出2個(gè),并確定這2個(gè)風(fēng)景點(diǎn)的游覽順序,有多少種不同的方法?

應(yīng)用示例

例1.從10個(gè)不同的文藝節(jié)目中選6個(gè)編成一個(gè)節(jié)目單,如果某女演員的獨(dú)唱節(jié)目一定不能排在第二個(gè)節(jié)目的位置上,則共有多少種不同的排法?

例2.7位同學(xué)站成一排,分別求出符合下列要求的不同排法的種數(shù).

(1) 甲站在中間;

(2)甲、乙必須相鄰;

(3)甲在乙的左邊(但不一定相鄰);

(4)甲、乙必須相鄰,且丙不能站在排頭和排尾;

(5)甲、乙、丙相鄰;

(6)甲、乙不相鄰;

(7)甲、乙、丙兩兩不相鄰。

高中數(shù)學(xué)教案 篇5

1.掌握對(duì)數(shù)函數(shù)的概念,圖象和性質(zhì),且在掌握性質(zhì)的基礎(chǔ)上能進(jìn)行初步的應(yīng)用.

(1)能在指數(shù)函數(shù)及反函數(shù)的概念的基礎(chǔ)上理解對(duì)數(shù)函數(shù)的定義,了解對(duì)底數(shù)的要求,及對(duì)定義域的要求,能利用互為反函數(shù)的兩個(gè)函數(shù)圖象間的關(guān)系正確描繪對(duì)數(shù)函數(shù)的圖象.

(2)能把握指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的實(shí)質(zhì)去研究認(rèn)識(shí)對(duì)數(shù)函數(shù)的性質(zhì),初步學(xué)會(huì)用對(duì)數(shù)函數(shù)的性質(zhì)解決簡單的問題.

2.通過對(duì)數(shù)函數(shù)概念的學(xué)習(xí),樹立相互聯(lián)系相互轉(zhuǎn)化的觀點(diǎn),通過對(duì)數(shù)函數(shù)圖象和性質(zhì)的學(xué)習(xí),滲透數(shù)形結(jié)合,分類討論等思想,注重培養(yǎng)學(xué)生的觀察,分析,歸納等邏輯思維能力.

3.通過指數(shù)函數(shù)與對(duì)數(shù)函數(shù)在圖象與性質(zhì)上的對(duì)比,對(duì)學(xué)生進(jìn)行對(duì)稱美,簡潔美等審美教育,調(diào)動(dòng)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性.

教學(xué)建議

教材分析

(1)對(duì)數(shù)函數(shù)又是函數(shù)中一類重要的基本初等函數(shù),它是在學(xué)生已經(jīng)學(xué)過對(duì)數(shù)與常用對(duì)數(shù),反函數(shù)以及指數(shù)函數(shù)的基礎(chǔ)上引入的.故是對(duì)上述知識(shí)的應(yīng)用,也是對(duì)函數(shù)這一重要數(shù)學(xué)思想的進(jìn)一步認(rèn)識(shí)與理解.對(duì)數(shù)函數(shù)的概念,圖象與性質(zhì)的學(xué)習(xí)使學(xué)生的知識(shí)體系更加完整,系統(tǒng),同時(shí)又是對(duì)數(shù)和函數(shù)知識(shí)的拓展與延伸.它是解決有關(guān)自然科學(xué)領(lǐng)域中實(shí)際問題的重要工具,是學(xué)生今后學(xué)習(xí)對(duì)數(shù)方程,對(duì)數(shù)不等式的基礎(chǔ).

(2)本節(jié)的教學(xué)重點(diǎn)是理解對(duì)數(shù)函數(shù)的定義,掌握對(duì)數(shù)函數(shù)的圖象性質(zhì).難點(diǎn)是利用指數(shù)函數(shù)的圖象和性質(zhì)得到對(duì)數(shù)函數(shù)的圖象和性質(zhì).由于對(duì)數(shù)函數(shù)的概念是一個(gè)抽象的形式,學(xué)生不易理解,而且又是建立在指數(shù)與對(duì)數(shù)關(guān)系和反函數(shù)概念的基礎(chǔ)上,故應(yīng)成為教學(xué)的重點(diǎn).

(3)本節(jié)課的主線是對(duì)數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),所有的問題都應(yīng)圍繞著這條主線展開.而通過互為反函數(shù)的兩個(gè)函數(shù)的關(guān)系由已知函數(shù)研究未知函數(shù)的性質(zhì),這種方法是第一次使用,學(xué)生不適應(yīng),把握不住關(guān)鍵,所以應(yīng)是本節(jié)課的難點(diǎn).

教法建議

(1)對(duì)數(shù)函數(shù)在引入時(shí),就應(yīng)從學(xué)生熟悉的指數(shù)問題出發(fā),通過對(duì)指數(shù)函數(shù)的認(rèn)識(shí)逐步轉(zhuǎn)化為對(duì)對(duì)數(shù)函數(shù)的認(rèn)識(shí),而且畫對(duì)數(shù)函數(shù)圖象時(shí),既要考慮到對(duì)底數(shù)的分類討論而且對(duì)每一類問題也可以多選幾個(gè)不同的底,畫在同一個(gè)坐標(biāo)系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì).

(2)在本節(jié)課中結(jié)合對(duì)數(shù)函數(shù)教學(xué)的特點(diǎn),一定要讓學(xué)生動(dòng)手做,動(dòng)腦想,大膽猜,要以學(xué)生的研究為主,教師只是不斷地反函數(shù)這條主線引導(dǎo)學(xué)生思考的方向.這樣既增強(qiáng)了學(xué)生的參與意識(shí)又教給他們思考問題的方法,獲取知識(shí)的途徑,使學(xué)生學(xué)有所思,思有所得,練有所獲,,從而提高學(xué)習(xí)興趣.

教學(xué)設(shè)計(jì)示例

高中數(shù)學(xué)教案 篇6

課????題 元、角、分的認(rèn)識(shí)?。幾時(shí)幾分。總復(fù)習(xí)第八、九題,練習(xí)十八第10題、15題。 設(shè)計(jì)

教學(xué)目標(biāo) 本學(xué)期在學(xué)習(xí)“元、角、分”時(shí),主要通過大量的操作、活動(dòng)幫助學(xué)生認(rèn)識(shí)元、角、分之間的關(guān)系,以及人民幣的應(yīng)用,使學(xué)生對(duì)元、角、分有比較豐富的感性認(rèn)識(shí)。因此,教材在復(fù)習(xí)時(shí)沒有再安排動(dòng)手操作的內(nèi)容,只是讓學(xué)生對(duì)已學(xué)的元、角、分關(guān)系進(jìn)行復(fù)習(xí),并結(jié)合具體情境進(jìn)行應(yīng)用。正確即可。復(fù)習(xí)中,還要注意培養(yǎng)學(xué)生估計(jì)時(shí)間的意識(shí)和習(xí)慣,即看鐘面時(shí),如果一時(shí)說不出準(zhǔn)確的時(shí)間,可以說一說大概是幾時(shí)幾分。多進(jìn)行這樣的練習(xí),對(duì)學(xué)生建立時(shí)間觀念是很有好處的。另外,還要注意在日常生活中結(jié)合具體實(shí)際多向?qū)W生滲透時(shí)間的觀念。

教學(xué)重點(diǎn) 幫助學(xué)生認(rèn)識(shí)元、角、分之間的關(guān)系,以及人民幣的應(yīng)用,使學(xué)生對(duì)元、角、分有比較豐富的感性認(rèn)識(shí)。滲透時(shí)間的觀念。

教學(xué)難點(diǎn) 幫助學(xué)生認(rèn)識(shí)元、角、分之間的關(guān)系,以及人民幣的應(yīng)用,使學(xué)生對(duì)元、角、分有比較豐富的感性認(rèn)識(shí)。滲透時(shí)間的觀念。

讓學(xué)生回憶所學(xué)的知識(shí)。如果學(xué)生遺忘了,還可以讓學(xué)生用學(xué)具擺一擺,用實(shí)物幫助學(xué)生思考。

學(xué)生獨(dú)立完成第八題。校對(duì)。

二、幾時(shí)幾分。

1、是師生出示鐘面。

師撥生說。

生說生說。

生生互撥互說。

師說生撥。

2、揭示總復(fù)習(xí)第九題。

學(xué)生獨(dú)立看著鐘面填寫時(shí)間。

校對(duì)。

3、補(bǔ)充:我們已經(jīng)認(rèn)識(shí)了幾時(shí)幾分,整時(shí)、半時(shí),那么,分針在12不到一點(diǎn)或12超過一點(diǎn)該怎么讀呢?

三、完成練習(xí)十八15題。第10題引導(dǎo)學(xué)生說一說,再試著提出另外的問題進(jìn)行計(jì)算。提的好的給于鼓勵(lì)。

四、完成作業(yè)本上的作業(yè)。

高中數(shù)學(xué)教案 篇7

三角函數(shù)的周期性

一、學(xué)習(xí)目標(biāo)與自我評(píng)估

1 掌握利用單位圓的幾何方法作函數(shù) 的圖象

2 結(jié)合 的圖象及函數(shù)周期性的定義了解三角函數(shù)的周期性,及最小正周期

3 會(huì)用代數(shù)方法求 等函數(shù)的周期

4 理解周期性的幾何意義

 二、學(xué)習(xí)重點(diǎn)與難點(diǎn)

“周期函數(shù)的概念”, 周期的求解。

三、學(xué)法指導(dǎo)

1、 是周期函數(shù)是指對(duì)定義域中所有都有,即應(yīng)是恒等式。

2、周期函數(shù)一定會(huì)有周期,但不一定存在最小正周期。

四、學(xué)習(xí)活動(dòng)與意義建構(gòu)

五、重點(diǎn)與難點(diǎn)探究

例1、若鐘擺的高度 與時(shí)間 之間的函數(shù)關(guān)系如圖所示

(1)求該函數(shù)的周期;

(2)求 時(shí)鐘擺的高度。

例2、求下列函數(shù)的周期。

(1) (2)

總結(jié):(1)函數(shù) (其中均為常數(shù),且的周期T=xx)

(2)函數(shù) (其中 均為常數(shù),且的周期T=xx)

例3、求證: 的周期為 。

例4、(1)研究 和 函數(shù)的圖象,分析其周期性。(2)求證: 的周期為 (其中 均為常數(shù),

總結(jié):函數(shù) (其中 均為常數(shù),且的周期T= 。

例5、(1)求 的周期。

(2)已知 滿足 ,求證: 是周期函數(shù)

課后思考:能否利用單位圓作函數(shù) 的圖象。

六、作業(yè):

七、自主體驗(yàn)與運(yùn)用

高中數(shù)學(xué)教案 篇8

知識(shí)技能:初步了解分散系概念;初步認(rèn)識(shí)膠體的概念,鑒別及凈化方法;了解膠體的制取方法。

能力培養(yǎng):通過丁達(dá)爾現(xiàn)象、膠體制取等實(shí)驗(yàn),培養(yǎng)學(xué)生的觀察能力、動(dòng)手能力,思維能力和自學(xué)能力。

科學(xué)思想:通過實(shí)驗(yàn)、聯(lián)系實(shí)際等手段,激發(fā)學(xué)生的學(xué)習(xí)興趣。

重點(diǎn):膠體的有關(guān)概念;學(xué)生實(shí)驗(yàn)?zāi)芰?、思維能力、自學(xué)能力的培養(yǎng)。

【展示】氯化鈉溶液、泥水懸濁液、植物油和水的混合液振蕩而成的乳濁液。

【提問】哪種是溶液,哪種是懸濁液、乳濁液?

思考:

(1)分散系、分散質(zhì)和分散劑概念。

(2)溶液、懸濁液、乳濁液三種分散系中的分散質(zhì)分別是什么?

【提問】溶液、懸濁液、乳濁液三種分散系有什么共同點(diǎn)和不同點(diǎn)?

觀察、辨認(rèn)、回答。

閱讀課本,找出三個(gè)概念。

(1)分散系:一種物質(zhì)(或幾種物質(zhì))分散到另一種物質(zhì)里形成的混合物。

(2)溶液中溶質(zhì)是分散質(zhì);懸濁液和乳濁液中的分散質(zhì)分別是:固體小顆粒和小液滴。

思考后得出結(jié)論:

共同點(diǎn):都是一種(或幾種)物質(zhì)的微粒分散于另一種物質(zhì)里形成的混合物。

復(fù)習(xí)舊知識(shí),從而引出新課。

培養(yǎng)自學(xué)能力,了解三個(gè)概念。

培養(yǎng)學(xué)生歸納比較能力,了解三種分散系的異同。

【展示】氫氧化鐵膠體,和氯化鈉溶液比較。

【提問】兩者在外部特征上有何相似點(diǎn)?

【設(shè)問】二者有無區(qū)別呢?

【指導(dǎo)實(shí)驗(yàn)】(投影)用有一小洞的厚紙圓筒(直徑比試管略大些),套在盛有氫氧化鐵溶膠的試管外面,用聚光手電筒照射小孔,從圓筒上方向下觀察,注意有何現(xiàn)象,用盛有氯化鈉溶液的試管做同樣的實(shí)驗(yàn),觀察現(xiàn)象。

【小結(jié)】丁達(dá)爾現(xiàn)象及其成因,并指出能發(fā)生丁達(dá)爾現(xiàn)象的是另一種分散系――膠體。

不同點(diǎn):溶液中分散質(zhì)微粒直徑小于10-9m,是均一、穩(wěn)定、透明的;濁液中分散質(zhì)微粒直徑大于10-7m,不均一、不穩(wěn)定,懸濁液靜置沉淀,乳濁液靜置易分層。

分組實(shí)驗(yàn)。

觀察實(shí)驗(yàn)現(xiàn)象。

現(xiàn)象:光束照射氫氧化鐵溶膠時(shí)產(chǎn)生一條光亮的“通路”,而照射氯化鈉溶液時(shí)無明顯現(xiàn)象。

培養(yǎng)觀察能力,引起學(xué)生注意,激發(fā)興趣。

培養(yǎng)學(xué)生動(dòng)手能力,觀察能力。

【設(shè)問】通過以上的實(shí)驗(yàn),我們知道膠體有丁達(dá)爾現(xiàn)象,而溶液沒有。那么,二者本質(zhì)區(qū)別在什么地方呢?

【設(shè)問】這個(gè)實(shí)驗(yàn)說明什么問題?

【小結(jié)】1.分子、離子等較小微粒能透過半透膜的微孔,膠體微粒不能透過半透膜,溶液和膠體的最本質(zhì)區(qū)別在于微粒的大小,分散質(zhì)微粒的直徑大小在10-9~10-7m之間的.分散系叫做膠體。從而引出膠體概念。

觀察實(shí)驗(yàn),敘述現(xiàn)象。

現(xiàn)象:在加入硝酸銀的試管里出現(xiàn)了白色沉淀;在加入碘水的試管里不發(fā)生變化。

思考后回答:氯化鈉可以透過半透膜的微孔,而淀粉膠體的微粒不能透過。

創(chuàng)設(shè)問題情境,激發(fā)興趣。

培養(yǎng)思維能力。

【提問】在日常生活中見到過哪些膠體?

討論,回答:淀粉膠體、土壤膠體、血液、云、霧、Al(OH)3膠體等等。

【指導(dǎo)閱讀】課本第74頁最后一行至第75頁第一段,思考膠體如何分類?

看書自學(xué),找出答案。

了解膠體分類。

【指導(dǎo)實(shí)驗(yàn)】強(qiáng)調(diào):1.制備上述膠體時(shí)要注意不斷攪拌,但不能用玻璃棒攪拌,否則會(huì)產(chǎn)生沉淀。2.在制取硅酸膠體時(shí),一定要將1mL水玻璃倒入5mL~10mL鹽酸中,切不可倒過來傾倒,否則

會(huì)產(chǎn)生硅酸凝膠。

【提問】如何證實(shí)你所制得的是膠體?請(qǐng)你檢驗(yàn)一下你所制得的氫氧化鐵膠體。

分組實(shí)驗(yàn):

用燒杯盛約30mL蒸餾水,加熱到沸騰,然后逐滴加入飽和氯化鐵溶液,邊加邊振蕩,直至溶液變成紅褐色,即得氫氧化鐵膠體。

在一個(gè)大試管里裝入5~10mL1mol/L鹽酸,并加入1mL水玻璃,然后用力振蕩,即得硅酸溶膠。

在一個(gè)大試管里注入0.01mol/L碘化鉀溶液10mL,用膠頭滴管滴入8~10滴相同濃度的硝酸銀溶液,邊滴加邊振蕩,即得碘化銀膠體。

思考后回答,膠體可產(chǎn)生丁達(dá)爾現(xiàn)象,然后檢驗(yàn)。

培養(yǎng)學(xué)生實(shí)驗(yàn)?zāi)芰Α?/p>

培養(yǎng)學(xué)生嚴(yán)謹(jǐn)求實(shí),一絲不茍的科學(xué)態(tài)度。

使學(xué)生親自體驗(yàn)成功與失敗,激發(fā)興趣。

【提問】請(qǐng)學(xué)生寫出制取三種膠體的化學(xué)方程式,請(qǐng)一個(gè)同學(xué)寫在黑板上,然后追問:這個(gè)同學(xué)書寫是否正確?

高中數(shù)學(xué)教案 篇9

(1)棱柱:

定義:有兩個(gè)面互相平行,其余各面都是四邊形,且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。

表示:用各頂點(diǎn)字母,如五棱柱或用對(duì)角線的端點(diǎn)字母,如五棱柱

幾何特征:兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。

(2)棱錐

定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,由這些面所圍成的幾何體

分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等

表示:用各頂點(diǎn)字母,如五棱錐

幾何特征:側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。

(3)棱臺(tái):

定義:用一個(gè)平行于棱錐底面的平面去截棱錐,截面和底面之間的部分

分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺(tái)、五棱臺(tái)等

表示:用各頂點(diǎn)字母,如五棱臺(tái)

幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點(diǎn)

(4)圓柱:

定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體

幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個(gè)矩形。

(5)圓錐:

定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體

幾何特征:①底面是一個(gè)圓;②母線交于圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)扇形。

(6)圓臺(tái):

定義:用一個(gè)平行于圓錐底面的平面去截圓錐,截面和底面之間的部分

幾何特征:①上下底面是兩個(gè)圓;②側(cè)面母線交于原圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)弓形。

(7)球體:

定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。

高中數(shù)學(xué)教案 篇10

一、教材分析

1、教材地位和作用:二面角是我們?nèi)粘I钪薪?jīng)常見到的、很普通的一個(gè)空間圖形?!岸娼恰笔侨私贪妗稊?shù)學(xué)》第二冊(cè)(下B)中9.7的內(nèi)容。它是在學(xué)生學(xué)過兩條異面直線所成的角、直線和平面所成角、又要重點(diǎn)研究的一種空間的角,它是為了研究兩個(gè)平面的垂直而提出的一個(gè)概念,也是學(xué)生進(jìn)一步研究多面體的基礎(chǔ)。因此,它起著承上啟下的作用。通過本節(jié)課的學(xué)習(xí)還對(duì)學(xué)生系統(tǒng)地掌握直線和平面的知識(shí)乃至于創(chuàng)新能力的培養(yǎng)都具有十分重要的意義。

2、教學(xué)目標(biāo):

知識(shí)目標(biāo):(1)正確理解二面角及其平面角的概念,并能初步運(yùn)用它們解決實(shí)際問題。

(2)進(jìn)一步培養(yǎng)學(xué)生把空間問題轉(zhuǎn)化為平面問題的化歸思想。

能力目標(biāo):(1)突出對(duì)類比、直覺、發(fā)散等探索性思維的培養(yǎng),從而提高學(xué)生的創(chuàng)新能力。(2)通過對(duì)圖形的觀察、分析、比較和操作來強(qiáng)化學(xué)生的動(dòng)手操作能力。

德育目標(biāo):(1)使學(xué)生認(rèn)識(shí)到數(shù)學(xué)知識(shí)來自實(shí)踐,并服務(wù)于實(shí)踐,增強(qiáng)學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)(2)通過揭示線線、線面、面面之間的內(nèi)在聯(lián)系,進(jìn)一步培養(yǎng)學(xué)生聯(lián)系的辯證唯物主義觀點(diǎn)。

情感目標(biāo):在平等的教學(xué)氛圍中,通過學(xué)生之間、師生之間的交流、合作和評(píng)價(jià),拉近學(xué)生之間、師生之間的情感距離。

3、重點(diǎn)、難點(diǎn):

重點(diǎn):“二面角”和“二面角的平面角”的概念

難點(diǎn):“二面角的平面角”概念的形成過程

二、教法分析

1、教學(xué)方法:在引入課題時(shí),我采用多媒體、實(shí)物演示法,在新課探究中采用問題啟導(dǎo)、活動(dòng)探究和類比發(fā)現(xiàn)法,在形成技能時(shí)以訓(xùn)練法、探究研討法為主。

2、教學(xué)控制與調(diào)節(jié)的措施:本節(jié)課由于充分運(yùn)用了多媒體和實(shí)物教具,預(yù)計(jì)學(xué)生對(duì)二面角及二面角平面角的概念能夠理解,根據(jù)學(xué)生及教學(xué)的實(shí)際情況,估計(jì)二面角的具體求法一節(jié)課內(nèi)完成有一定的困難,所以將其放在下節(jié)課。

3、教學(xué)手段:教學(xué)手段的現(xiàn)代化有利于提高課堂效益,有利于創(chuàng)新人才的培養(yǎng),根據(jù)本節(jié)課的教學(xué)需要,確定利用多媒體課件來輔助教學(xué);此外,為加強(qiáng)直觀教學(xué),還要預(yù)先做好一些二面角的模型。

三、學(xué)法指導(dǎo)

1、樂學(xué):在整個(gè)學(xué)習(xí)過程中學(xué)生要保持強(qiáng)烈的好奇心和求知欲,不斷強(qiáng)化自己的創(chuàng)新意識(shí),全身心地投入到學(xué)習(xí)中去,成為學(xué)習(xí)的主人。

2、學(xué)會(huì):在掌握基礎(chǔ)知識(shí)的同時(shí),學(xué)生要注意領(lǐng)會(huì)化歸、類比聯(lián)想等數(shù)學(xué)思想方法的運(yùn)用,學(xué)會(huì)建立完善的認(rèn)知結(jié)構(gòu)。

3、會(huì)學(xué):通過自己親身參與,學(xué)生要領(lǐng)會(huì)復(fù)習(xí)類比和深入研究這兩種知識(shí)創(chuàng)新的方法,從而既學(xué)到知識(shí),又學(xué)會(huì)創(chuàng)新,既能解決問題,更能發(fā)現(xiàn)問題。

四、教學(xué)過程

心理學(xué)研究表明,當(dāng)學(xué)生明確數(shù)學(xué)概念的學(xué)習(xí)目的和意義時(shí),就會(huì)對(duì)概念的學(xué)習(xí)產(chǎn)生濃厚的興趣。創(chuàng)設(shè)問題情境,激發(fā)了學(xué)生的創(chuàng)新意識(shí),營造了創(chuàng)新思維的氛圍。

(一)、二面角

1、揭示概念產(chǎn)生背景。

問題情境1、在平面幾何中“角”是怎樣定義的?

問題情境2、在立體幾何中我們還學(xué)習(xí)了哪些角?

問題情境3、運(yùn)用多媒體和身邊的實(shí)例,展示我們遇到的另一種空間的角——二面角(板書課題)。

通過這三個(gè)問題,打開了學(xué)生的原有認(rèn)知結(jié)構(gòu),為知識(shí)的創(chuàng)新做好了準(zhǔn)備;同時(shí)也讓學(xué)生領(lǐng)會(huì)到,二面角這一概念的產(chǎn)生是因?yàn)樗c我們的生活密不可分,激發(fā)學(xué)生的求知欲。2、展現(xiàn)概念形成過程。

問題情境4、那么,應(yīng)該如何定義二面角呢?

創(chuàng)設(shè)這個(gè)問題情境,為學(xué)生創(chuàng)新思維的展開提供了空間。引導(dǎo)學(xué)生回憶平面幾何中“角”這一概念的引入過程。教師應(yīng)注意多讓學(xué)生說,對(duì)于學(xué)生的創(chuàng)新意識(shí)和創(chuàng)新結(jié)果,教師要給與積極的評(píng)價(jià)。

問題情境5、同學(xué)們能舉出一些二面角的實(shí)例嗎?通過實(shí)際運(yùn)用,可以促使學(xué)生更加深刻地理解概念。

(二)、二面角的平面角

1、揭示概念產(chǎn)生背景。平面幾何中可以把角理解為是一個(gè)旋轉(zhuǎn)量,同樣一個(gè)二面角也可以看作是一個(gè)半平面以其棱為軸旋轉(zhuǎn)而成的,也是一個(gè)旋轉(zhuǎn)量。說明二面角不僅有大小,而且其大小是唯一確定的。平面

與平面的位置關(guān)系,總的說來只有相交或平行兩種情況,為了對(duì)相交平面的相互位置作進(jìn)一步的探討,我們有必要來研究二面角的度量問題。

問題情境6、二面角的大小應(yīng)該怎么度量?能否轉(zhuǎn)化為平面角來處理?這樣就從度量二面角大小的需要上揭示了二面角的平面角概念產(chǎn)生的背景。

2、展現(xiàn)概念形成過程

(1)、類比。教師啟發(fā),尋找類比聯(lián)想的對(duì)象。

問題情境7、我們以前碰到過類似的問題嗎?引導(dǎo)學(xué)生回憶前面所學(xué)過的兩種空間角的定義,電腦演示以提高效率。

問題情境8、兩定義的共同點(diǎn)是什么?生:空間角總是轉(zhuǎn)化為平面的角,并且這個(gè)角是唯一確定的。

問題情境9、這個(gè)平面的角的頂點(diǎn)及兩邊是如何確定的?

(2)、提出猜想:二面角的大小也可通過平面的角來定義。對(duì)學(xué)生提出的猜想,教師應(yīng)該給予充分的肯定,以培養(yǎng)他們大膽猜想的意識(shí)和習(xí)慣,這對(duì)強(qiáng)化他們的創(chuàng)新意識(shí)大有幫助。

問題情境10、那么,這個(gè)角的頂點(diǎn)及兩邊應(yīng)如何確定呢?生:頂點(diǎn)放在棱上,兩邊分別放在兩個(gè)面內(nèi)。這也是學(xué)生直覺思維的結(jié)果。

(3)、探索實(shí)驗(yàn)。通過實(shí)驗(yàn),激發(fā)了學(xué)生的學(xué)習(xí)興趣,培養(yǎng)了學(xué)生的動(dòng)手操作能力。

(4)、繼續(xù)探索,得到定義。

問題情境11、那么,怎樣使這個(gè)角的大小唯一確定呢?師生共同探討后發(fā)現(xiàn),角的頂點(diǎn)確定后,要使此角的大小唯一確定,只須使它的兩條邊在平面內(nèi)唯一確定,聯(lián)想到平面內(nèi)過直線上一點(diǎn)的垂線的唯一性,由此發(fā)現(xiàn)二面角的大小的一種描述方法。

(5)、自我驗(yàn)證:要求學(xué)生閱讀課本上的定義。并說明定義的合理性,教師作適當(dāng)?shù)囊龑?dǎo),并加以理論證明。

(三)、二面角及其平面角的畫法

主要分為直立式和平臥式兩種,用電腦《幾何畫板》作圖。

(四)、范例分析

為鞏固學(xué)生所學(xué)知識(shí),由于時(shí)間的關(guān)系設(shè)置了一道例題。來源于實(shí)際生活,不但培養(yǎng)了學(xué)生分析問題和解決問題的能力,也讓學(xué)生領(lǐng)會(huì)到數(shù)學(xué)概念來自生活實(shí)際,并服務(wù)于生活實(shí)際,從而增強(qiáng)他們應(yīng)用數(shù)學(xué)的意識(shí)。

例:一張邊長為10厘米的正三角形紙片ABc,以它的高AD為折痕,折成一個(gè)1200二面角,求此時(shí)B、c兩點(diǎn)間的距離。

分析:涉及二面角的計(jì)算問題,關(guān)鍵是找出(或作出)該二面角的平面角。引導(dǎo)學(xué)生充分利用已知圖形的性質(zhì),最后發(fā)現(xiàn)可由定義找出該二面角的平面角??勺寣W(xué)生先做,為調(diào)動(dòng)學(xué)生的積極性,并增加學(xué)生的參與感,活躍課堂的氣氛,教師可給學(xué)生板演的機(jī)會(huì)。教師講評(píng)時(shí)強(qiáng)調(diào)解題規(guī)范即必須證明∠BDc是二面角B—AD—c的平面角。

變式訓(xùn)練:圖中共有幾個(gè)二面角?能求出它們的大小嗎?根據(jù)課堂實(shí)際情況,本題的變式訓(xùn)練也可作為課后思考題。

題后反思:(1)解題過程中必須證明∠BDc是二面角B—AD—c的平面角。

(2)求二面角的平面角的方法是:先找(或作)——后證——再解(三角形)

(五)、練習(xí)、小結(jié)與作業(yè)

練習(xí):習(xí)題9.7的第3題

小結(jié)在復(fù)習(xí)完二面角及其平面角的概念后,要求學(xué)生對(duì)空間中三種角加以比較、歸納,以促成學(xué)生建立起空間中角這一概念系統(tǒng)。同時(shí)要求學(xué)生對(duì)本節(jié)課的學(xué)習(xí)方法進(jìn)行總結(jié),領(lǐng)會(huì)復(fù)習(xí)類比和深入研究這兩種知識(shí)創(chuàng)新的方法。

作業(yè):習(xí)題9.7的第4題

思考題:見例題

五、板書設(shè)計(jì)(見課件)

以上是我對(duì)《二面角》授課的初步設(shè)想,不足之處,懇請(qǐng)大家批評(píng)指正,謝謝!

高中數(shù)學(xué)教案 篇11

課題:

等比數(shù)列的概念

教學(xué)目標(biāo)

1、通過教學(xué)使學(xué)生理解等比數(shù)列的概念,推導(dǎo)并掌握通項(xiàng)公式、

2、使學(xué)生進(jìn)一步體會(huì)類比、歸納的思想,培養(yǎng)學(xué)生的觀察、概括能力、

3、培養(yǎng)學(xué)生勤于思考,實(shí)事求是的精神,及嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度、

教學(xué)重點(diǎn),難點(diǎn)

重點(diǎn)、難點(diǎn)是等比數(shù)列的定義的歸納及通項(xiàng)公式的推導(dǎo)、

教學(xué)用具

投影儀,多媒體軟件,電腦、

教學(xué)方法

討論、談話法、

教學(xué)過程

一、提出問題

給出以下幾組數(shù)列,將它們分類,說出分類標(biāo)準(zhǔn)、(幻燈片)

①—2,1,4,7,10,13,16,19,…

②8,16,32,64,128,256,…

③1,1,1,1,1,1,1,…

④243,81,27,9,3,1,,,…

⑤31,29,27,25,23,21,19,…

⑥1,—1,1,—1,1,—1,1,—1,…

⑦1,—10,100,—1000,10000,—100000,…

⑧0,0,0,0,0,0,0,…

由學(xué)生發(fā)表意見(可能按項(xiàng)與項(xiàng)之間的關(guān)系分為遞增數(shù)列、遞減數(shù)列、常數(shù)數(shù)列、擺動(dòng)數(shù)列,也可能分為等差、等比兩類),統(tǒng)一一種分法,其中②③④⑥⑦為有共同性質(zhì)的一類數(shù)列(學(xué)生看不出③的情況也無妨,得出定義后再考察③是否為等比數(shù)列)、

二、講解新課

請(qǐng)學(xué)生說出數(shù)列②③④⑥⑦的共同特性,教師指出實(shí)際生活中也有許多類似的例子,如變形蟲分裂問題、假設(shè)每經(jīng)過一個(gè)單位時(shí)間每個(gè)變形蟲都分裂為兩個(gè)變形蟲,再假設(shè)開始有一個(gè)變形蟲,經(jīng)過一個(gè)單位時(shí)間它分裂為兩個(gè)變形蟲,經(jīng)過兩個(gè)單位時(shí)間就有了四個(gè)變形蟲,…,一直進(jìn)行下去,記錄下每個(gè)單位時(shí)間的變形蟲個(gè)數(shù)得到了一列數(shù)

這個(gè)數(shù)列也具有前面的幾個(gè)數(shù)列的共同特性,這是我們將要研究的另一類數(shù)列——等比數(shù)列、(這里播放變形蟲分裂的多媒體軟件的第一步)

等比數(shù)列(板書)

1、等比數(shù)列的定義(板書)

根據(jù)等比數(shù)列與等差數(shù)列的名字的區(qū)別與聯(lián)系,嘗試給等比數(shù)列下定義、學(xué)生一般回答可能不夠完美,多數(shù)情況下,有了等差數(shù)列的基礎(chǔ)是可以由學(xué)生概括出來的教師寫出等比數(shù)列的定義,標(biāo)注出重點(diǎn)詞語、

請(qǐng)學(xué)生指出等比數(shù)列②③④⑥⑦各自的公比,并思考有無數(shù)列既是等差數(shù)列又是等比數(shù)列、學(xué)生通過觀察可以發(fā)現(xiàn)③是這樣的.數(shù)列,教師再追問,還有沒有其他的例子,讓學(xué)生再舉兩例、而后請(qǐng)學(xué)生概括這類數(shù)列的一般形式,學(xué)生可能說形如的數(shù)列都滿足既是等差又是等比數(shù)列,讓學(xué)生討論后得出結(jié)論:當(dāng)時(shí),數(shù)列既是等差又是等比數(shù)列,當(dāng)時(shí),它只是等差數(shù)列,而不是等比數(shù)列、教師追問理由,引出對(duì)等比數(shù)列的認(rèn)識(shí):

2、對(duì)定義的認(rèn)識(shí)(板書)

(1)等比數(shù)列的首項(xiàng)不為0;

(2)等比數(shù)列的每一項(xiàng)都不為0,即

問題:一個(gè)數(shù)列各項(xiàng)均不為0是這個(gè)數(shù)列為等比數(shù)列的什么條件?

(3)公比不為0、

用數(shù)學(xué)式子表示等比數(shù)列的定義、

是等比數(shù)列

①、在這個(gè)式子的寫法上可能會(huì)有一些爭議,如寫成

,可讓學(xué)生研究行不行,好不好;接下來再問,能否改寫為

是等比數(shù)列?為什么不能?式子給出了數(shù)列第項(xiàng)與第

項(xiàng)的數(shù)量關(guān)系,但能否確定一個(gè)等比數(shù)列?(不能)確定一個(gè)等比數(shù)列需要幾個(gè)條件?當(dāng)給定了首項(xiàng)及公比后,如何求任意一項(xiàng)的值?所以要研究通項(xiàng)公式、

3、等比數(shù)列的通項(xiàng)公式(板書)

問題:用和表示第項(xiàng)

①不完全歸納法

②疊乘法,…,,這個(gè)式子相乘得,所以(板書)

(1)等比數(shù)列的通項(xiàng)公式得出通項(xiàng)公式后,讓學(xué)生思考如何認(rèn)識(shí)通項(xiàng)公式、(板書)

(2)對(duì)公式的認(rèn)識(shí)

由學(xué)生來說,最后歸結(jié):

①函數(shù)觀點(diǎn);

②方程思想(因在等差數(shù)列中已有認(rèn)識(shí),此處再復(fù)習(xí)鞏固而已)、

這里強(qiáng)調(diào)方程思想解決問題、方程中有四個(gè)量,知三求一,這是公式最簡單的應(yīng)用,請(qǐng)學(xué)生舉例(應(yīng)能編出四類問題)、解題格式是什么?(不僅要會(huì)解題,還要注意規(guī)范表述的訓(xùn)練)

如果增加一個(gè)條件,就多知道了一個(gè)量,這是公式的更高層次的應(yīng)用,下節(jié)課再研究、同學(xué)可以試著編幾道題。

三、小結(jié)

1、本節(jié)課研究了等比數(shù)列的概念,得到了通項(xiàng)公式;

2、注意在研究內(nèi)容與方法上要與等差數(shù)列相類比;

3、用方程的思想認(rèn)識(shí)通項(xiàng)公式,并加以應(yīng)用。

探究活動(dòng)

將一張很大的薄紙對(duì)折,對(duì)折30次后(如果可能的話)有多厚?不妨假設(shè)這張紙的厚度為0、01毫米。

參考答案:

30次后,厚度為,這個(gè)厚度超過了世界最高的山峰——珠穆朗瑪峰的高度。如果紙?jiān)俦∫恍热缂埡?、001毫米,對(duì)折34次就超過珠穆朗瑪峰的高度了、還記得國王的承諾嗎?第31個(gè)格子中的米已經(jīng)是1073741824粒了,后邊的格子中的米就更多了,最后一個(gè)格子中的米應(yīng)是粒,用計(jì)算器算一下吧(對(duì)數(shù)算也行)。

2024高中數(shù)學(xué)教案模板(優(yōu)選6篇)


作為一位杰出的教職工,很有必要精心設(shè)計(jì)一份教學(xué)設(shè)計(jì),教學(xué)設(shè)計(jì)一般包括教學(xué)目標(biāo)、教學(xué)重難點(diǎn)、教學(xué)方法、教學(xué)步驟與時(shí)間分配等環(huán)節(jié)。教學(xué)設(shè)計(jì)要怎么寫呢?以下是小編整理的高中數(shù)學(xué)教學(xué)設(shè)計(jì),僅供參考,希望能夠幫助到大家。

2024高中數(shù)學(xué)教案模板 篇1

教學(xué)目標(biāo):

1。通過生活中優(yōu)化問題的學(xué)習(xí),體會(huì)導(dǎo)數(shù)在解決實(shí)際問題中的作用,促進(jìn)

學(xué)生全面認(rèn)識(shí)數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值。

2。通過實(shí)際問題的研究,促進(jìn)學(xué)生分析問題、解決問題以及數(shù)學(xué)建模能力的提高。

教學(xué)重點(diǎn):

如何建立實(shí)際問題的目標(biāo)函數(shù)是教學(xué)的重點(diǎn)與難點(diǎn)。

教學(xué)過程:

一、問題情境

問題1把長為60cm的鐵絲圍成矩形,長寬各為多少時(shí)面積最大?

問題2把長為100cm的鐵絲分成兩段,各圍成正方形,怎樣分法,能使兩個(gè)正方形面積之各最小?

問題3做一個(gè)容積為256L的方底無蓋水箱,它的高為多少時(shí)材料最?。?/p>

二、新課引入

導(dǎo)數(shù)在實(shí)際生活中有著廣泛的應(yīng)用,利用導(dǎo)數(shù)求最值的方法,可以求出實(shí)際生活中的某些最值問題。

1。幾何方面的應(yīng)用(面積和體積等的最值)。

2。物理方面的應(yīng)用(功和功率等最值)。

3。經(jīng)濟(jì)學(xué)方面的應(yīng)用(利潤方面最值)。

三、知識(shí)建構(gòu)

例1在邊長為60cm的正方形鐵片的四角切去相等的正方形,再把它的邊沿虛線折起(如圖),做成一個(gè)無蓋的方底箱子,箱底的邊長是多少時(shí),箱底的容積最大?最大容積是多少?

說明1解應(yīng)用題一般有四個(gè)要點(diǎn)步驟:設(shè)——列——解——答。

說明2用導(dǎo)數(shù)法求函數(shù)的最值,與求函數(shù)極值方法類似,加一步與幾個(gè)極

值及端點(diǎn)值比較即可。

例2圓柱形金屬飲料罐的容積一定時(shí),它的高與底與半徑應(yīng)怎樣選取,才

能使所用的材料最?。?/p>

變式當(dāng)圓柱形金屬飲料罐的`表面積為定值S時(shí),它的高與底面半徑應(yīng)怎樣選取,才能使所用材料最?。?/p>

說明1這種在定義域內(nèi)僅有一個(gè)極值的函數(shù)稱單峰函數(shù)。

說明2用導(dǎo)數(shù)法求單峰函數(shù)最值,可以對(duì)一般的求法加以簡化,其步驟為:

S1列:列出函數(shù)關(guān)系式。

S2求:求函數(shù)的導(dǎo)數(shù)。

S3述:說明函數(shù)在定義域內(nèi)僅有一個(gè)極大(小)值,從而斷定為函數(shù)的最大(?。┲?,必要時(shí)作答。

例3在如圖所示的電路中,已知電源的內(nèi)阻為,電動(dòng)勢(shì)為。外電阻為

多大時(shí),才能使電功率最大?最大電功率是多少?

說明求最值要注意驗(yàn)證等號(hào)成立的條件,也就是說取得這樣的值時(shí)對(duì)應(yīng)的自變量必須有解。

例4強(qiáng)度分別為a,b的兩個(gè)光源A,B,它們間的距離為d,試問:在連接這兩個(gè)光源的線段AB上,何處照度最小?試就a=8,b=1,d=3時(shí)回答上述問題(照度與光的強(qiáng)度成正比,與光源的距離的平方成反比)。

例5在經(jīng)濟(jì)學(xué)中,生產(chǎn)單位產(chǎn)品的成本稱為成本函數(shù),記為;出售單位產(chǎn)品的收益稱為收益函數(shù),記為;稱為利潤函數(shù),記為。

(1)設(shè),生產(chǎn)多少單位產(chǎn)品時(shí),邊際成本最低?

(2)設(shè),產(chǎn)品的單價(jià),怎樣的定價(jià)可使利潤最大?

四、課堂練習(xí)

1。將正數(shù)a分成兩部分,使其立方和為最小,這兩部分應(yīng)分成____和___。

2。在半徑為R的圓內(nèi),作內(nèi)接等腰三角形,當(dāng)?shù)走吷细邽?時(shí),它的面積最大。

3。有一邊長分別為8與5的長方形,在各角剪去相同的小正方形,把四邊折起做成一個(gè)無蓋小盒,要使紙盒的容積最大,問剪去的小正方形邊長應(yīng)為多少?

4。一條水渠,斷面為等腰梯形,如圖所示,在確定斷面尺寸時(shí),希望在斷面ABCD的面積為定值S時(shí),使得濕周l=AB+BC+CD最小,這樣可使水流阻力小,滲透少,求此時(shí)的高h(yuǎn)和下底邊長b。

五、回顧反思

(1)解有關(guān)函數(shù)最大值、最小值的實(shí)際問題,需要分析問題中各個(gè)變量之間的關(guān)系,找出適當(dāng)?shù)暮瘮?shù)關(guān)系式,并確定函數(shù)的定義區(qū)間;所得結(jié)果要符合問題的實(shí)際意義。

(2)根據(jù)問題的實(shí)際意義來判斷函數(shù)最值時(shí),如果函數(shù)在此區(qū)間上只有一個(gè)極值點(diǎn),那么這個(gè)極值就是所求最值,不必再與端點(diǎn)值比較。

(3)相當(dāng)多有關(guān)最值的實(shí)際問題用導(dǎo)數(shù)方法解決較簡單。

六、課外作業(yè)

課本第38頁第1,2,3,4題。

2024高中數(shù)學(xué)教案模板 篇2

教學(xué)目標(biāo):

(1)了解坐標(biāo)法和解析幾何的意義,了解解析幾何的基本問題.

(2)進(jìn)一步理解曲線的方程和方程的曲線.

(3)初步掌握求曲線方程的方法.

(4)通過本節(jié)內(nèi)容的教學(xué),培養(yǎng)學(xué)生分析問題和轉(zhuǎn)化的能力.

教學(xué)重點(diǎn)、難點(diǎn):求曲線的方程.

教學(xué)用具:

計(jì)算機(jī).

教學(xué)方法:

啟發(fā)引導(dǎo)法,討論法.

教學(xué)過程:

【引入】

1.提問:什么是曲線的方程和方程的曲線.

學(xué)生思考并回答.教師強(qiáng)調(diào).

2.坐標(biāo)法和解析幾何的意義、基本問題.

對(duì)于一個(gè)幾何問題,在建立坐標(biāo)系的基礎(chǔ)上,用坐標(biāo)表示點(diǎn);用方程表示曲線,通過研究方程的性質(zhì)間接地來研究曲線的性質(zhì),這一研究幾何問題的方法稱為坐標(biāo)法,這門科學(xué)稱為解析幾何.解析幾何的兩大基本問題就是:

(1)根據(jù)已知條件,求出表示平面曲線的方程.

(2)通過方程,研究平面曲線的性質(zhì).

事實(shí)上,在前邊所學(xué)的直線方程的理論中也有這樣兩個(gè)基本問題.而且要先研究如何求出曲線方程,再研究如何用方程研究曲線.本節(jié)課就初步研究曲線方程的求法.

【問題】

如何根據(jù)已知條件,求出曲線的方程.

【實(shí)例分析】

例1:設(shè)、兩點(diǎn)的坐標(biāo)是、(3,7),求線段的垂直平分線的方程.

首先由學(xué)生分析:根據(jù)直線方程的知識(shí),運(yùn)用點(diǎn)斜式即可解決.

解法一:易求線段的中點(diǎn)坐標(biāo)為(1,3),

由斜率關(guān)系可求得l的斜率為

于是有

即l的方程為

分析、引導(dǎo):上述問題是我們?cè)缇蛯W(xué)過的,用點(diǎn)斜式就可解決.可是,你們是否想過①恰好就是所求的嗎?或者說①就是直線的方程?根據(jù)是什么,有證明嗎?

(通過教師引導(dǎo),是學(xué)生意識(shí)到這是以前沒有解決的問題,應(yīng)該證明,證明的依據(jù)就是定義中的兩條).

證明:(1)曲線上的點(diǎn)的坐標(biāo)都是這個(gè)方程的解.

設(shè)是線段的垂直平分線上任意一點(diǎn),則

將上式兩邊平方,整理得

這說明點(diǎn)的坐標(biāo)是方程的解.

(2)以這個(gè)方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn).

設(shè)點(diǎn)的坐標(biāo)是方程①的任意一解,則

到、的距離分別為

所以,即點(diǎn)在直線上.

綜合(1)、(2),①是所求直線的方程.

至此,證明完畢.回顧上述內(nèi)容我們會(huì)發(fā)現(xiàn)一個(gè)有趣的現(xiàn)象:在證明(1)曲線上的點(diǎn)的坐標(biāo)都是這個(gè)方程的解中,設(shè)是線段的垂直平分線上任意一點(diǎn),最后得到式子,如果去掉腳標(biāo),這不就是所求方程嗎?可見,這個(gè)證明過程就表明一種求解過程,下面試試看:

解法二:設(shè)是線段的垂直平分線上任意一點(diǎn),也就是點(diǎn)屬于集合

由兩點(diǎn)間的距離公式,點(diǎn)所適合的條件可表示為

將上式兩邊平方,整理得

果然成功,當(dāng)然也不要忘了證明,即驗(yàn)證兩條是否都滿足.顯然,求解過程就說明第一條是正確的(從這一點(diǎn)看,解法二也比解法一優(yōu)越一些);至于第二條上邊已證.

這樣我們就有兩種求解方程的方法,而且解法二不借助直線方程的理論,又非常自然,還體現(xiàn)了曲線方程定義中點(diǎn)集與對(duì)應(yīng)的思想.因此是個(gè)好方法.

讓我們用這個(gè)方法試解如下問題:

例2:點(diǎn)與兩條互相垂直的直線的距離的積是常數(shù)求點(diǎn)的軌跡方程.

分析:這是一個(gè)純粹的幾何問題,連坐標(biāo)系都沒有.所以首先要建立坐標(biāo)系,顯然用已知中兩條互相垂直的直線作坐標(biāo)軸,建立直角坐標(biāo)系.然后仿照例1中的解法進(jìn)行求解.

求解過程略.

【概括總結(jié)】通過學(xué)生討論,師生共同總結(jié):

分析上面兩個(gè)例題的求解過程,我們總結(jié)一下求解曲線方程的大體步驟:

首先應(yīng)有坐標(biāo)系;其次設(shè)曲線上任意一點(diǎn);然后寫出表示曲線的點(diǎn)集;再代入坐標(biāo);最后整理出方程,并證明或修正.說得更準(zhǔn)確一點(diǎn)就是:

(1)建立適當(dāng)?shù)淖鴺?biāo)系,用有序?qū)崝?shù)對(duì)例如表示曲線上任意一點(diǎn)的坐標(biāo);

(2)寫出適合條件的'點(diǎn)的集合;

(3)用坐標(biāo)表示條件,列出方程;

(4)化方程為最簡形式;

(5)證明以化簡后的方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn).

一般情況下,求解過程已表明曲線上的點(diǎn)的坐標(biāo)都是方程的解;如果求解過程中的轉(zhuǎn)化都是等價(jià)的,那么逆推回去就說明以方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn).所以,通常情況下證明可省略,不過特殊情況要說明.

上述五個(gè)步驟可簡記為:建系設(shè)點(diǎn);寫出集合;列方程;化簡;修正.

下面再看一個(gè)問題:

例3:已知一條曲線在軸的上方,它上面的每一點(diǎn)到點(diǎn)的距離減去它到軸的距離的差都是2,求這條曲線的方程.

【動(dòng)畫演示】用幾何畫板演示曲線生成的過程和形狀,在運(yùn)動(dòng)變化的過程中尋找關(guān)系.

解:設(shè)點(diǎn)是曲線上任意一點(diǎn),軸,垂足是(如圖2),那么點(diǎn)屬于集合

由距離公式,點(diǎn)適合的條件可表示為

將①式移項(xiàng)后再兩邊平方,得

化簡得

由題意,曲線在軸的上方,所以,雖然原點(diǎn)的坐標(biāo)(0,0)是這個(gè)方程的解,但不屬于已知曲線,所以曲線的方程應(yīng)為,它是關(guān)于軸對(duì)稱的拋物線,但不包括拋物線的頂點(diǎn),如圖2中所示.

【練習(xí)鞏固】

題目:在正三角形內(nèi)有一動(dòng)點(diǎn),已知到三個(gè)頂點(diǎn)的距離分別為、 、,且有,求點(diǎn)軌跡方程.

分析、略解:首先應(yīng)建立坐標(biāo)系,以正三角形一邊所在的直線為一個(gè)坐標(biāo)軸,這條邊的垂直平分線為另一個(gè)軸,建立直角坐標(biāo)系比較簡單,如圖3所示.設(shè)、的坐標(biāo)為、,則的坐標(biāo)為,的坐標(biāo)為.

根據(jù)條件,代入坐標(biāo)可得

化簡得

由于題目中要求點(diǎn)在三角形內(nèi),所以,在結(jié)合①式可進(jìn)一步求出、的范圍,最后曲線方程可表示為

【小結(jié)】師生共同總結(jié):

(1)解析幾何研究研究問題的方法是什么?

(2)如何求曲線的方程?

(3)請(qǐng)對(duì)求解曲線方程的五個(gè)步驟進(jìn)行評(píng)價(jià).各步驟的作用,哪步重要,哪步應(yīng)注意什么?

【作業(yè)】課本第72頁練習(xí)1,2,3;

2024高中數(shù)學(xué)教案模板 篇3

一、教學(xué)內(nèi)容分析

圓錐曲線的定義反映了圓錐曲線的本質(zhì)屬性,它是無數(shù)次實(shí)踐后的高度抽象.恰當(dāng)?shù)乩枚x解題,許多時(shí)候能以簡馭繁.因此,在學(xué)習(xí)了橢圓、雙曲線、拋物線的定義及標(biāo)準(zhǔn)方程、幾何性質(zhì)后,再一次強(qiáng)調(diào)定義,學(xué)會(huì)利用圓錐曲線定義來熟練的解題”。

二、學(xué)生學(xué)習(xí)情況分析

我所任教班級(jí)的學(xué)生參與課堂教學(xué)活動(dòng)的積極性強(qiáng),思維活躍,但計(jì)算能力較差,推理能力較弱,使用數(shù)學(xué)語言的表達(dá)能力也略顯不足。

三、設(shè)計(jì)思想

由于這部分知識(shí)較為抽象,如果離開感性認(rèn)識(shí),容易使學(xué)生陷入困境,降低學(xué)習(xí)熱情.在教學(xué)時(shí),借助多媒體動(dòng)畫,引導(dǎo)學(xué)生主動(dòng)發(fā)現(xiàn)問題、解決問題,主動(dòng)參與教學(xué),在輕松愉快的環(huán)境中發(fā)現(xiàn)、獲取新知,提高教學(xué)效率.

四、教學(xué)目標(biāo)

1.深刻理解并熟練掌握?qǐng)A錐曲線的定義,能靈活應(yīng)用定義解決問題;熟練掌握焦點(diǎn)坐標(biāo)、頂點(diǎn)坐標(biāo)、焦距、離心率、準(zhǔn)線方程、漸近線、焦半徑等概念和求法;能結(jié)合平面幾何的基本知識(shí)求解圓錐曲線的方程。

2.通過對(duì)練習(xí),強(qiáng)化對(duì)圓錐曲線定義的理解,提高分析、解決問題的能力;通過對(duì)問題的不斷引申,精心設(shè)問,引導(dǎo)學(xué)生學(xué)習(xí)解題的一般方法。

3.借助多媒體輔助教學(xué),激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣.

五、教學(xué)重點(diǎn)與難點(diǎn):

教學(xué)重點(diǎn)

1.對(duì)圓錐曲線定義的理解

2.利用圓錐曲線的定義求“最值”

3.“定義法”求軌跡方程

教學(xué)難點(diǎn):

巧用圓錐曲線定義解題

六、教學(xué)過程設(shè)計(jì)

【設(shè)計(jì)思路】

(一)開門見山,提出問題

一上課,我就直截了當(dāng)?shù)亟o出——

例題1:(1) 已知A(-2,0), B(2,0)動(dòng)點(diǎn)M滿足|MA|+|MB|=2,則點(diǎn)M的軌跡是( )。

(A)橢圓 (B)雙曲線 (C)線段 (D)不存在

(2)已知?jiǎng)狱c(diǎn) M(x,y)滿足(x1)2(y2)2|3x4y|,則點(diǎn)M的軌跡是( )。

(A)橢圓 (B)雙曲線 (C)拋物線 (D)兩條相交直線

【設(shè)計(jì)意圖】

定義是揭示概念內(nèi)涵的邏輯方法,熟悉不同概念的不同定義方式,是學(xué)習(xí)和研究數(shù)學(xué)的一個(gè)必備條件,而通過一個(gè)階段的學(xué)習(xí)之后,學(xué)生們對(duì)圓錐曲線的定義已有了一定的認(rèn)識(shí),他們是否能真正掌握它們的本質(zhì),是我本節(jié)課首先要弄清楚的問題。

為了加深學(xué)生對(duì)圓錐曲線定義理解,我以圓錐曲線的定義的運(yùn)用為主線,精心準(zhǔn)備了兩道練習(xí)題。

【學(xué)情預(yù)設(shè)】

估計(jì)多數(shù)學(xué)生能夠很快回答出正確答案,但是部分學(xué)生對(duì)于圓錐曲線的定義可能并未真正理解,因此,在學(xué)生們回答后,我將要求學(xué)生接著說出:若想答案是其他選項(xiàng)的話,條件要怎么改?這對(duì)于已學(xué)完圓錐曲線這部分知識(shí)的學(xué)生來說,并不是什么難事。但問題(2)就可能讓學(xué)生們費(fèi)一番周折—— 如果有學(xué)生提出:可以利用變形來解決問題,那么我就可以循著他的思路,先對(duì)原等式做變形:(x1)2(y2)2

5這樣,很快就能得出正確結(jié)果。如若不然,我將啟發(fā)他們從等式兩端的式子|3x4y|5

入手,考慮通過適當(dāng)?shù)淖冃危D(zhuǎn)化為學(xué)生們熟知的兩個(gè)距離公式。

在對(duì)學(xué)生們的解答做出判斷后,我將把問題引申為:該雙曲線的中心坐標(biāo)是 ,實(shí)軸長為 ,焦距為 。以深化對(duì)概念的理解。

(二)理解定義、解決問題

例2 (1)已知?jiǎng)訄AA過定圓B:x2y26x70的圓心,且與定圓C:xy6x910 相內(nèi)切,求△ABC面積的最大值。

(2)在(1)的條件下,給定點(diǎn)P(-2,2), 求|PA|

【設(shè)計(jì)意圖】

運(yùn)用圓錐曲線定義中的數(shù)量關(guān)系進(jìn)行轉(zhuǎn)化,使問題化歸為幾何中求最大(小)值的模式,是解析幾何問題中的一種常見題型,也是學(xué)生們比較容易混淆的一類問題。例2的設(shè)置就是為了方便學(xué)生的辨析。

【學(xué)情預(yù)設(shè)】

根據(jù)以往的經(jīng)驗(yàn),多數(shù)學(xué)生看上去都能順利解答本題,但真正能完整解答的可能并不多。事實(shí)上,解決本題的關(guān)鍵在于能準(zhǔn)確寫出點(diǎn)A的軌跡,有了練習(xí)題1的鋪墊,這個(gè)問題對(duì)學(xué)生們來講就顯得頗為簡單,因此面對(duì)例2(1),多數(shù)學(xué)生應(yīng)該能準(zhǔn)確給出解答,但是對(duì)于例2(2)這樣相對(duì)比較陌生的問題,學(xué)生就無從下手。我提醒學(xué)生把3/5和離心率聯(lián)系起來,這樣就容易和第二定義聯(lián)系起來,從而找到解決本題的突破口。

(三)自主探究、深化認(rèn)識(shí)

如果時(shí)間允許,練習(xí)題將為學(xué)生們提供一次數(shù)學(xué)猜想、試驗(yàn)的機(jī)會(huì)——

練習(xí):設(shè)點(diǎn)Q是圓C:(x1)2225|AB|的最小值。 3y225上動(dòng)點(diǎn),點(diǎn)A(1,0)是圓內(nèi)一點(diǎn),AQ的垂直平分線與CQ交于點(diǎn)M,求點(diǎn)M的軌跡方程。

引申:若將點(diǎn)A移到圓C外,點(diǎn)M的軌跡會(huì)是什么?

【設(shè)計(jì)意圖】 練習(xí)題設(shè)置的目的是為學(xué)生課外自主探究學(xué)習(xí)提供平臺(tái),當(dāng)然,如果課堂上時(shí)間允許的話,

可借助“多媒體課件”,引導(dǎo)學(xué)生對(duì)自己的結(jié)論進(jìn)行驗(yàn)證。

【知識(shí)鏈接】

(一)圓錐曲線的定義

1. 圓錐曲線的第一定義

2. 圓錐曲線的統(tǒng)一定義

(二)圓錐曲線定義的應(yīng)用舉例

1.雙曲線1的兩焦點(diǎn)為F1、F2,P為曲線上一點(diǎn),若P到左焦點(diǎn)F1的距離為12,求P到右準(zhǔn)線的距離。

2.|PF1||PF2|2.P為等軸雙曲線x2y2a2上一點(diǎn), F1、F2為兩焦點(diǎn),O為雙曲線的中心,求的|PO|取值范圍。

3.在拋物線y22px上有一點(diǎn)A(4,m),A點(diǎn)到拋物線的焦點(diǎn)F的距離為5,求拋物線的方程和點(diǎn)A的坐標(biāo)。

4.(1)已知點(diǎn)F是橢圓1的右焦點(diǎn),M是這橢圓上的動(dòng)點(diǎn),A(2,2)是一個(gè)定點(diǎn),求|MA|+|MF|的最小值。

x2y211(2)已知A(,3)為一定點(diǎn),F(xiàn)為雙曲線1的右焦點(diǎn),M在雙曲線右支上移動(dòng),當(dāng)|AM||MF|最小時(shí),求M點(diǎn)的坐標(biāo)。

(3)已知點(diǎn)P(-2,3)及焦點(diǎn)為F的拋物線y,在拋物線上求一點(diǎn)M,使|PM|+|FM|最小。

5.已知A(4,0),B(2,2)是橢圓1內(nèi)的點(diǎn),M是橢圓上的動(dòng)點(diǎn),求|MA|+|MB|的最小值與最大值。

七、教學(xué)反思

1.本課將借助于,將使全體學(xué)生參與活動(dòng)成為可能,使原來令人難以理解的抽象的.數(shù)學(xué)理論變得形象,生動(dòng)且通俗易懂,同時(shí),運(yùn)用“多媒體課件”輔助教學(xué),節(jié)省了板演的時(shí)間,從而給學(xué)生留出更多的時(shí)間自悟、自練、自查,充分發(fā)揮學(xué)生的主體作用,這充分顯示出“多媒體課件”與探究合作式教學(xué)理念的有機(jī)結(jié)合的教學(xué)優(yōu)勢(shì)。

2.利用兩個(gè)例題及其引申,通過一題多變,層層深入的探索,以及對(duì)猜測(cè)結(jié)果的檢測(cè)研究,培養(yǎng)學(xué)生思維能力,使學(xué)生從學(xué)會(huì)一個(gè)問題的求解到掌握一類問題的解決方法. 循序漸進(jìn)的讓學(xué)生把握這類問題的解法;將學(xué)生容易混淆的兩類求“最值問題”并為一道題,方便學(xué)生進(jìn)行比較、分析。雖然從表面上看,我這一堂課的教學(xué)容量不大,但事實(shí)上,學(xué)生們的思維運(yùn)動(dòng)量并不會(huì)小。

總之,如何更好地選擇符合學(xué)生具體情況,滿足教學(xué)目標(biāo)的例題與練習(xí)、靈活把握課堂教學(xué)節(jié)奏仍是我今后工作中的一個(gè)重要研究課題.而要能真正進(jìn)行素質(zhì)教育,培養(yǎng)學(xué)生的創(chuàng)新意識(shí),自己首先必須更新觀念——在教學(xué)中適度使用多媒體技術(shù),讓學(xué)生有參與教學(xué)實(shí)踐的機(jī)會(huì),能夠使學(xué)生在學(xué)習(xí)新知識(shí)的同時(shí),激發(fā)起求知的欲望,在尋求解決問題的辦法的過程中獲得自信和成功的體驗(yàn),于不知不覺中改善了他們的思維品質(zhì),提高了數(shù)學(xué)思維能力。

2024高中數(shù)學(xué)教案模板 篇4

一、概述

教材內(nèi)容:等比數(shù)列的概念和通項(xiàng)公式的推導(dǎo)及簡單應(yīng)用 教材難點(diǎn):靈活應(yīng)用等比數(shù)列及通項(xiàng)公式解決一般問題 教材重點(diǎn):等比數(shù)列的概念和通項(xiàng)公式

二、教學(xué)目標(biāo)分析

1. 知識(shí)目標(biāo)

1)

2) 掌握等比數(shù)列的定義 理解等比數(shù)列的通項(xiàng)公式及其推導(dǎo)

2.能力目標(biāo)

1)學(xué)會(huì)通過實(shí)例歸納概念

2)通過學(xué)習(xí)等比數(shù)列的.通項(xiàng)公式及其推導(dǎo)學(xué)會(huì)歸納假設(shè)

3)提高數(shù)學(xué)建模的能力

3、情感目標(biāo):

1)充分感受數(shù)列是反映現(xiàn)實(shí)生活的模型

2)體會(huì)數(shù)學(xué)是來源于現(xiàn)實(shí)生活并應(yīng)用于現(xiàn)實(shí)生活

3)數(shù)學(xué)是豐富多彩的而不是枯燥無味的

三、教學(xué)對(duì)象及學(xué)習(xí)需要分析

1、 教學(xué)對(duì)象分析:

1)高中生已經(jīng)有一定的學(xué)習(xí)能力,對(duì)各方面的知識(shí)有一定的基礎(chǔ),理解能力較強(qiáng)。并掌握了函數(shù)及個(gè)別特殊函數(shù)的性質(zhì)及圖像,如指數(shù)函數(shù)。之前也剛學(xué)習(xí)了等差數(shù)列,在學(xué)習(xí)這一章節(jié)時(shí)可聯(lián)系以前所學(xué)的進(jìn)行引導(dǎo)教學(xué)。

2)對(duì)歸納假設(shè)較弱,應(yīng)加強(qiáng)這方面教學(xué)

2、學(xué)習(xí)需要分析:

四. 教學(xué)策略選擇與設(shè)計(jì)

1.課前復(fù)習(xí)

1)復(fù)習(xí)等差數(shù)列的概念及通向公式

2)復(fù)習(xí)指數(shù)函數(shù)及其圖像和性質(zhì)

2.情景導(dǎo)入

2024高中數(shù)學(xué)教案模板 篇5

一、教學(xué)目標(biāo)

【知識(shí)與技能】

掌握三角函數(shù)的單調(diào)性以及三角函數(shù)值的取值范圍。

【過程與方法】

經(jīng)歷三角函數(shù)的單調(diào)性的探索過程,提升邏輯推理能力。

【情感態(tài)度價(jià)值觀】

在猜想計(jì)算的過程中,提高學(xué)習(xí)數(shù)學(xué)的興趣。

二、教學(xué)重難點(diǎn)

【教學(xué)重點(diǎn)】

三角函數(shù)的單調(diào)性以及三角函數(shù)值的取值范圍。

【教學(xué)難點(diǎn)】

探究三角函數(shù)的`單調(diào)性以及三角函數(shù)值的取值范圍過程。

三、教學(xué)過程

(一)引入新課

提出問題:如何研究三角函數(shù)的單調(diào)性

(四)小結(jié)作業(yè)

提問:今天學(xué)習(xí)了什么?

引導(dǎo)學(xué)生回顧:基本不等式以及推導(dǎo)證明過程。

課后作業(yè):

思考如何用三角函數(shù)單調(diào)性比較三角函數(shù)值的大小。

2024高中數(shù)學(xué)教案模板 篇6

教學(xué)目的:

掌握?qǐng)A的標(biāo)準(zhǔn)方程,并能解決與之有關(guān)的問題

教學(xué)重點(diǎn):

圓的標(biāo)準(zhǔn)方程及有關(guān)運(yùn)用

教學(xué)難點(diǎn):

標(biāo)準(zhǔn)方程的靈活運(yùn)用

教學(xué)過程:

一、導(dǎo)入新課,探究標(biāo)準(zhǔn)方程

二、掌握知識(shí),鞏固練習(xí)

練習(xí):⒈說出下列圓的方程

⑴圓心(3,-2)半徑為5⑵圓心(0,3)半徑為3

⒉指出下列圓的圓心和半徑

⑴(x-2)2+(y+3)2=3

⑵x2+y2=2

⑶x2+y2-6x+4y+12=0

⒊判斷3x-4y-10=0和x2+y2=4的位置關(guān)系

⒋圓心為(1,3),并與3x-4y-7=0相切,求這個(gè)圓的方程

三、引伸提高,講解例題

例1、圓心在y=-2x上,過p(2,-1)且與x-y=1相切求圓的方程(突出待定系數(shù)的數(shù)學(xué)方法)

練習(xí):1、某圓過(-2,1)、(2,3),圓心在x軸上,求其方程。

2、某圓過A(-10,0)、B(10,0)、C(0,4),求圓的方程。

例2:某圓拱橋的跨度為20米,拱高為4米,在建造時(shí)每隔4米加一個(gè)支柱支撐,求A2P2的長度。

例3、點(diǎn)M(x0,y0)在x2+y2=r2上,求過M的圓的切線方程(一題多解,訓(xùn)練思維)

四、小結(jié)練習(xí)P771,2,3,4

五、作業(yè)P811,2,3,4

高中數(shù)學(xué)教案八篇


居安思危,思則有備,有備無患。幼兒園的老師都希望自己講的課學(xué)生們愛聽,能學(xué)習(xí)的更好,為了更好的學(xué)習(xí),一般教師都會(huì)在授課前準(zhǔn)備教案,教案有利于老師在課堂上與學(xué)生更好的交流。那么怎么才能寫出優(yōu)秀的幼兒園教案呢?小編特別整理來自網(wǎng)絡(luò)的高中數(shù)學(xué)教案八篇,供大家借鑒和使用,希望大家分享!

高中數(shù)學(xué)教案 篇1

 一、基礎(chǔ)突破課本層面

其實(shí)很多同學(xué)在平時(shí)學(xué)習(xí)中也重視課本,概念公式也記住了但是任然感覺學(xué)習(xí)沒有多大效果,還不如多做兩道題目有意義,可是做題有無從思考,于是陷入了一個(gè)死循環(huán)。那么課本該怎么學(xué)呢?

①概念公式的拓展以及知識(shí)點(diǎn)之間的聯(lián)系

核心是概念的外延和概念之間的聯(lián)系,大家知道一般概念定理基本可以分成四塊:文字+圖形+式子+運(yùn)算,而一般的題目也是由這四塊文字+圖形+式子+運(yùn)算構(gòu)成的,這就是解題與課本學(xué)習(xí)之間的對(duì)應(yīng)的地方,所以概念學(xué)習(xí)就要從這四個(gè)方面入手挖掘突破,對(duì)于相關(guān)的學(xué)習(xí)挖掘方法我們給大家通過函數(shù)單調(diào)性做了一個(gè)簡單示范,可參見樊瑞軍相關(guān)視頻講解。

②課本題型歸納

大家知道高中數(shù)學(xué)的課本題目根據(jù)難易程度有A,B兩組,這些題目都是經(jīng)過專家組慎重選擇的,并不是胡亂選擇的,而且高考試題的編制基本是通過課本深度改編的,所以我們?cè)趯W(xué)習(xí)過程中首先要進(jìn)行題型方面的歸納梳理,掌握這些題目的深層含義,并在后續(xù)的練習(xí)中不斷深化和補(bǔ)充題型,那么所謂的基礎(chǔ)題型基本就沒有問題了。這就是課本學(xué)習(xí)中的第二個(gè)突破口基礎(chǔ)題型掌握,對(duì)于題型的梳理方法我們通過必修二直線與圓這部分給大家做了詳細(xì)示范,詳細(xì)可參見視頻講解。

③運(yùn)算提升

運(yùn)算是高中數(shù)學(xué)解題必須的一個(gè)過程,而且會(huì)直接關(guān)系到考試成績的好壞,但是運(yùn)算基本不會(huì)在課本直接呈現(xiàn),而是要通過解題不斷歸納總結(jié)梳理,樊瑞軍認(rèn)為高中數(shù)學(xué)運(yùn)算主要分四塊:

1、高中數(shù)學(xué)基本式子變形處理如整式類,分式類,根式類等;

2、初高中各類方程及方程組突破;

3、各類簡單,復(fù)雜及含參不等式突破;

4、特殊類式子處理。

④圖形突破

圖形特別是函數(shù)圖形不僅在高考的選擇題中直接考察更是解答題中必備的,但高考的考察一般都要高于課本,這就需要在課本學(xué)習(xí)的基礎(chǔ)上進(jìn)行拓展,圖形突破主要包括畫圖,認(rèn)識(shí)圖形,圖形拓展方法,圖形處理及圖形計(jì)算五個(gè)方面。

考試層面

一般的考試試卷和高考真題都是我們學(xué)習(xí)最好的積累歸納素材,考試試卷不僅能幫助我們把握學(xué)習(xí)方向,更能夠檢查學(xué)習(xí)效果。

二、把握做題方向重視歸納解題思考方法

高中數(shù)學(xué)的題目數(shù)量非常龐大,要想單純通過做題突破高考,對(duì)于絕大多數(shù)考生來說確實(shí)難以實(shí)現(xiàn),隨著高考的改革,高考已把考查的'重點(diǎn)放在創(chuàng)造型、能力型的考查上,因此要精做習(xí)題,學(xué)會(huì)選擇,有助于判斷高考題目與平時(shí)常見題目的異同,增強(qiáng)判斷題目信度的能力,在遇到即將來臨的期中期末考試和未來的高考中哪些內(nèi)容是高頻命題點(diǎn),哪些是冷門的,有哪些基本題型,一本書學(xué)完了哪些還沒有掌握好都要有一個(gè)大致標(biāo)記,以便于后續(xù)繼續(xù)學(xué)習(xí)歸納。當(dāng)你做完一道習(xí)題后可以思考:本題考查了什么知識(shí)點(diǎn)?什么方法?我們從中得到了解題的什么方法?這一類習(xí)題中有什么解題的通性?

高中數(shù)學(xué)的題目數(shù)量非常龐大,要想單純通過做題突破高考,對(duì)于絕大多數(shù)考生來說確實(shí)難以實(shí)現(xiàn),隨著高考的改革,高考已把考查的重點(diǎn)放在創(chuàng)造型、能力型的考查上,因此要精做習(xí)題,學(xué)會(huì)選擇,有助于判斷高考題目與平時(shí)常見題目的異同,增強(qiáng)判斷題目信度的能力,在遇到即將來臨的期中期末考試和未來的高考中哪些內(nèi)容是高頻命題點(diǎn),哪些是冷門的,有哪些基本題型,一本書學(xué)完了哪些還沒有掌握好都要有一個(gè)大致標(biāo)記,以便于后續(xù)繼續(xù)學(xué)習(xí)歸納。當(dāng)你做完一道習(xí)題后可以思考:本題考查了什么知識(shí)點(diǎn)?什么方法?我們從中得到了解題的什么方法?這一類習(xí)題中有什么解題的通性?

 三、時(shí)刻面向高考以高考為核心

不論我們是高一還是高二甚至是高三,高考都是我們最后的沖刺的目標(biāo),所以我們?cè)谄綍r(shí)的學(xué)習(xí)過程中要始終面向高考,經(jīng)常做高考題目,因?yàn)楦呖颊骖}在考查知識(shí)點(diǎn)時(shí)的切入點(diǎn),綜合程度以及題型與平時(shí)的練習(xí)題還是有一道差異,而且能幫助我們正確地的掌握高考知識(shí)點(diǎn)的難度和基本題型。我們平時(shí)的復(fù)習(xí)資料中,有相當(dāng)?shù)牧?xí)題已超出高考難度或者與高考方向偏離較大,針對(duì)這些題目我們可以舍棄,而集中精力突破真正我們?cè)撏黄频膬?nèi)容。

四、注重解題思路

學(xué)習(xí)數(shù)學(xué)核心在于如何思考,重視老師對(duì)該題目的分析和歸納,然而有很多同學(xué)往往忽視問題的分析,往往沉靜在老師講解的每一步計(jì)算、每一步推證過程。聽課雖然認(rèn)真,但費(fèi)力,聽完后滿腦子的計(jì)算過程,支離破碎。所以當(dāng)教師解答習(xí)題時(shí),學(xué)生要重視問題的思考分析。另外,當(dāng)題目的答案給出時(shí),并不代表問題的解答完畢,還要花一定的時(shí)間認(rèn)真總結(jié)、歸納理解。要把這些解題策略全部納入自己的腦海成為永久地記憶,變?yōu)樽约航鉀Q這一類型問題的經(jīng)驗(yàn)和技能。同時(shí)也解決了學(xué)生中會(huì)聽課而不會(huì)做題目的壞毛病。

五、積累考試經(jīng)驗(yàn)

對(duì)于每一次考試和單元模擬要積累一定的考試經(jīng)驗(yàn),掌握一定的考試技巧,在每一次考試中要鍛煉自己的承受能力、接受能力、解決問題以及應(yīng)對(duì)一些突發(fā)情況等綜合能力。只有在平時(shí)的考試中不斷總結(jié),那么在高考的考場(chǎng)上就會(huì)得心應(yīng)手,避免考試發(fā)揮失常等的發(fā)生。

六、歸納小題及解答題方法

高中數(shù)學(xué)考試中的選擇題、填空題是基礎(chǔ),共76分是整個(gè)考試得分的基礎(chǔ),在平時(shí)學(xué)習(xí)過程中不但要在會(huì)接的基礎(chǔ)上提高解題速度,還要?dú)w納總結(jié)選擇題的熱門題型,解題技巧等。

選擇題方法技巧主要通過選項(xiàng)布局特征,選擇題快速運(yùn)算技巧,選擇題題目特征與核心解法,選擇題中的結(jié)論這四個(gè)方面進(jìn)行歸納突破。

對(duì)于解答題而言高考的題型以及命題方式等都是非常成熟的,要在平時(shí)學(xué)習(xí)中對(duì)于解答題中的一般思考方法,熱門題型,基礎(chǔ)知識(shí)點(diǎn),體現(xiàn)的基本運(yùn)算,涵蓋的基本圖形以及書寫要點(diǎn)要求等六個(gè)方面進(jìn)行歸納,對(duì)于解題思考,運(yùn)算,圖形等相關(guān)方面我們?cè)谇懊娑甲隽艘恍┓治?,我們?cè)诤竺鎸⒗^續(xù)給大家總結(jié)歸納,相關(guān)可關(guān)注樊瑞軍微信公眾號(hào)或者個(gè)人微信號(hào),數(shù)學(xué)學(xué)科是能在短時(shí)間內(nèi)提高成績的一門學(xué)科,數(shù)學(xué)是高考中三科綜合科之中一門拉開綜合成績的重要學(xué)科,學(xué)數(shù)學(xué)要重視方法,不能盲目隨波逐流。

七、制定好學(xué)習(xí)計(jì)劃和復(fù)習(xí)策略

學(xué)好數(shù)學(xué)要制定好計(jì)劃,不但要有高中三年的計(jì)劃,也要有本學(xué)期大的規(guī)劃,還要有每月、每周、每天的小計(jì)劃,計(jì)劃要與老師的復(fù)習(xí)計(jì)劃吻合,不能相互沖突,不要急于求成每一天甚至一星期全面突破一個(gè)考點(diǎn),研究該知識(shí)點(diǎn)考查的不同側(cè)面、不同角度以及高考的難度,不斷地歸納、反思、回顧,集中精力提前突破高考中的常考點(diǎn)和重難點(diǎn)。

預(yù)習(xí)

如果你想把數(shù)學(xué)學(xué)好,單純地做學(xué)校發(fā)的資料是遠(yuǎn)遠(yuǎn)不夠的。去學(xué)校旁邊買一本側(cè)重講解的參考書。在老師講課之前,先把課本中要學(xué)習(xí)的內(nèi)容看一遍(用心看),定義、公式可能記不住對(duì)嗎?對(duì),看著寫著,一遍不行再來一遍,把這些基礎(chǔ)弄清楚為止。之后看你買的參考書,這比課本上所講解的又深了一個(gè)層次,每講解一個(gè)知識(shí)點(diǎn),都會(huì)有一兩個(gè)例題。看完后,把課本、參考書上面的知識(shí)點(diǎn)再回顧一遍,做課本后面的習(xí)題。

聽課

你的預(yù)習(xí)基本可以讓你明白90%了,至于課堂,有的放矢吧。你的選擇有很多,如果你的知識(shí)點(diǎn)掌握的已經(jīng)很好,你可以再進(jìn)行回顧,也可以自己找題做;如果你的知識(shí)點(diǎn)掌握的不是太好,你可以跟著老師再把知識(shí)點(diǎn)記憶一下。當(dāng)老師拓展新的知識(shí)點(diǎn)時(shí)要認(rèn)真聽,再聽一下,加深理解。

復(fù)習(xí)

對(duì)于各科而言,復(fù)習(xí)都很重要。拿數(shù)學(xué)來說,好多同學(xué)認(rèn)為就是不斷的刷題。其實(shí)不然,當(dāng)你要做課后習(xí)題的時(shí)候,首先應(yīng)先溫習(xí)教材知識(shí)點(diǎn),之后看你的課本后面是否有做錯(cuò)的題目,如果有,再做一遍,最后就是找題做了。

高中數(shù)學(xué)教案 篇2

一、預(yù)習(xí)目標(biāo)

預(yù)習(xí)《平面向量應(yīng)用舉例》,體會(huì)向量是一種處理幾何問題、物理問題等的工具,建立實(shí)際問題與向量的聯(lián)系。

二、預(yù)習(xí)內(nèi)容

閱讀課本內(nèi)容,整理例題,結(jié)合向量的運(yùn)算,解決實(shí)際的幾何問題、物理問題。另外,在思考一下幾個(gè)問題:

1、例1如果不用向量的方法,還有其他證明方法嗎?

2、利用向量方法解決平面幾何問題的“三步曲”是什么?

3、例3中,

⑴為何值時(shí),|F1|最小,最小值是多少?

⑵|F1|能等于|G|嗎?為什么?

三、提出疑惑

同學(xué)們,通過你的自主學(xué)習(xí),你還有哪些疑惑,請(qǐng)把它填在下面的表格中疑惑點(diǎn)疑惑內(nèi)容。

課內(nèi)探究學(xué)案

一、學(xué)習(xí)內(nèi)容

1、運(yùn)用向量的有關(guān)知識(shí)(向量加減法與向量數(shù)量積的運(yùn)算法則等)解決平面幾何和解析幾何中直線或線段的平行、垂直、相等、夾角和距離等問題。

2、運(yùn)用向量的有關(guān)知識(shí)解決簡單的物理問題。

二、學(xué)習(xí)過程

探究一:

(1)向量運(yùn)算與幾何中的結(jié)論"若,則,且所在直線平行或重合"相類比,你有什么體會(huì)?

(2)舉出幾個(gè)具有線性運(yùn)算的幾何實(shí)例。

例1、證明:平行四邊形兩條對(duì)角線的平方和等于四條邊的平方和。

已知:平行四邊形ABCD。

求證:

試用幾何方法解決這個(gè)問題,利用向量的方法解決平面幾何問題的“三步曲”?

(1)建立平面幾何與向量的聯(lián)系,

(2)通過向量運(yùn)算,研究幾何元素之間的關(guān)系,

(3)把運(yùn)算結(jié)果“翻譯”成幾何關(guān)系。

例2,如圖,平行四邊形ABCD中,點(diǎn)E、F分別是AD、DC邊的中點(diǎn),BE、BF分別與AC交于R、T兩點(diǎn),你能發(fā)現(xiàn)AR、RT、TC之間的關(guān)系嗎?

探究二:兩個(gè)人提一個(gè)旅行包,夾角越大越費(fèi)力。在單杠上做引體向上運(yùn)動(dòng),兩臂夾角越小越省力。這些力的問題是怎么回事?

例3,在日常生活中,你是否有這樣的經(jīng)驗(yàn):兩個(gè)人共提一個(gè)旅行包,夾角越大越費(fèi)力;在單杠上作引體向上運(yùn)動(dòng),兩臂的夾角越小越省力。你能從數(shù)學(xué)的角度解釋這種現(xiàn)象嗎?

請(qǐng)同學(xué)們結(jié)合剛才這個(gè)問題,思考下面的問題:

⑴為何值時(shí),|F1|最小,最小值是多少?

⑵|F1|能等于|G|嗎?為什么?

例4如圖,一條河的兩岸平行,河的寬度m,一艘船從A處出發(fā)到河對(duì)岸。已知船的速度|v1|=10km/h,水流的速度|v2|=2km/h,問行駛航程最短時(shí),所用的時(shí)間是多少(精確到0。1min)?

變式訓(xùn)練:兩個(gè)粒子A、B從同一源發(fā)射出來,在某一時(shí)刻,它們的位移分別為,(1)寫出此時(shí)粒子B相對(duì)粒子A的位移s;(2)計(jì)算s在方向上的投影。

三、反思總結(jié)

結(jié)合圖形特點(diǎn),選定正交基底,用坐標(biāo)表示向量進(jìn)行運(yùn)算解決幾何問題,體現(xiàn)幾何問題。

代數(shù)化的特點(diǎn),數(shù)形結(jié)合的數(shù)學(xué)思想體現(xiàn)的淋漓盡致。向量作為橋梁工具使得運(yùn)算簡練標(biāo)致,又體現(xiàn)了數(shù)學(xué)的美。有關(guān)長方形、正方形、直角三角形等平行、垂直等問題常用此法。

本節(jié)主要研究了用向量知識(shí)解決平面幾何問題和物理問題;掌握向量法和坐標(biāo)法,以及用向量解決實(shí)際問題的步驟。

高中數(shù)學(xué)教案 篇3

教學(xué)目標(biāo)

(1)使學(xué)生正確理解組合的意義,正確區(qū)分排列、組合問題;

(2)使學(xué)生掌握組合數(shù)的計(jì)算公式;

(3)通過學(xué)習(xí)組合知識(shí),讓學(xué)生掌握類比的學(xué)習(xí)方法,并提高學(xué)生分析問題和解決問題的能力;

教學(xué)重點(diǎn)難點(diǎn)

重點(diǎn)是組合的定義、組合數(shù)及組合數(shù)的公式;

難點(diǎn)是解組合的應(yīng)用題.

教學(xué)過程設(shè)計(jì)

(-)導(dǎo)入新課

(教師活動(dòng))提出下列思考問題,打出字幕.

[字幕]一條鐵路線上有6個(gè)火車站,(1)需準(zhǔn)備多少種不同的普通客車票?(2)有多少種不同票價(jià)的普通客車票?上面問題中,哪一問是排列問題?哪一問是組合問題?

(學(xué)生活動(dòng))討論并回答.

答案提示:(1)排列;(2)組合.

[評(píng)述]問題(1)是從6個(gè)火車站中任選兩個(gè),并按一定的順序排列,要求出排法的種數(shù),屬于排列問題;(2)是從6個(gè)火車站中任選兩個(gè)并成一組,兩站無順序關(guān)系,要求出不同的組數(shù),屬于組合問題.這節(jié)課著重研究組合問題.

設(shè)計(jì)意圖:組合與排列所研究的問題幾乎是平行的.上面設(shè)計(jì)的問題目的是從排列知識(shí)中發(fā)現(xiàn)并提出新的問題.

(二)新課講授

[提出問題 創(chuàng)設(shè)情境]

(教師活動(dòng))指導(dǎo)學(xué)生帶著問題閱讀課文.

[字幕]1.排列的定義是什么?

2.舉例說明一個(gè)組合是什么?

3.一個(gè)組合與一個(gè)排列有何區(qū)別?

(學(xué)生活動(dòng))閱讀回答.

(教師活動(dòng))對(duì)照課文,逐一評(píng)析.

設(shè)計(jì)意圖:激活學(xué)生的思維,使其將所學(xué)的知識(shí)遷移過渡,并盡快適應(yīng)新的環(huán)境.

【歸納概括 建立新知】

(教師活動(dòng))承接上述問題的回答,展示下面知識(shí).

[字幕]模型:從 個(gè)不同元素中取出 個(gè)元素并成一組,叫做從 個(gè)不同元素中取出 個(gè)元素的一個(gè)組合.如前面思考題:6個(gè)火車站中甲站→乙站和乙站→甲站是票價(jià)相同的車票,是從6個(gè)元素中取出2個(gè)元素的一個(gè)組合.

組合數(shù):從 個(gè)不同元素中取出 個(gè)元素的所有組合的個(gè)數(shù),稱之,用符號(hào) 表示,如從6個(gè)元素中取出2個(gè)元素的組合數(shù)為 .

[評(píng)述]區(qū)分一個(gè)排列與一個(gè)組合的關(guān)鍵是:該問題是否與順序有關(guān),當(dāng)取出元素后,若改變一下順序,就得到一種新的取法,則是排列問題;若改變順序,仍得原來的取法,就是組合問題.

(學(xué)生活動(dòng))傾聽、思索、記錄.

(教師活動(dòng))提出思考問題.

[投影] 與 的關(guān)系如何?

(師生活動(dòng))共同探討.求從 個(gè)不同元素中取出 個(gè)元素的排列數(shù) ,可分為以下兩步:

第1步,先求出從這 個(gè)不同元素中取出 個(gè)元素的組合數(shù)為 ;

第2步,求每一個(gè)組合中 個(gè)元素的全排列數(shù)為 .

根據(jù)分步計(jì)數(shù)原理,得到

[字幕]公式1:

公式2:

(學(xué)生活動(dòng))驗(yàn)算 ,即一條鐵路上6個(gè)火車站有15種不同的票價(jià)的普通客車票.

設(shè)計(jì)意圖:本著以認(rèn)識(shí)概念為起點(diǎn),以問題為主線,以培養(yǎng)能力為核心的宗旨,逐步展示知識(shí)的形成過程,使學(xué)生思維層層被激活、逐漸深入到問題當(dāng)中去.

(三)小結(jié)

(師生活動(dòng))共同小結(jié).

本節(jié)主要內(nèi)容有

1.組合概念.

2.組合數(shù)計(jì)算的兩個(gè)公式.

(四)布置作業(yè)

1.課本作業(yè):習(xí)題10 3第1(1)、(4),3題.

2.思考題:某學(xué)習(xí)小組有8個(gè)同學(xué),從男生中選2人,女生中選1人參加數(shù)學(xué)、物理、化學(xué)三種學(xué)科競賽,要求每科均有1人參加,共有180種不同的選法,那么該小組中,男、女同學(xué)各有多少人?

3.研究性題:

在 的 邊上除頂點(diǎn) 外有 5個(gè)點(diǎn),在 邊上有 4個(gè)點(diǎn),由這些點(diǎn)(包括 )能組成多少個(gè)四邊形?能組成多少個(gè)三角形?

(五)課后點(diǎn)評(píng)

在學(xué)習(xí)了排列知識(shí)的基礎(chǔ)上,本節(jié)課引進(jìn)了組合概念,并推導(dǎo)出組合數(shù)公式,同時(shí)調(diào)控進(jìn)行訓(xùn)練,從而培養(yǎng)學(xué)生分析問題、解決問題的能力.

作業(yè)參考答案

2.解;設(shè)有男同學(xué) 人,則有女同學(xué) 人,依題意有 ,由此解得 或 或2.即男同學(xué)有5人或6人,女同學(xué)相應(yīng)為3人或2人.

3.能組成 (注意不能用 點(diǎn)為頂點(diǎn))個(gè)四邊形, 個(gè)三角形.

探究活動(dòng)

同室四人各寫一張賀年卡,先集中起來,然后每人從中拿一張別人送出的賀年卡,那么四張不同的分配萬式可有多少種?

解 設(shè)四人分別為甲、乙、丙、丁,可從多種角度來解.

解法一 可將拿賀卡的情況,按甲分別拿乙、丙、丁制作的賀卡的情形分為三類,即:

甲拿乙制作的賀卡時(shí),則賀卡有3種分配方法.

甲拿丙制作的賀卡時(shí),則賀卡有3種分配方法.

甲拿丁制作的賀卡時(shí),則賀卡有3種分配方法.

由加法原理得,賀卡分配方法有3+3+3=9種.

解法二 可從利用排列數(shù)和組合數(shù)公式角度來考慮.這時(shí)還存在正向與逆向兩種思考途徑.

正向思考,即從滿足題設(shè)條件出發(fā),分步完成分配.先可由甲從乙、丙、丁制作的賀卡中選取1張,有 種取法,剩下的乙、丙、丁中所制作賀卡被甲取走后可在剩下的3張賀卡中選取1張,也有 種,最后剩下2人可選取的賀卡即是這2人所制作的賀卡,其取法只有互取對(duì)方制作賀卡1種取法.根據(jù)乘法原理,賀卡的分配方法有 (種).

逆向思考,即從4人取4張不同賀卡的所有取法中排除不滿足題設(shè)條件的取法.不滿足題設(shè)條件的取法為,其中只有1人取自己制作的賀卡,其中有2人取自己制作的賀卡,其中有3人取自己制作的賀卡(此時(shí)即為4人均拿自己制作的賀卡).其取法分別為 1.故符合題設(shè)要求的取法共有 (種).

高中數(shù)學(xué)教案 篇4

課????題 元、角、分的認(rèn)識(shí)?。幾時(shí)幾分??倧?fù)習(xí)第八、九題,練習(xí)十八第10題、15題。 設(shè)計(jì)

教學(xué)目標(biāo) 本學(xué)期在學(xué)習(xí)“元、角、分”時(shí),主要通過大量的操作、活動(dòng)幫助學(xué)生認(rèn)識(shí)元、角、分之間的關(guān)系,以及人民幣的應(yīng)用,使學(xué)生對(duì)元、角、分有比較豐富的感性認(rèn)識(shí)。因此,教材在復(fù)習(xí)時(shí)沒有再安排動(dòng)手操作的內(nèi)容,只是讓學(xué)生對(duì)已學(xué)的元、角、分關(guān)系進(jìn)行復(fù)習(xí),并結(jié)合具體情境進(jìn)行應(yīng)用。正確即可。復(fù)習(xí)中,還要注意培養(yǎng)學(xué)生估計(jì)時(shí)間的意識(shí)和習(xí)慣,即看鐘面時(shí),如果一時(shí)說不出準(zhǔn)確的時(shí)間,可以說一說大概是幾時(shí)幾分。多進(jìn)行這樣的練習(xí),對(duì)學(xué)生建立時(shí)間觀念是很有好處的。另外,還要注意在日常生活中結(jié)合具體實(shí)際多向?qū)W生滲透時(shí)間的觀念。

教學(xué)重點(diǎn) 幫助學(xué)生認(rèn)識(shí)元、角、分之間的關(guān)系,以及人民幣的應(yīng)用,使學(xué)生對(duì)元、角、分有比較豐富的感性認(rèn)識(shí)。滲透時(shí)間的觀念。

教學(xué)難點(diǎn) 幫助學(xué)生認(rèn)識(shí)元、角、分之間的關(guān)系,以及人民幣的應(yīng)用,使學(xué)生對(duì)元、角、分有比較豐富的感性認(rèn)識(shí)。滲透時(shí)間的觀念。

讓學(xué)生回憶所學(xué)的知識(shí)。如果學(xué)生遺忘了,還可以讓學(xué)生用學(xué)具擺一擺,用實(shí)物幫助學(xué)生思考。

學(xué)生獨(dú)立完成第八題。校對(duì)。

二、幾時(shí)幾分。

1、是師生出示鐘面。

師撥生說。

生說生說。

生生互撥互說。

師說生撥。

2、揭示總復(fù)習(xí)第九題。

學(xué)生獨(dú)立看著鐘面填寫時(shí)間。

校對(duì)。

3、補(bǔ)充:我們已經(jīng)認(rèn)識(shí)了幾時(shí)幾分,整時(shí)、半時(shí),那么,分針在12不到一點(diǎn)或12超過一點(diǎn)該怎么讀呢?

三、完成練習(xí)十八15題。第10題引導(dǎo)學(xué)生說一說,再試著提出另外的問題進(jìn)行計(jì)算。提的好的給于鼓勵(lì)。

四、完成作業(yè)本上的作業(yè)。

高中數(shù)學(xué)教案 篇5

三維目標(biāo):

1、知識(shí)與技能:正確理解隨機(jī)抽樣的概念,掌握抽簽法、隨機(jī)數(shù)表法的一般步驟;

2、過程與方法:

(1)能夠從現(xiàn)實(shí)生活或其他學(xué)科中提出具有一定價(jià)值的統(tǒng)計(jì)問題;

(2)在解決統(tǒng)計(jì)問題的過程中,學(xué)會(huì)用簡單隨機(jī)抽樣的方法從總體中抽取樣本。

3、情感態(tài)度與價(jià)值觀:通過對(duì)現(xiàn)實(shí)生活和其他學(xué)科中統(tǒng)計(jì)問題的提出,體會(huì)數(shù)學(xué)知識(shí)與現(xiàn)實(shí)世界及各學(xué)科知識(shí)之間的聯(lián)系,認(rèn)識(shí)數(shù)學(xué)的重要性。

4、重點(diǎn)與難點(diǎn):正確理解簡單隨機(jī)抽樣的概念,掌握抽簽法及隨機(jī)數(shù)法的步驟,并能靈活應(yīng)用相關(guān)知識(shí)從總體中抽取樣本。

教學(xué)方法:

講練結(jié)合法

教學(xué)用具:

多媒體

課時(shí)安排:

1課時(shí)

教學(xué)過程:

一、問題情境

假設(shè)你作為一名食品衛(wèi)生工作人員,要對(duì)某食品店內(nèi)的一批小包裝餅干進(jìn)行衛(wèi)生達(dá)標(biāo)檢驗(yàn),你準(zhǔn)備怎樣做?顯然,你只能從中抽取一定數(shù)量的餅干作為檢驗(yàn)的樣本。(為什么?)那么,應(yīng)當(dāng)怎樣獲取樣本呢?

二、探究新知

1、統(tǒng)計(jì)的有關(guān)概念:總體:在統(tǒng)計(jì)學(xué)中,所有考察對(duì)象的全體叫做總體、個(gè)體:每一個(gè)考察的對(duì)象叫做個(gè)體、樣本:從總體中抽取的一部分個(gè)體叫做總體的一個(gè)樣本、樣本容量:樣本中個(gè)體的數(shù)目叫做樣本的容量、統(tǒng)計(jì)的基本思想:用樣本去估計(jì)總體、

2、簡單隨機(jī)抽樣的概念一般地,設(shè)一個(gè)總體含有N個(gè)個(gè)體,從中逐個(gè)不放回地抽取n個(gè)個(gè)體作為樣本(n≤N),如果每次抽取時(shí)總體內(nèi)的各個(gè)個(gè)體被抽到的機(jī)會(huì)都相等,就把這種抽樣方法叫做簡單隨機(jī)抽樣,這樣抽取的樣本,叫做簡單隨機(jī)樣本。

下列抽樣的方式是否屬于簡單隨機(jī)抽樣?為什么?

(1)從無限多個(gè)個(gè)體中抽取50個(gè)個(gè)體作為樣本。

(2)箱子里共有100個(gè)零件,從中選出10個(gè)零件進(jìn)行質(zhì)量檢驗(yàn),在抽樣操作中,從中任意取出一個(gè)零件進(jìn)行質(zhì)量檢驗(yàn)后,再把它放回箱子。

(3)從8臺(tái)電腦中,不放回地隨機(jī)抽取2臺(tái)進(jìn)行質(zhì)量檢查(假設(shè)8臺(tái)電腦已編好號(hào),對(duì)編號(hào)隨機(jī)抽取)

3、常用的簡單隨機(jī)抽樣方法有:

(1)抽簽法的定義。一般地,抽簽法就是把總體中的N個(gè)個(gè)體編號(hào),把號(hào)碼寫在號(hào)簽上,將號(hào)簽放在一個(gè)容器中,攪拌均勻后,每次從中抽取一個(gè)號(hào)簽,連續(xù)抽取n次,就得到一個(gè)容量為n的樣本。

思考?你認(rèn)為抽簽法有什么優(yōu)點(diǎn)和缺點(diǎn):當(dāng)總體中的個(gè)體數(shù)很多時(shí),用抽簽法方便嗎?例1、若已知高一(6)班總共有57人,現(xiàn)要抽取8位同學(xué)出來做游戲,請(qǐng)?jiān)O(shè)計(jì)一個(gè)抽取的方法,要使得每位同學(xué)被抽到的機(jī)會(huì)相等。

分析:可以把57位同學(xué)的學(xué)號(hào)分別寫在大小,質(zhì)地都相同的紙片上,折疊或揉成小球,把紙片集中在一起并充分?jǐn)嚢韬螅趶闹袀€(gè)抽出8張紙片,再選出紙片上的學(xué)號(hào)對(duì)應(yīng)的同學(xué)即可、基本步驟:第一步:將總體的所有N個(gè)個(gè)體從1至N編號(hào);第二步:準(zhǔn)備N個(gè)號(hào)簽分別標(biāo)上這些編號(hào),將號(hào)簽放在容器中攪拌均勻后每次抽取一個(gè)號(hào)簽,不放回地連續(xù)取n次;第三步:將取出的n個(gè)號(hào)簽上的號(hào)碼所對(duì)應(yīng)的n個(gè)個(gè)體作為樣本。

(2)隨機(jī)數(shù)法的定義:利用隨機(jī)數(shù)表、隨機(jī)數(shù)骰子或計(jì)算機(jī)產(chǎn)生的隨機(jī)數(shù)進(jìn)行抽樣,叫隨機(jī)數(shù)表法,這里僅介紹隨機(jī)數(shù)表法。怎樣利用隨機(jī)數(shù)表產(chǎn)生樣本呢?下面通過例子來說明,假設(shè)我們要考察某公司生產(chǎn)的500克袋裝牛奶的質(zhì)量是否達(dá)標(biāo),現(xiàn)從800袋牛奶中抽取60袋進(jìn)行檢驗(yàn),利用隨機(jī)數(shù)表抽取樣本時(shí),可以按照下面的步驟進(jìn)行。第一步,先將800袋牛奶編號(hào),可以編為000,001,799。

第二步,在隨機(jī)數(shù)表中任選一個(gè)數(shù),例如選出第8行第7列的數(shù)7(為了便于說明,下面摘取了附表1的第6行至第10行)。 16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 57 60 86 32 44 09 47 27 96 54 49 17 46 09 62 87 35 20 96 43 84 26 34 91 64 21 76 33 50 25 83 92 12 06 76 12 86 73 58 07 44 39 52 38 79 15 51 00 13 42 99 66 02 79 54 90 52 84 77 27 08 02 73 43 28第三步,從選定的數(shù)7開始向右讀(讀數(shù)的方向也可以是向左、向上、向下等),得到一個(gè)三位數(shù)785,由于785

繼續(xù)向右讀,得到916,由于916>799,將它去掉,按照這種方法繼續(xù)向右讀,又取出567,199,507,依次下去,直到樣本的60個(gè)號(hào)碼全部取出,這樣我們就得到一個(gè)容量為60的樣本。

三、課堂練習(xí)

四、課堂小結(jié)

1、簡單隨機(jī)抽樣的概念一般地,設(shè)一個(gè)總體的個(gè)體數(shù)為N,如果通過逐個(gè)抽取的方法從中抽取一個(gè)樣本,且每次抽取時(shí)各個(gè)個(gè)體被抽到的概率相等,就稱這樣的抽樣為簡單隨機(jī)抽樣。

2、簡單隨機(jī)抽樣的方法:抽簽法隨機(jī)數(shù)表法

五、課后作業(yè)

P57練習(xí)1、2

六、板書設(shè)計(jì)

1、統(tǒng)計(jì)的有關(guān)概念

2、簡單隨機(jī)抽樣的概念

3、常用的簡單隨機(jī)抽樣方法有:(1)抽簽法(2)隨機(jī)數(shù)表法

4、課堂練習(xí)

高中數(shù)學(xué)教案 篇6

教學(xué)目標(biāo)

(1)了解線性規(guī)劃的意義以及線性約束條件、線性目標(biāo)函數(shù)、線性規(guī)化問題、可行解、可行域以及最優(yōu)解等基本概念;

(2)了解線性規(guī)劃問題的圖解法,并能應(yīng)用它解決一些簡單的實(shí)際問題;

(3)培養(yǎng)學(xué)生觀察、聯(lián)想以及作圖的能力,滲透集合、化歸、數(shù)形結(jié)合的數(shù)學(xué)思想,提高學(xué)生“建模”和解決實(shí)際問題的能力;

(4)結(jié)合教學(xué)內(nèi)容,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和“用數(shù)學(xué)”的意識(shí),激勵(lì)學(xué)生勇于創(chuàng)新.

重點(diǎn)難點(diǎn)

理解二元一次不等式表示平面區(qū)域是教學(xué)重點(diǎn)。

如何擾實(shí)際問題轉(zhuǎn)化為線性規(guī)劃問題,并給出解答是教學(xué)難點(diǎn)。

教學(xué)步驟

(一)引入新課

我們已研究過以二元一次不等式組為約束條件的二元線性目標(biāo)函數(shù)的線性規(guī)劃問題。那么是否有多個(gè)兩個(gè)變量的線性規(guī)劃問題呢?又什么樣的問題不用線性規(guī)劃知識(shí)來解決呢?

高中數(shù)學(xué)教案 篇7

教學(xué)目標(biāo):使學(xué)生初步理解集合的基本概念,了解“屬于”關(guān)系的意義、常用數(shù)集的記法和集合中元素的特性.了解有限集、無限集、空集概念,

教學(xué)重點(diǎn):集合概念、性質(zhì);“∈”,“?”的使用

教學(xué)難點(diǎn):集合概念的理解;

課型:新授課

教學(xué)手段:

教學(xué)過程:

一、引入課題

軍訓(xùn)前學(xué)校通知:8月15日8點(diǎn),高一年級(jí)在體育館集合進(jìn)行軍訓(xùn)動(dòng)員;試問這個(gè)通知的對(duì)象是全體的高一學(xué)生還是個(gè)別學(xué)生?

在這里,集合是我們常用的一個(gè)詞語,我們感興趣的是問題中某些特定(是高一而不是高二)對(duì)象的總體,而不是個(gè)別的對(duì)象,為此,我們將學(xué)習(xí)一個(gè)新的概念——集合(宣布課題),即是一些研究對(duì)象的總體。

研究集合的數(shù)學(xué)理論在現(xiàn)代數(shù)學(xué)中稱為集合論,它不僅是數(shù)學(xué)的一個(gè)基本分支,在數(shù)學(xué)中占據(jù)一個(gè)極其獨(dú)特的地位,如果把數(shù)學(xué)比作一座宏偉大廈,那么集合論就是這座宏偉大廈的基石。集合理論是由德國數(shù)學(xué)家康托爾,他創(chuàng)造的集合論是近代許多數(shù)學(xué)分支的基礎(chǔ)。(參看閱教材中讀材料P17)。

下面幾節(jié)課中,我們共同學(xué)習(xí)有關(guān)集合的一些基礎(chǔ)知識(shí),為以后數(shù)學(xué)的學(xué)習(xí)打下基礎(chǔ)。

二、新課教學(xué)

“物以類聚,人以群分”數(shù)學(xué)中也有類似的分類。

如:自然數(shù)的集合0,1,2,3,……

如:2x-1>3,即x>2所有大于2的實(shí)數(shù)組成的集合稱為這個(gè)不等式的解集。

如:幾何中,圓是到定點(diǎn)的距離等于定長的點(diǎn)的集合。

1、一般地,指定的某些對(duì)象的全體稱為集合,標(biāo)記:A,B,C,D,…

集合中的每個(gè)對(duì)象叫做這個(gè)集合的元素,標(biāo)記:a,b,c,d,…

2、元素與集合的關(guān)系

a是集合A的元素,就說a屬于集合A,記作a∈A,

a不是集合A的元素,就說a不屬于集合A,記作a?A

思考1:列舉一些集合例子和不能構(gòu)成集合的例子,對(duì)學(xué)生的例子予以討論、點(diǎn)評(píng),

進(jìn)而講解下面的問題。

例1:判斷下列一組對(duì)象是否屬于一個(gè)集合呢?

(1)小于10的質(zhì)數(shù)(2)數(shù)學(xué)家(3)中國的直轄市(4)maths中的字母

(5)book中的字母(6)所有的偶數(shù)(7)所有直角三角形(8)滿足3x-2>x+3的全體實(shí)數(shù)

(9)方程的實(shí)數(shù)解

評(píng)注:判斷集合要注意有三點(diǎn):范圍是否確定;元素是否明確;能不能指出它的屬性。

3、集合的中元素的三個(gè)特性:

1.元素的確定性:對(duì)于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對(duì)象或者是或者不是這個(gè)給定的集合的元素。

2.元素的互異性:任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對(duì)象,相同的對(duì)象歸入一個(gè)集合時(shí),僅算一個(gè)元素。比如:book中的字母構(gòu)成的集合

3.元素的無序性:集合中的元素是平等的,沒有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

集合元素的三個(gè)特性使集合本身具有了確定性和整體性。

4、數(shù)的集簡稱數(shù)集,下面是一些常用數(shù)集及其記法:

非負(fù)整數(shù)集(即自然數(shù)集)記作:N有理數(shù)集Q

正整數(shù)集N_或N+實(shí)數(shù)集R

整數(shù)集Z

5、集合的分類原則:集合中所含元素的多少

①有限集含有限個(gè)元素,如A={-2,3}

②無限集含無限個(gè)元素,如自然數(shù)集N,有理數(shù)

③空集不含任何元素,如方程x2+1=0實(shí)數(shù)解集。專用標(biāo)記:Φ

三、課堂練習(xí)

1、用符合“∈”或“?”填空:課本P15練習(xí)慣1

2、判斷下面說法是否正確、正確的在()內(nèi)填“√”,錯(cuò)誤的填“×”

(1)所有在N中的元素都在N_中()

(2)所有在N中的元素都在Z中()

(3)所有不在N_中的數(shù)都不在Z中()

(4)所有不在Q中的實(shí)數(shù)都在R中()

(5)由既在R中又在N_中的數(shù)組成的集合中一定包含數(shù)0()

(6)不在N中的數(shù)不能使方程4x=8成立()

四、回顧反思

1、集合的概念

2、集合元素的三個(gè)特征

其中“集合中的元素必須是確定的”應(yīng)理解為:對(duì)于一個(gè)給定的集合,它的元素的意義是明確的.

“集合中的元素必須是互異的”應(yīng)理解為:對(duì)于給定的集合,它的任何兩個(gè)元素都是不同的.

3、常見數(shù)集的專用符號(hào).

五、作業(yè)布置

1.下列各組對(duì)象能確定一個(gè)集合嗎?

(1)所有很大的實(shí)數(shù)

(2)好心的人

(3)1,2,2,3,4,5.

2.設(shè)a,b是非零實(shí)數(shù),那么可能取的值組成集合的元素是

3.由實(shí)數(shù)x,-x,|x|,所組成的集合,最多含()

(A)2個(gè)元素(B)3個(gè)元素(C)4個(gè)元素(D)5個(gè)元素

4.下列結(jié)論不正確的是()

a.O∈NB.QC.OQD.-1∈Z

5.下列結(jié)論中,不正確的是()

a.若a∈N,則-aNB.若a∈Z,則a2∈Z

C.若a∈Q,則|a|∈QD.若a∈R,則

6.求數(shù)集{1,x,x2-x}中的元素x應(yīng)滿足的條件;

高中數(shù)學(xué)教案 篇8

教學(xué)目標(biāo)

(1)了解算法的含義,體會(huì)算法思想。

(2)會(huì)用自然語言和數(shù)學(xué)語言描述簡單具體問題的算法;

(3)學(xué)習(xí)有條理地、清晰地表達(dá)解決問題的步驟,培養(yǎng)邏輯思維能力與表達(dá)能力。

教學(xué)重難點(diǎn)

重點(diǎn):算法的含義、解二元一次方程組的算法設(shè)計(jì)。

難點(diǎn):把自然語言轉(zhuǎn)化為算法語言。

情境導(dǎo)入

電影《神槍手》中描述的凌靖是一個(gè)天生的狙擊手,他百發(fā)百中,最難打的位置對(duì)他來說也是輕而易舉,是香港警察狙擊手隊(duì)伍的第一神槍手、作為一名狙擊手,要想成功地完成一次狙擊任務(wù),一般要按步驟完成以下幾步:

第一步:觀察、等待目標(biāo)出現(xiàn)(用望遠(yuǎn)鏡或瞄準(zhǔn)鏡);

第二步:瞄準(zhǔn)目標(biāo);

第三步:計(jì)算(或估測(cè))風(fēng)速、距離、空氣濕度、空氣密度;

第四步:根據(jù)第三步的結(jié)果修正彈著點(diǎn);

第五步:開槍;

第六步:迅速轉(zhuǎn)移(或隱蔽)

以上這種完成狙擊任務(wù)的方法、步驟在數(shù)學(xué)上我們叫算法。

課堂探究

預(yù)習(xí)提升

1、定義:算法可以理解為由基本運(yùn)算及規(guī)定的運(yùn)算順序所構(gòu)成的完整的解題步驟,或者看成按照要求設(shè)計(jì)好的有限的確切的計(jì)算序列,并且這樣的步驟或序列能夠解決一類問題。

2、描述方式

自然語言、數(shù)學(xué)語言、形式語言(算法語言)、框圖。

3、算法的要求

(1)寫出的算法,必須能解決一類問題,且能重復(fù)使用;

(2)算法過程要能一步一步執(zhí)行,每一步執(zhí)行的操作,必須確切,不能含混不清,而且經(jīng)過有限步后能得出結(jié)果。

4、算法的特征

(1)有限性:一個(gè)算法應(yīng)包括有限的操作步驟,能在執(zhí)行有窮的操作步驟之后結(jié)束。

(2)確定性:算法的計(jì)算規(guī)則及相應(yīng)的計(jì)算步驟必須是唯一確定的。

(3)可行性:算法中的每一個(gè)步驟都是可以在有限的時(shí)間內(nèi)完成的基本操作,并能得到確定的結(jié)果。

(4)順序性:算法從初始步驟開始,分為若干個(gè)明確的步驟,前一步是后一步的前提,后一步是前一步的后續(xù),且除了最后一步外,每一個(gè)步驟只有一個(gè)確定的后續(xù)。

(5)不唯一性:解決同一問題的算法可以是不唯一的

課堂典例講練

命題方向1對(duì)算法意義的理解

例1、下列敘述中,

①植樹需要運(yùn)苗、挖坑、栽苗、澆水這些步驟;

②按順序進(jìn)行下列運(yùn)算:1+1=2,2+1=3,3+1=4,…99+1=100;

③從青島乘動(dòng)車到濟(jì)南,再從濟(jì)南乘飛機(jī)到倫敦觀看奧運(yùn)會(huì)開幕式;

④3x>x+1;

⑤求所有能被3整除的正數(shù),即3,6,9,12。

能稱為算法的個(gè)數(shù)為()

A、2

B、3

C、4

D、5

【解析】根據(jù)算法的含義和特征:①②③都是算法;④⑤不是算法、其中④,3x>x+1不是一個(gè)明確的步驟,不符合明確性;⑤的步驟是無窮的,與算法的有限性矛盾。

【答案】B

[規(guī)律總結(jié)]

1、正確理解算法的概念及其特點(diǎn)是解決問題的關(guān)鍵、

2、針對(duì)判斷語句是否是算法的問題,要看它的步驟是否是明確的和有效的,而且能在有限步驟之內(nèi)解決這一問題、

【變式訓(xùn)練】下列對(duì)算法的理解不正確的是________

①一個(gè)算法應(yīng)包含有限的步驟,而不能是無限的

②算法可以理解為由基本運(yùn)算及規(guī)定的運(yùn)算順序構(gòu)成的完整的解題步驟

③算法中的每一步都應(yīng)當(dāng)有效地執(zhí)行,并得到確定的結(jié)果

④一個(gè)問題只能設(shè)計(jì)出一個(gè)算法

【解析】由算法的有限性指包含的步驟是有限的故①正確;

由算法的明確性是指每一步都是確定的故②正確;

由算法的每一步都是確定的,且每一步都應(yīng)有確定的結(jié)果故③正確;

由對(duì)于同一個(gè)問題可以有不同的算法故④不正確。

【答案】④

命題方向2解方程(組)的算法

例2、給出求解方程組的一個(gè)算法。

[思路分析]解線性方程組的常用方法是加減消元法和代入消元法,這兩種方法沒有本質(zhì)的差別,為了適用于解一般的線性方程組,以便于在計(jì)算機(jī)上實(shí)現(xiàn),我們用高斯消元法(即先將方程組化為一個(gè)三角形方程組,再通過回代方程求出方程組的解)解線性方程組、

[規(guī)范解答]方法一:算法如下:

第一步,①×(-2)+②,得(-2+5)y=-14+11

即方程組可化為

第二步,解方程③,可得y=-1,④

第三步,將④代入①,可得2x-1=7,x=4

第四步,輸出4,-1

方法二:算法如下:

第一步,由①式可以得到y(tǒng)=7-2x,⑤

第二步,把y=7-2x代入②,得x=4

第三步,把x=4代入⑤,得y=-1

第四步,輸出4,-1

[規(guī)律總結(jié)]1、本題用了2種方法求解,對(duì)于問題的求解過程,我們既要強(qiáng)調(diào)對(duì)“通法、通解”的理解,又要強(qiáng)調(diào)對(duì)所學(xué)知識(shí)的靈活運(yùn)用。

2、設(shè)計(jì)算法時(shí),經(jīng)常遇到解方程(組)的問題,一般是按照數(shù)學(xué)上解方程(組)的方法進(jìn)行設(shè)計(jì),但應(yīng)注意全面考慮方程解的情況,即先確定方程(組)是否有解,有解時(shí)有幾個(gè)解,然后根據(jù)求解步驟設(shè)計(jì)算法步驟。

【變式訓(xùn)練】

【解】算法如下:S1,①+2×②得5x=1;③

S2,解③得x=;

S3,②-①×2得5y=3;④

S4,解④得y=;

命題方向3篩選問題的算法設(shè)計(jì)

例3、設(shè)計(jì)一個(gè)算法,對(duì)任意3個(gè)整數(shù)a、b、c,求出其中的最小值、

[思路分析]比較a,b比較m與c―→最小數(shù)

[規(guī)范解答]算法步驟如下:

1、比較a與b的大小,若a

2、比較m與c的大小,若m

[規(guī)律總結(jié)]求最小(大)數(shù)就是從中篩選出最小(大)的一個(gè),篩選過程中的每一步都是比較兩個(gè)數(shù)的大小,保證了篩選的可行性,這種方法可以推廣到從多個(gè)不同數(shù)中篩選出滿足要求的一個(gè)。

【變式訓(xùn)練】在下列數(shù)字序列中,寫出搜索89的算法:

21,3,0,9,15,72,89,91,93

[解析]1、先找到序列中的第一個(gè)數(shù)m,m=21;

2、將m與89比較,是否相等,如果相等,則搜索到89;

3、如果m與89不相等,則往下執(zhí)行;

4、繼續(xù)將序列中的其他數(shù)賦給m,重復(fù)第2步,直到搜索到89。

命題方向4非數(shù)值性問題的算法

例4、一個(gè)人帶三只狼和三只羚羊過河,只有一條船,同船可以容一個(gè)人和兩只動(dòng)物,沒有人在的時(shí)候,如果狼的數(shù)量不少于羚羊的數(shù)量,狼就會(huì)吃掉羚羊。

(1)設(shè)計(jì)安全渡河的算法;

(2)思考每一步算法所遵循的共同原則是什么?

高中數(shù)學(xué)教案11篇


老師都需要為每堂課準(zhǔn)備教案課件,每位老師都需要認(rèn)真準(zhǔn)備自己的教案課件。教師制定教案需要深入了解學(xué)生群體?,F(xiàn)在小編將為您全面介紹“高中數(shù)學(xué)教案”的相關(guān)知識(shí)點(diǎn),歡迎大家閱讀本文但請(qǐng)注意僅供參考之用!

高中數(shù)學(xué)教案 篇1

教學(xué)目標(biāo)

(1)正確理解排列的意義。能利用樹形圖寫出簡單問題的所有排列;

(2)了解排列和排列數(shù)的意義,能根據(jù)具體的問題,寫出符合要求的排列;

(3)掌握排列數(shù)公式,并能根據(jù)具體的問題,寫出符合要求的排列數(shù);

(4)會(huì)分析與數(shù)字有關(guān)的排列問題,培養(yǎng)學(xué)生的抽象能力和邏輯思維能力;

(5)通過對(duì)排列應(yīng)用問題的學(xué)習(xí),讓學(xué)生通過對(duì)具體事例的觀察、歸納中找出規(guī)律,得出結(jié)論,以培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度。

教學(xué)建議

一、知識(shí)結(jié)構(gòu)

二、重點(diǎn)難點(diǎn)分析

本小節(jié)的重點(diǎn)是排列的定義、排列數(shù)及排列數(shù)的公式,并運(yùn)用這個(gè)公式去解決有關(guān)排列數(shù)的應(yīng)用問題。難點(diǎn)是導(dǎo)出排列數(shù)的公式和解有關(guān)排列的應(yīng)用題。突破重點(diǎn)、難點(diǎn)的關(guān)鍵是對(duì)加法原理和乘法原理的掌握和運(yùn)用,并將這兩個(gè)原理的基本思想方法貫穿在解決排列應(yīng)用問題當(dāng)中。

從n個(gè)不同元素中任取m(m≤n)個(gè)元素,按照一定的順序排成一列,稱為從n個(gè)不同元素中任取m個(gè)元素的一個(gè)排列。因此,兩個(gè)相同排列,當(dāng)且僅當(dāng)他們的元素完全相同,并且元素的排列順序也完全相同。排列數(shù)是指從n個(gè)不同元素中任取m(m≤n)個(gè)元素的所有不同排列的種數(shù),只要弄清相同排列、不同排列,才有可能計(jì)算相應(yīng)的排列數(shù)。排列與排列數(shù)是兩個(gè)概念,前者是具有m個(gè)元素的排列,后者是這種排列的不同種數(shù)。從集合的角度看,從n個(gè)元素的有限集中取出m個(gè)組成的有序集,相當(dāng)于一個(gè)排列,而這種有序集的個(gè)數(shù),就是相應(yīng)的排列數(shù)。

公式推導(dǎo)要注意緊扣乘法原理,借助框圖的直視解釋來講解。要重點(diǎn)分析好的推導(dǎo)。

排列的應(yīng)用題是本節(jié)教材的難點(diǎn),通過本節(jié)例題的分析,應(yīng)注意培養(yǎng)學(xué)生解決應(yīng)用問題的能力。

在分析應(yīng)用題的解法時(shí),教材上先畫出框圖,然后分析逐次填入時(shí)的種數(shù),這樣解釋比較直觀,教學(xué)上要充分利用,要求學(xué)生作題時(shí)也應(yīng)盡量采用。

在教學(xué)排列應(yīng)用題時(shí),開始應(yīng)要求學(xué)生寫解法要有簡要的文字說明,防止單純的只寫一個(gè)排列數(shù),這樣可以培養(yǎng)學(xué)生的分析問題的能力,在基本掌握之后,可以逐漸地不作這方面的要求。

三、教法建議

①在講解排列數(shù)的概念時(shí),要注意區(qū)分“排列數(shù)”與“一個(gè)排列”這兩個(gè)概念。一個(gè)排列是指“從n個(gè)不同元素中,任取出m個(gè)元素,按照一定的順序擺成一排”,它不是一個(gè)數(shù),而是具體的一件事;排列數(shù)是指“從n個(gè)不同元素中取出m個(gè)元素的所有排列的個(gè)數(shù)”,它是一個(gè)數(shù)。例如,從3個(gè)元素a,b,c中每次取出2個(gè)元素,按照一定的順序排成一排,有如下幾種:

ab,ac,ba,bc,ca,cb,

其中每一種都叫一個(gè)排列,共有6種,而數(shù)字6就是排列數(shù),符號(hào)表示排列數(shù)。

②排列的定義中包含兩個(gè)基本內(nèi)容,一是“取出元素”,二是“按一定順序排列”。

從定義知,只有當(dāng)元素完全相同,并且元素排列的順序也完全相同時(shí),才是同一個(gè)排列,元素完全不同,或元素部分相同或元素完全相同而順序不同的排列,都不是同一排列。叫不同排列。

在定義中“一定順序”就是說與位置有關(guān),在實(shí)際問題中,要由具體問題的性質(zhì)和條件來決定,這一點(diǎn)要特別注意,這也是與后面學(xué)習(xí)的組合的根本區(qū)別。

在排列的定義中,如果有的書上叫選排列,如果,此時(shí)叫全排列。

要特別注意,不加特殊說明,本章不研究重復(fù)排列問題。

③關(guān)于排列數(shù)公式的推導(dǎo)的教學(xué)。公式推導(dǎo)要注意緊扣乘法原理,借助框圖的直視解釋來講解。課本上用的是不完全歸納法,先推導(dǎo),,…,再推廣到,這樣由特殊到一般,由具體到抽象的講法,學(xué)生是不難理解的。

導(dǎo)出公式后要分析這個(gè)公式的構(gòu)成特點(diǎn),以便幫助學(xué)生正確地記憶公式,防止學(xué)生在“n”、“m”比較復(fù)雜的時(shí)候把公式寫錯(cuò)。這個(gè)公式的特點(diǎn)可見課本第229頁的一段話:“其中,公式右邊第一個(gè)因數(shù)是n,后面每個(gè)因數(shù)都比它前面一個(gè)因數(shù)少1,最后一個(gè)因數(shù)是,共m個(gè)因數(shù)相乘?!边@實(shí)際是講三個(gè)特點(diǎn):第一個(gè)因數(shù)是什么?最后一個(gè)因數(shù)是什么?一共有多少個(gè)連續(xù)的自然數(shù)相乘。

公式是在引出全排列數(shù)公式后,將排列數(shù)公式變形后得到的公式。對(duì)這個(gè)公式指出兩點(diǎn):

(1)在一般情況下,要計(jì)算具體的排列數(shù)的值,常用前一個(gè)公式,而要對(duì)含有字母的排列數(shù)的式子進(jìn)行變形或作有關(guān)的論證,要用到這個(gè)公式,教材中第230頁例2就是用這個(gè)公式證明的問題;

(2)為使這個(gè)公式在時(shí)也能成立,規(guī)定,如同時(shí)一樣,是一種規(guī)定,因此,不能按階乘數(shù)的原意作解釋。

④建議應(yīng)充分利用樹形圖對(duì)問題進(jìn)行分析,這樣比較直觀,便于理解。

⑤學(xué)生在開始做排列應(yīng)用題的作業(yè)時(shí),應(yīng)要求他們寫出解法的簡要說明,而不能只列出算式、得出答數(shù),這樣有利于學(xué)生得更加扎實(shí)。隨著學(xué)生解題熟練程度的提高,可以逐步降低這種要求。

高中數(shù)學(xué)教案 篇2

一、教學(xué)目標(biāo)

1.知識(shí)與技能

(1)掌握斜二測(cè)畫法畫水平設(shè)置的平面圖形的直觀圖。

(2)采用對(duì)比的方法了解在平行投影下畫空間圖形與在中心投影下畫空間圖形兩種方法的各自特點(diǎn)。

2.過程與方法

學(xué)生通過觀察和類比,利用斜二測(cè)畫法畫出空間幾何體的直觀圖。

3.情感態(tài)度與價(jià)值觀

(1)提高空間想象力與直觀感受。

(2)體會(huì)對(duì)比在學(xué)習(xí)中的作用。

(3)感受幾何作圖在生產(chǎn)活動(dòng)中的應(yīng)用。

二、教學(xué)重點(diǎn)、難點(diǎn)

重點(diǎn)、難點(diǎn):用斜二測(cè)畫法畫空間幾何值的直觀圖。

三、學(xué)法與教學(xué)用具

1.學(xué)法:學(xué)生通過作圖感受圖形直觀感,并自然采用斜二測(cè)畫法畫空間幾何體的過程。

2.教學(xué)用具:三角板、圓規(guī)

四、教學(xué)思路

(一)創(chuàng)設(shè)情景,揭示課題

1.我們都學(xué)過畫畫,這節(jié)課我們畫一物體:圓柱

把實(shí)物圓柱放在講臺(tái)上讓學(xué)生畫。

2.學(xué)生畫完后展示自己的結(jié)果并與同學(xué)交流,比較誰畫的效果更好,思考怎樣才能畫好物體的直觀圖呢?這是我們這節(jié)主要學(xué)習(xí)的內(nèi)容。

(二)研探新知

1.例1,用斜二測(cè)畫法畫水平放置的正六邊形的直觀圖,由學(xué)生閱讀理解,并思考斜二測(cè)畫法的關(guān)鍵步驟,學(xué)生發(fā)表自己的見解,教師及時(shí)給予點(diǎn)評(píng)。

畫水平放置的多邊形的直觀圖的關(guān)鍵是確定多邊形頂點(diǎn)的位置,因?yàn)槎噙呅雾旤c(diǎn)的位置一旦確定,依次連結(jié)這些頂點(diǎn)就可畫出多邊形來,因此平面多邊形水平放置時(shí),直觀圖的畫法可以歸結(jié)為確定點(diǎn)的位置的畫法。強(qiáng)調(diào)斜二測(cè)畫法的步驟。

練習(xí)反饋

根據(jù)斜二測(cè)畫法,畫出水平放置的正五邊形的直觀圖,讓學(xué)生獨(dú)立完成后,教師檢查。

2.例2,用斜二測(cè)畫法畫水平放置的圓的直觀圖

教師引導(dǎo)學(xué)生與例1進(jìn)行比較,與畫水平放置的多邊形的直觀圖一樣,畫水平放置的圓的直觀圖,也是要先畫出一些有代表性的點(diǎn),由于不能像多邊那樣直接以頂點(diǎn)為代表點(diǎn),因此需要自己構(gòu)造出一些點(diǎn)。

教師組織學(xué)生思考、討論和交流,如何構(gòu)造出需要的一些點(diǎn),與學(xué)生共同完成例2并詳細(xì)板書畫法。

3.探求空間幾何體的直觀圖的畫法

(1)例3,用斜二測(cè)畫法畫長、寬、高分別是4cm、3cm、2cm的長方體ABCD-A’B’C’D’的直觀圖。

教師引導(dǎo)學(xué)生完成,要注意對(duì)每一步驟提出嚴(yán)格要求,讓學(xué)生按部就班地畫好每一步,不能敷衍了事。

(2)投影出示幾何體的三視圖、課本P15圖1.2-9,請(qǐng)說出三視圖表示的幾何體?并用斜二測(cè)畫法畫出它的直觀圖。教師組織學(xué)生思考,討論和交流完成,教師巡視幫不懂的同學(xué)解疑,引導(dǎo)學(xué)生正確把握?qǐng)D形尺寸大小之間的關(guān)系。

4.平行投影與中心投影

投影出示課本P17圖1.2-12,讓學(xué)生觀察比較概括在平行投影下畫空間圖形與在中心投影下畫空間圖形的各自特點(diǎn)。

5.鞏固練習(xí),課本P16練習(xí)1(1),2,3,4

三、歸納整理

學(xué)生回顧斜二測(cè)畫法的關(guān)鍵與步驟

四、作業(yè)

1.書畫作業(yè),課本P17練習(xí)第5題

2.課外思考課本P16,探究(1)(2)

高中數(shù)學(xué)教案 篇3

一、激發(fā)學(xué)生興趣,讓學(xué)生產(chǎn)生學(xué)習(xí)的動(dòng)力

要想學(xué)好高中數(shù)學(xué),激發(fā)濃厚的興趣是最有效的手段。如何在數(shù)學(xué)學(xué)習(xí)中激發(fā)興趣,應(yīng)該從四方面來落實(shí)。一是重視數(shù)學(xué)基礎(chǔ)知識(shí)教學(xué)。有的學(xué)生認(rèn)為數(shù)學(xué)內(nèi)容很抽象,都是一些數(shù)字符號(hào),不容易理解,其實(shí)不然,數(shù)學(xué)知識(shí)是最基礎(chǔ)的知識(shí),是和我們的生活聯(lián)系非常緊密的知識(shí),數(shù)學(xué)就在我們的身邊,我們的生活離不開數(shù)學(xué)。二是強(qiáng)化數(shù)學(xué)實(shí)踐應(yīng)用。許多學(xué)生對(duì)數(shù)學(xué)存在認(rèn)識(shí)上的誤區(qū),認(rèn)為學(xué)習(xí)數(shù)學(xué)沒有多大的用處,事實(shí)上,數(shù)學(xué)知識(shí)就充斥在我們生活的每一個(gè)角落,與我們的生活是密不可分的。只是以前的數(shù)學(xué)教學(xué)與實(shí)踐生活嚴(yán)重脫節(jié),造成學(xué)生認(rèn)為數(shù)學(xué)知識(shí)沒有多大用處。新數(shù)學(xué)課程改革下,數(shù)學(xué)教材有了全新的改革和發(fā)展,重視數(shù)學(xué)的實(shí)踐應(yīng)用,使學(xué)生能夠在數(shù)學(xué)學(xué)習(xí)中感受到數(shù)學(xué)的價(jià)值和魅力,從而熱愛數(shù)學(xué)。三是引入數(shù)學(xué)實(shí)驗(yàn)教學(xué)。數(shù)學(xué)并不只是課堂上教師的講解,還可以通過數(shù)學(xué)實(shí)驗(yàn)來激發(fā)學(xué)生的興趣,讓學(xué)生在實(shí)驗(yàn)教學(xué)中感受到數(shù)學(xué)的直觀性,使學(xué)生以探究者的身份參與到數(shù)學(xué)知識(shí)的研究中,從而讓學(xué)生在實(shí)驗(yàn)的過程中,獲得成功的喜悅。四是讓學(xué)生在攻克數(shù)學(xué)難關(guān)中獲得積極情感。數(shù)學(xué)知識(shí)具有寶貴的資源價(jià)值,學(xué)生可以在發(fā)現(xiàn)和創(chuàng)造中獲得積極的情感,數(shù)學(xué)之所以能夠吸引更多的人去探索和創(chuàng)新,就是因?yàn)樵跀?shù)學(xué)學(xué)習(xí)中,可以獲得成功的喜悅,激發(fā)學(xué)生的斗志。

二、教給學(xué)生學(xué)習(xí)的方法,讓學(xué)生懂得怎樣學(xué)習(xí)

我們常說:“授人與魚,不如授人以漁?!边@充分說明了教學(xué)中方法的重要性,在教育教學(xué)中,教師不僅是要教給學(xué)生知識(shí),更重要的是教給學(xué)生學(xué)習(xí)的方法,它是學(xué)生獲得知識(shí)的重要法寶,學(xué)生只有在掌握方法的情況下,才能學(xué)會(huì)自己去學(xué)習(xí),從而獲得知識(shí)。因此,在新課程改革下,我們不但要讓學(xué)生“學(xué)會(huì)”,還要讓學(xué)生“會(huì)學(xué)”。首先,要教給學(xué)生“讀”的方法。有人認(rèn)為,高中數(shù)學(xué)教學(xué)用不到“讀”的方法。其實(shí),數(shù)學(xué)教學(xué)和其他學(xué)科一樣,同樣離不開“讀”的方法,學(xué)生只有在讀的過程中才能理解數(shù)學(xué)問題所包含的內(nèi)容,才會(huì)發(fā)現(xiàn)和歸納數(shù)學(xué)材料中所包含的深層次含義,使學(xué)生懂得抓住重點(diǎn)去思考問題,從而為學(xué)生理解數(shù)字知識(shí)奠定良好基礎(chǔ)。其次,要引導(dǎo)學(xué)生“議”的思路。新的數(shù)學(xué)課程改革提出了合作、探究的學(xué)習(xí)方法,注重培養(yǎng)學(xué)生分析問題和解決問題的能力。因此,在數(shù)學(xué)教學(xué)中,要鼓勵(lì)學(xué)生大膽發(fā)言,勇于探究討論,尤其對(duì)于那些有爭議的數(shù)學(xué)問題,要引導(dǎo)學(xué)生積極探究,從而幫助學(xué)生在探究討論中提高能力。

第三,要讓學(xué)生學(xué)會(huì)思考。我國古代教育中就非常重視“思“的重要性,提出了“學(xué)而不思則罔”的重要論斷。在數(shù)學(xué)教學(xué)中,同樣要重點(diǎn)培養(yǎng)學(xué)生“思考”的品質(zhì),讓學(xué)生養(yǎng)成思考的良好習(xí)慣,學(xué)會(huì)辨析數(shù)學(xué)知識(shí)的難點(diǎn),理解數(shù)學(xué)知識(shí)的連貫性,從而增強(qiáng)學(xué)生的想象力,提高學(xué)生分析數(shù)學(xué)知識(shí)的能力和水平。

三、培養(yǎng)學(xué)生質(zhì)疑的能力,使學(xué)生敢于向權(quán)威挑戰(zhàn)

數(shù)學(xué)教學(xué)離不開學(xué)生的質(zhì)疑,尤其是在新課程改革下,培養(yǎng)學(xué)生的質(zhì)疑能力,讓學(xué)生敢于質(zhì)疑,是提高數(shù)學(xué)教學(xué)效果的重要因素。在傳統(tǒng)的數(shù)學(xué)教學(xué)中,學(xué)生根本沒有質(zhì)疑的意識(shí),在解完一道題時(shí),總是沒有自信心,只能向教師或者權(quán)威的書籍求證,這樣就抑制了學(xué)生創(chuàng)新思維的發(fā)展,長此下去,會(huì)讓學(xué)生沒有學(xué)習(xí)的激情。高中數(shù)學(xué)階段,應(yīng)該培養(yǎng)學(xué)生的質(zhì)疑能力,讓學(xué)生敢于向權(quán)威挑戰(zhàn),這對(duì)于提高學(xué)生的數(shù)學(xué)能力素質(zhì),培養(yǎng)學(xué)生的創(chuàng)新能力具有重要的意義。如果真的找出了“權(quán)威”的錯(cuò)誤,這對(duì)于學(xué)生來說將是更大的鞭策。因此,在教學(xué)中教師要有意識(shí)地培養(yǎng)學(xué)生的質(zhì)疑能力,對(duì)于學(xué)生的一些新的發(fā)現(xiàn)、新的想法要及時(shí)予以鼓勵(lì),激發(fā)學(xué)生進(jìn)取的精神,讓學(xué)生在質(zhì)疑中提高數(shù)學(xué)學(xué)習(xí)的興趣,樹立數(shù)學(xué)學(xué)習(xí)的自信心。

四、教給學(xué)生學(xué)習(xí)的方法,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣

新的數(shù)學(xué)教材中,都有教法指導(dǎo)和學(xué)法滲透的內(nèi)容,如在每一章都編排了“做一做”“讀一讀”“想一想”等相關(guān)的知識(shí),其主要的目的就是讓學(xué)生學(xué)會(huì)學(xué)習(xí),學(xué)會(huì)思考。因此,在教學(xué)中教師要注重學(xué)生學(xué)習(xí)方法指導(dǎo),讓學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣。比如,讓學(xué)生學(xué)會(huì)讀題的方法。讀題并不是隨意閱讀,是讓學(xué)生在讀題中找到有價(jià)值的內(nèi)容,從而為進(jìn)一步解決問題奠定基礎(chǔ)。如果學(xué)生在讀題中找到了相關(guān)的問題,教師要及時(shí)予以鼓勵(lì),樹立學(xué)生學(xué)習(xí)的信心和勇氣,使學(xué)生在學(xué)習(xí)中感受到成功的喜悅,從而產(chǎn)生興趣,培養(yǎng)良好習(xí)慣。同時(shí),教師在教學(xué)中還要學(xué)會(huì)創(chuàng)設(shè)良好的學(xué)習(xí)情境,引發(fā)學(xué)生積極地去探究數(shù)學(xué)知識(shí),讓學(xué)生在教師所創(chuàng)設(shè)的情境中鍛煉能力,提高素質(zhì),從而為培養(yǎng)學(xué)生的良好習(xí)慣奠定基礎(chǔ)??傊咧袛?shù)學(xué)教學(xué)是學(xué)生數(shù)學(xué)學(xué)習(xí)的基礎(chǔ)。作為高中數(shù)學(xué)教師,一定要認(rèn)識(shí)到高中數(shù)學(xué)教學(xué)的重要性,不斷轉(zhuǎn)變教學(xué)觀念,樹立全新的數(shù)學(xué)教學(xué)思想,使數(shù)學(xué)知識(shí)能夠與我們的生活緊密聯(lián)系起來,做到學(xué)以致用,讓學(xué)生在數(shù)學(xué)學(xué)習(xí)中感受到成功的喜悅,從而進(jìn)一步增強(qiáng)學(xué)生數(shù)學(xué)學(xué)習(xí)的主動(dòng)性,使學(xué)生在數(shù)學(xué)學(xué)習(xí)中各方面能力都能得到進(jìn)一步的提高。

小編推薦各科教學(xué)設(shè)計(jì):

、、、、、、、、、、、、

高中數(shù)學(xué)教案 篇4

一、概述

教材內(nèi)容:等比數(shù)列的概念和通項(xiàng)公式的推導(dǎo)及簡單應(yīng)用 教材難點(diǎn):靈活應(yīng)用等比數(shù)列及通項(xiàng)公式解決一般問題 教材重點(diǎn):等比數(shù)列的概念和通項(xiàng)公式

二、教學(xué)目標(biāo)分析

1. 知識(shí)目標(biāo)

1)

2) 掌握等比數(shù)列的定義 理解等比數(shù)列的通項(xiàng)公式及其推導(dǎo)

2.能力目標(biāo)

1)學(xué)會(huì)通過實(shí)例歸納概念

2)通過學(xué)習(xí)等比數(shù)列的通項(xiàng)公式及其推導(dǎo)學(xué)會(huì)歸納假設(shè)

3)提高數(shù)學(xué)建模的能力

3、情感目標(biāo):

1)充分感受數(shù)列是反映現(xiàn)實(shí)生活的模型

2)體會(huì)數(shù)學(xué)是來源于現(xiàn)實(shí)生活并應(yīng)用于現(xiàn)實(shí)生活

3)數(shù)學(xué)是豐富多彩的而不是枯燥無味的

三、教學(xué)對(duì)象及學(xué)習(xí)需要分析

1、 教學(xué)對(duì)象分析:

1)高中生已經(jīng)有一定的學(xué)習(xí)能力,對(duì)各方面的知識(shí)有一定的基礎(chǔ),理解能力較強(qiáng)。并掌握了函數(shù)及個(gè)別特殊函數(shù)的性質(zhì)及圖像,如指數(shù)函數(shù)。之前也剛學(xué)習(xí)了等差數(shù)列,在學(xué)習(xí)這一章節(jié)時(shí)可聯(lián)系以前所學(xué)的進(jìn)行引導(dǎo)教學(xué)。

2)對(duì)歸納假設(shè)較弱,應(yīng)加強(qiáng)這方面教學(xué)

2、學(xué)習(xí)需要分析:

四. 教學(xué)策略選擇與設(shè)計(jì)

1.課前復(fù)習(xí)

1)復(fù)習(xí)等差數(shù)列的概念及通向公式

2)復(fù)習(xí)指數(shù)函數(shù)及其圖像和性質(zhì)

2.情景導(dǎo)入

高中數(shù)學(xué)教案全套篇2

教學(xué)準(zhǔn)備

教學(xué)目標(biāo)

掌握等差數(shù)列與等比數(shù)列的概念,通項(xiàng)公式與前n項(xiàng)和公式,等差中項(xiàng)與等比中項(xiàng)的概念,并能運(yùn)用這些知識(shí)解決一些基本問題.

教學(xué)重難點(diǎn)

掌握等差數(shù)列與等比數(shù)列的概念,通項(xiàng)公式與前n項(xiàng)和公式,等差中項(xiàng)與等比中項(xiàng)的概念,并能運(yùn)用這些知識(shí)解決一些基本問題.

教學(xué)過程

等比數(shù)列性質(zhì)請(qǐng)同學(xué)們類比得出.

【方法規(guī)律】

1、通項(xiàng)公式與前n項(xiàng)和公式聯(lián)系著五個(gè)基本量,“知三求二”是一類最基本的運(yùn)算題.方程觀點(diǎn)是解決這類問題的基本數(shù)學(xué)思想和方法.

2、判斷一個(gè)數(shù)列是等差數(shù)列或等比數(shù)列,常用的方法使用定義.特別地,在判斷三個(gè)實(shí)數(shù)

a,b,c成等差(比)數(shù)列時(shí),常用(注:若為等比數(shù)列,則a,b,c均不為0)

3、在求等差數(shù)列前n項(xiàng)和的最大(小)值時(shí),常用函數(shù)的思想和方法加以解決.

【示范舉例】

例1:

(1)設(shè)等差數(shù)列的前n項(xiàng)和為30,前2n項(xiàng)和為100,則前3n項(xiàng)和為.

(2)一個(gè)等比數(shù)列的前三項(xiàng)之和為26,前六項(xiàng)之和為728,則a1=,q=.

例2:四數(shù)中前三個(gè)數(shù)成等比數(shù)列,后三個(gè)數(shù)成等差數(shù)列,首末兩項(xiàng)之和為21,中間兩項(xiàng)之和為18,求此四個(gè)數(shù).

例3:項(xiàng)數(shù)為奇數(shù)的等差數(shù)列,奇數(shù)項(xiàng)之和為44,偶數(shù)項(xiàng)之和為33,求該數(shù)列的中間項(xiàng).

高中數(shù)學(xué)教案全套篇3

1.1.1 任意角

教學(xué)目標(biāo)

(一) 知識(shí)與技能目標(biāo)

理解任意角的概念(包括正角、負(fù)角、零角) 與區(qū)間角的概念.

(二) 過程與能力目標(biāo)

會(huì)建立直角坐標(biāo)系討論任意角,能判斷象限角,會(huì)書寫終邊相同角的集合;掌握區(qū)間角的集合的書寫.

(三) 情感與態(tài)度目標(biāo)

1. 提高學(xué)生的推理能力;

2.培養(yǎng)學(xué)生應(yīng)用意識(shí). 教學(xué)重點(diǎn)

任意角概念的理解;區(qū)間角的集合的書寫. 教學(xué)難點(diǎn)

終邊相同角的集合的表示;區(qū)間角的集合的書寫.

教學(xué)過程

一、引入:

1.回顧角的定義

①角的第一種定義是有公共端點(diǎn)的兩條射線組成的圖形叫做角.

②角的第二種定義是角可以看成平面內(nèi)一條射線繞著端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形.

二、新課:

1.角的有關(guān)概念:

①角的定義:

角可以看成平面內(nèi)一條射線繞著端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形.

②角的名稱:

③角的分類: A

正角:按逆時(shí)針方向旋轉(zhuǎn)形成的角 零角:射線沒有任何旋轉(zhuǎn)形成的角

負(fù)角:按順時(shí)針方向旋轉(zhuǎn)形成的角

④注意:

⑴在不引起混淆的情況下,“角α ”或“∠α ”可以簡化成“α ”;

⑵零角的終邊與始邊重合,如果α是零角α =0°;

⑶角的概念經(jīng)過推廣后,已包括正角、負(fù)角和零角.

⑤練習(xí):請(qǐng)說出角α、β、γ各是多少度?

2.象限角的概念:

①定義:若將角頂點(diǎn)與原點(diǎn)重合,角的始邊與x軸的非負(fù)半軸重合,那么角的終邊(端點(diǎn)除外)在第幾象限,我們就說這個(gè)角是第幾象限角.

例1.在直角坐標(biāo)系中,作出下列各角,并指出它們是第幾象限的角.

⑴ 60°; ⑵ 120°; ⑶ 240°; ⑷ 300°; ⑸ 420°; ⑹ 480°;

答:分別為1、2、3、4、1、2象限角.

3.探究:教材P3面

終邊相同的角的表示:

所有與角α終邊相同的角,連同α在內(nèi),可構(gòu)成一個(gè)集合S={ β | β = α +

k·360° ,

k∈Z},即任一與角α終邊相同的角,都可以表示成角α與整個(gè)周角的和. 注意: ⑴ k∈Z

⑵ α是任一角;

⑶ 終邊相同的角不一定相等,但相等的角終邊一定相同.終邊相同的角有無限個(gè),它們相差

360°的整數(shù)倍;

⑷ 角α + k·720°與角α終邊相同,但不能表示與角α終邊相同的所有角.

例2.在0°到360°范圍內(nèi),找出與下列各角終邊相等的角,并判斷它們是第幾象限角.

⑴-120°;

⑵640°;

⑶-950°12’.

答:⑴240°,第三象限角;

⑵280°,第四象限角;

⑶129°48’,第二象限角;

例4.寫出終邊在y軸上的角的集合(用0°到360°的角表示) . 解:{α | α = 90°+ n·180°,n∈Z}.

例5.寫出終邊在y?x上的角的集合S,并把S中適合不等式-360°≤β

4.課堂小結(jié)

①角的定義;

②角的分類:

正角:按逆時(shí)針方向旋轉(zhuǎn)形成的角 零角:射線沒有任何旋轉(zhuǎn)形成的角

負(fù)角:按順時(shí)針方向旋轉(zhuǎn)形成的角

③象限角;

④終邊相同的角的表示法.

5.課后作業(yè):

①閱讀教材P2-P5;

②教材P5練習(xí)第1-5題;

③教材P.9習(xí)題1.1第1、2、3題 思考題:已知α角是第三象限角,則2α,

解:??角屬于第三象限,

? k·360°+180°

因此,2k·360°+360°

故2α是第一、二象限或終邊在y軸的非負(fù)半軸上的角. 又k·180°+90°

各是第幾象限角?

當(dāng)k為偶數(shù)時(shí),令k=2n(n∈Z),則n·360°+90°

屬于第二象限角

當(dāng)k為奇數(shù)時(shí),令k=2n+1 (n∈Z),則n·360°+270°

屬于第四象限角

因此

屬于第二或第四象限角.

1.1.2弧度制

(一)

教學(xué)目標(biāo)

(二) 知識(shí)與技能目標(biāo)

理解弧度的意義;了解角的集合與實(shí)數(shù)集R之間的可建立起一一對(duì)應(yīng)的關(guān)系;熟記特殊角的弧度數(shù).

(三) 過程與能力目標(biāo)

能正確地進(jìn)行弧度與角度之間的換算,能推導(dǎo)弧度制下的弧長公式及扇形的面積公式,并能運(yùn)用公式解決一些實(shí)際問題

(四) 情感與態(tài)度目標(biāo)

通過新的度量角的單位制(弧度制)的引進(jìn),培養(yǎng)學(xué)生求異創(chuàng)新的精神;通過對(duì)弧度制與角度制下弧長公式、扇形面積公式的對(duì)比,讓學(xué)生感受弧長及扇形面積公式在弧度制下的簡潔美. 教學(xué)重點(diǎn)

弧度的概念.弧長公式及扇形的面積公式的推導(dǎo)與證明. 教學(xué)難點(diǎn)

“角度制”與“弧度制”的區(qū)別與聯(lián)系.

教學(xué)過程

一、復(fù)習(xí)角度制:

初中所學(xué)的角度制是怎樣規(guī)定角的度量的? 規(guī)定把周角的作為1度的角,用度做單位來度量角的制度叫做角度制.

二、新課:

1.引 入:

由角度制的定義我們知道,角度是用來度量角的, 角度制的度量是60進(jìn)制的,運(yùn)用起來不太方便.在數(shù)學(xué)和其他許多科學(xué)研究中還要經(jīng)常用到另一種度量角的制度—弧度制,它是如何定義呢?

2.定 義

我們規(guī)定,長度等于半徑的弧所對(duì)的圓心角叫做1弧度的角;用弧度來度量角的單位制叫做弧度制.在弧度制下, 1弧度記做1rad.在實(shí)際運(yùn)算中,常常將rad單位省略.

3.思考:

(1)一定大小的圓心角?所對(duì)應(yīng)的弧長與半徑的比值是否是確定的?與圓的半徑大小有關(guān)嗎?

(2)引導(dǎo)學(xué)生完成P6的探究并歸納: 弧度制的性質(zhì):

①半圓所對(duì)的圓心角為

②整圓所對(duì)的圓心角為

③正角的弧度數(shù)是一個(gè)正數(shù).

④負(fù)角的弧度數(shù)是一個(gè)負(fù)數(shù).

⑤零角的弧度數(shù)是零.

⑥角α的弧度數(shù)的絕對(duì)值|α|= .

4.角度與弧度之間的轉(zhuǎn)換:

①將角度化為弧度:

②將弧度化為角度:

5.常規(guī)寫法:

① 用弧度數(shù)表示角時(shí),常常把弧度數(shù)寫成多少π 的形式, 不必寫成小數(shù).

② 弧度與角度不能混用.

弧長等于弧所對(duì)應(yīng)的圓心角(的弧度數(shù))的絕對(duì)值與半徑的積.

例1.把67°30’化成弧度.

例2.把? rad化成度.

例3.計(jì)算:

(1)sin4

(2)tan1.5.

8.課后作業(yè):

①閱讀教材P6 –P8;

②教材P9練習(xí)第1、2、3、6題;

③教材P10面7、8題及B2、3題.

高中數(shù)學(xué)教案全套篇4

教學(xué)目標(biāo):

1、結(jié)合實(shí)際問題情景,理解分層抽樣的必要性和重要性;

2、學(xué)會(huì)用分層抽樣的方法從總體中抽取樣本;

3、并對(duì)簡單隨機(jī)抽樣、系統(tǒng)抽樣及分層抽樣方法進(jìn)行比較,揭示其相互關(guān)系。

教學(xué)重點(diǎn):

通過實(shí)例理解分層抽樣的方法。

教學(xué)難點(diǎn):

分層抽樣的步驟。

教學(xué)過程:

一、問題情境

1、復(fù)習(xí)簡單隨機(jī)抽樣、系統(tǒng)抽樣的概念、特征以及適用范圍。

2、實(shí)例:某校高一、高二和高三年級(jí)分別有學(xué)生名,為了了解全校學(xué)生的視力情況,從中抽取容量為的樣本,怎樣抽取較為合理?

二、學(xué)生活動(dòng)

能否用簡單隨機(jī)抽樣或系統(tǒng)抽樣進(jìn)行抽樣,為什么?

指出由于不同年級(jí)的學(xué)生視力狀況有一定的差異,用簡單隨機(jī)抽樣或系統(tǒng)抽樣進(jìn)行抽樣不能準(zhǔn)確反映客觀實(shí)際,在抽樣時(shí)不僅要使每個(gè)個(gè)體被抽到的機(jī)會(huì)相等,還要注意總體中個(gè)體的層次性。

由于樣本的容量與總體的個(gè)體數(shù)的比為100∶2500=1∶25,

所以在各年級(jí)抽取的個(gè)體數(shù)依次是。即40,32,28。

三、建構(gòu)數(shù)學(xué)

1、分層抽樣:當(dāng)已知總體由差異明顯的幾部分組成時(shí),為了使樣本更客觀地反映總體的情況,常將總體按不同的特點(diǎn)分成層次比較分明的幾部分,然后按各部分在總體中所占的比進(jìn)行抽樣,這種抽樣叫做分層抽樣,其中所分成的各部分叫“層”。

說明:①分層抽樣時(shí),由于各部分抽取的個(gè)體數(shù)與這一部分個(gè)體數(shù)的比等于樣本容量與總體的個(gè)體數(shù)的比,每一個(gè)個(gè)體被抽到的可能性都是相等的;

②由于分層抽樣充分利用了我們所掌握的信息,使樣本具有較好的代表性,而且在各層抽樣時(shí)可以根據(jù)具體情況采取不同的抽樣方法,所以分層抽樣在實(shí)踐中有著非常廣泛的應(yīng)用。

2、三種抽樣方法對(duì)照表:

類別

共同點(diǎn)

各自特點(diǎn)

相互聯(lián)系

適用范圍

簡單隨機(jī)抽樣

抽樣過程中每個(gè)個(gè)體被抽取的概率是相同的

從總體中逐個(gè)抽取

總體中的個(gè)體數(shù)較少

系統(tǒng)抽樣

將總體均分成幾個(gè)部分,按事先確定的規(guī)則在各部分抽取

在第一部分抽樣時(shí)采用簡單隨機(jī)抽樣

總體中的個(gè)體數(shù)較多

分層抽樣

將總體分成幾層,分層進(jìn)行抽取

各層抽樣時(shí)采用簡單隨機(jī)抽樣或系統(tǒng)

總體由差異明顯的幾部分組成

3、分層抽樣的步驟:

(1)分層:將總體按某種特征分成若干部分。

(2)確定比例:計(jì)算各層的個(gè)體數(shù)與總體的個(gè)體數(shù)的比。

(3)確定各層應(yīng)抽取的樣本容量。

(4)在每一層進(jìn)行抽樣(各層分別按簡單隨機(jī)抽樣或系統(tǒng)抽樣的方法抽取),綜合每層抽樣,組成樣本。

四、數(shù)學(xué)運(yùn)用

1、例題。

例1(1)分層抽樣中,在每一層進(jìn)行抽樣可用_________________。

(2)①教育局督學(xué)組到學(xué)校檢查工作,臨時(shí)在每個(gè)班各抽調(diào)2人參加座談;

②某班期中考試有15人在85分以上,40人在60-84分,1人不及格?,F(xiàn)欲從中抽出8人研討進(jìn)一步改進(jìn)教和學(xué);

③某班元旦聚會(huì),要產(chǎn)生兩名“幸運(yùn)者”。

對(duì)這三件事,合適的抽樣方法為

A、分層抽樣,分層抽樣,簡單隨機(jī)抽樣

B、系統(tǒng)抽樣,系統(tǒng)抽樣,簡單隨機(jī)抽樣

C、分層抽樣,簡單隨機(jī)抽樣,簡單隨機(jī)抽樣

D、系統(tǒng)抽樣,分層抽樣,簡單隨機(jī)抽樣

例2某電視臺(tái)在因特網(wǎng)上就觀眾對(duì)某一節(jié)目的喜愛程度進(jìn)行調(diào)查,參加調(diào)查的總?cè)藬?shù)為12000人,其中持各種態(tài)度的人數(shù)如表中所示:

很喜愛

喜愛

一般

不喜愛

電視臺(tái)為進(jìn)一步了解觀眾的具體想法和意見,打算從中抽取60人進(jìn)行更為詳細(xì)的調(diào)查,應(yīng)怎樣進(jìn)行抽樣?

解:抽取人數(shù)與總的比是60∶12000=1∶200,

則各層抽取的人數(shù)依次是12.175,22.835,19.63,5.36,

取近似值得各層人數(shù)分別是12,23,20,5。

然后在各層用簡單隨機(jī)抽樣方法抽取。

答用分層抽樣的方法抽取,抽取“很喜愛”、“喜愛”、“一般”、“不喜愛”的人

數(shù)分別為12,23,20,5。

說明:各層的抽取數(shù)之和應(yīng)等于樣本容量,對(duì)于不能取整數(shù)的情況,取其近似值。

(3)某學(xué)校有160名教職工,其中教師120名,行政人員16名,后勤人員24名。為了了解教職工對(duì)學(xué)校在校務(wù)公開方面的某意見,擬抽取一個(gè)容量為20的樣本。

分析:(1)總體容量較小,用抽簽法或隨機(jī)數(shù)表法都很方便。

(2)總體容量較大,用抽簽法或隨機(jī)數(shù)表法都比較麻煩,由于人員沒有明顯差異,且剛好32排,每排人數(shù)相同,可用系統(tǒng)抽樣。

(3)由于學(xué)校各類人員對(duì)這一問題的看法可能差異較大,所以應(yīng)采用分層抽樣方法。

五、要點(diǎn)歸納與方法小結(jié)

本節(jié)課學(xué)習(xí)了以下內(nèi)容:

1、分層抽樣的概念與特征;

2、三種抽樣方法相互之間的區(qū)別與聯(lián)系。

高中數(shù)學(xué)教案全套篇5

教學(xué)目標(biāo):

(1)了解坐標(biāo)法和解析幾何的意義,了解解析幾何的基本問題.

(2)進(jìn)一步理解曲線的方程和方程的曲線.

(3)初步掌握求曲線方程的方法.

(4)通過本節(jié)內(nèi)容的教學(xué),培養(yǎng)學(xué)生分析問題和轉(zhuǎn)化的能力.

教學(xué)重點(diǎn)、難點(diǎn):求曲線的方程.

教學(xué)用具:計(jì)算機(jī).

教學(xué)方法:啟發(fā)引導(dǎo)法,討論法.

教學(xué)過程:

【引入】

1.提問:什么是曲線的方程和方程的曲線.

學(xué)生思考并回答.教師強(qiáng)調(diào).

2.坐標(biāo)法和解析幾何的意義、基本問題.

對(duì)于一個(gè)幾何問題,在建立坐標(biāo)系的基礎(chǔ)上,用坐標(biāo)表示點(diǎn);用方程表示曲線,通過研究方程的性質(zhì)間接地來研究曲線的性質(zhì),這一研究幾何問題的方法稱為坐標(biāo)法,這門科學(xué)稱為解析幾何.解析幾何的兩大基本問題就是:

(1)根據(jù)已知條件,求出表示平面曲線的方程.

(2)通過方程,研究平面曲線的性質(zhì).

事實(shí)上,在前邊所學(xué)的直線方程的理論中也有這樣兩個(gè)基本問題.而且要先研究如何求出曲線方程,再研究如何用方程研究曲線.本節(jié)課就初步研究曲線方程的求法.

【問題】

如何根據(jù)已知條件,求出曲線的方程.

【實(shí)例分析】

例1:設(shè)、兩點(diǎn)的坐標(biāo)是、(3,7),求線段的垂直平分線的方程.

首先由學(xué)生分析:根據(jù)直線方程的知識(shí),運(yùn)用點(diǎn)斜式即可解決.

解法一:易求線段的中點(diǎn)坐標(biāo)為(1,3),

由斜率關(guān)系可求得l的斜率為

于是有

即l的方程為

分析、引導(dǎo):上述問題是我們?cè)缇蛯W(xué)過的,用點(diǎn)斜式就可解決.可是,你們是否想過①恰好就是所求的嗎?或者說①就是直線的方程?根據(jù)是什么,有證明嗎?

(通過教師引導(dǎo),是學(xué)生意識(shí)到這是以前沒有解決的問題,應(yīng)該證明,證明的依據(jù)就是定義中的兩條).

證明:(1)曲線上的點(diǎn)的坐標(biāo)都是這個(gè)方程的解.

設(shè)是線段的垂直平分線上任意一點(diǎn),則

將上式兩邊平方,整理得

這說明點(diǎn)的坐標(biāo)是方程的解.

(2)以這個(gè)方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn).

設(shè)點(diǎn)的坐標(biāo)是方程①的任意一解,則

到、的距離分別為

所以,即點(diǎn)在直線上.

綜合(1)、(2),①是所求直線的方程.

至此,證明完畢.回顧上述內(nèi)容我們會(huì)發(fā)現(xiàn)一個(gè)有趣的現(xiàn)象:在證明(1)曲線上的點(diǎn)的坐標(biāo)都是這個(gè)方程的解中,設(shè)是線段的垂直平分線上任意一點(diǎn),最后得到式子,如果去掉腳標(biāo),這不就是所求方程嗎?可見,這個(gè)證明過程就表明一種求解過程,下面試試看:

解法二:設(shè)是線段的垂直平分線上任意一點(diǎn),也就是點(diǎn)屬于集合

由兩點(diǎn)間的距離公式,點(diǎn)所適合的條件可表示為

將上式兩邊平方,整理得

果然成功,當(dāng)然也不要忘了證明,即驗(yàn)證兩條是否都滿足.顯然,求解過程就說明第一條是正確的(從這一點(diǎn)看,解法二也比解法一優(yōu)越一些);至于第二條上邊已證.

這樣我們就有兩種求解方程的方法,而且解法二不借助直線方程的理論,又非常自然,還體現(xiàn)了曲線方程定義中點(diǎn)集與對(duì)應(yīng)的思想.因此是個(gè)好方法.

讓我們用這個(gè)方法試解如下問題:

例2:點(diǎn)與兩條互相垂直的直線的距離的積是常數(shù)求點(diǎn)的軌跡方程.

分析:這是一個(gè)純粹的幾何問題,連坐標(biāo)系都沒有.所以首先要建立坐標(biāo)系,顯然用已知中兩條互相垂直的直線作坐標(biāo)軸,建立直角坐標(biāo)系.然后仿照例1中的解法進(jìn)行求解.

求解過程略.

【概括總結(jié)】通過學(xué)生討論,師生共同總結(jié):

分析上面兩個(gè)例題的求解過程,我們總結(jié)一下求解曲線方程的大體步驟:

首先應(yīng)有坐標(biāo)系;其次設(shè)曲線上任意一點(diǎn);然后寫出表示曲線的點(diǎn)集;再代入坐標(biāo);最后整理出方程,并證明或修正.說得更準(zhǔn)確一點(diǎn)就是:

(1)建立適當(dāng)?shù)淖鴺?biāo)系,用有序?qū)崝?shù)對(duì)例如表示曲線上任意一點(diǎn)的坐標(biāo);

(2)寫出適合條件的點(diǎn)的集合

;

(3)用坐標(biāo)表示條件,列出方程;

(4)化方程為最簡形式;

(5)證明以化簡后的方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn).

一般情況下,求解過程已表明曲線上的點(diǎn)的坐標(biāo)都是方程的解;如果求解過程中的轉(zhuǎn)化都是等價(jià)的,那么逆推回去就說明以方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn).所以,通常情況下證明可省略,不過特殊情況要說明.

上述五個(gè)步驟可簡記為:建系設(shè)點(diǎn);寫出集合;列方程;化簡;修正.

下面再看一個(gè)問題:

例3:已知一條曲線在軸的上方,它上面的每一點(diǎn)到點(diǎn)的距離減去它到軸的距離的差都是2,求這條曲線的方程.

【動(dòng)畫演示】用幾何畫板演示曲線生成的過程和形狀,在運(yùn)動(dòng)變化的過程中尋找關(guān)系.

解:設(shè)點(diǎn)是曲線上任意一點(diǎn),軸,垂足是(如圖2),那么點(diǎn)屬于集合

由距離公式,點(diǎn)適合的條件可表示為

將①式移項(xiàng)后再兩邊平方,得

化簡得

由題意,曲線在軸的上方,所以,雖然原點(diǎn)的坐標(biāo)(0,0)是這個(gè)方程的解,但不屬于已知曲線,所以曲線的方程應(yīng)為,它是關(guān)于軸對(duì)稱的拋物線,但不包括拋物線的頂點(diǎn),如圖2中所示.

【練習(xí)鞏固】

題目:在正三角形內(nèi)有一動(dòng)點(diǎn),已知到三個(gè)頂點(diǎn)的距離分別為、 、,且有,求點(diǎn)軌跡方程.

分析、略解:首先應(yīng)建立坐標(biāo)系,以正三角形一邊所在的直線為一個(gè)坐標(biāo)軸,這條邊的垂直平分線為另一個(gè)軸,建立直角坐標(biāo)系比較簡單,如圖3所示.設(shè)、的坐標(biāo)為、,則的坐標(biāo)為,的坐標(biāo)為.

根據(jù)條件,代入坐標(biāo)可得

化簡得

由于題目中要求點(diǎn)在三角形內(nèi),所以,在結(jié)合①式可進(jìn)一步求出、的范圍,最后曲線方程可表示為

【小結(jié)】師生共同總結(jié):

(1)解析幾何研究研究問題的方法是什么?

(2)如何求曲線的方程?

(3)請(qǐng)對(duì)求解曲線方程的五個(gè)步驟進(jìn)行評(píng)價(jià).各步驟的作用,哪步重要,哪步應(yīng)注意什么?

【作業(yè)】課本第72頁練習(xí)1,2,3;

高中數(shù)學(xué)教案7

教學(xué)目的:

(1)使學(xué)生初步理解集合的概念,知道常用數(shù)集的概念及記法

(2)使學(xué)生初步了解“屬于”關(guān)系的意義

(3)使學(xué)生初步了解有限集、無限集、空集的意義

教學(xué)重點(diǎn):集合的基本概念及表示方法

教學(xué)難點(diǎn):運(yùn)用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡單的集合

授課類型:新授課

課時(shí)安排:1課時(shí)

教 具:多媒體、實(shí)物投影儀

內(nèi)容分析:

集合是中學(xué)數(shù)學(xué)的一個(gè)重要的基本概念 在小學(xué)數(shù)學(xué)中,就滲透了集合的初步概念,到了初中,更進(jìn)一步應(yīng)用集合的語言表述一些問題 例如,在代數(shù)中用到的有數(shù)集、解集等;在幾何中用到的有點(diǎn)集 至于邏輯,可以說,從開始學(xué)習(xí)數(shù)學(xué)就離不開對(duì)邏輯知識(shí)的掌握和運(yùn)用,基本的邏輯知識(shí)在日常生活、學(xué)習(xí)、工作中,也是認(rèn)識(shí)問題、研究問題不可缺少的工具 這些可以幫助學(xué)生認(rèn)識(shí)學(xué)習(xí)本章的意義,也是本章學(xué)習(xí)的基礎(chǔ)把集合的初步知識(shí)與簡易邏輯知識(shí)安排在高中數(shù)學(xué)的最開始,是因?yàn)樵诟咧袛?shù)學(xué)中,這些知識(shí)與其他內(nèi)容有著密切聯(lián)系,它們是學(xué)習(xí)、掌握和使用數(shù)學(xué)語言的基礎(chǔ) 例如,下一章講函數(shù)的概念與性質(zhì),就離不開集合與邏輯。

本節(jié)首先從初中代數(shù)與幾何涉及的集合實(shí)例入手,引出集合與集合的元素的概念,并且結(jié)合實(shí)例對(duì)集合的概念作了說明 然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫圖表示集合的例子。

這節(jié)課主要學(xué)習(xí)全章的引言和集合的基本概念 學(xué)習(xí)引言是引發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生認(rèn)識(shí)學(xué)習(xí)本章的意義 本節(jié)課的教學(xué)重點(diǎn)是集合的基本概念集合是集合論中的原始的、不定義的概念 在開始接觸集合的概念時(shí),主要還是通過實(shí)例,對(duì)概念有一個(gè)初步認(rèn)識(shí) 教科書給出的“一般地,某些指定的對(duì)象集在一起就成為一個(gè)集合,也簡稱集 ”這句話,只是對(duì)集合概念的描述性說明。

教學(xué)過程:

一、復(fù)習(xí)引入:

1、簡介數(shù)集的發(fā)展,復(fù)習(xí)最大公約數(shù)和最小公倍數(shù),質(zhì)數(shù)與和數(shù);

2、教材中的章頭引言;

3、集合論的創(chuàng)始人——康托爾(德國數(shù)學(xué)家)(見附錄);

4.“物以類聚”,“人以群分”;

5.教材中例子(P4)

二、講解新課:

閱讀教材第一部分,問題如下:

(1)有那些概念?是如何定義的?

(2)有那些符號(hào)?是如何表示的?

(3)集合中元素的特性是什么?

(一)集合的有關(guān)概念:

由一些數(shù)、一些點(diǎn)、一些圖形、一些整式、一些物體、一些人組成的。我們說,每一組對(duì)象的全體形成一個(gè)集合,或者說,某些指定的對(duì)象集在一起就成為一個(gè)集合,也簡稱集。集合中的每個(gè)對(duì)象叫做這個(gè)集合的元素。

定義:一般地,某些指定的對(duì)象集在一起就成為一個(gè)集合.

1、集合的概念

(1)集合:某些指定的對(duì)象集在一起就形成一個(gè)集合(簡稱集)

(2)元素:集合中每個(gè)對(duì)象叫做這個(gè)集合的元素

2、常用數(shù)集及記法

(1)非負(fù)整數(shù)集(自然數(shù)集):全體非負(fù)整數(shù)的集合 記作N,

(2)正整數(shù)集:非負(fù)整數(shù)集內(nèi)排除0的集 記作N_或N+

(3)整數(shù)集:全體整數(shù)的集合 記作Z ,

(4)有理數(shù)集:全體有理數(shù)的集合 記作Q ,

(5)實(shí)數(shù)集:全體實(shí)數(shù)的集合 記作R

注:(1)自然數(shù)集與非負(fù)整數(shù)集是相同的,也就是說,自然數(shù)集包括數(shù)0

(2)非負(fù)整數(shù)集內(nèi)排除0的集 記作N_或N+ Q、Z、R等其它數(shù)集內(nèi)排除0的集,也是這樣表示,例如,整數(shù)集內(nèi)排除0的集,表示成Z_

3、元素對(duì)于集合的隸屬關(guān)系

(1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A

(2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作

4、集合中元素的特性

(1)確定性:按照明確的判斷標(biāo)準(zhǔn)給定一個(gè)元素或者在這個(gè)集合里,或者不在,不能模棱兩可

(2)互異性:集合中的元素沒有重復(fù)

(3)無序性:集合中的元素沒有一定的順序(通常用正常的順序?qū)懗?

5、⑴集合通常用大寫的拉丁字母表示,如A、B、C、P、Q……元素通常用小寫的拉丁字母表示,如a、b、c、p、q……

⑵“∈”的開口方向,不能把a(bǔ)∈A顛倒過來寫

三、練習(xí)題:

1、教材P5練習(xí)1、2

2、下列各組對(duì)象能確定一個(gè)集合嗎?

(1)所有很大的實(shí)數(shù) (不確定)

(2)好心的人 (不確定)

(3)1,2,2,3,4,5.(有重復(fù))

3、設(shè)a,b是非零實(shí)數(shù),那么 可能取的值組成集合的元素是_—2,0,2__

4、由實(shí)數(shù)x,-x,|x|, 所組成的集合,最多含( A )

(A)2個(gè)元素 (B)3個(gè)元素 (C)4個(gè)元素 (D)5個(gè)元素

5、設(shè)集合G中的元素是所有形如a+b (a∈Z, b∈Z)的數(shù),求證:

(1) 當(dāng)x∈N時(shí), x∈G;

(2) 若x∈G,y∈G,則x+y∈G,而 不一定屬于集合G

證明(1):在a+b (a∈Z, b∈Z)中,令a=x∈N,b=0,則x= x+0_ = a+b ∈G,即x∈G

證明(2):∵x∈G,y∈G,

∴x= a+b (a∈Z, b∈Z),y= c+d (c∈Z, d∈Z)

∴x+y=( a+b )+( c+d )=(a+c)+(b+d)

∵a∈Z, b∈Z,c∈Z, d∈Z

∴(a+c) ∈Z, (b+d) ∈Z

∴x+y =(a+c)+(b+d) ∈G,

又∵ =且 不一定都是整數(shù),

∴ = 不一定屬于集合G

四、小結(jié):本節(jié)課學(xué)習(xí)了以下內(nèi)容:

1、集合的有關(guān)概念:(集合、元素、屬于、不屬于)

2、集合元素的性質(zhì):確定性,互異性,無序性

3、常用數(shù)集的定義及記法

高中數(shù)學(xué)教案 篇5

知識(shí)技能:初步了解分散系概念;初步認(rèn)識(shí)膠體的概念,鑒別及凈化方法;了解膠體的制取方法。

能力培養(yǎng):通過丁達(dá)爾現(xiàn)象、膠體制取等實(shí)驗(yàn),培養(yǎng)學(xué)生的觀察能力、動(dòng)手能力,思維能力和自學(xué)能力。

科學(xué)思想:通過實(shí)驗(yàn)、聯(lián)系實(shí)際等手段,激發(fā)學(xué)生的學(xué)習(xí)興趣。

重點(diǎn):膠體的有關(guān)概念;學(xué)生實(shí)驗(yàn)?zāi)芰?、思維能力、自學(xué)能力的培養(yǎng)。

【展示】氯化鈉溶液、泥水懸濁液、植物油和水的混合液振蕩而成的乳濁液。

【提問】哪種是溶液,哪種是懸濁液、乳濁液?

思考:

(1)分散系、分散質(zhì)和分散劑概念。

(2)溶液、懸濁液、乳濁液三種分散系中的分散質(zhì)分別是什么?

【提問】溶液、懸濁液、乳濁液三種分散系有什么共同點(diǎn)和不同點(diǎn)?

觀察、辨認(rèn)、回答。

閱讀課本,找出三個(gè)概念。

(1)分散系:一種物質(zhì)(或幾種物質(zhì))分散到另一種物質(zhì)里形成的混合物。

(2)溶液中溶質(zhì)是分散質(zhì);懸濁液和乳濁液中的分散質(zhì)分別是:固體小顆粒和小液滴。

思考后得出結(jié)論:

共同點(diǎn):都是一種(或幾種)物質(zhì)的微粒分散于另一種物質(zhì)里形成的混合物。

復(fù)習(xí)舊知識(shí),從而引出新課。

培養(yǎng)自學(xué)能力,了解三個(gè)概念。

培養(yǎng)學(xué)生歸納比較能力,了解三種分散系的異同。

【展示】氫氧化鐵膠體,和氯化鈉溶液比較。

【提問】兩者在外部特征上有何相似點(diǎn)?

【設(shè)問】二者有無區(qū)別呢?

【指導(dǎo)實(shí)驗(yàn)】(投影)用有一小洞的厚紙圓筒(直徑比試管略大些),套在盛有氫氧化鐵溶膠的試管外面,用聚光手電筒照射小孔,從圓筒上方向下觀察,注意有何現(xiàn)象,用盛有氯化鈉溶液的試管做同樣的實(shí)驗(yàn),觀察現(xiàn)象。

【小結(jié)】丁達(dá)爾現(xiàn)象及其成因,并指出能發(fā)生丁達(dá)爾現(xiàn)象的是另一種分散系――膠體。

不同點(diǎn):溶液中分散質(zhì)微粒直徑小于10-9m,是均一、穩(wěn)定、透明的;濁液中分散質(zhì)微粒直徑大于10-7m,不均一、不穩(wěn)定,懸濁液靜置沉淀,乳濁液靜置易分層。

分組實(shí)驗(yàn)。

觀察實(shí)驗(yàn)現(xiàn)象。

現(xiàn)象:光束照射氫氧化鐵溶膠時(shí)產(chǎn)生一條光亮的“通路”,而照射氯化鈉溶液時(shí)無明顯現(xiàn)象。

培養(yǎng)觀察能力,引起學(xué)生注意,激發(fā)興趣。

培養(yǎng)學(xué)生動(dòng)手能力,觀察能力。

【設(shè)問】通過以上的實(shí)驗(yàn),我們知道膠體有丁達(dá)爾現(xiàn)象,而溶液沒有。那么,二者本質(zhì)區(qū)別在什么地方呢?

【設(shè)問】這個(gè)實(shí)驗(yàn)說明什么問題?

【小結(jié)】1.分子、離子等較小微粒能透過半透膜的微孔,膠體微粒不能透過半透膜,溶液和膠體的最本質(zhì)區(qū)別在于微粒的大小,分散質(zhì)微粒的直徑大小在10-9~10-7m之間的.分散系叫做膠體。從而引出膠體概念。

觀察實(shí)驗(yàn),敘述現(xiàn)象。

現(xiàn)象:在加入硝酸銀的試管里出現(xiàn)了白色沉淀;在加入碘水的試管里不發(fā)生變化。

思考后回答:氯化鈉可以透過半透膜的微孔,而淀粉膠體的微粒不能透過。

創(chuàng)設(shè)問題情境,激發(fā)興趣。

培養(yǎng)思維能力。

【提問】在日常生活中見到過哪些膠體?

討論,回答:淀粉膠體、土壤膠體、血液、云、霧、Al(OH)3膠體等等。

【指導(dǎo)閱讀】課本第74頁最后一行至第75頁第一段,思考膠體如何分類?

看書自學(xué),找出答案。

了解膠體分類。

【指導(dǎo)實(shí)驗(yàn)】強(qiáng)調(diào):1.制備上述膠體時(shí)要注意不斷攪拌,但不能用玻璃棒攪拌,否則會(huì)產(chǎn)生沉淀。2.在制取硅酸膠體時(shí),一定要將1mL水玻璃倒入5mL~10mL鹽酸中,切不可倒過來傾倒,否則

會(huì)產(chǎn)生硅酸凝膠。

【提問】如何證實(shí)你所制得的是膠體?請(qǐng)你檢驗(yàn)一下你所制得的氫氧化鐵膠體。

分組實(shí)驗(yàn):

用燒杯盛約30mL蒸餾水,加熱到沸騰,然后逐滴加入飽和氯化鐵溶液,邊加邊振蕩,直至溶液變成紅褐色,即得氫氧化鐵膠體。

在一個(gè)大試管里裝入5~10mL1mol/L鹽酸,并加入1mL水玻璃,然后用力振蕩,即得硅酸溶膠。

在一個(gè)大試管里注入0.01mol/L碘化鉀溶液10mL,用膠頭滴管滴入8~10滴相同濃度的硝酸銀溶液,邊滴加邊振蕩,即得碘化銀膠體。

思考后回答,膠體可產(chǎn)生丁達(dá)爾現(xiàn)象,然后檢驗(yàn)。

培養(yǎng)學(xué)生實(shí)驗(yàn)?zāi)芰Α?/p>

培養(yǎng)學(xué)生嚴(yán)謹(jǐn)求實(shí),一絲不茍的科學(xué)態(tài)度。

使學(xué)生親自體驗(yàn)成功與失敗,激發(fā)興趣。

【提問】請(qǐng)學(xué)生寫出制取三種膠體的化學(xué)方程式,請(qǐng)一個(gè)同學(xué)寫在黑板上,然后追問:這個(gè)同學(xué)書寫是否正確?

高中數(shù)學(xué)教案 篇6

【教學(xué)目標(biāo)】

1. 知識(shí)與技能

(1)理解等差數(shù)列的定義,會(huì)應(yīng)用定義判斷一個(gè)數(shù)列是否是等差數(shù)列:

(2)賬務(wù)等差數(shù)列的通項(xiàng)公式及其推導(dǎo)過程:

(3)會(huì)應(yīng)用等差數(shù)列通項(xiàng)公式解決簡單問題。

2.過程與方法

在定義的理解和通項(xiàng)公式的推導(dǎo)、應(yīng)用過程中,培養(yǎng)學(xué)生的觀察、分析、歸納能力和嚴(yán)密的邏輯思維的能力,體驗(yàn)從特殊到一般,一般到特殊的認(rèn)知規(guī)律,提高熟悉猜想和歸納的能力,滲透函數(shù)與方程的思想。

3.情感、態(tài)度與價(jià)值觀

通過教師指導(dǎo)下學(xué)生的自主學(xué)習(xí)、相互交流和探索活動(dòng),培養(yǎng)學(xué)生主動(dòng)探索、用于發(fā)現(xiàn)的求知精神,激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生感受到成功的喜悅。在解決問題的過程中,使學(xué)生養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好習(xí)慣。

【教學(xué)重點(diǎn)】

①等差數(shù)列的概念;②等差數(shù)列的通項(xiàng)公式

【教學(xué)難點(diǎn)】

①理解等差數(shù)列“等差”的特點(diǎn)及通項(xiàng)公式的含義;②等差數(shù)列的通項(xiàng)公式的推導(dǎo)過程.

【學(xué)情分析】

我所教學(xué)的學(xué)生是我校高一(7)班的學(xué)生(平行班學(xué)生),經(jīng)過一年的高中數(shù)學(xué)學(xué)習(xí),大部分學(xué)生知識(shí)經(jīng)驗(yàn)已較為豐富,他們的智力發(fā)展已到了形式運(yùn)演階段,具備了較強(qiáng)的抽象思維能力和演繹推理能力,但也有一部分學(xué)生的基礎(chǔ)較弱,學(xué)習(xí)數(shù)學(xué)的興趣還不是很濃,所以我在授課時(shí)注重從具體的生活實(shí)例出發(fā),注重引導(dǎo)、啟發(fā)、研究和探討以符合這類學(xué)生的心理發(fā)展特點(diǎn),從而促進(jìn)思維能力的進(jìn)一步發(fā)展.

【設(shè)計(jì)思路】

1.教法

①啟發(fā)引導(dǎo)法:這種方法有利于學(xué)生對(duì)知識(shí)進(jìn)行主動(dòng)建構(gòu);有利于突出重點(diǎn),突破難點(diǎn);有利于調(diào)動(dòng)學(xué)生的主動(dòng)性和積極性,發(fā)揮其創(chuàng)造性.

②分組討論法:有利于學(xué)生進(jìn)行交流,及時(shí)發(fā)現(xiàn)問題,解決問題,調(diào)動(dòng)學(xué)生的積極性.

③講練結(jié)合法:可以及時(shí)鞏固所學(xué)內(nèi)容,抓住重點(diǎn),突破難點(diǎn).

2.學(xué)法

引導(dǎo)學(xué)生首先從三個(gè)現(xiàn)實(shí)問題(數(shù)數(shù)問題、水庫水位問題、儲(chǔ)蓄問題)概括出數(shù)組特點(diǎn)并抽象出等差數(shù)列的概念;接著就等差數(shù)列概念的特點(diǎn),推導(dǎo)出等差數(shù)列的通項(xiàng)公式;可以對(duì)各種能力的同學(xué)引導(dǎo)認(rèn)識(shí)多元的推導(dǎo)思維方法.

【教學(xué)過程】

一:創(chuàng)設(shè)情境,引入新課

1.從0開始,將5的倍數(shù)按從小到大的順序排列,得到的數(shù)列是什么?

2.水庫管理人員為了保證優(yōu)質(zhì)魚類有良好的生活環(huán)境,用定期放水清庫的辦法清理水庫中的雜魚.如果一個(gè)水庫的水位為18m,自然放水每天水位降低2.5m,最低降至5m.那么從開始放水算起,到可以進(jìn)行清理工作的那天,水庫每天的水位(單位:m)組成一個(gè)什么數(shù)列?

3.我國現(xiàn)行儲(chǔ)蓄制度規(guī)定銀行支付存款利息的方式為單利,即不把利息加入本息計(jì)算下一期的利息.按照單利計(jì)算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10 000元錢,年利率是0.72%,那么按照單利,5年內(nèi)各年末的本利和(單位:元)組成一個(gè)什么數(shù)列?

教師:以上三個(gè)問題中的數(shù)蘊(yùn)涵著三列數(shù).

學(xué)生:

1:0,5,10,15,20,25,….

2:18,15.5,13,10.5,8,5.5.

3:10072,10144,10216,10288,10360.

(設(shè)置意圖:從實(shí)例引入,實(shí)質(zhì)是給出了等差數(shù)列的現(xiàn)實(shí)背景,目的是讓學(xué)生感受到等差數(shù)列是現(xiàn)實(shí)生活中大量存在的數(shù)學(xué)模型.通過分析,由特殊到一般,激發(fā)學(xué)生學(xué)習(xí)探究知識(shí)的自主性,培養(yǎng)學(xué)生的歸納能力.

二:觀察歸納,形成定義

①0,5,10,15,20,25,….

②18,15.5,13,10.5,8,5.5.

③10072,10144,10216,10288,10360.

思考1上述數(shù)列有什么共同特點(diǎn)?

思考2根據(jù)上數(shù)列的共同特點(diǎn),你能給出等差數(shù)列的一般定義嗎?

思考3你能將上述的文字語言轉(zhuǎn)換成數(shù)學(xué)符號(hào)語言嗎?

教師:引導(dǎo)學(xué)生思考這三列數(shù)具有的共同特征,然后讓學(xué)生抓住數(shù)列的特征,歸納得出等差數(shù)列概念.

學(xué)生:分組討論,可能會(huì)有不同的答案:前數(shù)和后數(shù)的差符合一定規(guī)律;這些數(shù)都是按照一定順序排列的…只要合理教師就要給予肯定.

教師引導(dǎo)歸納出:等差數(shù)列的定義;另外,教師引導(dǎo)學(xué)生從數(shù)學(xué)符號(hào)角度理解等差數(shù)列的定義.

(設(shè)計(jì)意圖:通過對(duì)一定數(shù)量感性材料的觀察、分析,提煉出感性材料的本質(zhì)屬性;使學(xué)生體會(huì)到等差數(shù)列的規(guī)律和共同特點(diǎn);一開始抓?。骸皬牡诙?xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差為同一常數(shù)”,落實(shí)對(duì)等差數(shù)列概念的準(zhǔn)確表達(dá).)

三:舉一反三,鞏固定義

1.判定下列數(shù)列是否為等差數(shù)列?若是,指出公差d.

(1)1,1,1,1,1;

(2)1,0,1,0,1;

(3)2,1,0,-1,-2;

(4)4,7,10,13,16.

教師出示題目,學(xué)生思考回答.教師訂正并強(qiáng)調(diào)求公差應(yīng)注意的問題.

注意:公差d是每一項(xiàng)(第2項(xiàng)起)與它的前一項(xiàng)的差,防止把被減數(shù)與減數(shù)弄顛倒,而且公差可以是正數(shù),負(fù)數(shù),也可以為0 .

(設(shè)計(jì)意圖:強(qiáng)化學(xué)生對(duì)等差數(shù)列“等差”特征的理解和應(yīng)用).

2思考4:設(shè)數(shù)列{an}的通項(xiàng)公式為an=3n+1,該數(shù)列是等差數(shù)列嗎?為什么?

(設(shè)計(jì)意圖:強(qiáng)化等差數(shù)列的證明定義法)

四:利用定義,導(dǎo)出通項(xiàng)

1.已知等差數(shù)列:8,5,2,…,求第200項(xiàng)?

2.已知一個(gè)等差數(shù)列{an}的首項(xiàng)是a1,公差是d,如何求出它的任意項(xiàng)an呢?

教師出示問題,放手讓學(xué)生探究,然后選擇列式具有代表性的上去板演或投影展示.根據(jù)學(xué)生在課堂上的具體情況進(jìn)行具體評(píng)價(jià)、引導(dǎo),總結(jié)推導(dǎo)方法,體會(huì)歸納思想以及累加求通項(xiàng)的方法;讓學(xué)生初步嘗試處理數(shù)列問題的常用方法.

(設(shè)計(jì)意圖:引導(dǎo)學(xué)生觀察、歸納、猜想,培養(yǎng)學(xué)生合理的推理能力.學(xué)生在分組合作探究過程中,可能會(huì)找到多種不同的解決辦法,教師要逐一點(diǎn)評(píng),并及時(shí)肯定、贊揚(yáng)學(xué)生善于動(dòng)腦、勇于創(chuàng)新的品質(zhì),激發(fā)學(xué)生的創(chuàng)造意識(shí).鼓勵(lì)學(xué)生自主解答,培養(yǎng)學(xué)生運(yùn)算能力)

五:應(yīng)用通項(xiàng),解決問題

1判斷100是不是等差數(shù)列2, 9,16,…的項(xiàng)?如果是,是第幾項(xiàng)?

2在等差數(shù)列{an}中,已知a5=10,a12=31,求a1,d和an.

3求等差數(shù)列 3,7,11,…的第4項(xiàng)和第10項(xiàng)

教師:給出問題,讓學(xué)生自己操練,教師巡視學(xué)生答題情況.

學(xué)生:教師叫學(xué)生代表總結(jié)此類題型的解題思路,教師補(bǔ)充:已知等差數(shù)列的首項(xiàng)和公差就可以求出其通項(xiàng)公式

(設(shè)計(jì)意圖:主要是熟悉公式,使學(xué)生從中體會(huì)公式與方程之間的聯(lián)系.初步認(rèn)識(shí)“基本量法”求解等差數(shù)列問題.)

六:反饋練習(xí):教材13頁練習(xí)1

七:歸納總結(jié):

1.一個(gè)定義:

等差數(shù)列的定義及定義表達(dá)式

2.一個(gè)公式:

等差數(shù)列的通項(xiàng)公式

3.二個(gè)應(yīng)用:

定義和通項(xiàng)公式的應(yīng)用

教師:讓學(xué)生思考整理,找?guī)讉€(gè)代表發(fā)言,最后教師給出補(bǔ)充

(設(shè)計(jì)意圖:引導(dǎo)學(xué)生去聯(lián)想本節(jié)課所涉及到的各個(gè)方面,溝通它們之間的聯(lián)系,使學(xué)生能在新的高度上去重新認(rèn)識(shí)和掌握基本概念,并靈活運(yùn)用基本概念.)

【設(shè)計(jì)反思】

本設(shè)計(jì)從生活中的數(shù)列模型導(dǎo)入,有助于發(fā)揮學(xué)生學(xué)習(xí)的主動(dòng)性,增強(qiáng)學(xué)生學(xué)習(xí)數(shù)列的興趣.在探索的過程中,學(xué)生通過分析、觀察,歸納出等差數(shù)列定義,然后由定義導(dǎo)出通項(xiàng)公式,強(qiáng)化了由具體到抽象,由特殊到一般的思維過程,有助于提高學(xué)生分析問題和解決問題的能力.本節(jié)課教學(xué)采用啟發(fā)方法,以教師提出問題、學(xué)生探討解決問題為途徑,以相互補(bǔ)充展開教學(xué),總結(jié)科學(xué)合理的知識(shí)體系,形成師生之間的良性互動(dòng),提高課堂教學(xué)效率.

高中數(shù)學(xué)教案 篇7

(1)使學(xué)生正確理解組合的意義,正確區(qū)分排列、組合問題;

(2)使學(xué)生掌握組合數(shù)的計(jì)算公式;

(3)通過學(xué)習(xí)組合知識(shí),讓學(xué)生掌握類比的學(xué)習(xí)方法,并提高學(xué)生分析問題和解決問題的能力;

重點(diǎn)是組合的定義、組合數(shù)及組合數(shù)的公式;

(教師活動(dòng))提出下列思考問題,打出字幕.

[字幕]一條鐵路線上有6個(gè)火車站,(1)需準(zhǔn)備多少種不同的普通客車票?(2)有多少種不同票價(jià)的普通客車票?上面問題中,哪一問是排列問題?哪一問是組合問題?

(學(xué)生活動(dòng))討論并回答.

[評(píng)述]問題(1)是從6個(gè)火車站中任選兩個(gè),并按一定的順序排列,要求出排法的種數(shù),屬于排列問題;(2)是從6個(gè)火車站中任選兩個(gè)并成一組,兩站無順序關(guān)系,要求出不同的組數(shù),屬于組合問題.這節(jié)課著重研究組合問題.

設(shè)計(jì)意圖:組合與排列所研究的問題幾乎是平行的.上面設(shè)計(jì)的問題目的是從排列知識(shí)中發(fā)現(xiàn)并提出新的問題.

[提出問題 創(chuàng)設(shè)情境]

(教師活動(dòng))指導(dǎo)學(xué)生帶著問題閱讀課文.

[字幕]1.排列的定義是什么?

2.舉例說明一個(gè)組合是什么?

3.一個(gè)組合與一個(gè)排列有何區(qū)別?

(學(xué)生活動(dòng))閱讀回答.

(教師活動(dòng))對(duì)照課文,逐一評(píng)析.

設(shè)計(jì)意圖:激活學(xué)生的思維,使其將所學(xué)的知識(shí)遷移過渡,并盡快適應(yīng)新的環(huán)境.

(教師活動(dòng))承接上述問題的回答,展示下面知識(shí).

[字幕]模型:從 個(gè)不同元素中取出 個(gè)元素并成一組,叫做從 個(gè)不同元素中取出 個(gè)元素的一個(gè)組合.如前面思考題:6個(gè)火車站中甲站→乙站和乙站→甲站是票價(jià)相同的車票,是從6個(gè)元素中取出2個(gè)元素的一個(gè)組合.

組合數(shù):從 個(gè)不同元素中取出 個(gè)元素的所有組合的個(gè)數(shù),稱之,用符號(hào) 表示,如從6個(gè)元素中取出2個(gè)元素的組合數(shù)為 .

[評(píng)述]區(qū)分一個(gè)排列與一個(gè)組合的關(guān)鍵是:該問題是否與順序有關(guān),當(dāng)取出元素后,若改變一下順序,就得到一種新的取法,則是排列問題;若改變順序,仍得原來的取法,就是組合問題.

(學(xué)生活動(dòng))傾聽、思索、記錄.

(教師活動(dòng))提出思考問題.

[投影] 與 的關(guān)系如何?

(師生活動(dòng))共同探討.求從 個(gè)不同元素中取出 個(gè)元素的排列數(shù) ,可分為以下兩步:

第1步,先求出從這 個(gè)不同元素中取出 個(gè)元素的組合數(shù)為 ;

第2步,求每一個(gè)組合中 個(gè)元素的全排列數(shù)為 .根據(jù)分步計(jì)數(shù)原理,得到

(學(xué)生活動(dòng))驗(yàn)算 ,即一條鐵路上6個(gè)火車站有15種不同的票價(jià)的普通客車票.

設(shè)計(jì)意圖:本著以認(rèn)識(shí)概念為起點(diǎn),以問題為主線,以培養(yǎng)能力為核心的宗旨,逐步展示知識(shí)的形成過程,使學(xué)生思維層層被激活、逐漸深入到問題當(dāng)中去.

(教師活動(dòng))打出字幕,給出示范,指導(dǎo)訓(xùn)練.

[字幕]例1 列舉從4個(gè)元素 中任取2個(gè)元素的所有組合.

(學(xué)生活動(dòng))板演、示范.

(教師活動(dòng))講評(píng)并指出用兩種方法計(jì)算例2的第2小題.

[字幕]例3 已知 ,求 的所有值.

(學(xué)生活動(dòng))思考分析.

[點(diǎn)評(píng)]這是組合數(shù)公式的應(yīng)用,關(guān)鍵是公式的選擇.

設(shè)計(jì)意圖:例題教學(xué)循序漸進(jìn),讓學(xué)生鞏固知識(shí),強(qiáng)化公式的應(yīng)用,從而培養(yǎng)學(xué)生的綜合分析能力.

(教師活動(dòng))給出練習(xí),學(xué)生解答,教師點(diǎn)評(píng).

[課堂練習(xí)]課本P99練習(xí)第2,5,6題.

[補(bǔ)充練習(xí)]

(學(xué)生活動(dòng))板演、解答.

設(shè)計(jì)意圖:課堂教學(xué)體現(xiàn)以學(xué)生為本,讓全體學(xué)生參與訓(xùn)練,深刻揭示排列數(shù)公式的結(jié)構(gòu)、特征及應(yīng)用.

2.思考題:某學(xué)習(xí)小組有8個(gè)同學(xué),從男生中選2人,女生中選1人參加數(shù)學(xué)、物理、化學(xué)三種學(xué)科競賽,要求每科均有1人參加,共有180種不同的選法,那么該小組中,男、女同學(xué)各有多少人?

3.研究性題:

在 的 邊上除頂點(diǎn) 外有 5個(gè)點(diǎn),在 邊上有 4個(gè)點(diǎn),由這些點(diǎn)(包括 )能組成多少個(gè)四邊形?能組成多少個(gè)三角形?

在學(xué)習(xí)了排列知識(shí)的基礎(chǔ)上,本節(jié)課引進(jìn)了組合概念,并推導(dǎo)出組合數(shù)公式,同時(shí)調(diào)控進(jìn)行訓(xùn)練,從而培養(yǎng)學(xué)生分析問題、解決問題的能力.

高中數(shù)學(xué)教案 篇8

課題:

等比數(shù)列的概念

教學(xué)目標(biāo)

1、通過教學(xué)使學(xué)生理解等比數(shù)列的概念,推導(dǎo)并掌握通項(xiàng)公式、

2、使學(xué)生進(jìn)一步體會(huì)類比、歸納的思想,培養(yǎng)學(xué)生的觀察、概括能力、

3、培養(yǎng)學(xué)生勤于思考,實(shí)事求是的精神,及嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度、

教學(xué)重點(diǎn),難點(diǎn)

重點(diǎn)、難點(diǎn)是等比數(shù)列的定義的歸納及通項(xiàng)公式的推導(dǎo)、

教學(xué)用具

投影儀,多媒體軟件,電腦、

教學(xué)方法

討論、談話法、

教學(xué)過程

一、提出問題

給出以下幾組數(shù)列,將它們分類,說出分類標(biāo)準(zhǔn)、(幻燈片)

①—2,1,4,7,10,13,16,19,…

②8,16,32,64,128,256,…

③1,1,1,1,1,1,1,…

④243,81,27,9,3,1,,,…

⑤31,29,27,25,23,21,19,…

⑥1,—1,1,—1,1,—1,1,—1,…

⑦1,—10,100,—1000,10000,—100000,…

⑧0,0,0,0,0,0,0,…

由學(xué)生發(fā)表意見(可能按項(xiàng)與項(xiàng)之間的關(guān)系分為遞增數(shù)列、遞減數(shù)列、常數(shù)數(shù)列、擺動(dòng)數(shù)列,也可能分為等差、等比兩類),統(tǒng)一一種分法,其中②③④⑥⑦為有共同性質(zhì)的一類數(shù)列(學(xué)生看不出③的情況也無妨,得出定義后再考察③是否為等比數(shù)列)、

二、講解新課

請(qǐng)學(xué)生說出數(shù)列②③④⑥⑦的共同特性,教師指出實(shí)際生活中也有許多類似的例子,如變形蟲分裂問題、假設(shè)每經(jīng)過一個(gè)單位時(shí)間每個(gè)變形蟲都分裂為兩個(gè)變形蟲,再假設(shè)開始有一個(gè)變形蟲,經(jīng)過一個(gè)單位時(shí)間它分裂為兩個(gè)變形蟲,經(jīng)過兩個(gè)單位時(shí)間就有了四個(gè)變形蟲,…,一直進(jìn)行下去,記錄下每個(gè)單位時(shí)間的變形蟲個(gè)數(shù)得到了一列數(shù)

這個(gè)數(shù)列也具有前面的幾個(gè)數(shù)列的共同特性,這是我們將要研究的另一類數(shù)列——等比數(shù)列、(這里播放變形蟲分裂的多媒體軟件的第一步)

等比數(shù)列(板書)

1、等比數(shù)列的定義(板書)

根據(jù)等比數(shù)列與等差數(shù)列的名字的區(qū)別與聯(lián)系,嘗試給等比數(shù)列下定義、學(xué)生一般回答可能不夠完美,多數(shù)情況下,有了等差數(shù)列的基礎(chǔ)是可以由學(xué)生概括出來的教師寫出等比數(shù)列的定義,標(biāo)注出重點(diǎn)詞語、

請(qǐng)學(xué)生指出等比數(shù)列②③④⑥⑦各自的公比,并思考有無數(shù)列既是等差數(shù)列又是等比數(shù)列、學(xué)生通過觀察可以發(fā)現(xiàn)③是這樣的.數(shù)列,教師再追問,還有沒有其他的例子,讓學(xué)生再舉兩例、而后請(qǐng)學(xué)生概括這類數(shù)列的一般形式,學(xué)生可能說形如的數(shù)列都滿足既是等差又是等比數(shù)列,讓學(xué)生討論后得出結(jié)論:當(dāng)時(shí),數(shù)列既是等差又是等比數(shù)列,當(dāng)時(shí),它只是等差數(shù)列,而不是等比數(shù)列、教師追問理由,引出對(duì)等比數(shù)列的認(rèn)識(shí):

2、對(duì)定義的認(rèn)識(shí)(板書)

(1)等比數(shù)列的首項(xiàng)不為0;

(2)等比數(shù)列的每一項(xiàng)都不為0,即

問題:一個(gè)數(shù)列各項(xiàng)均不為0是這個(gè)數(shù)列為等比數(shù)列的什么條件?

(3)公比不為0、

用數(shù)學(xué)式子表示等比數(shù)列的定義、

是等比數(shù)列

①、在這個(gè)式子的寫法上可能會(huì)有一些爭議,如寫成

,可讓學(xué)生研究行不行,好不好;接下來再問,能否改寫為

是等比數(shù)列?為什么不能?式子給出了數(shù)列第項(xiàng)與第

項(xiàng)的數(shù)量關(guān)系,但能否確定一個(gè)等比數(shù)列?(不能)確定一個(gè)等比數(shù)列需要幾個(gè)條件?當(dāng)給定了首項(xiàng)及公比后,如何求任意一項(xiàng)的值?所以要研究通項(xiàng)公式、

3、等比數(shù)列的通項(xiàng)公式(板書)

問題:用和表示第項(xiàng)

①不完全歸納法

②疊乘法,…,,這個(gè)式子相乘得,所以(板書)

(1)等比數(shù)列的通項(xiàng)公式得出通項(xiàng)公式后,讓學(xué)生思考如何認(rèn)識(shí)通項(xiàng)公式、(板書)

(2)對(duì)公式的認(rèn)識(shí)

由學(xué)生來說,最后歸結(jié):

①函數(shù)觀點(diǎn);

②方程思想(因在等差數(shù)列中已有認(rèn)識(shí),此處再復(fù)習(xí)鞏固而已)、

這里強(qiáng)調(diào)方程思想解決問題、方程中有四個(gè)量,知三求一,這是公式最簡單的應(yīng)用,請(qǐng)學(xué)生舉例(應(yīng)能編出四類問題)、解題格式是什么?(不僅要會(huì)解題,還要注意規(guī)范表述的訓(xùn)練)

如果增加一個(gè)條件,就多知道了一個(gè)量,這是公式的更高層次的應(yīng)用,下節(jié)課再研究、同學(xué)可以試著編幾道題。

三、小結(jié)

1、本節(jié)課研究了等比數(shù)列的概念,得到了通項(xiàng)公式;

2、注意在研究內(nèi)容與方法上要與等差數(shù)列相類比;

3、用方程的思想認(rèn)識(shí)通項(xiàng)公式,并加以應(yīng)用。

探究活動(dòng)

將一張很大的薄紙對(duì)折,對(duì)折30次后(如果可能的話)有多厚?不妨假設(shè)這張紙的厚度為0、01毫米。

參考答案:

30次后,厚度為,這個(gè)厚度超過了世界最高的山峰——珠穆朗瑪峰的高度。如果紙?jiān)俦∫恍?,比如紙?、001毫米,對(duì)折34次就超過珠穆朗瑪峰的高度了、還記得國王的承諾嗎?第31個(gè)格子中的米已經(jīng)是1073741824粒了,后邊的格子中的米就更多了,最后一個(gè)格子中的米應(yīng)是粒,用計(jì)算器算一下吧(對(duì)數(shù)算也行)。

高中數(shù)學(xué)教案 篇9

 一、基礎(chǔ)突破課本層面

其實(shí)很多同學(xué)在平時(shí)學(xué)習(xí)中也重視課本,概念公式也記住了但是任然感覺學(xué)習(xí)沒有多大效果,還不如多做兩道題目有意義,可是做題有無從思考,于是陷入了一個(gè)死循環(huán)。那么課本該怎么學(xué)呢?

①概念公式的拓展以及知識(shí)點(diǎn)之間的聯(lián)系

核心是概念的外延和概念之間的聯(lián)系,大家知道一般概念定理基本可以分成四塊:文字+圖形+式子+運(yùn)算,而一般的題目也是由這四塊文字+圖形+式子+運(yùn)算構(gòu)成的,這就是解題與課本學(xué)習(xí)之間的對(duì)應(yīng)的地方,所以概念學(xué)習(xí)就要從這四個(gè)方面入手挖掘突破,對(duì)于相關(guān)的學(xué)習(xí)挖掘方法我們給大家通過函數(shù)單調(diào)性做了一個(gè)簡單示范,可參見樊瑞軍相關(guān)視頻講解。

②課本題型歸納

大家知道高中數(shù)學(xué)的課本題目根據(jù)難易程度有A,B兩組,這些題目都是經(jīng)過專家組慎重選擇的,并不是胡亂選擇的,而且高考試題的編制基本是通過課本深度改編的,所以我們?cè)趯W(xué)習(xí)過程中首先要進(jìn)行題型方面的歸納梳理,掌握這些題目的深層含義,并在后續(xù)的練習(xí)中不斷深化和補(bǔ)充題型,那么所謂的基礎(chǔ)題型基本就沒有問題了。這就是課本學(xué)習(xí)中的第二個(gè)突破口基礎(chǔ)題型掌握,對(duì)于題型的梳理方法我們通過必修二直線與圓這部分給大家做了詳細(xì)示范,詳細(xì)可參見視頻講解。

③運(yùn)算提升

運(yùn)算是高中數(shù)學(xué)解題必須的一個(gè)過程,而且會(huì)直接關(guān)系到考試成績的好壞,但是運(yùn)算基本不會(huì)在課本直接呈現(xiàn),而是要通過解題不斷歸納總結(jié)梳理,樊瑞軍認(rèn)為高中數(shù)學(xué)運(yùn)算主要分四塊:

1、高中數(shù)學(xué)基本式子變形處理如整式類,分式類,根式類等;

2、初高中各類方程及方程組突破;

3、各類簡單,復(fù)雜及含參不等式突破;

4、特殊類式子處理。

④圖形突破

圖形特別是函數(shù)圖形不僅在高考的選擇題中直接考察更是解答題中必備的,但高考的考察一般都要高于課本,這就需要在課本學(xué)習(xí)的基礎(chǔ)上進(jìn)行拓展,圖形突破主要包括畫圖,認(rèn)識(shí)圖形,圖形拓展方法,圖形處理及圖形計(jì)算五個(gè)方面。

考試層面

一般的考試試卷和高考真題都是我們學(xué)習(xí)最好的積累歸納素材,考試試卷不僅能幫助我們把握學(xué)習(xí)方向,更能夠檢查學(xué)習(xí)效果。

二、把握做題方向重視歸納解題思考方法

高中數(shù)學(xué)的題目數(shù)量非常龐大,要想單純通過做題突破高考,對(duì)于絕大多數(shù)考生來說確實(shí)難以實(shí)現(xiàn),隨著高考的改革,高考已把考查的'重點(diǎn)放在創(chuàng)造型、能力型的考查上,因此要精做習(xí)題,學(xué)會(huì)選擇,有助于判斷高考題目與平時(shí)常見題目的異同,增強(qiáng)判斷題目信度的能力,在遇到即將來臨的期中期末考試和未來的高考中哪些內(nèi)容是高頻命題點(diǎn),哪些是冷門的,有哪些基本題型,一本書學(xué)完了哪些還沒有掌握好都要有一個(gè)大致標(biāo)記,以便于后續(xù)繼續(xù)學(xué)習(xí)歸納。當(dāng)你做完一道習(xí)題后可以思考:本題考查了什么知識(shí)點(diǎn)?什么方法?我們從中得到了解題的什么方法?這一類習(xí)題中有什么解題的通性?

高中數(shù)學(xué)的題目數(shù)量非常龐大,要想單純通過做題突破高考,對(duì)于絕大多數(shù)考生來說確實(shí)難以實(shí)現(xiàn),隨著高考的改革,高考已把考查的重點(diǎn)放在創(chuàng)造型、能力型的考查上,因此要精做習(xí)題,學(xué)會(huì)選擇,有助于判斷高考題目與平時(shí)常見題目的異同,增強(qiáng)判斷題目信度的能力,在遇到即將來臨的期中期末考試和未來的高考中哪些內(nèi)容是高頻命題點(diǎn),哪些是冷門的,有哪些基本題型,一本書學(xué)完了哪些還沒有掌握好都要有一個(gè)大致標(biāo)記,以便于后續(xù)繼續(xù)學(xué)習(xí)歸納。當(dāng)你做完一道習(xí)題后可以思考:本題考查了什么知識(shí)點(diǎn)?什么方法?我們從中得到了解題的什么方法?這一類習(xí)題中有什么解題的通性?

 三、時(shí)刻面向高考以高考為核心

不論我們是高一還是高二甚至是高三,高考都是我們最后的沖刺的目標(biāo),所以我們?cè)谄綍r(shí)的學(xué)習(xí)過程中要始終面向高考,經(jīng)常做高考題目,因?yàn)楦呖颊骖}在考查知識(shí)點(diǎn)時(shí)的切入點(diǎn),綜合程度以及題型與平時(shí)的練習(xí)題還是有一道差異,而且能幫助我們正確地的掌握高考知識(shí)點(diǎn)的難度和基本題型。我們平時(shí)的復(fù)習(xí)資料中,有相當(dāng)?shù)牧?xí)題已超出高考難度或者與高考方向偏離較大,針對(duì)這些題目我們可以舍棄,而集中精力突破真正我們?cè)撏黄频膬?nèi)容。

四、注重解題思路

學(xué)習(xí)數(shù)學(xué)核心在于如何思考,重視老師對(duì)該題目的分析和歸納,然而有很多同學(xué)往往忽視問題的分析,往往沉靜在老師講解的每一步計(jì)算、每一步推證過程。聽課雖然認(rèn)真,但費(fèi)力,聽完后滿腦子的計(jì)算過程,支離破碎。所以當(dāng)教師解答習(xí)題時(shí),學(xué)生要重視問題的思考分析。另外,當(dāng)題目的答案給出時(shí),并不代表問題的解答完畢,還要花一定的時(shí)間認(rèn)真總結(jié)、歸納理解。要把這些解題策略全部納入自己的腦海成為永久地記憶,變?yōu)樽约航鉀Q這一類型問題的經(jīng)驗(yàn)和技能。同時(shí)也解決了學(xué)生中會(huì)聽課而不會(huì)做題目的壞毛病。

五、積累考試經(jīng)驗(yàn)

對(duì)于每一次考試和單元模擬要積累一定的考試經(jīng)驗(yàn),掌握一定的考試技巧,在每一次考試中要鍛煉自己的承受能力、接受能力、解決問題以及應(yīng)對(duì)一些突發(fā)情況等綜合能力。只有在平時(shí)的考試中不斷總結(jié),那么在高考的考場(chǎng)上就會(huì)得心應(yīng)手,避免考試發(fā)揮失常等的發(fā)生。

六、歸納小題及解答題方法

高中數(shù)學(xué)考試中的選擇題、填空題是基礎(chǔ),共76分是整個(gè)考試得分的基礎(chǔ),在平時(shí)學(xué)習(xí)過程中不但要在會(huì)接的基礎(chǔ)上提高解題速度,還要?dú)w納總結(jié)選擇題的熱門題型,解題技巧等。

選擇題方法技巧主要通過選項(xiàng)布局特征,選擇題快速運(yùn)算技巧,選擇題題目特征與核心解法,選擇題中的結(jié)論這四個(gè)方面進(jìn)行歸納突破。

對(duì)于解答題而言高考的題型以及命題方式等都是非常成熟的,要在平時(shí)學(xué)習(xí)中對(duì)于解答題中的一般思考方法,熱門題型,基礎(chǔ)知識(shí)點(diǎn),體現(xiàn)的基本運(yùn)算,涵蓋的基本圖形以及書寫要點(diǎn)要求等六個(gè)方面進(jìn)行歸納,對(duì)于解題思考,運(yùn)算,圖形等相關(guān)方面我們?cè)谇懊娑甲隽艘恍┓治?,我們?cè)诤竺鎸⒗^續(xù)給大家總結(jié)歸納,相關(guān)可關(guān)注樊瑞軍微信公眾號(hào)或者個(gè)人微信號(hào),數(shù)學(xué)學(xué)科是能在短時(shí)間內(nèi)提高成績的一門學(xué)科,數(shù)學(xué)是高考中三科綜合科之中一門拉開綜合成績的重要學(xué)科,學(xué)數(shù)學(xué)要重視方法,不能盲目隨波逐流。

七、制定好學(xué)習(xí)計(jì)劃和復(fù)習(xí)策略

學(xué)好數(shù)學(xué)要制定好計(jì)劃,不但要有高中三年的計(jì)劃,也要有本學(xué)期大的規(guī)劃,還要有每月、每周、每天的小計(jì)劃,計(jì)劃要與老師的復(fù)習(xí)計(jì)劃吻合,不能相互沖突,不要急于求成每一天甚至一星期全面突破一個(gè)考點(diǎn),研究該知識(shí)點(diǎn)考查的不同側(cè)面、不同角度以及高考的難度,不斷地歸納、反思、回顧,集中精力提前突破高考中的常考點(diǎn)和重難點(diǎn)。

預(yù)習(xí)

如果你想把數(shù)學(xué)學(xué)好,單純地做學(xué)校發(fā)的資料是遠(yuǎn)遠(yuǎn)不夠的。去學(xué)校旁邊買一本側(cè)重講解的參考書。在老師講課之前,先把課本中要學(xué)習(xí)的內(nèi)容看一遍(用心看),定義、公式可能記不住對(duì)嗎?對(duì),看著寫著,一遍不行再來一遍,把這些基礎(chǔ)弄清楚為止。之后看你買的參考書,這比課本上所講解的又深了一個(gè)層次,每講解一個(gè)知識(shí)點(diǎn),都會(huì)有一兩個(gè)例題??赐旰?,把課本、參考書上面的知識(shí)點(diǎn)再回顧一遍,做課本后面的習(xí)題。

聽課

你的預(yù)習(xí)基本可以讓你明白90%了,至于課堂,有的放矢吧。你的選擇有很多,如果你的知識(shí)點(diǎn)掌握的已經(jīng)很好,你可以再進(jìn)行回顧,也可以自己找題做;如果你的知識(shí)點(diǎn)掌握的不是太好,你可以跟著老師再把知識(shí)點(diǎn)記憶一下。當(dāng)老師拓展新的知識(shí)點(diǎn)時(shí)要認(rèn)真聽,再聽一下,加深理解。

復(fù)習(xí)

對(duì)于各科而言,復(fù)習(xí)都很重要。拿數(shù)學(xué)來說,好多同學(xué)認(rèn)為就是不斷的刷題。其實(shí)不然,當(dāng)你要做課后習(xí)題的時(shí)候,首先應(yīng)先溫習(xí)教材知識(shí)點(diǎn),之后看你的課本后面是否有做錯(cuò)的題目,如果有,再做一遍,最后就是找題做了。

高中數(shù)學(xué)教案 篇10

一、本節(jié)課內(nèi)容的數(shù)學(xué)本質(zhì)

本節(jié)課的主要任務(wù)是探究二分法基本原理,給出用二分法求方程近似解的基本步驟,使學(xué)生學(xué)會(huì)借助計(jì)算器用二分法求給定精確度的方程的近似解。通過探究讓學(xué)生體驗(yàn)從特殊到一般的認(rèn)識(shí)過程,滲透逐步逼近和無限逼近思想(極限思想),體會(huì)“近似是普遍的、精確則是特殊的”辯證唯物主義觀點(diǎn)。引導(dǎo)學(xué)生用聯(lián)系的觀點(diǎn)理解有關(guān)內(nèi)容,通過求方程的近似解感受函數(shù)、方程、不等式以及算法等內(nèi)容的有機(jī)結(jié)合,使學(xué)生體會(huì)知識(shí)之間的聯(lián)系。

所以本節(jié)課的本質(zhì)是讓學(xué)生體會(huì)函數(shù)與方程的思想、近似的思想、逼近的思想和初步感受程序化地處理問題的算法思想。

二、本節(jié)課內(nèi)容的地位、作用

“二分法”的理論依據(jù)是“函數(shù)零點(diǎn)的存在性(定理)”,本節(jié)課是上節(jié)學(xué)習(xí)內(nèi)容《方程的根與函數(shù)的零點(diǎn)》的自然延伸;是數(shù)學(xué)必修3算法教學(xué)的一個(gè)前奏和準(zhǔn)備;同時(shí)滲透數(shù)形結(jié)合思想、近似思想、逼近思想和算法思想等。

三、學(xué)生情況分析

學(xué)生已初步理解了函數(shù)圖象與方程的根之間的`關(guān)系,具備一定的用數(shù)形結(jié)合思想解決問題的能力,這為理解函數(shù)零點(diǎn)附近的函數(shù)值符號(hào)提供了知識(shí)準(zhǔn)備。但學(xué)生僅是比較熟悉一元二次方程解與函數(shù)零點(diǎn)的關(guān)系,對(duì)于高次方程、超越方程與對(duì)應(yīng)函數(shù)零點(diǎn)之間的聯(lián)系的認(rèn)識(shí)比較模糊,計(jì)算器的使用不夠熟練,這些都給學(xué)生學(xué)習(xí)本節(jié)內(nèi)容造成一定困難。

四、教學(xué)目標(biāo)定位

根據(jù)教材內(nèi)容和學(xué)生的實(shí)際情況,本節(jié)課的教學(xué)目標(biāo)設(shè)定如下:

通過具體實(shí)例理解二分法的概念及其適用條件,了解二分法是求方程近似解的一種方法,會(huì)用二分法求某些具體方程的近似解,從中體會(huì)函數(shù)與方程之間的聯(lián)系,體會(huì)程序化解決問題的思想。

借助計(jì)算器用二分法求方程的近似解,讓學(xué)生充分體驗(yàn)近似的思想、逼近的思想和程序化地處理問題的思想及其重要作用,并為下一步學(xué)習(xí)算法做知識(shí)準(zhǔn)備。

通過探究、展示、交流,養(yǎng)成良好的學(xué)習(xí)品質(zhì),增強(qiáng)合作意識(shí)。

通過具體問題體會(huì)逼近過程,感受精確與近似的相對(duì)統(tǒng)一。

五、教學(xué)診斷分析

“二分法”的思想方法簡便而又應(yīng)用廣泛,所需的數(shù)學(xué)知識(shí)較少,算法流程比較簡潔,便于編寫計(jì)算機(jī)程序;利用計(jì)算器和多媒體輔助教學(xué),直觀明了;學(xué)生在生活中也有相關(guān)體驗(yàn),所以易于被學(xué)生理解和掌握。但“二分法”不能用于求方程偶次重根的近似解,精確度概念不易理解。

六、教學(xué)方法和特點(diǎn)

本節(jié)課采用的是問題驅(qū)動(dòng)、啟發(fā)探究的教學(xué)方法。

通過分組合作、互動(dòng)探究、搭建平臺(tái)、分散難點(diǎn)的學(xué)習(xí)指導(dǎo)方法把問題逐步推進(jìn)、拾級(jí)而上,并輔以多媒體教學(xué)手段,使學(xué)生自主探究二分法的原理。

本節(jié)課特點(diǎn)主要有以下幾方面:

1、以問題驅(qū)動(dòng)教學(xué),激發(fā)學(xué)生的求知欲,體現(xiàn)了以學(xué)生為主的教學(xué)理念。

2、注重與現(xiàn)實(shí)生活中案例相結(jié)合,讓學(xué)生體會(huì)數(shù)學(xué)來源于現(xiàn)實(shí)生活又可以解決現(xiàn)實(shí)生活中的問題。

以李詠主持的幸運(yùn)52猜商品價(jià)格來創(chuàng)設(shè)情境,不僅激發(fā)學(xué)生學(xué)習(xí)興趣,學(xué)生也在猜測(cè)的過程中體會(huì)二分法思想。

3、注重學(xué)生參與知識(shí)的形成過程,使他們“聽”有所思,“學(xué)”有所獲。

本節(jié)課中的每一個(gè)問題都是在師生交流中產(chǎn)生,在學(xué)生合作探究中解決,使學(xué)生經(jīng)歷了完整的學(xué)習(xí)過程,培養(yǎng)合作交流意識(shí)。

4、恰當(dāng)?shù)乩矛F(xiàn)代信息技術(shù),幫助學(xué)生揭示數(shù)學(xué)本質(zhì)。

本節(jié)課中利用計(jì)算器進(jìn)行了多次計(jì)算,逐步縮小實(shí)數(shù)解所在范圍,精確度的確定就顯得非常自然,突破了教學(xué)上的難點(diǎn),提高了探究活動(dòng)的有效性。整個(gè)課件都以PowerPoint為制作平臺(tái),演示Excel

程序求方程的近似解,界畫活潑,充分體現(xiàn)了信息技術(shù)與數(shù)學(xué)課程有機(jī)整合。

七、預(yù)期效果分析

以方程的根與函數(shù)的零點(diǎn)知識(shí)作基礎(chǔ),通過對(duì)求方程近似解的探究討論,使學(xué)生主動(dòng)參與數(shù)學(xué)實(shí)踐活動(dòng);采用多媒體技術(shù),大容量信息的呈現(xiàn)和生動(dòng)形象的演示,激發(fā)學(xué)生學(xué)習(xí)興趣、激活學(xué)生思維,掌握二分法的本質(zhì),完成教學(xué)目標(biāo)。

另外盡管使用了科學(xué)計(jì)算器,但求一個(gè)方程的近似解也是很費(fèi)時(shí)的,學(xué)生容易出現(xiàn)計(jì)算錯(cuò)誤和產(chǎn)生急躁情緒;況且問題探究式教學(xué)跟學(xué)生的學(xué)習(xí)程度有很大關(guān)系,各小組的探究時(shí)間存在差異,教師要適時(shí)指導(dǎo)。

關(guān)于高中必修一數(shù)學(xué)教案

一、教材分析

“解三角形”既是高中數(shù)學(xué)的.基本內(nèi)容,又有較強(qiáng)的應(yīng)用性,在這次課程改革中,被保留下來,并獨(dú)立成為一章。這部分內(nèi)容從知識(shí)體系上看,應(yīng)屬于三角函數(shù)這一章,從研究方法上看,也可以歸屬于向量應(yīng)用的一方面。從某種意義講,這部分內(nèi)容是用代數(shù)方法解決幾何問題的典型內(nèi)容之一。而本課“正弦定理”,作為單元的起始課,是在學(xué)生已有的三角函數(shù)及向量知識(shí)的基礎(chǔ)上,通過對(duì)三角形邊角關(guān)系作量化探究,發(fā)現(xiàn)并掌握正弦定理(重要的解三角形工具),通過這一部分內(nèi)容的學(xué)習(xí),讓學(xué)生從“實(shí)際問題”抽象成“數(shù)學(xué)問題”的建模過程中,體驗(yàn) “觀察——猜想——證明——應(yīng)用”這一思維方法,養(yǎng)成大膽猜想、善于思考的品質(zhì)和勇于求真的精神。同時(shí)在解決問題的過程中,感受數(shù)學(xué)的力量,進(jìn)一步培養(yǎng)學(xué)生對(duì)數(shù)學(xué)的學(xué)習(xí)興趣和“用數(shù)學(xué)”的意識(shí)。

二、學(xué)情分析

我所任教的學(xué)校是我縣一所農(nóng)村普通中學(xué),大多數(shù)學(xué)生基礎(chǔ)薄弱,對(duì)“一些重要的數(shù)學(xué)思想和數(shù)學(xué)方法”的應(yīng)用意識(shí)和技能還不高。但是,大多數(shù)學(xué)生對(duì)數(shù)學(xué)的興趣較高,比較喜歡數(shù)學(xué),尤其是象本節(jié)課這樣與實(shí)際生活聯(lián)系比較緊密的內(nèi)容,相信學(xué)生能夠積極配合,有比較不錯(cuò)的表現(xiàn)。

三、教學(xué)目標(biāo)

1、知識(shí)和技能:在創(chuàng)設(shè)的問題情境中,引導(dǎo)學(xué)生發(fā)現(xiàn)正弦定理的內(nèi)容,推證正弦定理及簡單運(yùn)用正弦定理解決一些簡單的解三角形問題。

過程與方法:學(xué)生參與解題方案的探索,嘗試應(yīng)用觀察——猜想——證明——應(yīng)用”等思想方法,尋求最佳解決方案,從而引發(fā)學(xué)生對(duì)現(xiàn)實(shí)世界的一些數(shù)學(xué)模型進(jìn)行思考。

情感、態(tài)度、價(jià)值觀:培養(yǎng)學(xué)生合情合理探索數(shù)學(xué)規(guī)律的數(shù)學(xué)思想方法,通過平面幾何、三角形函數(shù)、正弦定理、向量的數(shù)量積等知識(shí)間的聯(lián)系來體現(xiàn)事物之間的普遍聯(lián)系與辯證統(tǒng)一。同時(shí),通過實(shí)際問題的探討、解決,讓學(xué)生體驗(yàn)學(xué)習(xí)成就感,增強(qiáng)數(shù)學(xué)學(xué)習(xí)興趣和主動(dòng)性,鍛煉探究精神。樹立“數(shù)學(xué)與我有關(guān),數(shù)學(xué)是有用的,我要用數(shù)學(xué),我能用數(shù)學(xué)”的理念。

2、教學(xué)重點(diǎn)、難點(diǎn)

教學(xué)重點(diǎn):正弦定理的發(fā)現(xiàn)與證明;正弦定理的簡單應(yīng)用。

教學(xué)難點(diǎn):正弦定理證明及應(yīng)用。

四、教學(xué)方法與手段

為了更好的達(dá)成上面的教學(xué)目標(biāo),促進(jìn)學(xué)習(xí)方式的轉(zhuǎn)變,本節(jié)課我準(zhǔn)備采用“問題教學(xué)法”,即由教師以問題為主線組織教學(xué),利用多媒體和實(shí)物投影儀等教學(xué)手段來激發(fā)興趣、突出重點(diǎn),突破難點(diǎn),提高課堂效率,并引導(dǎo)學(xué)生采取自主探究與相互合作相結(jié)合的學(xué)習(xí)方式參與到問題解決的過程中去,從中體驗(yàn)成功與失敗,從而逐步建立完善的認(rèn)知結(jié)構(gòu)。

五、教學(xué)過程

為了很好地完成我所確定的教學(xué)目標(biāo),順利地解決重點(diǎn),突破難點(diǎn),同時(shí)本著貼近生活、貼近學(xué)生、貼近時(shí)代的原則,我設(shè)計(jì)了這樣的教學(xué)過程:

(一)創(chuàng)設(shè)情景,揭示課題

問題1:寧靜的夜晚,明月高懸,當(dāng)你仰望夜空,欣賞這美好夜色的時(shí)候,會(huì)不會(huì)想要知道:那遙不可及的月亮離我們究竟有多遠(yuǎn)呢?

1671年兩個(gè)法國天文學(xué)家首次測(cè)出了地月之間的距離大約為 385400km,你知道他們當(dāng)時(shí)是怎樣測(cè)出這個(gè)距離的嗎?

問題2:在現(xiàn)在的高科技時(shí)代,要想知道某座山的高度,沒必要親自去量,只需水平飛行的飛機(jī)從山頂一過便可測(cè)出,你知道這是為什么嗎?還有,交通警察是怎樣測(cè)出正在公路上行駛的汽車的速度呢?要想解決這些問題, 其實(shí)并不難,只要你學(xué)好本章內(nèi)容即可掌握其原理。(板書課題《解三角形》)

[設(shè)計(jì)說明]引用教材本章引言,制造知識(shí)與問題的沖突,激發(fā)學(xué)生學(xué)習(xí)本章知識(shí)的興趣。

(二)特殊入手,發(fā)現(xiàn)規(guī)律

問題3:在初中,我們已經(jīng)學(xué)習(xí)了《銳角三角函數(shù)和解直角三角形》這一章,老師想試試你的實(shí)力,請(qǐng)你根據(jù)初中知識(shí),解決這樣一個(gè)問題。在Rt⊿ABC中sinA= ,sinB= ,sinC= ,由此,你能把這個(gè)直角三角形中的所有的邊和角用一個(gè)表達(dá)式表示出來嗎?

引導(dǎo)啟發(fā)學(xué)生發(fā)現(xiàn)特殊情形下的正弦定理。

(三)類比歸納,嚴(yán)格證明

問題4:本題屬于初中問題,而且比較簡單,不夠刺激,現(xiàn)在如果我為難為難你,讓你也當(dāng)一回老師,如果有個(gè)學(xué)生把條件中的Rt⊿ABC不小心寫成了銳角⊿ABC,其它沒有變,你說這個(gè)結(jié)論還成立嗎?

[設(shè)計(jì)說明]此時(shí)放手讓學(xué)生自己完成,如果感覺自己解決有困難,學(xué)生也可以前后桌或同桌結(jié)組研究,鼓勵(lì)學(xué)生用不同的方法證明這個(gè)結(jié)論,在巡視的過程中讓不同方法的學(xué)生上黑板展示,如果沒有用向量的學(xué)生,教師引導(dǎo)提示學(xué)生能否用向量完成證明。

高中必修一數(shù)學(xué)教案怎么做

一、教材分析

1.教學(xué)內(nèi)容

本節(jié)課內(nèi)容教材共分兩課時(shí)進(jìn)行,這是第一課時(shí),該課時(shí)主要學(xué)習(xí)函數(shù)的單調(diào)性的的概念,依據(jù)函數(shù)圖象判斷函數(shù)的單調(diào)性和應(yīng)用定義證明函數(shù)的單調(diào)性。

2.教材的地位和作用

函數(shù)單調(diào)性是高中數(shù)學(xué)中相當(dāng)重要的一個(gè)基礎(chǔ)知識(shí)點(diǎn),是研究和討論初等函數(shù)有關(guān)性質(zhì)的基礎(chǔ)。掌握本節(jié)內(nèi)容不僅為今后的函數(shù)學(xué)習(xí)打下理論基礎(chǔ),還有利于培養(yǎng)學(xué)生的抽象思維能力,及分析問題和解決問題的能力。

3.教材的重點(diǎn)﹑難點(diǎn)﹑關(guān)鍵

教學(xué)重點(diǎn):函數(shù)單調(diào)性的概念和判斷某些函數(shù)單調(diào)性的方法。明確單調(diào)性是一個(gè)局部概念.

教學(xué)難點(diǎn):領(lǐng)會(huì)函數(shù)單調(diào)性的實(shí)質(zhì)與應(yīng)用,明確單調(diào)性是一個(gè)局部的概念。

教學(xué)關(guān)鍵:從學(xué)生的學(xué)習(xí)心理和認(rèn)知結(jié)構(gòu)出發(fā),講清楚概念的形成過程.

4.學(xué)情分析

高一學(xué)生正處于以感性思維為主的年齡階段,而且思維逐步地從感性思維過渡到理性思維,并由此向邏輯思維發(fā)展,但學(xué)生思維不成熟、不嚴(yán)密、意志力薄弱,故而整個(gè)教學(xué)環(huán)節(jié)總是創(chuàng)設(shè)恰當(dāng)?shù)膯栴}情境,引導(dǎo)學(xué)生積極思考,培養(yǎng)他們的邏輯思維能力。從學(xué)生的認(rèn)知結(jié)構(gòu)來看,他們只能根據(jù)函數(shù)的圖象觀察出“隨著自變量的增大函數(shù)值增大”等變化趨勢(shì),所以在教學(xué)中要充分利用好函數(shù)圖象的直觀性,發(fā)揮好多媒體教學(xué)的優(yōu)勢(shì);由于學(xué)生在概念的掌握上缺少系統(tǒng)性、嚴(yán)謹(jǐn)性,在教學(xué)中注意加強(qiáng).

二、目標(biāo)分析

(一)知識(shí)目標(biāo):

1.知識(shí)目標(biāo):理解函數(shù)單調(diào)性的概念,掌握判斷一些簡單函數(shù)的單調(diào)性的方法;了解函數(shù)單調(diào)區(qū)間的概念,并能根據(jù)函數(shù)圖象說出函數(shù)的單調(diào)區(qū)間。

2.能力目標(biāo):通過證明函數(shù)的單調(diào)性的學(xué)習(xí),使學(xué)生體驗(yàn)和理解從特殊到一般的數(shù)學(xué)歸納推理思維方式,培養(yǎng)學(xué)生的觀察能力,分析歸納能力,領(lǐng)會(huì)數(shù)學(xué)的歸納轉(zhuǎn)化的思想方法,增加學(xué)生的知識(shí)聯(lián)系,增強(qiáng)學(xué)生對(duì)知識(shí)的主動(dòng)構(gòu)建的能力。

3.情感目標(biāo):讓學(xué)生積極參與觀察、分析、探索等課堂教學(xué)的雙邊活動(dòng),在掌握知識(shí)的過程中體會(huì)成功的喜悅,以此激發(fā)求知__。領(lǐng)會(huì)用運(yùn)動(dòng)變化的觀點(diǎn)去觀察分析事物的方法。通過滲透數(shù)形結(jié)合的數(shù)學(xué)思想,對(duì)學(xué)生進(jìn)行辨證唯物主義的思想教育。

(二)過程與方法

培養(yǎng)學(xué)生嚴(yán)密的邏輯思維能力以及用運(yùn)動(dòng)變化、數(shù)形結(jié)合、分類討論的方法去分析和處理問題,以提高學(xué)生的思維品質(zhì),通過函數(shù)的單調(diào)性的學(xué)習(xí),掌握自變量和因變量的關(guān)系。通過多媒體手段激發(fā)學(xué)生學(xué)習(xí)興趣,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題和解題的邏輯推理能力。

三、教法與學(xué)法

1.教學(xué)方法

在教學(xué)中,要注重展開探索過程,充分利用好函數(shù)圖象的直觀性、發(fā)揮多媒體教學(xué)的優(yōu)勢(shì)。本節(jié)課采用問答式教學(xué)法、探究式教學(xué)法進(jìn)行教學(xué),教師在課堂中只起著主導(dǎo)作用,讓學(xué)生在教師的提問中自覺的發(fā)現(xiàn)新知,探究新知,并且加入激勵(lì)性的語言以提高學(xué)生的積極性,提高學(xué)生參與知識(shí)形成的全過程。

2.學(xué)習(xí)方法

自我探索、自我思考總結(jié)、歸納,自我感悟,合作交流,成為本節(jié)課學(xué)生學(xué)習(xí)的主要方式。

四、過程分析

本節(jié)課的教學(xué)過程包括:問題情景,函數(shù)單調(diào)性的定義引入,增函數(shù)、減函數(shù)的定義,例題分析與鞏固練習(xí),回顧總結(jié)和課外作業(yè)六個(gè)板塊。這里分別就其過程和設(shè)計(jì)意圖作一一分析。

(一)問題情景:

為了激發(fā)學(xué)生的學(xué)習(xí)興趣,本節(jié)課借助多媒體設(shè)計(jì)了多個(gè)生活背景問題,并就圖表和圖象所提供的信息,提出一系列問題和學(xué)生交流,激發(fā)學(xué)生的學(xué)習(xí)興趣和求知__,為學(xué)習(xí)函數(shù)的單調(diào)性做好鋪墊。(祥見課件)

新課程理念認(rèn)為:情境應(yīng)貫穿課堂教學(xué)的始終。本節(jié)課所創(chuàng)設(shè)的生活情境,讓學(xué)生親近數(shù)學(xué),感受到數(shù)學(xué)就在他們的周圍,強(qiáng)化學(xué)生的感性認(rèn)識(shí),從而達(dá)到學(xué)生對(duì)數(shù)學(xué)的理解。讓學(xué)生在課堂的一開始就感受到數(shù)學(xué)就在我們身邊,讓學(xué)生學(xué)會(huì)用數(shù)學(xué)的眼光去關(guān)注生活。

(二)函數(shù)單調(diào)性的定義引入

1.幾何畫板動(dòng)畫演示,請(qǐng)學(xué)生認(rèn)真觀察,并回答問題:通過學(xué)生已學(xué)過的函數(shù)y=2x+4,,的圖象的動(dòng)態(tài)形式形象出x、y間的變化關(guān)系,使學(xué)生對(duì)函數(shù)單調(diào)性有感性認(rèn)識(shí)。,進(jìn)行比較,分析其變化趨勢(shì)。并探討、回答以下問題:

問題1、觀察下列函數(shù)圖象,從左向右看圖象的變化趨勢(shì)?

問題2:你能明確說出“圖象呈上升趨勢(shì)”的意思嗎?

通過學(xué)生的交流、探討、總結(jié),得到單調(diào)性的“通俗定義”:

從在某一區(qū)間內(nèi)當(dāng)x的值增大時(shí),函數(shù)值y也增大,到圖象在該區(qū)間內(nèi)呈上升趨勢(shì)再到如何用x與f(x)來描述上升的圖象?

通過問題逐步向抽象的定義靠攏,將圖形語言轉(zhuǎn)化為數(shù)學(xué)符號(hào)語言。幾何畫板的靈活使用,數(shù)形有機(jī)結(jié)合,引導(dǎo)學(xué)生從圖形語言到數(shù)學(xué)符號(hào)語言的翻譯變得輕松。

設(shè)計(jì)意圖:通過學(xué)生熟悉的知識(shí)引入新課題,有利于激發(fā)學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)熱情,同時(shí)也可以培養(yǎng)學(xué)生觀察、猜想、歸納的思維能力和創(chuàng)新意識(shí),增強(qiáng)學(xué)生自主學(xué)習(xí)、獨(dú)立思考,由學(xué)會(huì)向會(huì)學(xué)的轉(zhuǎn)化,形成良好的思維品質(zhì)。通過學(xué)生已學(xué)過的一次y=2x+4,,的圖象的動(dòng)態(tài)形式形象地反映出x、y間的變化關(guān)系,使學(xué)生對(duì)函數(shù)單調(diào)性有感性認(rèn)識(shí)。從學(xué)生的原有認(rèn)知結(jié)構(gòu)入手,探討單調(diào)性的概念,符合“最近發(fā)展區(qū)的理論”要求。從圖形、直觀認(rèn)識(shí)入手,研究單調(diào)性的概念,其本身就是研究、學(xué)習(xí)數(shù)學(xué)的一種方法,符合新課程的理念。

(三)增函數(shù)、減函數(shù)的定義

在前面的基礎(chǔ)上,讓學(xué)生討論歸納:如何使用數(shù)學(xué)語言來準(zhǔn)確描述函數(shù)的單調(diào)性?在學(xué)生回答的基礎(chǔ)上,給出增函數(shù)的概念,同時(shí)要求學(xué)生討論概念中的關(guān)鍵詞和注意點(diǎn)。

定義中的“當(dāng)x1x2時(shí),都有f(x1)

注意:(1)函數(shù)的單調(diào)性也叫函數(shù)的增減性;

(2)注意區(qū)間上所取兩點(diǎn)x1,x2的任意性;

(3)函數(shù)的單調(diào)性是對(duì)某個(gè)區(qū)間而言的,它是一個(gè)局部概念。

讓學(xué)生自已嘗試寫出減函數(shù)概念,由兩名學(xué)生板演。提出單調(diào)區(qū)間的概念。

設(shè)計(jì)意圖:通過給出函數(shù)單調(diào)性的嚴(yán)格定義,目的是為了讓學(xué)生更準(zhǔn)確地把握概念,理解函數(shù)的單調(diào)性其實(shí)也叫做函數(shù)的增減性,它是對(duì)某個(gè)區(qū)間而言的,它是一個(gè)局部概念,同時(shí)明確判定函數(shù)在某個(gè)區(qū)間上的單調(diào)性的一般步驟。這樣處理,同時(shí)也是讓學(xué)生感悟、體驗(yàn)學(xué)習(xí)數(shù)學(xué)感念的方法,提高其個(gè)性品質(zhì)。

(四)例題分析

在理解概念的基礎(chǔ)上,讓學(xué)生總結(jié)判別函數(shù)單調(diào)性的方法:圖象法和定義法。

2.例2.證明函數(shù)在區(qū)間(-∞,+∞)上是減函數(shù)。

在本題的解決過程中,要求學(xué)生對(duì)照定義進(jìn)行分析,明確本題要解決什么?定義要求是什么?怎樣去思考?通過自己的解決,總結(jié)證明單調(diào)性問題的一般方法。

變式一:函數(shù)f(x)=-3x+b在R上是減函數(shù)嗎?為什么?

變式二:函數(shù)f(x)=kx+b(k

變式三:函數(shù)f(x)=kx+b(k

錯(cuò)誤:實(shí)質(zhì)上并沒有證明,而是使用了所要證明的結(jié)論

例題設(shè)計(jì)意圖:在理解概念的基礎(chǔ)上,讓學(xué)生總結(jié)判別函數(shù)單調(diào)性的方法:圖象法和定義法。例1是教材中例題,它的解決強(qiáng)化學(xué)生應(yīng)用數(shù)形結(jié)合的思想方法解題的意識(shí),進(jìn)一步加深對(duì)概念的理解,同時(shí)也是依托具體問題,對(duì)單調(diào)區(qū)間這一概念的再認(rèn)識(shí);要了解函數(shù)在某一區(qū)間上是否具有單調(diào)性,從圖上進(jìn)行觀察是一種常用而又粗略的方法。嚴(yán)格地說,它需要根據(jù)單調(diào)函數(shù)的定義進(jìn)行證明。例2是教材練習(xí)題改編,通過師生共同總結(jié),得出使用定義證明的一般步驟:任取—作差(變形)—定號(hào)—下結(jié)論,通過例2的解決是學(xué)生初步掌握運(yùn)用概念進(jìn)行簡單論證的基本方法,強(qiáng)化證題的規(guī)范性訓(xùn)練,從而提高學(xué)生的推理論證能力。例3是教材例2抽象出的數(shù)學(xué)問題。目的是進(jìn)一步強(qiáng)化解題的規(guī)范性,提高邏輯推理能力,同時(shí)讓學(xué)生學(xué)會(huì)一些常見的變形方法。

(五)鞏固與探究

1.教材p36練習(xí)2,3

2.探究:二次函數(shù)的單調(diào)性有什么規(guī)律?

(幾何畫板演示,學(xué)生探究)本問題作為機(jī)動(dòng)題。時(shí)間不允許時(shí),就為課后思考題。

設(shè)計(jì)意圖:通過觀察圖象,對(duì)函數(shù)是否具有某種性質(zhì)作出一種猜想,然后通過推理的辦法,證明這種猜想的正確性,是發(fā)現(xiàn)和解決問題的一種常用數(shù)學(xué)方法。

通過課堂練習(xí)加深學(xué)生對(duì)概念的理解,進(jìn)一步熟悉證明或判斷函數(shù)單調(diào)性的方法和步驟,達(dá)到鞏固,消化新知的目的。同時(shí)強(qiáng)化解題步驟,形成并提高解題能力。對(duì)練習(xí)的思考,讓學(xué)生學(xué)會(huì)反思、學(xué)會(huì)總結(jié)。

(六)回顧總結(jié)

通過師生互動(dòng),回顧本節(jié)課的概念、方法。本節(jié)課我們學(xué)習(xí)了函數(shù)單調(diào)性的知識(shí),同學(xué)們要切記:單調(diào)性是對(duì)某個(gè)區(qū)間而言的,同時(shí)在理解定義的基礎(chǔ)上,要掌握證明函數(shù)單調(diào)性的方法步驟,正確進(jìn)行判斷和證明。

設(shè)計(jì)意圖:通過小結(jié)突出本節(jié)課的重點(diǎn),并讓學(xué)生對(duì)所學(xué)知識(shí)的結(jié)構(gòu)有一個(gè)清晰的認(rèn)識(shí),學(xué)會(huì)一些解決問題的思想與方法,體會(huì)數(shù)學(xué)的和諧美。

(七)課外作業(yè)

1.教材p43習(xí)題1.3A組1(單調(diào)區(qū)間),2(證明單調(diào)性);

2.判斷并證明函數(shù)在上的單調(diào)性。

3.數(shù)學(xué)日記:談?wù)勀惚竟?jié)課中的收獲或者困惑,整理你認(rèn)為本節(jié)課中的最重要的知識(shí)和方法。

設(shè)計(jì)意圖:通過作業(yè)1、2進(jìn)一步鞏固本節(jié)課所學(xué)的增、減函數(shù)的概念,強(qiáng)化基本技能訓(xùn)練和解題規(guī)范化的訓(xùn)練,并且以此作為學(xué)生對(duì)本結(jié)內(nèi)容各項(xiàng)目標(biāo)落實(shí)的評(píng)價(jià)。新課標(biāo)要求:不同的學(xué)生學(xué)習(xí)不同的數(shù)學(xué),在數(shù)學(xué)上獲得不同的發(fā)展。作業(yè)3這種新型的作業(yè)形式是其很好的體現(xiàn)。

(七)板書設(shè)計(jì)(見ppt)

五、評(píng)價(jià)分析

有效的概念教學(xué)是建立在學(xué)生已有知識(shí)結(jié)構(gòu)基礎(chǔ)上,,因此在教學(xué)設(shè)計(jì)過程中注意了:第一.教要按照學(xué)的法子來教;第二在學(xué)生已有知識(shí)結(jié)構(gòu)和新概念間尋找“最近發(fā)展區(qū)”;第三.強(qiáng)化了重探究、重交流、重過程的課改理念。讓學(xué)生經(jīng)歷“創(chuàng)設(shè)情境——探究概念——注重反思——拓展應(yīng)用——?dú)w納總結(jié)”的活動(dòng)過程,體驗(yàn)了參與數(shù)學(xué)知識(shí)的發(fā)生、發(fā)展過程,培養(yǎng)“用數(shù)學(xué)”的意識(shí)和能力,成為積極主動(dòng)的建構(gòu)者。

本節(jié)課圍繞教學(xué)重點(diǎn),針對(duì)教學(xué)目標(biāo),以多媒體技術(shù)為依托,展現(xiàn)知識(shí)的發(fā)生和形成過程,使學(xué)生始終處于問題探索研究狀態(tài)之中,__引趣,并注重?cái)?shù)學(xué)科學(xué)研究方法的學(xué)習(xí),是順應(yīng)新課改要求的,是研究性教學(xué)的一次有益嘗試。

高中數(shù)學(xué)教案 篇11

教學(xué)目標(biāo):

(1)了解坐標(biāo)法和解析幾何的意義,了解解析幾何的基本問題.

(2)進(jìn)一步理解曲線的方程和方程的曲線.

(3)初步掌握求曲線方程的方法.

(4)通過本節(jié)內(nèi)容的教學(xué),培養(yǎng)學(xué)生分析問題和轉(zhuǎn)化的能力.

教學(xué)重點(diǎn)、難點(diǎn):求曲線的方程.

教學(xué)用具:計(jì)算機(jī).

教學(xué)方法:啟發(fā)引導(dǎo)法,討論法.

教學(xué)過程:

【引入】

1.提問:什么是曲線的方程和方程的曲線.

學(xué)生思考并回答.教師強(qiáng)調(diào).

2.坐標(biāo)法和解析幾何的意義、基本問題.

對(duì)于一個(gè)幾何問題,在建立坐標(biāo)系的基礎(chǔ)上,用坐標(biāo)表示點(diǎn);用方程表示曲線,通過研究方程的性質(zhì)間接地來研究曲線的性質(zhì),這一研究幾何問題的方法稱為坐標(biāo)法,這門科學(xué)稱為解析幾何.解析幾何的兩大基本問題就是:

(1)根據(jù)已知條件,求出表示平面曲線的方程.

(2)通過方程,研究平面曲線的性質(zhì).

事實(shí)上,在前邊所學(xué)的直線方程的理論中也有這樣兩個(gè)基本問題.而且要先研究如何求出曲線方程,再研究如何用方程研究曲線.本節(jié)課就初步研究曲線方程的求法.

【問題】

如何根據(jù)已知條件,求出曲線的方程.

【實(shí)例分析】

例1:設(shè)、兩點(diǎn)的坐標(biāo)是、(3,7),求線段的垂直平分線的方程.

首先由學(xué)生分析:根據(jù)直線方程的知識(shí),運(yùn)用點(diǎn)斜式即可解決.

解法一:易求線段的中點(diǎn)坐標(biāo)為(1,3),

由斜率關(guān)系可求得l的斜率為

于是有

即l的方程為

分析、引導(dǎo):上述問題是我們?cè)缇蛯W(xué)過的,用點(diǎn)斜式就可解決.可是,你們是否想過①恰好就是所求的嗎?或者說①就是直線的方程?根據(jù)是什么,有證明嗎?

(通過教師引導(dǎo),是學(xué)生意識(shí)到這是以前沒有解決的問題,應(yīng)該證明,證明的依據(jù)就是定義中的兩條).

證明:(1)曲線上的點(diǎn)的坐標(biāo)都是這個(gè)方程的解.

設(shè)是線段的垂直平分線上任意一點(diǎn),則

將上式兩邊平方,整理得

這說明點(diǎn)的坐標(biāo)是方程的解.

(2)以這個(gè)方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn).

設(shè)點(diǎn)的坐標(biāo)是方程①的任意一解,則

到、的距離分別為

所以,即點(diǎn)在直線上.

綜合(1)、(2),①是所求直線的方程.

至此,證明完畢.回顧上述內(nèi)容我們會(huì)發(fā)現(xiàn)一個(gè)有趣的現(xiàn)象:在證明(1)曲線上的點(diǎn)的坐標(biāo)都是這個(gè)方程的解中,設(shè)是線段的垂直平分線上任意一點(diǎn),最后得到式子,如果去掉腳標(biāo),這不就是所求方程嗎?可見,這個(gè)證明過程就表明一種求解過程,下面試試看:

解法二:設(shè)是線段的垂直平分線上任意一點(diǎn),也就是點(diǎn)屬于集合

由兩點(diǎn)間的距離公式,點(diǎn)所適合的條件可表示為

將上式兩邊平方,整理得

果然成功,當(dāng)然也不要忘了證明,即驗(yàn)證兩條是否都滿足.顯然,求解過程就說明第一條是正確的(從這一點(diǎn)看,解法二也比解法一優(yōu)越一些);至于第二條上邊已證.

這樣我們就有兩種求解方程的方法,而且解法二不借助直線方程的理論,又非常自然,還體現(xiàn)了曲線方程定義中點(diǎn)集與對(duì)應(yīng)的思想.因此是個(gè)好方法.

讓我們用這個(gè)方法試解如下問題:

例2:點(diǎn)與兩條互相垂直的直線的距離的積是常數(shù)求點(diǎn)的軌跡方程.

分析:這是一個(gè)純粹的幾何問題,連坐標(biāo)系都沒有.所以首先要建立坐標(biāo)系,顯然用已知中兩條互相垂直的直線作坐標(biāo)軸,建立直角坐標(biāo)系.然后仿照例1中的解法進(jìn)行求解.

求解過程略.

【概括總結(jié)】通過學(xué)生討論,師生共同總結(jié):

分析上面兩個(gè)例題的求解過程,我們總結(jié)一下求解曲線方程的大體步驟:

首先應(yīng)有坐標(biāo)系;其次設(shè)曲線上任意一點(diǎn);然后寫出表示曲線的點(diǎn)集;再代入坐標(biāo);最后整理出方程,并證明或修正.說得更準(zhǔn)確一點(diǎn)就是:

(1)建立適當(dāng)?shù)淖鴺?biāo)系,用有序?qū)崝?shù)對(duì)例如表示曲線上任意一點(diǎn)的坐標(biāo);

(2)寫出適合條件的點(diǎn)的集合

;

(3)用坐標(biāo)表示條件,列出方程;

(4)化方程為最簡形式;

(5)證明以化簡后的方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn).

一般情況下,求解過程已表明曲線上的點(diǎn)的坐標(biāo)都是方程的解;如果求解過程中的轉(zhuǎn)化都是等價(jià)的,那么逆推回去就說明以方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn).所以,通常情況下證明可省略,不過特殊情況要說明.

上述五個(gè)步驟可簡記為:建系設(shè)點(diǎn);寫出集合;列方程;化簡;修正.

下面再看一個(gè)問題:

例3:已知一條曲線在軸的上方,它上面的每一點(diǎn)到點(diǎn)的距離減去它到軸的距離的差都是2,求這條曲線的方程.

【動(dòng)畫演示】用幾何畫板演示曲線生成的過程和形狀,在運(yùn)動(dòng)變化的過程中尋找關(guān)系.

解:設(shè)點(diǎn)是曲線上任意一點(diǎn),軸,垂足是(如圖2),那么點(diǎn)屬于集合

由距離公式,點(diǎn)適合的條件可表示為

將①式移項(xiàng)后再兩邊平方,得

化簡得

由題意,曲線在軸的上方,所以,雖然原點(diǎn)的坐標(biāo)(0,0)是這個(gè)方程的解,但不屬于已知曲線,所以曲線的方程應(yīng)為,它是關(guān)于軸對(duì)稱的拋物線,但不包括拋物線的頂點(diǎn),如圖2中所示.

【練習(xí)鞏固】

題目:在正三角形內(nèi)有一動(dòng)點(diǎn),已知到三個(gè)頂點(diǎn)的距離分別為、 、,且有,求點(diǎn)軌跡方程.

分析、略解:首先應(yīng)建立坐標(biāo)系,以正三角形一邊所在的直線為一個(gè)坐標(biāo)軸,這條邊的垂直平分線為另一個(gè)軸,建立直角坐標(biāo)系比較簡單,如圖3所示.設(shè)、的坐標(biāo)為、,則的坐標(biāo)為,的坐標(biāo)為.

根據(jù)條件,代入坐標(biāo)可得

化簡得

由于題目中要求點(diǎn)在三角形內(nèi),所以,在結(jié)合①式可進(jìn)一步求出、的范圍,最后曲線方程可表示為

【小結(jié)】師生共同總結(jié):

(1)解析幾何研究研究問題的方法是什么?

(2)如何求曲線的方程?

(3)請(qǐng)對(duì)求解曲線方程的五個(gè)步驟進(jìn)行評(píng)價(jià).各步驟的作用,哪步重要,哪步應(yīng)注意什么?

【作業(yè)】課本第72頁練習(xí)1,2,3;

高中數(shù)學(xué)教案模板?篇2

教學(xué)準(zhǔn)備

教學(xué)目標(biāo)

數(shù)列求和的綜合應(yīng)用

教學(xué)重難點(diǎn)

數(shù)列求和的綜合應(yīng)用

教學(xué)過程

典例分析

3.數(shù)列{an}的前n項(xiàng)和Sn=n2-7n-8,

(1)求{an}的通項(xiàng)公式

(2)求{|an|}的前n項(xiàng)和Tn

4.等差數(shù)列{an}的公差為,S100=145,則a1+a3+a5+…+a99=

5.已知方程(x2-2x+m)(x2-2x+n)=0的四個(gè)根組成一個(gè)首項(xiàng)為的等差數(shù)列,則|m-n|=

6.數(shù)列{an}是等差數(shù)列,且a1=2,a1+a2+a3=12

(1)求{an}的通項(xiàng)公式

(2)令bn=anxn,求數(shù)列{bn}前n項(xiàng)和公式

7.四數(shù)中前三個(gè)數(shù)成等比數(shù)列,后三個(gè)數(shù)成等差數(shù)列,首末兩項(xiàng)之和為21,中間兩項(xiàng)之和為18,求此四個(gè)數(shù)

8.在等差數(shù)列{an}中,a1=20,前n項(xiàng)和為Sn,且S10=S15,求當(dāng)n為何值時(shí),Sn有最大值,并求出它的最大值

.已知數(shù)列{an},an∈N,Sn=(an+2)2

(1)求證{an}是等差數(shù)列

(2)若bn=an-30,求數(shù)列{bn}前n項(xiàng)的最小值

0.已知f(x)=x2-2(n+1)x+n2+5n-7(n∈N)

(1)設(shè)f(x)的圖象的頂點(diǎn)的橫坐標(biāo)構(gòu)成數(shù)列{an},求證數(shù)列{an}是等差數(shù)列

(2設(shè)f(x)的圖象的頂點(diǎn)到x軸的距離構(gòu)成數(shù)列{dn},求數(shù)列{dn}的前n項(xiàng)和sn.

11.購買一件售價(jià)為5000元的商品,采用分期付款的辦法,每期付款數(shù)相同,購買后1個(gè)月第1次付款,再過1個(gè)月第2次付款,如此下去,共付款5次后還清,如果按月利率0.8%,每月利息按復(fù)利計(jì)算(上月利息要計(jì)入下月本金),那么每期應(yīng)付款多少?(精確到1元)

12.某商品在最近100天內(nèi)的價(jià)格f(t)與時(shí)間t的

函數(shù)關(guān)系式是f(t)=銷售量g(t)與時(shí)間t的函數(shù)關(guān)系是g(t)=-t/3+109/3(0≤t≤100)

求這種商品的日銷售額的最大值

注:對(duì)于分段函數(shù)型的應(yīng)用題,應(yīng)注意對(duì)變量x的取值區(qū)間的討論;求函數(shù)的最大值,應(yīng)分別求出函數(shù)在各段中的最大值,通過比較,確定最大值

高中數(shù)學(xué)教案模板?篇3

一、課程性質(zhì)與任務(wù)

數(shù)學(xué)是研究空間形式和數(shù)量關(guān)系的科學(xué),是科學(xué)和技術(shù)的基礎(chǔ),是人類文化的重要組成部分。數(shù)學(xué)課程是中等職業(yè)學(xué)校學(xué)生必修的一門公共基礎(chǔ)課。本課程的任務(wù)是:使學(xué)生掌握必要的數(shù)學(xué)基礎(chǔ)知識(shí),具備必需的相關(guān)技能與能力,為學(xué)習(xí)專業(yè)知識(shí)、掌握職業(yè)技能、繼續(xù)學(xué)習(xí)和終身發(fā)展奠定基礎(chǔ)。二、課程教學(xué)目標(biāo)

1.在九年義務(wù)教育基礎(chǔ)上,使學(xué)生進(jìn)一步學(xué)習(xí)并掌握職業(yè)崗位和生活中所必要的數(shù)學(xué)基礎(chǔ)知識(shí)。2.培養(yǎng)學(xué)生的計(jì)算技能、計(jì)算工具使用技能和數(shù)據(jù)處理技能,培養(yǎng)學(xué)生的觀察能力、空間想象能力、分析與解決問題能力和數(shù)學(xué)思維能力。

3.引導(dǎo)學(xué)生逐步養(yǎng)成良好的學(xué)習(xí)習(xí)慣、實(shí)踐意識(shí)、創(chuàng)新意識(shí)和實(shí)事求是的科學(xué)態(tài)度,提高學(xué)生就業(yè)能力與創(chuàng)業(yè)能力。三、教學(xué)內(nèi)容結(jié)構(gòu)

本課程的教學(xué)內(nèi)容由基礎(chǔ)模塊、職業(yè)模塊和拓展模塊三個(gè)部分構(gòu)成。

1.基礎(chǔ)模塊是各專業(yè)學(xué)生必修的基礎(chǔ)性內(nèi)容和應(yīng)達(dá)到的基本要求,教學(xué)時(shí)數(shù)為128學(xué)時(shí)。2.職業(yè)模塊是適應(yīng)學(xué)生學(xué)習(xí)相關(guān)專業(yè)需要的限定選修內(nèi)容,各學(xué)校根據(jù)實(shí)際情況進(jìn)行選擇和安排教學(xué),教學(xué)時(shí)數(shù)為32~64學(xué)時(shí)。

3.拓展模塊是滿足學(xué)生個(gè)性發(fā)展和繼續(xù)學(xué)習(xí)需要的任意選修內(nèi)容,教學(xué)時(shí)數(shù)不做統(tǒng)一規(guī)定。四、教學(xué)內(nèi)容與要求

(一)本大綱教學(xué)要求用語的表述1.認(rèn)知要求(分為三個(gè)層次)

了解:初步知道知識(shí)的含義及其簡單應(yīng)用。

理解:懂得知識(shí)的概念和規(guī)律(定義、定理、法則等)以及與其他相關(guān)知識(shí)的聯(lián)系。掌握:能夠應(yīng)用知識(shí)的概念、定義、定理、法則去解決一些問題。2.技能與能力培養(yǎng)要求(分為三項(xiàng)技能與四項(xiàng)能力)

計(jì)算技能:根據(jù)法則、公式,或按照一定的操作步驟,正確地進(jìn)行運(yùn)算求解。計(jì)算工具使用技能:正確使用科學(xué)型計(jì)算器及常用的數(shù)學(xué)工具軟件。數(shù)據(jù)處理技能:按要求對(duì)數(shù)據(jù)(數(shù)據(jù)表格)進(jìn)行處理并提取有關(guān)信息。觀察能力:根據(jù)數(shù)據(jù)趨勢(shì),數(shù)量關(guān)系或圖形、圖示,描述其規(guī)律。

空間想象能力:依據(jù)文字、語言描述,或較簡單的幾何體及其組合,想象相應(yīng)的空間圖形;能夠在基本圖形中找出基本元素及其位置關(guān)系,或根據(jù)條件畫出圖形。

分析與解決問題能力:能對(duì)工作和生活中的簡單數(shù)學(xué)相關(guān)問題,作出分析并運(yùn)用適當(dāng)?shù)臄?shù)學(xué)方法予以解決。

數(shù)學(xué)思維能力:依據(jù)所學(xué)的數(shù)學(xué)知識(shí),運(yùn)用類比、歸納、綜合等方法,對(duì)數(shù)學(xué)及其應(yīng)用問題能進(jìn)行有條理的思考、判斷、推理和求解;針對(duì)不同的問題(或需求),會(huì)選擇合適的模型(模式)。

(二)教學(xué)內(nèi)容與要求1.基礎(chǔ)模塊(128學(xué)時(shí))第1單元集合(10學(xué)時(shí))

第2單元不等式(8學(xué)時(shí))

第3單元函數(shù)(12學(xué)時(shí))

第4單元指數(shù)函數(shù)與對(duì)數(shù)函數(shù)(12學(xué)時(shí))

第5單元三角函數(shù)(18學(xué)時(shí))

第6單元數(shù)列(10學(xué)時(shí))

第7單元平面向量(矢量)(10學(xué)時(shí))

第8單元直線和圓的方程(18學(xué)時(shí))

第9單元立體幾何(14學(xué)時(shí))

第10單元概率與統(tǒng)計(jì)初步(16學(xué)時(shí))

2.職業(yè)模塊

第1單元三角計(jì)算及其應(yīng)用(16學(xué)時(shí))

第2單元坐標(biāo)變換與參數(shù)方程(12學(xué)時(shí))

第3單元復(fù)數(shù)及其應(yīng)用(10學(xué)時(shí))

高中數(shù)學(xué)教案模板?篇4

教學(xué)目標(biāo):

1、結(jié)合實(shí)際問題情景,理解分層抽樣的必要性和重要性;

2、學(xué)會(huì)用分層抽樣的方法從總體中抽取樣本;

3、并對(duì)簡單隨機(jī)抽樣、系統(tǒng)抽樣及分層抽樣方法進(jìn)行比較,揭示其相互關(guān)系。

教學(xué)重點(diǎn):

通過實(shí)例理解分層抽樣的方法。

教學(xué)難點(diǎn):

分層抽樣的步驟。

教學(xué)過程:

一、問題情境

1、復(fù)習(xí)簡單隨機(jī)抽樣、系統(tǒng)抽樣的概念、特征以及適用范圍。

2、實(shí)例:某校高一、高二和高三年級(jí)分別有學(xué)生名,為了了解全校學(xué)生的視力情況,從中抽取容量為的樣本,怎樣抽取較為合理?

二、學(xué)生活動(dòng)

能否用簡單隨機(jī)抽樣或系統(tǒng)抽樣進(jìn)行抽樣,為什么?

指出由于不同年級(jí)的學(xué)生視力狀況有一定的差異,用簡單隨機(jī)抽樣或系統(tǒng)抽樣進(jìn)行抽樣不能準(zhǔn)確反映客觀實(shí)際,在抽樣時(shí)不僅要使每個(gè)個(gè)體被抽到的機(jī)會(huì)相等,還要注意總體中個(gè)體的層次性。

由于樣本的容量與總體的個(gè)體數(shù)的比為100∶2500=1∶25,

所以在各年級(jí)抽取的個(gè)體數(shù)依次是。即40,32,28。

三、建構(gòu)數(shù)學(xué)

1、分層抽樣:當(dāng)已知總體由差異明顯的幾部分組成時(shí),為了使樣本更客觀地反映總體的情況,常將總體按不同的特點(diǎn)分成層次比較分明的幾部分,然后按各部分在總體中所占的比進(jìn)行抽樣,這種抽樣叫做分層抽樣,其中所分成的各部分叫“層”。

說明:①分層抽樣時(shí),由于各部分抽取的個(gè)體數(shù)與這一部分個(gè)體數(shù)的比等于樣本容量與總體的個(gè)體數(shù)的比,每一個(gè)個(gè)體被抽到的可能性都是相等的;

②由于分層抽樣充分利用了我們所掌握的信息,使樣本具有較好的代表性,而且在各層抽樣時(shí)可以根據(jù)具體情況采取不同的抽樣方法,所以分層抽樣在實(shí)踐中有著非常廣泛的應(yīng)用。

2、三種抽樣方法對(duì)照表:

類別

共同點(diǎn)

各自特點(diǎn)

相互聯(lián)系

適用范圍

簡單隨機(jī)抽樣

抽樣過程中每個(gè)個(gè)體被抽取的概率是相同的

從總體中逐個(gè)抽取

總體中的個(gè)體數(shù)較少

系統(tǒng)抽樣

將總體均分成幾個(gè)部分,按事先確定的規(guī)則在各部分抽取

在第一部分抽樣時(shí)采用簡單隨機(jī)抽樣

總體中的個(gè)體數(shù)較多

分層抽樣

將總體分成幾層,分層進(jìn)行抽取

各層抽樣時(shí)采用簡單隨機(jī)抽樣或系統(tǒng)

總體由差異明顯的幾部分組成

3、分層抽樣的步驟:

(1)分層:將總體按某種特征分成若干部分。

(2)確定比例:計(jì)算各層的個(gè)體數(shù)與總體的個(gè)體數(shù)的比。

(3)確定各層應(yīng)抽取的樣本容量。

(4)在每一層進(jìn)行抽樣(各層分別按簡單隨機(jī)抽樣或系統(tǒng)抽樣的方法抽取),綜合每層抽樣,組成樣本。

四、數(shù)學(xué)運(yùn)用

1、例題。

例1(1)分層抽樣中,在每一層進(jìn)行抽樣可用_________________。

(2)①教育局督學(xué)組到學(xué)校檢查工作,臨時(shí)在每個(gè)班各抽調(diào)2人參加座談;

②某班期中考試有15人在85分以上,40人在60-84分,1人不及格。現(xiàn)欲從中抽出8人研討進(jìn)一步改進(jìn)教和學(xué);

③某班元旦聚會(huì),要產(chǎn)生兩名“幸運(yùn)者”。

對(duì)這三件事,合適的抽樣方法為

A、分層抽樣,分層抽樣,簡單隨機(jī)抽樣

B、系統(tǒng)抽樣,系統(tǒng)抽樣,簡單隨機(jī)抽樣

C、分層抽樣,簡單隨機(jī)抽樣,簡單隨機(jī)抽樣

D、系統(tǒng)抽樣,分層抽樣,簡單隨機(jī)抽樣

例2某電視臺(tái)在因特網(wǎng)上就觀眾對(duì)某一節(jié)目的喜愛程度進(jìn)行調(diào)查,參加調(diào)查的總?cè)藬?shù)為12000人,其中持各種態(tài)度的人數(shù)如表中所示:

很喜愛

喜愛

一般

不喜愛

電視臺(tái)為進(jìn)一步了解觀眾的具體想法和意見,打算從中抽取60人進(jìn)行更為詳細(xì)的調(diào)查,應(yīng)怎樣進(jìn)行抽樣?

解:抽取人數(shù)與總的比是60∶12000=1∶200,

則各層抽取的人數(shù)依次是12.175,22.835,19.63,5.36,

取近似值得各層人數(shù)分別是12,23,20,5。

然后在各層用簡單隨機(jī)抽樣方法抽取。

答用分層抽樣的方法抽取,抽取“很喜愛”、“喜愛”、“一般”、“不喜愛”的人

數(shù)分別為12,23,20,5。

說明:各層的抽取數(shù)之和應(yīng)等于樣本容量,對(duì)于不能取整數(shù)的情況,取其近似值。

(3)某學(xué)校有160名教職工,其中教師120名,行政人員16名,后勤人員24名。為了了解教職工對(duì)學(xué)校在校務(wù)公開方面的某意見,擬抽取一個(gè)容量為20的樣本。

分析:(1)總體容量較小,用抽簽法或隨機(jī)數(shù)表法都很方便。

(2)總體容量較大,用抽簽法或隨機(jī)數(shù)表法都比較麻煩,由于人員沒有明顯差異,且剛好32排,每排人數(shù)相同,可用系統(tǒng)抽樣。

(3)由于學(xué)校各類人員對(duì)這一問題的看法可能差異較大,所以應(yīng)采用分層抽樣方法。

五、要點(diǎn)歸納與方法小結(jié)

本節(jié)課學(xué)習(xí)了以下內(nèi)容:

1、分層抽樣的概念與特征;

2、三種抽樣方法相互之間的區(qū)別與聯(lián)系。

高中數(shù)學(xué)教案模板?篇5

教學(xué)目標(biāo):

(1)了解坐標(biāo)法和解析幾何的意義,了解解析幾何的基本問題.

(2)進(jìn)一步理解曲線的方程和方程的曲線.

(3)初步掌握求曲線方程的方法.

(4)通過本節(jié)內(nèi)容的教學(xué),培養(yǎng)學(xué)生分析問題和轉(zhuǎn)化的能力.

教學(xué)重點(diǎn)、難點(diǎn):求曲線的方程.

教學(xué)用具:計(jì)算機(jī).

教學(xué)方法:啟發(fā)引導(dǎo)法,討論法.

教學(xué)過程:

【引入】

1.提問:什么是曲線的方程和方程的曲線.

學(xué)生思考并回答.教師強(qiáng)調(diào).

2.坐標(biāo)法和解析幾何的意義、基本問題.

對(duì)于一個(gè)幾何問題,在建立坐標(biāo)系的基礎(chǔ)上,用坐標(biāo)表示點(diǎn);用方程表示曲線,通過研究方程的性質(zhì)間接地來研究曲線的性質(zhì),這一研究幾何問題的方法稱為坐標(biāo)法,這門科學(xué)稱為解析幾何.解析幾何的兩大基本問題就是:

(1)根據(jù)已知條件,求出表示平面曲線的方程.

(2)通過方程,研究平面曲線的性質(zhì).

事實(shí)上,在前邊所學(xué)的直線方程的理論中也有這樣兩個(gè)基本問題.而且要先研究如何求出曲線方程,再研究如何用方程研究曲線.本節(jié)課就初步研究曲線方程的求法.

【問題】

如何根據(jù)已知條件,求出曲線的方程.

【實(shí)例分析】

例1:設(shè)、兩點(diǎn)的坐標(biāo)是、(3,7),求線段的垂直平分線的方程.

首先由學(xué)生分析:根據(jù)直線方程的知識(shí),運(yùn)用點(diǎn)斜式即可解決.

解法一:易求線段的中點(diǎn)坐標(biāo)為(1,3),

由斜率關(guān)系可求得l的斜率為

于是有

即l的方程為

分析、引導(dǎo):上述問題是我們?cè)缇蛯W(xué)過的,用點(diǎn)斜式就可解決.可是,你們是否想過①恰好就是所求的嗎?或者說①就是直線的方程?根據(jù)是什么,有證明嗎?

(通過教師引導(dǎo),是學(xué)生意識(shí)到這是以前沒有解決的問題,應(yīng)該證明,證明的依據(jù)就是定義中的兩條).

證明:(1)曲線上的點(diǎn)的坐標(biāo)都是這個(gè)方程的解.

設(shè)是線段的垂直平分線上任意一點(diǎn),則

將上式兩邊平方,整理得

這說明點(diǎn)的坐標(biāo)是方程的解.

(2)以這個(gè)方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn).

設(shè)點(diǎn)的坐標(biāo)是方程①的任意一解,則

到、的距離分別為

所以,即點(diǎn)在直線上.

綜合(1)、(2),①是所求直線的方程.

至此,證明完畢.回顧上述內(nèi)容我們會(huì)發(fā)現(xiàn)一個(gè)有趣的現(xiàn)象:在證明(1)曲線上的點(diǎn)的坐標(biāo)都是這個(gè)方程的解中,設(shè)是線段的垂直平分線上任意一點(diǎn),最后得到式子,如果去掉腳標(biāo),這不就是所求方程嗎?可見,這個(gè)證明過程就表明一種求解過程,下面試試看:

解法二:設(shè)是線段的垂直平分線上任意一點(diǎn),也就是點(diǎn)屬于集合

由兩點(diǎn)間的距離公式,點(diǎn)所適合的條件可表示為

將上式兩邊平方,整理得

果然成功,當(dāng)然也不要忘了證明,即驗(yàn)證兩條是否都滿足.顯然,求解過程就說明第一條是正確的(從這一點(diǎn)看,解法二也比解法一優(yōu)越一些);至于第二條上邊已證.

這樣我們就有兩種求解方程的方法,而且解法二不借助直線方程的理論,又非常自然,還體現(xiàn)了曲線方程定義中點(diǎn)集與對(duì)應(yīng)的思想.因此是個(gè)好方法.

讓我們用這個(gè)方法試解如下問題:

例2:點(diǎn)與兩條互相垂直的直線的距離的積是常數(shù)求點(diǎn)的軌跡方程.

分析:這是一個(gè)純粹的幾何問題,連坐標(biāo)系都沒有.所以首先要建立坐標(biāo)系,顯然用已知中兩條互相垂直的直線作坐標(biāo)軸,建立直角坐標(biāo)系.然后仿照例1中的解法進(jìn)行求解.

求解過程略.

【概括總結(jié)】通過學(xué)生討論,師生共同總結(jié):

分析上面兩個(gè)例題的求解過程,我們總結(jié)一下求解曲線方程的大體步驟:

首先應(yīng)有坐標(biāo)系;其次設(shè)曲線上任意一點(diǎn);然后寫出表示曲線的點(diǎn)集;再代入坐標(biāo);最后整理出方程,并證明或修正.說得更準(zhǔn)確一點(diǎn)就是:

(1)建立適當(dāng)?shù)淖鴺?biāo)系,用有序?qū)崝?shù)對(duì)例如表示曲線上任意一點(diǎn)的坐標(biāo);

(2)寫出適合條件的點(diǎn)的集合

;

(3)用坐標(biāo)表示條件,列出方程;

(4)化方程為最簡形式;

(5)證明以化簡后的方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn).

一般情況下,求解過程已表明曲線上的點(diǎn)的坐標(biāo)都是方程的解;如果求解過程中的轉(zhuǎn)化都是等價(jià)的,那么逆推回去就說明以方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn).所以,通常情況下證明可省略,不過特殊情況要說明.

上述五個(gè)步驟可簡記為:建系設(shè)點(diǎn);寫出集合;列方程;化簡;修正.

下面再看一個(gè)問題:

例3:已知一條曲線在軸的上方,它上面的每一點(diǎn)到點(diǎn)的距離減去它到軸的距離的差都是2,求這條曲線的方程.

【動(dòng)畫演示】用幾何畫板演示曲線生成的過程和形狀,在運(yùn)動(dòng)變化的過程中尋找關(guān)系.

解:設(shè)點(diǎn)是曲線上任意一點(diǎn),軸,垂足是(如圖2),那么點(diǎn)屬于集合

由距離公式,點(diǎn)適合的條件可表示為

將①式移項(xiàng)后再兩邊平方,得

化簡得

由題意,曲線在軸的上方,所以,雖然原點(diǎn)的坐標(biāo)(0,0)是這個(gè)方程的解,但不屬于已知曲線,所以曲線的方程應(yīng)為,它是關(guān)于軸對(duì)稱的拋物線,但不包括拋物線的頂點(diǎn),如圖2中所示.

【練習(xí)鞏固】

題目:在正三角形內(nèi)有一動(dòng)點(diǎn),已知到三個(gè)頂點(diǎn)的距離分別為、 、,且有,求點(diǎn)軌跡方程.

分析、略解:首先應(yīng)建立坐標(biāo)系,以正三角形一邊所在的直線為一個(gè)坐標(biāo)軸,這條邊的垂直平分線為另一個(gè)軸,建立直角坐標(biāo)系比較簡單,如圖3所示.設(shè)、的坐標(biāo)為、,則的坐標(biāo)為,的坐標(biāo)為.

根據(jù)條件,代入坐標(biāo)可得

化簡得

由于題目中要求點(diǎn)在三角形內(nèi),所以,在結(jié)合①式可進(jìn)一步求出、的范圍,最后曲線方程可表示為

【小結(jié)】師生共同總結(jié):

(1)解析幾何研究研究問題的方法是什么?

(2)如何求曲線的方程?

(3)請(qǐng)對(duì)求解曲線方程的五個(gè)步驟進(jìn)行評(píng)價(jià).各步驟的作用,哪步重要,哪步應(yīng)注意什么?

【作業(yè)】課本第72頁練習(xí)1,2,3;

相關(guān)推薦

  • 高中數(shù)學(xué)教案 教案課件是老師需要精心準(zhǔn)備的東西,因此教案課件可能就需要每天都去寫。教案的編寫需要注意教學(xué)過程的連貫性和完整性。接下來為您分享的是本站幼兒教師教育網(wǎng)的編輯為您挑選的“高中數(shù)學(xué)教案”,如果你認(rèn)為這個(gè)想法值得推廣歡迎分享給你的社交圈!...
    2023-08-13 閱讀全文
  • 2024高中數(shù)學(xué)教案模板(優(yōu)選6篇) 作為一位杰出的教職工,很有必要精心設(shè)計(jì)一份教學(xué)設(shè)計(jì),教學(xué)設(shè)計(jì)一般包括教學(xué)目標(biāo)、教學(xué)重難點(diǎn)、教學(xué)方法、教學(xué)步驟與時(shí)間分配等環(huán)節(jié)。教學(xué)設(shè)計(jì)要怎么寫呢?以下是小編整理的高中數(shù)學(xué)教學(xué)設(shè)計(jì),僅供參考,希望能夠幫助到大家。2024高中數(shù)學(xué)教案模板 篇1 教學(xué)目標(biāo):1。通過生活中優(yōu)化問題的學(xué)習(xí),體會(huì)導(dǎo)...
    2024-10-30 閱讀全文
  • 高中數(shù)學(xué)教案八篇 居安思危,思則有備,有備無患。幼兒園的老師都希望自己講的課學(xué)生們愛聽,能學(xué)習(xí)的更好,為了更好的學(xué)習(xí),一般教師都會(huì)在授課前準(zhǔn)備教案,教案有利于老師在課堂上與學(xué)生更好的交流。那么怎么才能寫出優(yōu)秀的幼兒園教案呢?小編特別整理來自網(wǎng)絡(luò)的高中數(shù)學(xué)教案八篇,供大家借鑒和使用,希望大家分享! 一、基礎(chǔ)突破課本層面...
    2024-08-26 閱讀全文
  • 高中數(shù)學(xué)教案11篇 老師都需要為每堂課準(zhǔn)備教案課件,每位老師都需要認(rèn)真準(zhǔn)備自己的教案課件。教師制定教案需要深入了解學(xué)生群體?,F(xiàn)在小編將為您全面介紹“高中數(shù)學(xué)教案”的相關(guān)知識(shí)點(diǎn),歡迎大家閱讀本文但請(qǐng)注意僅供參考之用!...
    2023-09-22 閱讀全文
  • 高中數(shù)學(xué)教案九篇 以下是幼兒教師教育網(wǎng)編輯為大家整理的“高中數(shù)學(xué)教案”的詳細(xì)內(nèi)容。教案課件是每個(gè)老師工作中上課需要準(zhǔn)備的東西,每天老師要有責(zé)任寫好每份教案課件。教案是教師個(gè)性化服務(wù)的有效保障。請(qǐng)您抽時(shí)間閱讀本文并考慮將其珍藏起來!...
    2024-04-08 閱讀全文

教案課件是老師需要精心準(zhǔn)備的東西,因此教案課件可能就需要每天都去寫。教案的編寫需要注意教學(xué)過程的連貫性和完整性。接下來為您分享的是本站幼兒教師教育網(wǎng)的編輯為您挑選的“高中數(shù)學(xué)教案”,如果你認(rèn)為這個(gè)想法值得推廣歡迎分享給你的社交圈!...

2023-08-13 閱讀全文

作為一位杰出的教職工,很有必要精心設(shè)計(jì)一份教學(xué)設(shè)計(jì),教學(xué)設(shè)計(jì)一般包括教學(xué)目標(biāo)、教學(xué)重難點(diǎn)、教學(xué)方法、教學(xué)步驟與時(shí)間分配等環(huán)節(jié)。教學(xué)設(shè)計(jì)要怎么寫呢?以下是小編整理的高中數(shù)學(xué)教學(xué)設(shè)計(jì),僅供參考,希望能夠幫助到大家。2024高中數(shù)學(xué)教案模板 篇1 教學(xué)目標(biāo):1。通過生活中優(yōu)化問題的學(xué)習(xí),體會(huì)導(dǎo)...

2024-10-30 閱讀全文

居安思危,思則有備,有備無患。幼兒園的老師都希望自己講的課學(xué)生們愛聽,能學(xué)習(xí)的更好,為了更好的學(xué)習(xí),一般教師都會(huì)在授課前準(zhǔn)備教案,教案有利于老師在課堂上與學(xué)生更好的交流。那么怎么才能寫出優(yōu)秀的幼兒園教案呢?小編特別整理來自網(wǎng)絡(luò)的高中數(shù)學(xué)教案八篇,供大家借鑒和使用,希望大家分享! 一、基礎(chǔ)突破課本層面...

2024-08-26 閱讀全文

老師都需要為每堂課準(zhǔn)備教案課件,每位老師都需要認(rèn)真準(zhǔn)備自己的教案課件。教師制定教案需要深入了解學(xué)生群體?,F(xiàn)在小編將為您全面介紹“高中數(shù)學(xué)教案”的相關(guān)知識(shí)點(diǎn),歡迎大家閱讀本文但請(qǐng)注意僅供參考之用!...

2023-09-22 閱讀全文

以下是幼兒教師教育網(wǎng)編輯為大家整理的“高中數(shù)學(xué)教案”的詳細(xì)內(nèi)容。教案課件是每個(gè)老師工作中上課需要準(zhǔn)備的東西,每天老師要有責(zé)任寫好每份教案課件。教案是教師個(gè)性化服務(wù)的有效保障。請(qǐng)您抽時(shí)間閱讀本文并考慮將其珍藏起來!...

2024-04-08 閱讀全文