幼兒教師教育網(wǎng),為您提供優(yōu)質(zhì)的幼兒相關(guān)資訊

一元一次方程課件

發(fā)布時(shí)間:2024-02-03 一元一次方程課件 一次方程課件

一元一次方程課件。

以下是幼兒教師教育網(wǎng)的編輯為您整理的與“一元一次方程課件”相關(guān)的內(nèi)容,我們?yōu)槟峁?shí)用的解決方案敬請參考。在老師日常工作中,教案課件也是其中一種,老師在寫教案課件的時(shí)候不能敷衍了事。?制作生動(dòng)有趣的教學(xué)課件可以增強(qiáng)學(xué)生的學(xué)習(xí)興趣。

一元一次方程課件【篇1】

教材分析:

本節(jié)課知識(shí)與前面幾個(gè)課時(shí)密切相連,是學(xué)習(xí)解一元一次方程方法的最后一節(jié)課。在掌握知識(shí)方面不僅要求學(xué)生學(xué)會(huì)去分母解方程的方法,更要把前面所學(xué)的知識(shí)與之融會(huì)貫通,能夠按照去分母、去括號(hào)、移項(xiàng)、合并同類項(xiàng)、系數(shù)化為1的順序,有目的、有步驟的求一元一次方程的解,并達(dá)到靈活運(yùn)用。從而體會(huì)并掌握解一元一次方程的化歸思想,提高運(yùn)算能力。

學(xué)生情況分析:

盡管學(xué)生已經(jīng)在前面幾節(jié)課學(xué)習(xí)了一些解一元一次方程的步驟,但是去分母的原理和容易錯(cuò)的地方仍然是這解課需要解決的重點(diǎn)和難點(diǎn)。通過合作探究讓學(xué)生體驗(yàn)知識(shí)的形成和運(yùn)用的過程,提高學(xué)生學(xué)習(xí)的主動(dòng)性,幫助學(xué)生的數(shù)學(xué)學(xué)習(xí)。

學(xué)習(xí)目標(biāo):

知識(shí)與能力:

1、使學(xué)生掌握含有分?jǐn)?shù)系數(shù)的一元一次方程的解法;

2、對解方程的步驟有整體的了解。

過程與方法:

1、通過去分母解方程,體會(huì)數(shù)學(xué)的“化歸”的思想方法;

2、通過歸納一元一次方程解法的一般步驟,體會(huì)解方程的程序化思想方法。

情感態(tài)度與價(jià)值觀:

培養(yǎng)學(xué)生自覺探索意識(shí),讓學(xué)生在解題中享受到成功的喜悅。

學(xué)習(xí)重點(diǎn):

用去分母的方法解一元一次方程

學(xué)習(xí)難點(diǎn):

能正確地運(yùn)用去分母的方法解方程

學(xué)習(xí)突破點(diǎn):

(1)找對分母的最小公倍數(shù)

(2)強(qiáng)調(diào)方程兩邊各項(xiàng)都要乘以最小公倍數(shù)

(3)去括號(hào)時(shí)要注意符號(hào)和乘法分配率的的正確使用。

學(xué)習(xí)流程安排:

一、實(shí)際問題——探究去分母的方法

列方程解決數(shù)學(xué)問題,感受方程是刻畫量與量之間關(guān)系的主要模型之一.同時(shí)以學(xué)生已有的`關(guān)于等式性質(zhì)的數(shù)學(xué)知識(shí)為基礎(chǔ),探索利用“去分母”的方法解一元一次方程。

二、例題分析——規(guī)范去分母過程

用“去分母”的方法解一元一次方程,掌握“去分母”的方法解一元一次方程應(yīng)注意的事項(xiàng).

三、鞏固練習(xí)——完善解方程程序

歸納一元一次方程解法的一般步驟.

四、小結(jié)提升——體會(huì)數(shù)學(xué)思想

總結(jié)本節(jié)收獲,體會(huì)其中蘊(yùn)涵的化歸等數(shù)學(xué)思想.

學(xué)習(xí)過程設(shè)計(jì):

一、實(shí)際問題——探究去分母的方法

前面學(xué)習(xí)了一元一次方程,現(xiàn)在有這樣一個(gè)問題看同學(xué)們能不能解決。

問題(1):一個(gè)數(shù),它的三分之二,它的一半,它的四分之一,加起來共是17,這個(gè)數(shù)是多少?能不能用方程解決這個(gè)問題?

問題(2):你能嘗試解這個(gè)方程嗎?(引導(dǎo)學(xué)生自主學(xué)習(xí),師生共同總結(jié)不同的解法。)

問題(3):不同的解法有什么各自的特點(diǎn)?

①直接用分?jǐn)?shù)系數(shù)合并同類項(xiàng)

②利用等式性質(zhì)去分母

如果學(xué)生不能回答出第二種解法,教師可以引導(dǎo)學(xué)生回顧等式性質(zhì)來幫助解決。

教師引導(dǎo)學(xué)生分析并對比兩種解法,得到共識(shí):當(dāng)方程中含有分?jǐn)?shù)系數(shù)時(shí),先去分母可以使未知數(shù)的系數(shù)變?yōu)檎麛?shù),從而解題更加方便、快捷.

教師引出本節(jié)課題:解一元一次方程—去分母

本次活動(dòng)中,教師應(yīng)重點(diǎn)關(guān)注:

(1)學(xué)生能否體會(huì)到“去分母”的必要性;

(2)學(xué)生是否明確“去分母”的可行性;

二、例題分析——規(guī)范去分母過程

1、學(xué)生初步嘗試,感受去分母的必要性。

例1:解方程

2、學(xué)生分小組進(jìn)行討論,派代表發(fā)言。

例2:解方程

提問(1)第一步要做什么?為什么要這樣做?

(2)怎樣去分母,這有什么根據(jù)?

(3)去分母后會(huì)出現(xiàn)怎樣的需要注意的問題?

(4)下面還有怎樣的步驟?(學(xué)生獨(dú)立完成)

3、師生共同總結(jié):

○1為了去掉方程中的分母,第一步應(yīng)該找到這三個(gè)分母的最小公倍數(shù)。最小公倍數(shù)是10;

○2方程的每一項(xiàng)都乘以10,這是根據(jù)等式的基本性質(zhì):等式的兩邊同時(shí)乘以或除以一個(gè)不為零的數(shù),等式仍成立;

○3去掉分母后的分子如果是單項(xiàng)式的話應(yīng)加括號(hào);

○4接下來還有去括號(hào),移項(xiàng),合并同類型和系數(shù)化1

小結(jié):通過老師的示例和學(xué)生與老師共同的邊做邊答,不僅能讓學(xué)生對去分母的方法有更深的印象;而且對解題過程中可能出現(xiàn)的問題也有了深刻的印象;并且理順了學(xué)生解一元一次方程的步驟。

三、鞏固練習(xí)——完善解題程序,歸納一般步驟。

(1)梯度練習(xí)

1、選擇題

一元一次方程去括號(hào)后得到()

A3x+5+1=2-2x+1B2(3x+5)+1=2-(2x+1)

C2(3x+5)+6=12-2x+1D2(3x+5)+6=12-(2x+1)

2、解下列一元一次方程

A

B1+

C當(dāng)x等于什么數(shù)時(shí),x-的值與7-的值相等?

(2)同學(xué)之間交流,找出問題,進(jìn)行糾正。

(3)提問:

①通過解以上的方程,你能總結(jié)出解一元一次方程的步驟嗎?你知道每種變形的依據(jù)嗎?

○2通過解以上的方程,你覺得那些環(huán)節(jié)是值得同學(xué)們需要注意的?

小結(jié):在學(xué)生總結(jié)出解方程的一般步驟后,說明不同的方程有不同的解法,不能生搬硬套這個(gè)步驟。讓學(xué)生感受學(xué)生解題要根據(jù)題目特點(diǎn),選擇適合的解題步驟。

四、小結(jié)提升,總結(jié)收獲。

現(xiàn)在我們回想一下本節(jié)課都學(xué)到了哪些內(nèi)容?

教師指板書共同復(fù)述:去分母的方法:

依據(jù):

解方程過程中需注意:

解方程一般步驟:(教師提醒:需要哪些步驟取決于方程)

最終化成的形式:

五、作業(yè)自助餐:

102頁:(1)(2)較容易

(3)(4)稍有難度

教學(xué)反思:

通過本節(jié)課的教學(xué)我認(rèn)識(shí)到一定要把更多的學(xué)習(xí)、探究機(jī)會(huì)給學(xué)生,學(xué)生能解決的老師絕不代辦,充分體現(xiàn)學(xué)生的主體地位,還有課堂上必須給學(xué)生安排足夠的練習(xí)鞏固的時(shí)間,一方面:學(xué)生可以查漏補(bǔ)缺,另一方面:老師可以有效地把握學(xué)生的學(xué)習(xí)效果,以便進(jìn)行因材輔導(dǎo)。

板書設(shè)計(jì)

解一元一次方程———去分母

去分母------------方程兩邊各項(xiàng)都乘分母最小公倍數(shù)

去括號(hào)------------乘法分配率括號(hào)法則

移項(xiàng)------------要變號(hào)

合并同類項(xiàng)

系數(shù)化1

一元一次方程課件【篇2】

解一元一次方程

【教學(xué)任務(wù)分析】教學(xué)目標(biāo)知識(shí)技能

1.用一元一次方程解決“數(shù)字型”問題;

2.能熟練的通過合并,移項(xiàng)解一元一次方程;

3.進(jìn)一步學(xué)習(xí)、體會(huì)用一元一次方程解決實(shí)際問題.

過程

方法通過學(xué)生自主探究,師生共同研討,體驗(yàn)將實(shí)際問題轉(zhuǎn)化成數(shù)學(xué)問題,學(xué)會(huì)探索數(shù)列中的規(guī)律,建立等量關(guān)系并加以解決,同時(shí)進(jìn)一步滲透化歸思想.

情感

態(tài)度經(jīng)歷運(yùn)用方程解決實(shí)際問題的過程,發(fā)展抽象、概括、分析和解決問題的能力,體會(huì)數(shù)學(xué)對實(shí)踐的指導(dǎo)意義.

重點(diǎn)建立一元一次方程解決實(shí)際問題的模型.

難點(diǎn)探索并發(fā)現(xiàn)實(shí)際問題中的等量關(guān)系,并列出方程.

【教學(xué)環(huán)節(jié)安排】

環(huán)節(jié)教學(xué)問題設(shè)計(jì)教學(xué)活動(dòng)設(shè)計(jì)

入牽線搭橋,解下列方程:

(1)-5x+5=-6x;(2);

(3)0.5x+0.7=1.9x;

總結(jié)解“ax+b=cx+d”類型的一元一次方程的步驟方法.

引出問題即課本例3

問:你能利用所學(xué)知識(shí)解決有關(guān)數(shù)列的問題嗎?教師:出示題目,提出要求.

學(xué)生:獨(dú)立完成,根據(jù)講評核對、自我評價(jià),了解掌握情況.

探究一:數(shù)字問題

例3有一列數(shù),按一定規(guī)律排列成1,-3,9,-27,81,-243……其中某三個(gè)相鄰數(shù)的和是-1701,這三個(gè)數(shù)各是多少?

【分析】1.引導(dǎo)學(xué)生觀察這列數(shù)有什么規(guī)律?

①數(shù)值變化規(guī)律?②符號(hào)變化規(guī)律?

結(jié)論:后面一個(gè)數(shù)是前一個(gè)數(shù)的-3倍.

2.怎樣求出這三個(gè)數(shù)?

①設(shè)三個(gè)相鄰數(shù)中的第一個(gè)數(shù)為x,那么其它兩個(gè)數(shù)怎么表示?

②列出方程:根據(jù)三個(gè)數(shù)的和是-1701列出方程.

③解略

變式:你能設(shè)其它的數(shù)列方程解出嗎?試一試.比比較哪種設(shè)法簡單.

探究二:百分比問題(習(xí)題3.2第8題)

【問題】某鄉(xiāng)改種玉米為種優(yōu)質(zhì)雜糧后,今年農(nóng)民人均收入比去年提高20%.今年人均收入比去年的1.5倍少1200元.這個(gè)鄉(xiāng)去年農(nóng)民人均收入是多少元?

【分析】①若設(shè)這個(gè)鄉(xiāng)去年農(nóng)民人均收入是x元,今年人均收入比去年提高20%,那么今年的收入是_________元;

②因?yàn)榻衲甑娜司杖氡热ツ甑?.5倍少1200元,所以今年的收入又可以表示為_________元.

③根據(jù)“表示同一個(gè)量的兩個(gè)式子相等”可以列出方程為________________________.

解答略教師:引導(dǎo)學(xué)生分析.

2.本例是有關(guān)數(shù)列的數(shù)學(xué)問題,題要求出三個(gè)未知數(shù),這需要學(xué)生觀察發(fā)現(xiàn)它們的排列規(guī)律,問題具有一定的挑戰(zhàn)性,能激發(fā)學(xué)生學(xué)習(xí)探索規(guī)律類型的問題.

學(xué)生:觀察、討論、闡述自己的發(fā)現(xiàn),并互相交流.

根據(jù)分析列出方程并解出,求出所求三個(gè)數(shù).

備注:尋找數(shù)的排列規(guī)律是難點(diǎn),可讓學(xué)生小組內(nèi)討論發(fā)現(xiàn)、解決.

變換設(shè)法,列出方程,比較優(yōu)劣、闡述發(fā)現(xiàn)和體會(huì).

教師:出示題目,引導(dǎo)學(xué)生,讓學(xué)生嘗試分析,多鼓勵(lì).

學(xué)生:根據(jù)引導(dǎo)思考、回答、闡述自己的觀點(diǎn)和認(rèn)識(shí).

根據(jù)共同的分析,列出方程并解出,

(說明:此題目數(shù)以百分比、增長率問題可根據(jù)實(shí)際情況安排,若沒時(shí)間,可在習(xí)題課上處理)

嘗試應(yīng)用

1、填空

(1)有個(gè)三位數(shù),個(gè)位上的數(shù)字是a,十位上的數(shù)字是b,百位上的數(shù)字是c,則這個(gè)三位數(shù)是:_______________.

(2)有一數(shù)列,按一定規(guī)律排成1,-2,3,2,-4,6,3,-6,9,接下來的三個(gè)數(shù)為_____________________.

(3)三個(gè)連續(xù)偶數(shù),設(shè)第一個(gè)為2x,那么第二個(gè)為_______,第三個(gè)為______,它們的和是__________;若設(shè)中間的一個(gè)為x,那么第一個(gè)為_____,第三個(gè)為______,它們的和是__________.

2.一個(gè)三位數(shù),三個(gè)數(shù)位上的數(shù)字的`和為17,百位上的數(shù)字比十位上的數(shù)字大7,個(gè)位上的數(shù)字是十位上數(shù)字的3倍,你能求出這個(gè)三位數(shù)嗎?這是最經(jīng)常出現(xiàn)的一類數(shù)字問題:引導(dǎo)學(xué)生分析已知各位上的數(shù)字,怎么表示這個(gè)數(shù),理解為什么不能表示成cba?這是解決這類問題的基礎(chǔ).

通過(3)題理解連續(xù)數(shù)的表示法,并感受怎么表示最簡單.

通過2題讓學(xué)生理解怎么設(shè)?以及怎么設(shè)簡單(舍都有聯(lián)系的一個(gè)),并感受用未知數(shù)表示多個(gè)未知量,順藤摸瓜,從而列出方程的順向思維方式.

教師:結(jié)合完成題目,匯總講解,重點(diǎn)在于解法.

成果

展示1.通過本節(jié)所學(xué)你有哪些收獲?

2.談?wù)勀阏莆盏姆椒ê蛯W(xué)習(xí)的感受,以及你對應(yīng)用方程解決問題的體會(huì).學(xué)生自我闡述,教師評價(jià)鼓勵(lì)、補(bǔ)充總結(jié).

補(bǔ)償提高1.有一數(shù)列,按一定規(guī)律排成0,2,6,12,20,30,…,則第8個(gè)數(shù)為______,第n個(gè)數(shù)為_____.

2.下面給出的是20xx年3月份的日歷表,任意圈出一豎列上相鄰的三個(gè)數(shù),請你運(yùn)用方程思想來研究,圈出的三個(gè)數(shù)的和不可能是( ).

A.69B.54C.27D.40

通過練習(xí),掌握數(shù)字問題的分類及不同解法,鞏固、體會(huì)用方程解決問題的思路和思維方式,學(xué)會(huì)用方程解決問題.

題目設(shè)置是對前面學(xué)生所出現(xiàn)的問題進(jìn)行針對性的補(bǔ)償和補(bǔ)充,也可對學(xué)有余力的學(xué)生拓展提高.

根據(jù)學(xué)生完成情況靈活設(shè)置問題.

作業(yè)

設(shè)計(jì)作業(yè):

必做題:課本4、5、第94頁6題.

選做題:同步探究.教師布置作業(yè),并提出要求.

學(xué)生課下獨(dú)立完成,延續(xù)課堂.

授課教師:

20xx年10月31日

一元一次方程課件【篇3】

3.3解一元一次方程(二) ―――去括號(hào)與去分母(第1課時(shí)) 教學(xué)目標(biāo): (1)知識(shí)目標(biāo): 在具體情境中體會(huì)去括號(hào)的必要性,能運(yùn)用運(yùn)算律去括號(hào)。 (2) 能力目標(biāo): 探索總結(jié)去括號(hào)法則,并能利用法則解決簡單的問題。 重點(diǎn):去括號(hào)法則及其運(yùn)用。 難點(diǎn):括號(hào)前面是“―”號(hào),去括號(hào)時(shí),應(yīng)如何處理。 教學(xué)過程: (一)創(chuàng)設(shè)情景,導(dǎo)入新課 問題? 某工廠加強(qiáng)節(jié)能措施,去年下半年與上半年相比,月平均用電量減少2000度,全年用電15萬度。這個(gè)工廠去年上半年每月平均用電多少度? ? (三)典例教學(xué)? 例1.解方程 3x-7(x-1)=3-2(x+3) ? 例2.一艘船從甲碼頭到乙碼頭順流行駛,用了2小時(shí);從乙碼頭返回甲碼頭逆流行駛,用了2.5小時(shí).已知水流的`速度是3千米/小時(shí),求船在靜水中的平均速度. ? 例3.某車間22名生產(chǎn)螺釘和螺母,每人每天平均生產(chǎn)螺釘1200個(gè)或螺母2000個(gè),一個(gè)螺釘要配兩個(gè)螺母.為了使每天的產(chǎn)品剛好配套,應(yīng)該分配多少名工人生產(chǎn)螺釘,多少名工人生產(chǎn)螺母? ? (四)課堂練習(xí)1.(1)4x+3(2x-3)=12-(x+4) (2) ? 2.同步P79自我嘗試 (五)課堂小結(jié)? 去括號(hào)法則 (六)作業(yè) P102?習(xí)題3.3 第2題 ,? 同步學(xué)習(xí)P80開放性作業(yè) 教后思: ? ? ?

一元一次方程課件【篇4】

1、 經(jīng)歷由實(shí)際問題抽象為方程模型的過程,進(jìn)一步體會(huì)模型化的思想。

2、 通過探究實(shí)際問題與一元一次方程的關(guān)系,感受數(shù)學(xué)的應(yīng)用價(jià)值,提高分析問題,解決問題的能力。

探究實(shí)際問題與一元一次方程的關(guān)系。

建立一元一次方程解決實(shí)際問題

(師生活動(dòng))設(shè)計(jì)理念

創(chuàng)設(shè)情境提出問題

信息社會(huì),人們溝通交流方式多樣化,移動(dòng)電話已很普及,選擇經(jīng)濟(jì)實(shí)惠的收費(fèi)方式很有理實(shí)意義。

出示教科書80頁的例2;觀察下列兩種移動(dòng)電話計(jì)費(fèi)方式表:

全球通神州行

月租費(fèi)50元/月0

本地通話費(fèi)0.40元/分0.60元/分

1、 你能從中表中獲得哪些信息,試用自己的話說說。

2、 猜一猜,使用哪一種計(jì)費(fèi)方式合算?

3、 一個(gè)月內(nèi)在本地通話200分和300分,按兩種計(jì)費(fèi)方式各需交費(fèi)多少元?

4、 對于某個(gè)本地通通話時(shí)間,會(huì)出現(xiàn)兩種計(jì)費(fèi)方式的收費(fèi)一樣的情況嗎? 本例是一道與生活相關(guān)的移動(dòng)電話收費(fèi)的問題,讓學(xué)生討論選擇經(jīng)濟(jì)實(shí)惠的收費(fèi)方式很有現(xiàn)實(shí)意義。

理解問題是本身是列方程的基礎(chǔ),本例是通過表格形式給出已知數(shù)據(jù)的,通過設(shè)計(jì)問題1、2、3讓學(xué)生展開討論,幫助理解,培養(yǎng)學(xué)生的讀題能力和收集信息的能力。

解決問題學(xué)生充分交流討論、整理歸納

解:1、用全球通每月收月租費(fèi)50元,此外根據(jù)累計(jì)通話時(shí)間按0.40元/分加收通話費(fèi);用神州行不收月租費(fèi),根據(jù)累計(jì)通話時(shí)間按0.60元/分收通話費(fèi)。

2、 不一定,具體由當(dāng)月累計(jì)通話時(shí)間決定。

3、全球通神州行

200分130元120元

300分170元180元

0.6t=50+0.4t

移項(xiàng)得 0.6t-0.4t=50

合并,得0.2t=50

系數(shù)化為1,得t=250

以表格的形式呈現(xiàn)數(shù)據(jù),簡單明了,易于比較。

通過探究實(shí)際問題與一元一次方程的關(guān)系,提高分析問題,解決問題的能力。

學(xué)生練習(xí),教師巡視,指導(dǎo),討論解是否合理

知識(shí)梳理 小組討論,試用框圖概括用一元一次方程分析和解決實(shí)際問題的基本過程

學(xué)生思考、討論、整理。

實(shí)際問題題

列方程

數(shù)學(xué)問題 (一元一次方程)

實(shí)際問題的答案

數(shù)學(xué)問題的解

這是第一次比較完整地用框圖反映實(shí)際問題與一元一次方程的關(guān)系。

讓學(xué)生結(jié)合自己的解題過程概括整理,幫助理解,培養(yǎng)模型化的思想和應(yīng)用數(shù)學(xué)于現(xiàn)實(shí)生活的意識(shí)。

小結(jié)與作業(yè)

布置作業(yè)

1、 必做題:教科書82頁習(xí)題2.2第2題。

2、 一個(gè)兩位數(shù),個(gè)位數(shù)字是十位數(shù)字的3倍,如果把個(gè)位數(shù)字與十位數(shù)字對調(diào),那么得到的新數(shù)比原數(shù)大54,求原來的兩位數(shù)。

本課教育評注(課堂設(shè)計(jì)理念,實(shí)際教學(xué)效果及改進(jìn)設(shè)想)

課程改革的目的之一是促進(jìn)學(xué)習(xí)方式的轉(zhuǎn)變,加強(qiáng)學(xué)習(xí)的主動(dòng)性和探究性,本章內(nèi)容涉及大量的實(shí)際問題,豐富多彩的問題情境和解決實(shí)際問題的快樂更容易激起學(xué)生對數(shù)學(xué)的興趣,在本節(jié)中,引導(dǎo)學(xué)生從身邊的移動(dòng)電話收費(fèi),旅游費(fèi)用等問題展開探究,使學(xué)生在現(xiàn)實(shí)、富有挑戰(zhàn)性的問題情境中經(jīng)歷多角度認(rèn)識(shí)問題,多種策略思考問題,嘗試解釋答案的合性的活動(dòng),培養(yǎng)探索精神和創(chuàng)新意識(shí)。

在前面幾節(jié)學(xué)習(xí)中,已經(jīng)對利用一元一次方程解決問題的基本過程進(jìn)行多次滲透,逐步細(xì)化,本節(jié)要求學(xué)生用框圖概括,使學(xué)生對應(yīng)用一元一次方程解決實(shí)際問題有較理性的認(rèn)識(shí),進(jìn)一步體會(huì)模型化的思想。

一元一次方程課件【篇5】

【教學(xué)背景】:

本課是針對人民教育出版社出版的《七年級(jí)數(shù)學(xué)上冊》第三章一元一次方程中設(shè)計(jì)的內(nèi)容。

【教學(xué)目標(biāo)】:

(一)知識(shí)與技能:

1、使學(xué)生進(jìn)一步掌握列一元一次方程解應(yīng)用題的方法和步驟;

2、熟練掌握追及問題中的等量關(guān)系。

(二)過程與方法

培養(yǎng)學(xué)生觀察能力,提高他們分析問題和解決實(shí)際問題的能力。

(三)情感態(tài)度價(jià)值觀:

培養(yǎng)學(xué)生勤于思考、樂于探究、敢于發(fā)表自己觀點(diǎn)的學(xué)習(xí)習(xí)慣,從實(shí)際問題中體驗(yàn)數(shù)學(xué)的價(jià)值。體會(huì)觀察、分析、歸納對數(shù)學(xué)知識(shí)中獲取數(shù)學(xué)信息的重要作用,進(jìn)一步掌握列一元一次方程解應(yīng)用題的方法和步驟,能在獨(dú)立思考和小組交流中獲益。

【教學(xué)重難點(diǎn)】:

1、重點(diǎn):找等量關(guān)系列一元一次方程,解決追及問題。

2、難點(diǎn):將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)模型,并找出等量關(guān)系。

【教學(xué)方法】:

探究式

【教學(xué)過程】:

一、創(chuàng)設(shè)問題情景,引入新課:

1、行程問題中有哪些基本量?它們間有什么關(guān)系?

2、行程問題有哪些基本類型?

二、知識(shí)應(yīng)用,拓展創(chuàng)新:

行程問題應(yīng)用題是中小學(xué)數(shù)學(xué)應(yīng)用題中很重要的一類,學(xué)生難以理解,不容易掌握。行程問題的題型千變?nèi)f化,導(dǎo)致許多學(xué)生感到束手無策,難以適從。其實(shí)認(rèn)真分析,就會(huì)發(fā)現(xiàn)行程問題應(yīng)用題主要有三種基本類型:追及問題、相遇問題和航行問題,而且三個(gè)基本量之間的基本關(guān)系“路程=速度×?xí)r間”保持不變。

三、例題講解

例甲乙兩人相距100米,甲在前每秒跑3米,乙在后每秒跑5米。兩人同時(shí)出發(fā),同向而行,幾秒后乙能追上甲?

分析:在這個(gè)直線型追及問題中,兩人速度不同,跑的路程也不同,后面的人要追上前面的人,就要比前面的人多跑100米,而兩人跑步所用的時(shí)間是相同的。所以有等量關(guān)系:乙走的路程—甲走的路程=100

解:設(shè)x秒后乙能追上甲

根據(jù)題意得5x—3x=100

解得x=50

答:50秒后乙能追上甲。

小結(jié):針對本題進(jìn)行小結(jié)、歸納,它屬于行程問題應(yīng)用題(追及問題)

中的同時(shí)不同地問題,以后遇到此類題,該如何解決。

例兩匹馬賽跑,黃色馬的速度是5m/s,棕色馬的速度是6m/s。如果讓黃色馬先跑1s,棕色馬再開始跑,幾秒后可以追上黃色馬?

分析:這個(gè)問題中,由于黃色馬先跑,經(jīng)過1s后棕色馬再開始出發(fā)和黃色馬同向而行,后來棕色馬追上黃色馬了。因此兩馬所跑路程是相同的,但由于黃色馬先跑了1秒,所以就產(chǎn)生了路程差,那么這個(gè)問題就和前面例1一樣了。也可以這樣想:棕色馬的路程=黃色馬的.路程+相隔距離。

解:設(shè)x秒后,棕色馬追上黃色馬,根據(jù)題意,得6x=5x+5解得x=5答:5秒后,棕色馬可以追上黃色馬。

小結(jié):針對本題進(jìn)行小結(jié)、歸納,它屬于行程問題應(yīng)用題(追及問題)

中的同地不同時(shí)問題。

歸納小結(jié):列方程解應(yīng)用題的一般步驟:

審—通過審題明確已知量、未知量,找出等量關(guān)系;

設(shè)—設(shè)出合理的未知數(shù)(直接或間接);

列—依據(jù)找到的等量關(guān)系,列出方程;

解—求出方程的解;

驗(yàn)—檢驗(yàn)求出的值是否為方程的解,并檢驗(yàn)是否符合實(shí)際問題;

答—注意單位名稱。

練一練:(環(huán)形跑道問題)甲乙兩人在一條長400米的環(huán)形跑道上跑步,甲的速度是每分鐘跑360米,乙的速度是每分鐘跑240米。兩人同時(shí)同地同向跑,幾秒后兩人第一次相遇?

分析:本題屬于環(huán)形跑道上的追及問題,兩人同時(shí)同地同向而行,第一次相遇時(shí),速度快者比速度慢者恰好多跑一圈,即等量關(guān)系為:甲走的路程—乙走的路程=400

解答由學(xué)生完成。

本節(jié)知識(shí)歸納:

1、追及問題的特點(diǎn)是同向而行,在直線運(yùn)動(dòng)中兩者路程之差等于兩者間的距離;

2、而在圓周運(yùn)動(dòng)中,若同時(shí)同地同向出發(fā),則二者路程之差等于跑道的周長。

用示意圖輔助分析數(shù)量間的關(guān)系便于我們列方程。

四、作業(yè)布置:(見補(bǔ)充題)

【課后反思】:

通過本節(jié)課的學(xué)習(xí),使學(xué)生進(jìn)一步掌握列一元一次方程解應(yīng)用題的方法和步驟,并能熟練尋找追及問題中的等量關(guān)系,列出方程,解決追及問題。

一元一次方程課件【篇6】

課題

一元一次方程與實(shí)際問題——配套問題

課型

習(xí)題課

教材

人教版

對象

初一學(xué)生

執(zhí)教者

教材分析

作為實(shí)際問題中的重要部分,配套問題是學(xué)生進(jìn)入實(shí)際問題的關(guān)鍵環(huán)節(jié)。在對一元一次方程的解法進(jìn)行了充分學(xué)習(xí)之后,如何將剛學(xué)到的知識(shí)投入到學(xué)習(xí)中是至關(guān)重要的過程,這決定了學(xué)生的學(xué)習(xí)質(zhì)量與思維拓展。盡管在方程解法的學(xué)習(xí)中學(xué)生已經(jīng)思考并嘗試將其投入到實(shí)際問題的解決中,但往往這樣的投入是在為學(xué)習(xí)方程解法服務(wù)。在這一部分,學(xué)生將進(jìn)一步練習(xí)如何將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)模型,利用方程將其合理解決。

學(xué)情分析

對于學(xué)生而言,盡管已經(jīng)學(xué)習(xí)了方程的解法,但是在面對一些實(shí)際問題時(shí),很多學(xué)生依然不習(xí)慣使用方程方法,而是依然使用小學(xué)的算數(shù)方法,雖然在一些簡單的問題中,算數(shù)方法更有優(yōu)勢,計(jì)算更簡便,但是在本節(jié)課以及之后的一些實(shí)際問題中,使用算數(shù)方法將無從下手或非常復(fù)雜,因此學(xué)習(xí)如何使用一元一次方程來解決實(shí)際問題成為本階段的重點(diǎn)。

教學(xué)目標(biāo)

1、基本會(huì)用一元一次方程解決配套問題;

2、培養(yǎng)學(xué)生運(yùn)用一元一次方程分析和解決實(shí)際問題的能力;

3、體現(xiàn)一元一次方程與實(shí)際生活的密切聯(lián)系,滲透建模和轉(zhuǎn)化的數(shù)學(xué)思想。

教學(xué)重點(diǎn)

用一元一次方程解決配套問題

教學(xué)難點(diǎn)

分析配套問題數(shù)量關(guān)系,尋找等量關(guān)系列出方程

教學(xué)過程

教學(xué)環(huán)節(jié)

教學(xué)內(nèi)容

預(yù)設(shè)意圖

創(chuàng)設(shè)情景

提出問題

復(fù)習(xí)鞏固:解此方程:x-

問題1:思考解決實(shí)際問題的步驟應(yīng)該是什么?

審題(抓信息)-找關(guān)系(等量關(guān)系)-列方程(用含未知數(shù)的式子)-解決問題

問題2:在此題目中,每天生產(chǎn)的螺釘數(shù)量與每天生產(chǎn)的螺母數(shù)量該怎么表示?

(每天生產(chǎn)的螺釘數(shù)量=生產(chǎn)螺釘?shù)墓と藬?shù)量×每人每天可以生產(chǎn)的螺釘數(shù)量,同理每天生產(chǎn)的螺母數(shù)量=生產(chǎn)螺母的工人數(shù)量×每人每天可以生產(chǎn)的螺母數(shù)量)

問題3:根據(jù)題目,每天生產(chǎn)的螺釘和螺母如果想剛好配套,它們之間應(yīng)該滿足怎樣的數(shù)量關(guān)系?

(每

問題4:總結(jié)以上關(guān)系,思考我們應(yīng)該設(shè)怎樣的未知數(shù)才更方便于解決這個(gè)問題?

(由問題

問題5:根據(jù)以上分析,此方程可以如何列出?

從解方程開始,復(fù)習(xí)鞏固方程的解法,并引出實(shí)際問題的解決方法,在此過程中,將問題逐步拆解,分解為一個(gè)個(gè)小的問題,再層層遞進(jìn),得出最后的答案,在此過程中逐步感受配套問題乃至實(shí)際問題的基本思路。

探究歸納

變式探究:(僅需列出方程)

1、若每1個(gè)螺釘與3個(gè)螺母配成一套,則需要怎么安排生產(chǎn)螺釘和螺母的工人?

2、若每2個(gè)螺釘與3個(gè)螺母配成一套,則需要怎樣安排生產(chǎn)螺釘和螺母的工人?

思考:解決配套問題中,我們應(yīng)該怎樣尋找數(shù)量關(guān)系?

從已有的知識(shí)結(jié)構(gòu)出發(fā),不讓學(xué)生在思維上出現(xiàn)跳躍,逐層遞進(jìn),通過剛思考過的例子作為依據(jù),進(jìn)行相同類型題目的變式聯(lián)系,將探究作為切入點(diǎn),再對一般的情況進(jìn)行歸納總結(jié),從具體的數(shù)字到一般的情況,逐步推進(jìn),體會(huì)將未知化為已知的數(shù)學(xué)探究的樂趣。

跟蹤練習(xí)

例桌腿剛好配套,共可生產(chǎn)多少張方桌?(一張方桌有1個(gè)桌面,4條桌腿)

思考:等量關(guān)系是什么?如何設(shè)未知數(shù)并列出方程?(

解:設(shè)用x立方米的木材做桌面,則用(10-x)立方米的木材做桌腿。

根據(jù)題意,得4×50x = 300(10-x),解得x =6,所以10-x = 4,可做方桌為50×6=300(張)。

答:用6立方米的木材做桌面,4立方米的木材做桌腿,可做300張方桌。

例(

解:設(shè)用x米布料生產(chǎn)上衣,那么用(米布料生產(chǎn)褲子恰好配套。

根據(jù)題意,得:

x=。

答:應(yīng)該用360米布料生產(chǎn)上衣,用240米布料生產(chǎn)褲子恰好配套。

在得出一般化的方法后,再利用學(xué)到的知識(shí)對問題進(jìn)行解決,這是數(shù)學(xué)學(xué)習(xí)的一般辦法,也是解決問題的重要手段,在實(shí)際問題這一部分的學(xué)習(xí)中,這樣的思考尤為重要。

課堂小結(jié)

課外作業(yè)

總結(jié):本節(jié)課你有哪些收獲?(

1、思路上,對解決實(shí)際問題的一般方法有了大致的感受,對于配套問題的等量關(guān)系的尋找有了方向,體會(huì)了用方程解決實(shí)際問題的便利性。

2、方法上,體會(huì)如何利用題目給的信息并分析題目的含義,合理地設(shè)未知數(shù)來解決實(shí)際性的問題。

當(dāng)堂檢測:(

完成《課堂小練習(xí)》

作業(yè):

限時(shí)作業(yè)一張

讓學(xué)通過自己的語言表達(dá)學(xué)習(xí)的收獲,在本節(jié)課即將結(jié)束的時(shí)候,讓學(xué)生自我總結(jié),加深印象,培養(yǎng)學(xué)生的自我總結(jié)能力,也幫助學(xué)生重新回顧重點(diǎn)知識(shí)和數(shù)學(xué)思想。

板書設(shè)計(jì)

一元一次方程與實(shí)際問題——配套問題

例1:

解:設(shè)應(yīng)安排x名工人生產(chǎn)螺釘,(22-x)名工人生產(chǎn)螺母

依題意,得

20xx(22-x)=2×1200x

解方程,得x=10.

所以22-x=12

答:應(yīng)安排10名工人生產(chǎn)螺釘,12名工人生產(chǎn)螺母

配套問題數(shù)量關(guān)系:若每n個(gè)螺釘與m個(gè)螺母配成一套,則m×螺釘數(shù)量=n×螺母數(shù)量

一元一次方程課件【篇7】

教學(xué)目標(biāo):

1、知識(shí)與技能:會(huì)解含分母的一元一次方程,掌握解一元一次方程的基本步驟和方法,能根據(jù)方程的特點(diǎn)靈活地選擇解法。

2、過程與方法:經(jīng)歷一元一次方程一般解法的探究過程,理解等式基本性質(zhì)在解方程中的作用,學(xué)會(huì)通過觀察,結(jié)合方程的特點(diǎn)選擇合理的思考方向進(jìn)行新知識(shí)探索。

3、情感、態(tài)度與價(jià)值觀:通過嘗試從不同角度尋求解決問題的`方法,體會(huì)解決問題策略的多樣性;在解一元一次放的過程中,體驗(yàn)“化歸”的思想。

教學(xué)重難點(diǎn):

重點(diǎn):解一元一次方程的基本步驟和方法。

難點(diǎn):含有分母的一元一次方程的解題方法。

教學(xué)過程:

一、新課導(dǎo)入:

請同學(xué)們和老師一起解方程:

并回答:解一元一次方程的一般步驟和最終的目的是什么?

二、講授新課

請給同學(xué)們介紹紙草書(P95)。

問題:一個(gè)數(shù),它的三分之二,它的一半,它的七分之一,它的全部,加起來總共是33.試問這個(gè)

數(shù)是多少?

并引入讓同學(xué)運(yùn)用設(shè)未知數(shù)的方法,列出相應(yīng)的方程。

并回答:這個(gè)方程和我們以前學(xué)習(xí)的方程有什么不同?

同學(xué)們和老師一起完成解上述方程,并引入去分母。

例1、

例2、

活動(dòng):同學(xué)們,解一元一次方程的步驟有哪些?要注意哪些?

看一看你會(huì)不會(huì)錯(cuò):

(1)解方程:

(2)解方程:

典型例題:解方程:

想一想:去分母時(shí)要注意什么問題?

(1)方程兩邊每一項(xiàng)都要乘以各分母的最小公倍數(shù)

(2)去分母后如分子中含有兩項(xiàng),應(yīng)將該分子添上括號(hào)

選一選:

練一練:當(dāng)m為何值時(shí),整式和的值相等?

議一議:如何解方程:

注意區(qū)別:

1、把分母中的小數(shù)化為整數(shù)是利用分?jǐn)?shù)的基本性質(zhì),是對單一的一個(gè)分?jǐn)?shù)的分子分母同乘或除以一個(gè)不為0的數(shù),而不是對于整個(gè)方程的左右兩邊同乘或除以一個(gè)不為0的數(shù)。

2、而去分母則是根據(jù)等式性質(zhì)2,對方程的左右兩邊同乘或除以一個(gè)不為0的數(shù),而不是對于一個(gè)單一的分?jǐn)?shù)。

課堂小結(jié):

(1)怎樣去分母?應(yīng)在方程的左右兩邊都乘以各分母的最小公倍數(shù)。

有沒有疑問:不是最小公倍數(shù)行不行?

(2)去分母的依據(jù)是什么?

等式性質(zhì)2

(3)去分母的注意點(diǎn)是什么?

1、去分母時(shí)等式兩邊各項(xiàng)都要乘以最小公倍數(shù),不可以漏乘。

2、如果分子是含有未知數(shù)的代數(shù)式,其分子為一個(gè)整體應(yīng)加括號(hào)。

(4)解一元一次方程的一般步驟:

布置作業(yè):P98,習(xí)題3.3第3題

補(bǔ)充作業(yè):解方程:

(1)

(2)

板書設(shè)計(jì):

教學(xué)反思:

一元一次方程課件【篇8】

解一元一次方程

【教學(xué)任務(wù)分析】教學(xué)目標(biāo)知識(shí)技能

1.用一元一次方程解決“數(shù)字型”問題;

2.能熟練的通過合并,移項(xiàng)解一元一次方程;

3.進(jìn)一步學(xué)習(xí)、體會(huì)用一元一次方程解決實(shí)際問題.

過程

方法通過學(xué)生自主探究,師生共同研討,體驗(yàn)將實(shí)際問題轉(zhuǎn)化成數(shù)學(xué)問題,學(xué)會(huì)探索數(shù)列中的規(guī)律,建立等量關(guān)系并加以解決,同時(shí)進(jìn)一步滲透化歸思想.

情感

態(tài)度經(jīng)歷運(yùn)用方程解決實(shí)際問題的過程,發(fā)展抽象、概括、分析和解決問題的能力,體會(huì)數(shù)學(xué)對實(shí)踐的指導(dǎo)意義.

重點(diǎn)建立一元一次方程解決實(shí)際問題的模型.

難點(diǎn)探索并發(fā)現(xiàn)實(shí)際問題中的等量關(guān)系,并列出方程.

【教學(xué)環(huán)節(jié)安排】

環(huán)節(jié)教學(xué)問題設(shè)計(jì)教學(xué)活動(dòng)設(shè)計(jì)

入牽線搭橋,解下列方程:

(1)-5x+5=-6x;(2);

(3)0.5x+0.7=1.9x;

總結(jié)解“ax+b=cx+d”類型的一元一次方程的步驟方法.

引出問題即課本例3

問:你能利用所學(xué)知識(shí)解決有關(guān)數(shù)列的問題嗎?教師:出示題目,提出要求.

學(xué)生:獨(dú)立完成,根據(jù)講評核對、自我評價(jià),了解掌握情況.

探究一:數(shù)字問題

例3有一列數(shù),按一定規(guī)律排列成1,-3,9,-27,81,-243……其中某三個(gè)相鄰數(shù)的和是-1701,這三個(gè)數(shù)各是多少?

【分析】1.引導(dǎo)學(xué)生觀察這列數(shù)有什么規(guī)律?

①數(shù)值變化規(guī)律?②符號(hào)變化規(guī)律?

結(jié)論:后面一個(gè)數(shù)是前一個(gè)數(shù)的-3倍.

2.怎樣求出這三個(gè)數(shù)?

①設(shè)三個(gè)相鄰數(shù)中的第一個(gè)數(shù)為x,那么其它兩個(gè)數(shù)怎么表示?

②列出方程:根據(jù)三個(gè)數(shù)的和是-1701列出方程.

③解略

變式:你能設(shè)其它的數(shù)列方程解出嗎?試一試.比比較哪種設(shè)法簡單.

探究二:百分比問題(習(xí)題3.2第8題)

【問題】某鄉(xiāng)改種玉米為種優(yōu)質(zhì)雜糧后,今年農(nóng)民人均收入比去年提高20%.今年人均收入比去年的1.5倍少1200元.這個(gè)鄉(xiāng)去年農(nóng)民人均收入是多少元?

【分析】①若設(shè)這個(gè)鄉(xiāng)去年農(nóng)民人均收入是x元,今年人均收入比去年提高20%,那么今年的收入是_________元;

②因?yàn)榻衲甑娜司杖氡热ツ甑?.5倍少1200元,所以今年的收入又可以表示為_________元.

③根據(jù)“表示同一個(gè)量的兩個(gè)式子相等”可以列出方程為________________________.

解答略教師:引導(dǎo)學(xué)生分析.

2.本例是有關(guān)數(shù)列的`數(shù)學(xué)問題,題要求出三個(gè)未知數(shù),這需要學(xué)生觀察發(fā)現(xiàn)它們的排列規(guī)律,問題具有一定的挑戰(zhàn)性,能激發(fā)學(xué)生學(xué)習(xí)探索規(guī)律類型的問題.

學(xué)生:觀察、討論、闡述自己的發(fā)現(xiàn),并互相交流.

根據(jù)分析列出方程并解出,求出所求三個(gè)數(shù).

備注:尋找數(shù)的排列規(guī)律是難點(diǎn),可讓學(xué)生小組內(nèi)討論發(fā)現(xiàn)、解決.

變換設(shè)法,列出方程,比較優(yōu)劣、闡述發(fā)現(xiàn)和體會(huì).

教師:出示題目,引導(dǎo)學(xué)生,讓學(xué)生嘗試分析,多鼓勵(lì).

學(xué)生:根據(jù)引導(dǎo)思考、回答、闡述自己的觀點(diǎn)和認(rèn)識(shí).

根據(jù)共同的分析,列出方程并解出,

(說明:此題目數(shù)以百分比、增長率問題可根據(jù)實(shí)際情況安排,若沒時(shí)間,可在習(xí)題課上處理)

嘗試應(yīng)用

1、填空

(1)有個(gè)三位數(shù),個(gè)位上的數(shù)字是a,十位上的數(shù)字是b,百位上的數(shù)字是c,則這個(gè)三位數(shù)是:_______________.

(2)有一數(shù)列,按一定規(guī)律排成1,-2,3,2,-4,6,3,-6,9,接下來的三個(gè)數(shù)為_____________________.

(3)三個(gè)連續(xù)偶數(shù),設(shè)第一個(gè)為2x,那么第二個(gè)為_______,第三個(gè)為______,它們的和是__________;若設(shè)中間的一個(gè)為x,那么第一個(gè)為_____,第三個(gè)為______,它們的和是__________.

2.一個(gè)三位數(shù),三個(gè)數(shù)位上的數(shù)字的和為17,百位上的數(shù)字比十位上的數(shù)字大7,個(gè)位上的數(shù)字是十位上數(shù)字的3倍,你能求出這個(gè)三位數(shù)嗎?這是最經(jīng)常出現(xiàn)的一類數(shù)字問題:引導(dǎo)學(xué)生分析已知各位上的數(shù)字,怎么表示這個(gè)數(shù),理解為什么不能表示成cba?這是解決這類問題的基礎(chǔ).

通過(3)題理解連續(xù)數(shù)的表示法,并感受怎么表示最簡單.

通過2題讓學(xué)生理解怎么設(shè)?以及怎么設(shè)簡單(舍都有聯(lián)系的一個(gè)),并感受用未知數(shù)表示多個(gè)未知量,順藤摸瓜,從而列出方程的順向思維方式.

教師:結(jié)合完成題目,匯總講解,重點(diǎn)在于解法.

成果

展示1.通過本節(jié)所學(xué)你有哪些收獲?

2.談?wù)勀阏莆盏姆椒ê蛯W(xué)習(xí)的感受,以及你對應(yīng)用方程解決問題的體會(huì).學(xué)生自我闡述,教師評價(jià)鼓勵(lì)、補(bǔ)充總結(jié).

補(bǔ)償提高1.有一數(shù)列,按一定規(guī)律排成0,2,6,12,20,30,…,則第8個(gè)數(shù)為______,第n個(gè)數(shù)為_____.

2.下面給出的是20xx年3月份的日歷表,任意圈出一豎列上相鄰的三個(gè)數(shù),請你運(yùn)用方程思想來研究,圈出的三個(gè)數(shù)的和不可能是( ).

A.69B.54C.27D.40

通過練習(xí),掌握數(shù)字問題的分類及不同解法,鞏固、體會(huì)用方程解決問題的思路和思維方式,學(xué)會(huì)用方程解決問題.

題目設(shè)置是對前面學(xué)生所出現(xiàn)的問題進(jìn)行針對性的補(bǔ)償和補(bǔ)充,也可對學(xué)有余力的學(xué)生拓展提高.

根據(jù)學(xué)生完成情況靈活設(shè)置問題.

作業(yè)

設(shè)計(jì)作業(yè):

必做題:課本4、5、第94頁6題.

選做題:同步探究.教師布置作業(yè),并提出要求.

學(xué)生課下獨(dú)立完成,延續(xù)課堂.

授課教師:

20xx年10月31日

一元一次方程課件【篇9】

重點(diǎn)難點(diǎn)。

難點(diǎn):探究實(shí)際問題與一元一次方程的關(guān)系。

一、復(fù)習(xí):

1.9-3y=5y+5。

2、

二、新授。

分析:這里可以把總工作量看做1。思考。

人均效率(一個(gè)人做1小時(shí)完成的工作量)為。

由x人先做4小時(shí),完成的工作量為。再增加2人和前一部分人一起做8小時(shí),完成的工作量為。

這項(xiàng)工作分兩段完成,兩段完成的工作量之和為。

解:設(shè)先安排x人工作4小時(shí)。

根據(jù)兩段工作量之和應(yīng)是總工作量,得。

去分母,得4x+8(x+2)=-1701。

去括號(hào),得4x+8x+16=40。

移項(xiàng)及合并同類項(xiàng),得。

12x=24。

系數(shù)化為1,得x=-243.

所以-3x=729。

9x=-2187.

答:這三個(gè)數(shù)是-243,729,-2187。

例4根據(jù)下面的兩種移動(dòng)電話計(jì)費(fèi)方式表,考慮下列問題。

方式一方式二。

月租費(fèi)30元/月0。

本地通話費(fèi)0.30元/月0.40元/分。

(1)一個(gè)月內(nèi)在本地通話200分和350分,按方式一需交費(fèi)多少元?按方式二呢?

(2)對于某個(gè)本地通話時(shí)間,會(huì)出現(xiàn)按兩種計(jì)費(fèi)方式收費(fèi)一樣多嗎?

解:(1)。

方式一方式二。

200分90元80元。

350分135元140元。

0.4t=30+0.3t。

移項(xiàng),得0.4t-0.3t=30。

合并同類項(xiàng),得0.1t=30。

系數(shù)化為1,得t=300。

由上可知,如果一個(gè)月內(nèi)通話300分,那么兩種計(jì)費(fèi)方式相同。

思考:你知道怎樣選擇計(jì)費(fèi)方式更省錢嗎?

解后反思:對于有表格實(shí)際問題,首先讀清表格提供的信息,再根據(jù)問題找等量關(guān)系,設(shè)未知數(shù),列方程,解方程,以求出問題的解。也就是把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題。

三、鞏固練習(xí):94頁9、10。

四、達(dá)標(biāo)測試:《名校》55頁1.2.3.

五、課堂小結(jié):

(1)這節(jié)課我有哪些收獲?

(2)我應(yīng)該注意什么問題?

六、作業(yè):課本第94頁第9題學(xué)生作業(yè),教師巡視幫助需要幫助的學(xué)生。在學(xué)生解答后的講評中圍繞兩個(gè)問題:

(1)每一步的依據(jù)分別是什么?

(2)求方程的解就是把方程化成什么形式?

先讓學(xué)生讀題分析規(guī)律,然后教師進(jìn)行引導(dǎo):

允許學(xué)生在討論后再回答。

在學(xué)生弄清題意后,教師引導(dǎo)學(xué)生說出規(guī)律,設(shè)一個(gè)未知數(shù),表示其余未知數(shù)。

學(xué)生獨(dú)立解方程方程的解是不是應(yīng)用題的解。

教師強(qiáng)調(diào)解決問題的分析思路。

學(xué)生讀題,分析表格中的信息。

教師根據(jù)學(xué)生的分析再做補(bǔ)充。

學(xué)生思考問題。

〖〗教師根據(jù)學(xué)生的解答,進(jìn)行規(guī)范分析和解答。

一元一次方程課件【篇10】

教學(xué)目的:

理解一元一次方程解簡單應(yīng)用題的方法和步驟;并會(huì)列一元一次方程解簡單應(yīng)用題。

重點(diǎn)、難點(diǎn)

1、 重點(diǎn):弄清應(yīng)用題題意列出方程。

2、 難點(diǎn):弄清應(yīng)用題題意列出方程。

教學(xué)過程

一、復(fù)習(xí)

1、 什么叫一元一次方程?

2、 解一元一次方程的理論根據(jù)是什么?

二、新授。

例1、如圖(課本第10頁)天平的兩個(gè)盤內(nèi)分別盛有51克,45克食鹽,問應(yīng)該從盤A內(nèi)拿出多少鹽放到月盤內(nèi),才能兩盤所盛的鹽的質(zhì)量相等?

先讓學(xué)生思考,引導(dǎo)學(xué)生結(jié)合填表,體會(huì)解決實(shí)際問題,重在學(xué)會(huì)探索:已知量和未知量的關(guān)系,主要的等量關(guān)系,建立方程,轉(zhuǎn)化為數(shù)學(xué)問題。

分析:設(shè)應(yīng)從A盤內(nèi)拿出鹽x,可列表幫助分析。

等量關(guān)系;A盤現(xiàn)有鹽=B盤現(xiàn)有鹽

完成后,可讓學(xué)生反思,檢驗(yàn)所求出的`解是否合理。

(盤A現(xiàn)有鹽為5l-3=48,盤B現(xiàn)有鹽為45+3=48。)

培養(yǎng)學(xué)生自覺反思求解過程和自覺檢驗(yàn)方程的解是否正確的良好習(xí)慣。

例2.學(xué)校團(tuán)委組織65名團(tuán)員為學(xué)校建花壇搬磚,初一同學(xué)每人搬6塊,其他年級(jí)同學(xué)每人搬8塊,總共搬了400塊,問初一同學(xué)有多少人參加了搬磚?

引導(dǎo)學(xué)生弄清題意,疏理已知量和未知量:

1.題目中有哪些已知量?

(1)參加搬磚的初一同學(xué)和其他年級(jí)同學(xué)共65名。

(2)初一同學(xué)每人搬6塊,其他年級(jí)同學(xué)每人搬8塊。

(3)初一和其他年級(jí)同學(xué)一共搬了400塊。

2.求什么?

初一同學(xué)有多少人參加搬磚?

3.等量關(guān)系是什么?

初一同學(xué)搬磚的塊數(shù)十其他年級(jí)同學(xué)的搬磚數(shù)=400

如果設(shè)初一同學(xué)有工人參加搬磚,那么由已知量(1)可得,其他年級(jí)同學(xué)有(65-x)人參加搬磚;再由已知量(2)和等量關(guān)系可列出方程

6x+8(65-x)=400

也可以按照教科書上的列表法分析

三、鞏固練習(xí)

教科書第12頁練習(xí)1、2、3

第l題:可引導(dǎo)學(xué)生畫線圖分析

等量關(guān)系是:AC十CB=400

若設(shè)小剛在沖刺階段花了x秒,即t1=x秒,則t2(65-x)秒,再

由等量關(guān)系就可列出方程:

6(65-x)+8x=400

四、小結(jié)

本節(jié)課我們學(xué)習(xí)了用一元一次方程解答實(shí)際問題,列方程解應(yīng)用題的關(guān)鍵在于抓住能表示問題含意的一個(gè)主要等量關(guān)系,對于這個(gè)等量關(guān)系中涉及的量,哪些是已知的,哪些是未知的,用字母表示適當(dāng)?shù)奈粗獢?shù)(設(shè)元),再將其余未知量用這個(gè)字母的代數(shù)式表示,最后根據(jù)等量關(guān)系,得到方程,解這個(gè)方程求得未知數(shù)的值,并檢驗(yàn)是否合理。最后寫出答案。

五、作業(yè)

一元一次方程課件【篇11】

一、教材分析

1、地位和作用

地位:本節(jié)位于青島版七年級(jí)上冊第八章第4節(jié)第三課時(shí),在研究了解簡單的一元一次方程的基礎(chǔ)上進(jìn)行的,其后是第5節(jié)一元一次方程的應(yīng)用。

作用:是一元一次方程解應(yīng)用題的基礎(chǔ),也是解其他方程的基礎(chǔ)。

2、教學(xué)目標(biāo)

(1)知識(shí)與技能:讓學(xué)生掌握解一元一次方程的基本步驟,會(huì)解一元一次方程。

(2)過程與方法:讓學(xué)生經(jīng)歷解一元一次方程的探索過程,總結(jié)出解一元一次方程的一般步驟。

(3)情感、態(tài)度與價(jià)值觀:通過自主學(xué)習(xí)、合作交流,培養(yǎng)學(xué)生的'自信心與團(tuán)結(jié)互助精神,讓學(xué)生體會(huì)到解方程中分析與轉(zhuǎn)化的思想方法。

3、重難點(diǎn)與關(guān)鍵

重點(diǎn):解一元一次方程的一般步驟。

難點(diǎn):解一元一次方程的一般步驟的歸納。

關(guān)鍵:每一步的依據(jù)及應(yīng)注意的問題。

二、學(xué)情分析

學(xué)生已經(jīng)歷了兩節(jié)簡單的解一元一次方程,大部分學(xué)生應(yīng)已經(jīng)初步了解了去括號(hào)、移項(xiàng)、合并同類項(xiàng)、系數(shù)化為1等方法,對本節(jié)學(xué)習(xí)大有幫助,但在去分母及其余各步驟中都有易錯(cuò)點(diǎn),是學(xué)生難以全面掌握的。

三、教學(xué)思想

新課改理念強(qiáng)調(diào)學(xué)生的主體地位,把課堂還給學(xué)生,學(xué)生是每一環(huán)節(jié)的主體。數(shù)學(xué)是思維的體操。這節(jié)課的目的是讓學(xué)生真正思考,將知識(shí)與技能內(nèi)化成自己的東西,同時(shí)養(yǎng)成良好的行為、學(xué)習(xí)習(xí)慣。

四、教學(xué)過程 教學(xué)環(huán)節(jié) 教師活動(dòng) 學(xué)生活動(dòng) 設(shè)計(jì)目的 一、 師生定向

明確目標(biāo) 出示目標(biāo) 閱讀目標(biāo) 讓學(xué)生清楚本節(jié)課應(yīng)學(xué)習(xí)什么內(nèi)容,學(xué)到什么程度達(dá)到什么要求 二、 復(fù)習(xí)檢測

了解學(xué)情 出示上節(jié)

習(xí)題 練習(xí) 了解具體學(xué)情確定新舊知識(shí)的銜接點(diǎn) 三、 自主預(yù)習(xí)

預(yù)習(xí)檢測 布置任務(wù)

巡視督導(dǎo)

板書例題

預(yù)習(xí)檢測

抽查學(xué)生

指導(dǎo)學(xué)生自改自評

自學(xué)課本內(nèi)容,思考解方程的每一步變化的名稱及具體做法,思考易錯(cuò)點(diǎn)

閉卷答題

自改、自評預(yù)習(xí)效果

教師指明做法,幫學(xué)生走進(jìn)教材,理解文本,把握重點(diǎn)。

通過學(xué)生閱讀思考讓學(xué)生將部分知識(shí)內(nèi)化。

檢查預(yù)習(xí)情況,暴曬問題

讓學(xué)生將技能內(nèi)化,培養(yǎng)學(xué)生獨(dú)立學(xué)習(xí)能力

四、 合作探究

展示交流 指導(dǎo)學(xué)生互評

引導(dǎo)學(xué)生討論總結(jié)步驟及具體做法,易錯(cuò)點(diǎn) 小組合作解決自學(xué)未能解決的問題

由會(huì)的同學(xué)展示

小組討論總結(jié)每一步的易錯(cuò)點(diǎn) 兵教兵

在互動(dòng)中提高學(xué)生的分析能力、判斷能力,培養(yǎng)團(tuán)結(jié)互助精神 五、 達(dá)標(biāo)自測

拓展應(yīng)用 引導(dǎo)學(xué)生完成相應(yīng)學(xué)案上的問題

獨(dú)立完成

自評互評

小組交流后當(dāng)堂完成 檢驗(yàn)學(xué)生學(xué)習(xí)成果用以確定課后作業(yè) 六 簡談收獲

布置作業(yè) 引導(dǎo)學(xué)生談?wù)勥@節(jié)課的收獲

布置作業(yè)

從知識(shí)、方法、情感等方面談?wù)n堂收獲 了解學(xué)生收獲情況

yJS21.com更多精選幼師資料閱讀

二元一次方程組課件


教案課件是我們教師工作中不可或缺的組成部分,相信教師們對于編寫教案課件已經(jīng)非常熟悉了。在上課時(shí),教師會(huì)按照教案課件的內(nèi)容進(jìn)行教學(xué)。希望本篇"二元一次方程組課件"能夠?yàn)槟鉀Q問題,給您提供一些幫助,同時(shí)希望您能從這篇文章中學(xué)到一些新的知識(shí)!

二元一次方程組課件(篇1)

各位老師、同學(xué):

大家好!

今天我說課的內(nèi)容是人教版義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書初中數(shù)學(xué)七年級(jí)下冊第八章《二元一次方程組》第一節(jié)內(nèi)容。我主要從教材分析、教法、學(xué)法、教學(xué)過程四個(gè)方面向大家匯報(bào)我對這節(jié)課的認(rèn)識(shí)與理解。

一、教材分析

1、教材的地位

二元一次方程組是最簡單的多元(未知數(shù)的個(gè)數(shù)不止一個(gè))方程組,通過對它的學(xué)習(xí),可以了解的多元一次方程組的概念和解法的基本思路。一元一次方程的知識(shí)是學(xué)習(xí)二元一次方程組的基礎(chǔ)。本節(jié)課是在七年級(jí)上冊已有的“一元一次方程”的基礎(chǔ)上進(jìn)一步討論方程(組),為學(xué)生初中階段學(xué)好必備的代數(shù),幾何的基礎(chǔ)與基本技能,解決實(shí)際問題打下基礎(chǔ),同時(shí)提高學(xué)生能力,培養(yǎng)他們對數(shù)學(xué)的興趣,以及對他們進(jìn)行思想教育方面有獨(dú)特的意義,同時(shí),對后續(xù)教學(xué)內(nèi)容起到奠基作用。

2、教學(xué)目標(biāo)

使學(xué)生掌握二元一次方程、二元一次方程組的概念,會(huì)把二元一次方程化為用一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù)的形式。使學(xué)生了解二元一次方程、二元一次方程組的解的含義,會(huì)檢驗(yàn)一對數(shù)是不是它們的解。

3、重點(diǎn)、難點(diǎn)

重點(diǎn):是學(xué)生認(rèn)識(shí)到一對數(shù)必須同時(shí)滿足兩個(gè)二元一次方程,才是相應(yīng)的二元一次方程組的解。掌握檢驗(yàn)一對數(shù)是否是某個(gè)二元一次方程的解的書寫格式。

難點(diǎn):理解二元一次方程組的解的含義。

二、教法

啟發(fā)誘導(dǎo)學(xué)生自主探究、充分發(fā)揮學(xué)生的主體地位、借助多媒體增加課堂容量。

三、學(xué)法

“問題”是數(shù)學(xué)教學(xué)的心臟,活動(dòng)是數(shù)學(xué)教學(xué)中的靈魂。所以我在學(xué)生思維最近發(fā)展區(qū)內(nèi)設(shè)置并提出一系列問題,通過數(shù)學(xué)活動(dòng),引導(dǎo)學(xué)生:自主性學(xué)習(xí),合作式學(xué)習(xí),探究式學(xué)習(xí)等,激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生的數(shù)學(xué)思維和參與度,力求學(xué)生在“雙基”數(shù)學(xué)能力和理性精神方面得到一定發(fā)展。

四、教學(xué)過程

1、教與學(xué)互動(dòng)設(shè)計(jì):通過“籃球比賽積分問題”讓學(xué)生感受到用二元一次方程組能夠很好的刻畫問題中的數(shù)量關(guān)系,為二元一次方程和二元一次方程組做準(zhǔn)備。通過小組討論的方法,來調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性。

2、合作交流,解讀探究:通過上述的兩個(gè)方程對新的知識(shí)讓學(xué)生進(jìn)行討論交流。呼應(yīng)新課標(biāo)理念中讓學(xué)生“動(dòng)”起來,教師引導(dǎo)、學(xué)生自主學(xué)習(xí)的理念,進(jìn)行新課的學(xué)習(xí)。

3、課堂練習(xí):用幻燈片展示的習(xí)題,學(xué)生通過習(xí)題鞏固本節(jié)課知識(shí),更加充分的理解二元一次方程組的相關(guān)內(nèi)容。

4、課堂小結(jié)及布置作業(yè):通過小結(jié)及做習(xí)題反饋學(xué)生對本節(jié)課的收獲。

五、教學(xué)反思

生命在活動(dòng)中豐富,為孩子的一生幸福奠定基礎(chǔ),是活動(dòng)教學(xué)的終極價(jià)值追求;課堂在活動(dòng)中精彩,強(qiáng)調(diào)通過師生之間豐富多彩的主體活動(dòng)“喚醒”沉睡的課堂,實(shí)現(xiàn)課堂教學(xué)的重建;學(xué)生在活動(dòng)中發(fā)展,教師在活動(dòng)中成長。由于我能力有限,還請各位領(lǐng)導(dǎo)、老師和同學(xué)批評指正。

附:板書設(shè)計(jì)

8、1二元一次方程組

xy=222xy=40

二元一次方程二元一次方程組

二元一次方程的解二元一次方程組的解

二元一次方程組課件(篇2)

各位評委、老師:

大家好!

我說課的題目是《二元一次方程組的解法——代入消元法》,內(nèi)容選自人教版九年義務(wù)教育七年級(jí)數(shù)學(xué)下冊第八章第二節(jié)第一課時(shí)。

一、說教材

(一)地位和作用

本節(jié)主要內(nèi)容是在上節(jié)已認(rèn)識(shí)二元一次方程(組)和二元一次方程(組)的解等概念的基礎(chǔ)上,來學(xué)習(xí)解方程組的第一種方法——代入消元法。并初步體會(huì)解二元一次方程組的基本思想“消元”。二元一次方程組的求解,不但用到了前面學(xué)過的一元一次方程的解法,是對過去所學(xué)知識(shí)的一個(gè)回顧和提高,同時(shí),也為后面的利用方程組來解決實(shí)際問題打下了基礎(chǔ)。初中階段要掌握的二元一次方程組的解法有代入消元法和加減消元兩種,教材都是按先求解后應(yīng)用的順序安排,這樣安排既可以在前一小節(jié)中有針對性的學(xué)習(xí)解法,又可在后一小節(jié)的應(yīng)用中鞏固前面的知識(shí),但教材相對應(yīng)的練習(xí)安排很少,不過這樣也給了我們一較大的發(fā)揮空間。

(二)課程目標(biāo)

1、知識(shí)與技能目標(biāo)

(1)會(huì)用代入法解二元一次方程組

(2)初步體會(huì)解二元一次方程組的基本思想“消元”。

(3)通過對方程組中的未知數(shù)特點(diǎn)的觀察和分析,明確解二元一次方程組的主要思路是“消元”,從而促成由未知向已知轉(zhuǎn)化,培養(yǎng)學(xué)生觀察能力和體會(huì)化歸思想:

(4)通過用代入消元法解二元一次方程組的訓(xùn)練,及選用合理、簡捷的方法解方程組,培養(yǎng)學(xué)生的運(yùn)算能力。

2、情感目標(biāo):

通過研究探討解決問題的方法,培養(yǎng)學(xué)生會(huì)作交流意識(shí)與探究精神。

(三)教學(xué)重點(diǎn)、難點(diǎn)

重點(diǎn):用代入消元法解二元一次方程組。

難點(diǎn):探索如何用代入消元法將“二元”轉(zhuǎn)化為“一元”的過程。

二、說教法

針對本節(jié)特點(diǎn),在教學(xué)過程中采用自主、探究、合作交流的教學(xué)方法,由教師提出明確問題,學(xué)生積極參與討論探究、合作交流,進(jìn)行總結(jié),使學(xué)生從中獲取知識(shí)。鑒于本節(jié)所學(xué)知識(shí)的特點(diǎn),抽象教學(xué)、學(xué)生生搬硬套的學(xué)習(xí)方式將難取得理想效果,因此教師在引入課題時(shí)要利用好遠(yuǎn)程教育設(shè)施及資源創(chuàng)設(shè)情境,讓學(xué)生去經(jīng)歷由具體問題抽象出方程組的過程。并讓學(xué)生通過獨(dú)立觀察、合作交流來探討怎樣才能變“二元”為“一元”。然后利用單個(gè)二元一次方程的變形及時(shí)強(qiáng)化“代入”的本質(zhì)。

三、說學(xué)法

本節(jié)學(xué)生在獨(dú)立思考、自主探究中學(xué)習(xí)并對老師的問題展開討論與交流。如何用代入消元法將“二元”轉(zhuǎn)化為“一元”學(xué)生較難掌握,在提出消元思想后,應(yīng)對具體的消元解法的過程進(jìn)行歸納,讓學(xué)生得到對代入法的基本步驟的概括,通過“把一個(gè)方程(必要時(shí)先做適當(dāng)變形)代入另一個(gè)方程”實(shí)現(xiàn)消元。應(yīng)注意引導(dǎo)學(xué)生認(rèn)識(shí)到為什么要實(shí)施這樣的步驟。把具體做法與消元結(jié)合,使學(xué)生明解其目的性。明確這樣做的依據(jù)是等量代換。七年級(jí)的學(xué)生已經(jīng)初步具備合作交流的能力。可以通過探究和合作來實(shí)現(xiàn)課程目標(biāo);此外,教學(xué)中,范例的講解和隨堂練習(xí)始終是學(xué)以對用的有效方法。隨堂練習(xí)時(shí)應(yīng)引導(dǎo)學(xué)生通過自我反省、小組評價(jià)來克服解題時(shí)的錯(cuò)誤,必要時(shí)給與規(guī)范矯正。

四、說教學(xué)程序

本節(jié)課我將“自主、探究、合作、交流”運(yùn)用到教學(xué)中,教學(xué)過程可以劃分為以下幾個(gè)環(huán)節(jié):

1、引入新知:利用多媒體教學(xué)手段,創(chuàng)設(shè)情境,通過籃球比賽問題引入教學(xué),情境活潑、自然。

2、探究新知:在籃球比賽問題中,首先可以用一元一次方程來解決實(shí)際問題,接著提出問題:能否設(shè)出兩個(gè)未知數(shù),列出兩個(gè)方程組成方程組呢?(學(xué)生獨(dú)立思考后分組探究討論)。在學(xué)生得出正確的方程組之后提出問題:怎樣解這個(gè)方程組呢?(學(xué)生分組討論,教師加以適當(dāng)?shù)囊龑?dǎo)),各組派代表得出自己的結(jié)論,教師適時(shí)引導(dǎo)“消元”思想,對消元解法的過程予以歸納。

⑴變形:將其中一個(gè)方程的某個(gè)未知數(shù)用含有另一個(gè)未知數(shù)的式子表示。

⑵代入:將變形后的方程代入另一個(gè)方程中,消去一個(gè)未知數(shù),化二元一次方程組為一元一次方程。

⑶求解:求出一元一次方程的解。

⑷回代:將其代入到變形后的方程中,求出另一個(gè)未知數(shù)的解。

⑸結(jié)論:寫出方程組的解。

3、運(yùn)用新知:在得出“代入消元”解二元一次方程組后,應(yīng)用“代入消元法”解決實(shí)際問題,在學(xué)生解題過程中著重強(qiáng)調(diào)、矯正、理清思路和步驟。然后師生一起“解后思”:在解題時(shí)應(yīng)注意什么?在隨堂練習(xí)時(shí)教師關(guān)鍵是反饋矯正、積極評價(jià)。

4、教學(xué)小結(jié),知識(shí)回顧:讓學(xué)生暢所欲言談本節(jié)課的得失,感到困惑和疑難的地方、解題的關(guān)鍵和步驟等。教師在學(xué)生發(fā)言的基礎(chǔ)上再進(jìn)行提煉:①解二元一次方程組的主要思路是“消元”;②解二元一次方程組的一般步驟是:一變形、二代入、三求解。

5、課外作業(yè)。為進(jìn)一步鞏固知識(shí),布置適當(dāng)?shù)摹⒕哂写硇缘淖鳂I(yè)。

二元一次方程組課件(篇3)

一、教學(xué)設(shè)計(jì)的理念

1.樹立“以人為本,人人都學(xué)有價(jià)值的數(shù)學(xué),不同的人在數(shù)學(xué)上得到不同的發(fā)展”的理念。

2.通過動(dòng)手實(shí)驗(yàn)、合作交流培養(yǎng)學(xué)生自主探索,尋找結(jié)論的學(xué)習(xí)意識(shí)。

3.通過本節(jié)課教學(xué),加強(qiáng)對學(xué)生思維方法的訓(xùn)練,增強(qiáng)小組合作意識(shí)

二、教學(xué)內(nèi)容的重組加工

1.學(xué)生分析

認(rèn)知起點(diǎn),學(xué)生已初步掌握了本章知識(shí),他們已經(jīng)能比較熟練得求出二元一次方程組的解,知道用二元一次方程組表示等量關(guān)系。七年級(jí)學(xué)生活潑好動(dòng),樂于展示、表現(xiàn)自我,求知欲較強(qiáng),他們的邏輯思維以開始處于優(yōu)勢地位,

2.教材分析

本章知識(shí)是在學(xué)習(xí)了一元一次方程即應(yīng)用后的又一種重要的用來表示數(shù)量關(guān)系的數(shù)學(xué)模型,用它解決某些實(shí)際問題比用一元一次方程更簡捷,但在解法上他們又存在著相互轉(zhuǎn)化的關(guān)系,在這節(jié)的教學(xué)中不僅要讓學(xué)生充分認(rèn)識(shí)到消元這種思想方法的重要性,更重要的是讓他們進(jìn)一步體會(huì)知識(shí)的形成過程,提高他們能準(zhǔn)確選擇模型解決問題的能力。

3.教學(xué)重點(diǎn)、難點(diǎn)分析

難點(diǎn):已知一組解,如何構(gòu)造二元一次方程組使解相同

重點(diǎn):解二元一次方程組

4.教學(xué)目標(biāo)

(1)知識(shí)與技能:進(jìn)一步體會(huì)列二元一次方程組解決實(shí)際問題的優(yōu)越性,熟練用消元法解二元一次方程組

(2)過程與方法:通過自主探索過程,培養(yǎng)對數(shù)學(xué)的感情,培養(yǎng)分析問題能力及從實(shí)際問題中抽象出數(shù)學(xué)模型的能力,學(xué)會(huì)與人合作,交流自己的方法意見。向終身學(xué)習(xí)型人才發(fā)展。

(3)情感與態(tài)度:引導(dǎo)學(xué)生探索發(fā)現(xiàn),培養(yǎng)學(xué)生主動(dòng)探索,樂于合作交流的品質(zhì)和素養(yǎng),讓學(xué)生先猜測再動(dòng)手實(shí)踐加以驗(yàn)證,懂得實(shí)踐是檢驗(yàn)真理的唯一標(biāo)準(zhǔn)的道理。鼓勵(lì)學(xué)生有自己獨(dú)特見解,培養(yǎng)學(xué)生的創(chuàng)新品質(zhì)。

5.教學(xué)方法分析

本節(jié)課采用“探究、討論、發(fā)現(xiàn)”的方法。因?yàn)樗媳竟?jié)課教學(xué)內(nèi)容的特點(diǎn),從學(xué)生年齡來說討論法雖然更適合于高年級(jí)的學(xué)生,但這是一節(jié)復(fù)習(xí)課,我認(rèn)為復(fù)習(xí)應(yīng)該是知識(shí)的整合和提高的過程,因此也可以。

三、教學(xué)過程及反思

我的教學(xué)過程可分為三個(gè)環(huán)節(jié)一、探索只用二元一次方程也能解決實(shí)際問題,但答案不唯一。二、探索要使一的問題答案是唯一的,那么在剛才的基礎(chǔ)上應(yīng)該再添加一個(gè),關(guān)于這兩個(gè)未知數(shù)的關(guān)系的條件,然后才能列出二元一次方程組解出唯一答案。這個(gè)環(huán)節(jié)是難點(diǎn)。這樣設(shè)計(jì)的目的是通過過程探索加深學(xué)生對二元一次方程組的解的理解,即它是兩個(gè)方程的公共解,同時(shí)與列一元一次方程形成對比,即需要兩個(gè)條件才能得出唯一答案。再者通過對一個(gè)問題實(shí)施兩種列法,一種解法,也體現(xiàn)了二元與一元之間的轉(zhuǎn)化思想。第三個(gè)過程是解方程組訓(xùn)練消元法的應(yīng)用。目的讓學(xué)生進(jìn)一步熟煉消元這種數(shù)學(xué)方法,同時(shí)使知識(shí)形成一個(gè)完整的體系。

我對自己的設(shè)計(jì)思路比較滿意,因?yàn)槲乙恢币詾閷W(xué)數(shù)學(xué)就是領(lǐng)悟數(shù)學(xué)思想方法,訓(xùn)練思維,提高推理分析的能力。在平時(shí)的教學(xué)中我一直比較注重發(fā)散思維的訓(xùn)練,和逆向思維的訓(xùn)練,注重引導(dǎo)學(xué)生從多個(gè)角度兩個(gè)方向分析問題。引導(dǎo)學(xué)生在課堂活動(dòng)中感悟知識(shí)的生成、發(fā)展與變化過程

我的課領(lǐng)導(dǎo)們已經(jīng)聽了過程就不再贅述。下面我按照教學(xué)環(huán)節(jié)把我這節(jié)課分析一下;

一采用劉三姐對歌引入,切近生活,激發(fā)興趣,引起學(xué)生注意。提出問題后,學(xué)生受定向思維影響,認(rèn)為答案是唯一的,這種情況下我用提問的方式激發(fā)學(xué)生思考,如我問一個(gè)男孩的困惑在那里,然后給與合理提示,使他們繼續(xù)討論得出答案。缺點(diǎn):備學(xué)生不充分,以致引題較難,脫離育才學(xué)生實(shí)際,今后應(yīng)注意開講很重要但要注意所選問題的難易程度。

二突破難點(diǎn)仍然采用討論法,期間部分學(xué)生思維受阻,我請一名同學(xué)解釋了他的解題過程,又加以適當(dāng)引導(dǎo)和鼓勵(lì),使討論達(dá)到高潮。優(yōu)點(diǎn)是能鼓勵(lì)學(xué)生用實(shí)驗(yàn)的辦法尋求解題思路,引導(dǎo)他們通過對比的方法發(fā)現(xiàn)二元一次方程組和一元一次方程之間的聯(lián)系,在考慮到時(shí)間不夠用的情況下,仍然堅(jiān)持讓學(xué)生繼續(xù)展開討論,上黑板展示自己的勞動(dòng)成果,并且我認(rèn)為,通過這節(jié)課的訓(xùn)練這些孩子肯定會(huì)喜歡上討論交流這種形式的,通過這節(jié)課教學(xué)使他們已經(jīng)完成了一個(gè)從羞于討論到開始討論的過程。我在巡視的過程中發(fā)現(xiàn)了這種微妙的變化我很高興。缺點(diǎn)是:引導(dǎo)方向不夠明確,浪費(fèi)了學(xué)生的時(shí)間。數(shù)學(xué)是一門精確的學(xué)問,不允許教師含糊其辭,不允許讓學(xué)生猜你要表達(dá)什么意思,如:我在第一個(gè)問題解決了以后,問孩子們:你們能不能添上一個(gè)條件使分法是唯一的呢/實(shí)際上這個(gè)問法對這些孩子來說還是跳躍性太大,致使他們再次陷入迷惘,我想如果我這樣處理是不是更好一些:老師在黑板上把同學(xué)們剛才回答的幾組解列出來,然后讓他們觀察每一組解之間的關(guān)系,再添?xiàng)l件構(gòu)造方程。給我的教訓(xùn)是向?qū)W生提問不是一件輕而易舉的事情,要問得新奇,問得有趣,問得巧妙,問得具有啟發(fā)性,問得難而有度,問得高而可攀,就非得是前做好充分準(zhǔn)備,精心構(gòu)思不可。學(xué)生的時(shí)間是寶貴的,因此我要學(xué)會(huì)提出一個(gè)真正稱得上是問題的問題。今后備課我應(yīng)該認(rèn)真考慮到各個(gè)環(huán)節(jié),做好各種準(zhǔn)備工作。

三解方程組 因?yàn)闀r(shí)間不夠用處理非常倉促我原本的意圖是想通過對比讓他們體會(huì)代入消元源自于實(shí)際問題。因?yàn)檫@章知識(shí)點(diǎn)是解在前用在后而我復(fù)習(xí)的時(shí)候把它倒過來也是這個(gè)原因。我組織他們討論解方程組時(shí)經(jīng)常出現(xiàn)的哪些錯(cuò)誤,這樣能使學(xué)生在輕松的過程里接受這些錯(cuò)誤從進(jìn)而改正他們。另外這節(jié)課還存在兩個(gè)問題:小組活動(dòng)單一化小組,活動(dòng)結(jié)束后應(yīng)該讓他們充分展示自己的勞動(dòng)成果,增加成就感。小組合作意識(shí)不強(qiáng)列,回答問題不積極,原因之一是他們的表達(dá)能力根本跟不上,我在巡視時(shí)有許多孩子跟我說老師我不知道該怎么說。所以我認(rèn)為這種自主探究,合作交流的教學(xué)形式應(yīng)該繼續(xù)搞下去,孩子的表達(dá)能力繼續(xù)鍛煉。

大家都知道凱慕柏莉奧立佛近日當(dāng)選為2006-年美國年度教師這在美國是一項(xiàng)殊高的榮譽(yù)。他曾經(jīng)說:“好老師不必是那些上出成功課或教出得分最高班的老師。好老師是那些有能力去反思一堂課理解什么是對了什么是錯(cuò)了尋找策略讓下次更好的教師,以上是我對我的授課過程的分析,有不當(dāng)之處懇請各位領(lǐng)導(dǎo)批評指正。

二元一次方程組課件(篇4)

教學(xué)目標(biāo):

1、使學(xué)生會(huì)借助二元一次方程組解決簡單的實(shí)際問題,讓學(xué)生再次體會(huì)二元一次方程組與現(xiàn)實(shí)生活的聯(lián)系和作用2、通過應(yīng)用題教學(xué)使學(xué)生進(jìn)一步使用代數(shù)中的方程去反映現(xiàn)實(shí)世界中等量關(guān)系,體會(huì)代數(shù)方法的優(yōu)越性。

重點(diǎn):能根據(jù)題意列二元一次方程組;根據(jù)題意找出等量關(guān)系;

難點(diǎn):正確發(fā)找出問題中的兩個(gè)等量關(guān)系

教學(xué)過程:

一、復(fù)習(xí)

列方程解應(yīng)用題的步驟是什么?

審題、設(shè)未知數(shù)、列方程、解方程、檢驗(yàn)并答

新課:

看一看課本99頁探究1

問題:

1題中有哪些已知量?哪些未知量?

2題中等量關(guān)系有哪些?

3如何解這個(gè)應(yīng)用題?

本題的等量關(guān)系是(1)30只母牛和15只小牛一天需用飼料為675kg

(2)(30+12只母牛和(15+5)只小牛一天需用飼料為940

練一練:

1、某所中學(xué)現(xiàn)在有學(xué)生4200人,計(jì)劃一年后初中在樣生增加8%,高中在校生增加11%,這樣全校學(xué)生將增加10%,這所學(xué)?,F(xiàn)在的初中在校生和高中在校生人數(shù)各是多少人?

2、有大小兩輛貨車,兩輛大車與3輛小車一次可以支貨15。50噸,5輛大車與6輛小車一次可以支貨35噸,求3輛大車與5輛小車一次可以運(yùn)貨多少噸?

3、某工廠第一車間比第二車間人數(shù)的少30人,如果從第二車間調(diào)出10人到第一車間,則第一車間的人數(shù)是第二車間的,問這兩車間原有多少人?

4、某運(yùn)輸隊(duì)送一批貨物,計(jì)劃20天完成,實(shí)際每天多運(yùn)送5噸,結(jié)果不但提前2天完成任務(wù)并多運(yùn)了10噸,求這批貨物有多少噸?原計(jì)劃每天運(yùn)輸多少噸?

二元一次方程組課件(篇5)

【教學(xué)目標(biāo)】

知識(shí)目標(biāo):

①使學(xué)生初步理解二元一次方程與一次函數(shù)的關(guān)系。

②能根據(jù)一次函數(shù)的圖象求二元一次方程組的近似解。

能力目標(biāo):

通過學(xué)生的思考和操作,力圖提示出方程與圖象之間的關(guān)系,引入二元一次方程組圖象解法,同時(shí)培養(yǎng)學(xué)生初步的數(shù)形結(jié)合的意識(shí)和能力。

情感目標(biāo):

通過學(xué)生的自主探索,提示出方程和圖象之間的對應(yīng)關(guān)系,加強(qiáng)新舊知識(shí)的聯(lián)系,培養(yǎng)學(xué)生的創(chuàng)新意識(shí),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

重點(diǎn)要求:

1、二元一次方程和一次函數(shù)的關(guān)系。

2、能根據(jù)一次函數(shù)的圖象求二元一次方程組的近似解。

難點(diǎn)突破:

經(jīng)歷觀察、思考、操作、探究、交流等數(shù)學(xué)活動(dòng),培養(yǎng)學(xué)生抽象思維能力,并體會(huì)方程和函數(shù)之間的對應(yīng)關(guān)系,即數(shù)形結(jié)合思想。

【教學(xué)過程】

一、學(xué)前先思

師:請同學(xué)們思考,我們已經(jīng)學(xué)過的二元一次方程組的解法有哪些?

生:代入消元法、加減消元法。

師:請你猜測還有其他的解法嗎?

生:(小聲議論,有人提出圖象解法)

師:看來的同學(xué)似乎已經(jīng)提前做了預(yù)習(xí)工作,很好!那么對于課題“二元一次方程組的圖象解法”,你想提什么問題?

生:二元一次方程組怎么會(huì)有圖象?它的圖象應(yīng)該怎樣畫?

生:二元一次方程組的圖象解法怎么做?

師:同學(xué)們都問得很好!那你有喜歡的.二元一次方程組嗎?

生:(比較害羞)

師:看來大家比較害羞,那么請大家把各自喜歡的二元一次方程組留在心里。讓我們帶著同學(xué)們提出的問題從二元一次方程開始今天的學(xué)習(xí)。

二、探究導(dǎo)學(xué)

題目:

判斷上面幾組解中哪些是二元一次方程的解?

生:和不是,其余各組均是方程的解。

師:請?jiān)趯W(xué)案上的直角坐標(biāo)系中先畫出一次函數(shù)的圖象,再標(biāo)出以上述的方程的解中為橫坐標(biāo),為縱坐標(biāo)的點(diǎn),思考:二元一次方程的解與一次函數(shù)圖象上的點(diǎn)有什么關(guān)系?

教學(xué)引入

師:教材在《四邊形》這一章《引言》里有這樣一句話:把一個(gè)長方形折疊就可以得到一個(gè)正方形。現(xiàn)在請同學(xué)們拿出一個(gè)長方形紙條,按動(dòng)畫所示進(jìn)行折疊處理。

動(dòng)畫演示:

場景一:正方形折疊演示

師:這就是我們得到的正方形。下面請同學(xué)們拿出三角板(刻度尺)和圓規(guī),我們來研究正方形的幾何性質(zhì)—邊、角以及對角線之間的關(guān)系。請大家測量各邊的長度、各角的大小、對角線的長度以及對角線交點(diǎn)到各頂點(diǎn)的長度。

[學(xué)生活動(dòng):各自測量。]

鼓勵(lì)學(xué)生將測量結(jié)果與鄰近同學(xué)進(jìn)行比較,找出共同點(diǎn)。

講授新課

找一兩個(gè)學(xué)生表述其結(jié)論,表述是要注意糾正其語言的規(guī)范性。

動(dòng)畫演示:

場景二:正方形的性質(zhì)

師:這些性質(zhì)里那些是矩形的性質(zhì)?

[學(xué)生活動(dòng):尋找矩形性質(zhì)。]

動(dòng)畫演示:

場景三:矩形的性質(zhì)

師:同樣在這些性質(zhì)里尋找屬于菱形的性質(zhì)。

[學(xué)生活動(dòng);尋找菱形性質(zhì)。]

動(dòng)畫演示:

場景四:菱形的性質(zhì)

師:這說明正方形具有矩形和菱形的全部性質(zhì)。

及時(shí)提出問題,引導(dǎo)學(xué)生進(jìn)行思考。

師:根據(jù)這些性質(zhì),我們能不能給正方形下一個(gè)定義?怎么樣給正方形下一個(gè)準(zhǔn)確的定義?

[學(xué)生活動(dòng):積極思考,有同學(xué)做躍躍欲試狀。]

師:請同學(xué)們回想矩形與菱形的定義,可以根據(jù)矩形與菱形的定義類似的給出正方形的定義。

學(xué)生應(yīng)能夠向出十種左右的定義方式,其余作相應(yīng)鼓勵(lì),把以下三種板書:

“有一組鄰邊相等的矩形叫做正方形。”

“有一個(gè)角是直角的菱形叫做正方形。”

“有一個(gè)角是直角且有一組鄰邊相等的平行四邊形叫做正方形。”

[學(xué)生活動(dòng):討論這三個(gè)定義正確不正確?三個(gè)定義之間有什么共同和不同的地方?這出教材中采用的是第三種定義方式。]

師:根據(jù)定義,我們把平行四邊形、矩形、菱形和正方形它們之間的關(guān)系梳理一下。

生:我發(fā)現(xiàn)二元一次方程的解就是相對應(yīng)的一次函數(shù)圖象上的點(diǎn)的坐標(biāo)。

師:很好!反過來,請問:一次函數(shù)圖象上的點(diǎn)的坐標(biāo)是否是與其相對應(yīng)的二元一次方程的解呢?

生:是的。并且二元一次方程的解中的、的值就是相對應(yīng)的一次函數(shù)圖象上點(diǎn)的橫、縱坐標(biāo)的值。

三、鞏固基礎(chǔ)

師:非常好!那下面的題目你會(huì)解嗎?

(學(xué)生讀題)題目:方程有一個(gè)解是,則一次函數(shù)的圖象上必有一個(gè)點(diǎn)的坐標(biāo)為______.

生:(2,1)

(學(xué)生讀題)題目:一次函數(shù)的圖象上有一個(gè)點(diǎn)的坐標(biāo)為(3,2),則方程必有一個(gè)解是_________.

生:

師:你能把下面的二元一次方程轉(zhuǎn)化成相應(yīng)的一次函數(shù)嗎?

(學(xué)生讀題)把下列二元一次方程轉(zhuǎn)化成的形式:

(1)(2)

生:第(1)題利用移項(xiàng),得到,所以

第(2)題利用移項(xiàng),得到,兩邊同時(shí)除以2,所以

四、感悟提升

師:如果將和組成二元一次方程組,你能用代入消元法或者加減消元法求出它的解嗎?

生:能,我算出

師:很好!你能在同一直角坐標(biāo)系中畫出一次函數(shù)與的圖象嗎?

生:可以。(動(dòng)手在學(xué)案上畫圖)

師:觀察兩條直線的位置關(guān)系,你有什么發(fā)現(xiàn)?

生:我發(fā)現(xiàn)這兩條直線相交,并且交點(diǎn)坐標(biāo)是(2,1)。

師:通過以上活動(dòng),你能得到什么結(jié)論?

生:我發(fā)現(xiàn)剛剛求出的二元一次方程的解剛好就是一次函數(shù)與的圖象的交點(diǎn)坐標(biāo)(2,1)。

師:很好!你能抽象成一般的結(jié)論嗎?

生:如果兩個(gè)一次函數(shù)的圖象有一個(gè)交點(diǎn),那么交點(diǎn)的坐標(biāo)就是相應(yīng)的二元一次方程組的解。

師:非常好!用一次函數(shù)的圖象解二元一次方程組的方法就是我們今天要學(xué)習(xí)的二元一次方程組的圖象解法。

師:你能學(xué)以致用嗎?

y=2x-5

y=-x+1

題目:如圖,方程組的解是___________.

生:根據(jù)圖象可知:一次函數(shù)與的圖象的交點(diǎn)是(2,-1),因此,方程組的解是。

師:回答得真棒!

五、例題教學(xué)

例題:利用一次函數(shù)的圖象解二元一次方程組。

師:請大家在學(xué)案的做中感悟欄內(nèi)上大膽地寫出解題過程。

生:(投影展示解題過程)略。

師:很好!讓我們一起來看一下老師準(zhǔn)備的解題過程(略)

師:你能就此歸納出二元一次方程組的圖象解法的一般步驟嗎?

生:先將二元一次方程組中的方程化成相應(yīng)的一次函數(shù),然后畫出一次函數(shù)的圖象,找出它們的交點(diǎn)坐標(biāo),就可以得出二元一次方程組的解。

師:非常好!我們可以用12個(gè)字的口訣來記住剛才同學(xué)的步驟:變函數(shù),畫圖象,找交點(diǎn),寫結(jié)論。

師:接下來請同學(xué)們在學(xué)案上的鞏固強(qiáng)化欄內(nèi)利用圖象解法求出你心里埋你所喜歡的二元一次方程組的解。

生:(各自動(dòng)手操作,教師展示學(xué)生求解過程)

師:觀察你作的圖象,你有什么發(fā)現(xiàn)嗎?

生:我發(fā)現(xiàn)有些一次函數(shù)圖象的交點(diǎn)比較容易看出來,而有些一次函數(shù)圖象的交點(diǎn)不容易看出來是多少。

師:是的,所以在這里老師需要說明的是我們用圖象法求解一元二次方程組的解得到的是近似解。

師:請大家比較一下,二元一次方程組的圖象解法和我們以前學(xué)過的代數(shù)解法——代入消元法、加減消元法相比,那種方法簡單一些?

生:代入消元法、加減消元法簡單。

師:二元一次方程組的圖象解法既不比代數(shù)解法簡單,且得到的解又是近似的,為什么我們還要學(xué)習(xí)這種解法呢?原因有以下幾個(gè)方面:一是要讓我們學(xué)會(huì)從多種角度思考問題,用多種方法解決問題;二是說明了“數(shù)”與“形”存在著這樣或那樣的密切聯(lián)系,有時(shí)我們要從“數(shù)”的角度去考慮“形”的問題,有時(shí)我們又要從“形”的角度去考慮“數(shù)”的問題,這里是從“形”的角度來考慮“數(shù)”的問題;三是為了以后進(jìn)一步學(xué)習(xí)的需要。

師:看來大家都很愛動(dòng)腦筋,那么接下來我們將例題加以變化。

六、例題變式

題目:用圖象法求解二元一次方程組時(shí),兩條直線相交于點(diǎn)(2,-4),求一次函數(shù)的關(guān)系式。

師:請一位同學(xué)來分析一下。

生:由兩條直線的交點(diǎn)坐標(biāo)(2,-4)可知,二元一次方程組的解就是,把代入到二元一次方程組中,可得:,解得,所以一次函數(shù)的關(guān)系式為。

師:非常好!

七、感悟歸納

師:再請同學(xué)們思考,如果二元一次方程組轉(zhuǎn)化成的一次函數(shù)的圖象沒有交點(diǎn),那么所對應(yīng)的二元一次方程組的解是什么呢?

生:我想如果二元一次方程組轉(zhuǎn)化成的一次函數(shù)的圖象沒有交點(diǎn),那么所對應(yīng)的二元一次方程組應(yīng)該無解。

八、拓寬提升

題目:不畫函數(shù)的圖象,判斷下列兩條直線是否有交點(diǎn)?它們的位置關(guān)系如何?每組一次函數(shù)中的有什么關(guān)系?

(1)與;

(2)與

師:你會(huì)怎樣分析這道題?

生:我們只要求解一下由這兩個(gè)一次函數(shù)所組成的二元一次方程組的解的情況就可以判斷兩條直線的位置關(guān)系。如果方程組有解,那么相應(yīng)的兩條直線就是相交,如果方程組無解,那么相應(yīng)的兩條直線就是平行的位置關(guān)系。

師:很好!抽象成一般結(jié)論怎樣敘述?

生:對于直線與,當(dāng)時(shí),兩直線平行;當(dāng)時(shí),兩直線相交。

九、例題再探

題目:利用一次函數(shù)的圖象解二元一次方程組

問:(1)這兩條直線有什么特殊的位置關(guān)系?

(2)這兩個(gè)一次函數(shù)的有何特殊的關(guān)系?

(3)由此,你能得出怎樣的結(jié)論?

師:哪位同學(xué)來嘗試一下?

生:(1)這兩條直線是垂直的位置關(guān)系;

(2)這兩個(gè)一次函數(shù)的相乘的結(jié)果等于-1;

(3)仿照剛才的結(jié)論,我得出的結(jié)論是:對于直線與,當(dāng)時(shí),兩直線垂直。

師:太棒了!那下面的這一題你會(huì)做嗎?

題目:已知直線和直線

(1)若,求的值;

(2)若,求垂足的坐標(biāo)。

師:誰來試一下?

生:由前面的結(jié)論我們可以得出,如果,則,解得:;如果,則,解得,將代入二元一次方程組,可得,求出方程組的解就可以得出垂足的坐標(biāo)。

十、學(xué)會(huì)創(chuàng)新

師:請你根據(jù)這節(jié)課中的例題(或習(xí)題)在學(xué)案中編(或出)一道題。看誰出的題新穎、精妙!

生:(暢所欲言,踴躍嘗試)

十一、小結(jié)與思考

師:(1)這節(jié)課你學(xué)到了什么?

(2)你還存在哪些疑問?

生:(分組討論,代表發(fā)言總結(jié))

【設(shè)計(jì)說明】

本節(jié)課的兩個(gè)知識(shí)點(diǎn):二元一次方程和一次函數(shù)的關(guān)系,二元一次方程組的圖象解法對于學(xué)生來說都是難點(diǎn)。就本節(jié)課而言,前者較為重要,后者難度較大。確定本節(jié)課的重點(diǎn)為前者,是因?yàn)閷W(xué)生必須首先理解二元一次方程和一次函數(shù)在數(shù)與形兩方面的聯(lián)系,在此基礎(chǔ)上才能解決好后面的難點(diǎn)。在重難點(diǎn)的處理上,為了解決學(xué)生對重點(diǎn)的理解,用一組二元一次方程組串起一節(jié)課,加以變式,既使得學(xué)生理解了重點(diǎn)內(nèi)容,又為后面的難點(diǎn)突破留下了一定的時(shí)間和空間。本節(jié)課的教學(xué),主要以問題為線索,注重引導(dǎo)學(xué)生仔細(xì)觀察、獨(dú)立思考、認(rèn)真操作、分組討論、合作交流、師生互動(dòng),這對本節(jié)課的重難點(diǎn)的突破還是有效的,同時(shí)也體現(xiàn)了新課改提倡的學(xué)生的“自主、合作、探究”的學(xué)習(xí)方式的培養(yǎng)。另外,對利用二元一次方程組的解判斷直線的位置關(guān)系作為補(bǔ)充,滲透數(shù)形結(jié)合思想,也對教學(xué)目標(biāo)中的情感態(tài)度和價(jià)值觀的又一方面體現(xiàn)。

【教學(xué)反思】

這節(jié)課以“回顧、先思”為先導(dǎo),以“操作、思考”為手段,以“數(shù)、形結(jié)合”為要求,以“引導(dǎo)探究,變式拓寬”為主線,從舊知引入,自然過渡、不落痕跡。首先提出學(xué)生所熟知的二元一次方程并討論其解的情況,為后面探究二元一次方程與一次函數(shù)之間的關(guān)系作了必要的準(zhǔn)備,結(jié)構(gòu)安排自然、緊湊。在操作中,提出問題、深化認(rèn)識(shí)。一切知識(shí)來自于實(shí)踐。只有實(shí)踐,才能發(fā)現(xiàn)問題、提出問題;只有實(shí)踐,才能把握知識(shí)、深化認(rèn)識(shí)。先讓學(xué)生畫出一次函數(shù)的圖象,在畫圖的過程中發(fā)現(xiàn):“以二元一次方程的解為坐標(biāo)的點(diǎn)都在相應(yīng)的函數(shù)圖象上?!痹趹?yīng)用結(jié)論探索一元二次方程組的圖象解法時(shí),也是在操作中來發(fā)現(xiàn)問題。這樣,就給了學(xué)生充分體驗(yàn)、自主探索知識(shí)的機(jī)會(huì);使他們在自主探索、合作交流中找到了快樂,深化了認(rèn)識(shí)。以能力培養(yǎng)為核心,引導(dǎo)探究為主線,數(shù)、形結(jié)合為要求。能力培養(yǎng),特別是創(chuàng)新能力的培養(yǎng)是新課程關(guān)注的焦點(diǎn)。能力培養(yǎng)是以自主探究為平臺(tái)。“自主”不是一盤散沙,“探究”不是漫無邊際。要提高探究的質(zhì)量和效益必須在教師的引導(dǎo)下進(jìn)行。為達(dá)到這一目的,教案中設(shè)計(jì)了“探究導(dǎo)學(xué)”、“例題變式”、“例題再探”、“學(xué)會(huì)創(chuàng)新”和“拓展提升”。新課程理念指出:教師是課程的研究者和開發(fā)者。這就要求我們:在新課程標(biāo)準(zhǔn)的指導(dǎo)下,認(rèn)真研究教材,體會(huì)教材的編寫意圖。在此基礎(chǔ)上,設(shè)計(jì)出既體現(xiàn)課程精神,又適合本班學(xué)生實(shí)際的教學(xué)案例。本節(jié)課前半部分時(shí)間有些慢,后半部分例題再探和學(xué)會(huì)創(chuàng)新時(shí)間不夠。建議有針對性的學(xué)生板演多一點(diǎn),進(jìn)一步加強(qiáng)雙基的落實(shí)。

【同伴點(diǎn)評】

本節(jié)課教師創(chuàng)設(shè)問題情境,引導(dǎo)學(xué)生觀察、思考、操作、探究、合作交流。問題的設(shè)計(jì)層層遞進(jìn),通過問題的逐一解決,師生最終形成共識(shí),達(dá)到了揭示二元一次方程組與一次函數(shù)的圖象關(guān)系的目的。(李曉紅)

在例題教學(xué)及學(xué)生動(dòng)手嘗試時(shí),教師在學(xué)生大膽嘗試之后給出解題過程,強(qiáng)調(diào)了解題的規(guī)范性,有利于培養(yǎng)學(xué)生的嚴(yán)謹(jǐn)認(rèn)真的學(xué)習(xí)態(tài)度。同時(shí)強(qiáng)調(diào)了由于二元一次方程組的圖象解法得到的解往往是近似的,因此必須檢驗(yàn)。教師對學(xué)習(xí)二元一次方程組的圖象解法的必要性的解釋,是非常有必要的,這一解釋解決了學(xué)生的疑惑,同時(shí)也滲透了數(shù)形結(jié)合思想,也是教學(xué)目標(biāo)中的情感態(tài)度和價(jià)值觀的體現(xiàn)。對于這一解釋,相當(dāng)一部分教師在這一節(jié)課中并沒有很好解決。這一處理方法值得他人借鑒。(丁葉謙)

本節(jié)課老師準(zhǔn)備充分,教學(xué)環(huán)節(jié)緊緊相扣。授課老師充分體現(xiàn)了課題:“先思后導(dǎo),變式拓寬教學(xué)設(shè)計(jì)”的精神,不斷地創(chuàng)設(shè)問題情境,引導(dǎo)學(xué)生學(xué)習(xí)新知,在探索二元一次方程組的圖象解法時(shí)給了學(xué)生充分體驗(yàn)、自主探索知識(shí)的機(jī)會(huì),使他們在自主探索、合作交流中找到了快樂,深化了認(rèn)識(shí)。同時(shí)對例題連續(xù)的再利用,不斷變化,讓學(xué)生在變式中不斷豐富對二元一次方程組圖象解法的認(rèn)識(shí),充分認(rèn)識(shí)二元一次方程組圖象解法的實(shí)用性,學(xué)會(huì)創(chuàng)新環(huán)節(jié)的設(shè)計(jì)更是極大地調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性。教師教態(tài)親切,語言生動(dòng),娓娓道來。

二元一次方程組課件(篇6)

一、教材分析

1.教材的地位與作用

二元一次方程組是新人教版七年級(jí)數(shù)學(xué)(下)第八章第一節(jié)的內(nèi)容。在此之前,學(xué)生已學(xué)習(xí)了一元一次方程,這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。本節(jié)內(nèi)容主要學(xué)習(xí)和二元一次方程組有關(guān)的四個(gè)概念。本節(jié)內(nèi)容既是前面知識(shí)的深化和應(yīng)用,又是今后用二元一次方程組解決生活中的實(shí)際問題的預(yù)備知識(shí),占據(jù)重要的地位,是學(xué)生新的方程建模的基礎(chǔ)課,為今后學(xué)習(xí)一次函數(shù)以及其他學(xué)科(如:物理)的學(xué)習(xí)奠定基礎(chǔ),同時(shí)建模的思想方法對學(xué)生今后的發(fā)展有引導(dǎo)作用,因此本節(jié)課具有承上啟下的作用。

2.教學(xué)目標(biāo)

[知識(shí)技能]

掌握二元一次方程、二元一次方程組及它們的解的概念,通過實(shí)例認(rèn)識(shí)二元一次方程和二元一次方程組也是反映數(shù)量關(guān)系的重要數(shù)學(xué)模型。

[數(shù)學(xué)思考]

體會(huì)實(shí)際問題中二元一次方程組是反映現(xiàn)實(shí)世界多個(gè)量之間相等關(guān)系的一種有效的數(shù)學(xué)模型,能感受二元一次方程(組)的重要作用。

[解決問題]

通過對本節(jié)知識(shí)點(diǎn)的學(xué)習(xí),提高分析問題、解決問題和邏輯思維能力。

[情感態(tài)度]

引導(dǎo)學(xué)生對情境問題的觀察、思考,激發(fā)學(xué)生的好奇心和求知欲,并在運(yùn)用數(shù)學(xué)知識(shí)解答問題的活動(dòng)中獲取成功的體驗(yàn),建立學(xué)習(xí)的自信心。

3.教學(xué)重點(diǎn)與難點(diǎn)

按照《課程標(biāo)準(zhǔn)》的要求,根據(jù)上述地位與作用的分析及教學(xué)目標(biāo),本節(jié)課中相關(guān)概念的掌握是教學(xué)重點(diǎn)。

通過學(xué)生親身體驗(yàn),理解二元一次方程(組)解的個(gè)數(shù)的確定。

二、學(xué)情分析

七年級(jí)學(xué)生思維活躍,好奇心強(qiáng),希望平等交流研討,厭煩空洞的說教。因此,在教學(xué)過程中,積極采用形象生動(dòng)、形式多樣的教學(xué)方法和學(xué)生廣泛的、積極主動(dòng)參與的學(xué)習(xí)方式,激發(fā)他們的興趣。一方面通過學(xué)案與課件,使他們的注意力始終集中在課堂上;另一方面創(chuàng)造條件和機(jī)會(huì),讓學(xué)生自主練習(xí),合作交流,培養(yǎng)學(xué)生學(xué)習(xí)的主動(dòng)性、與人合作的精神,激發(fā)學(xué)生的興趣和求知欲,感受成功的樂趣。

三、教法與學(xué)法

1.教法

數(shù)學(xué)課程標(biāo)準(zhǔn)明確指出:有效的數(shù)學(xué)學(xué)習(xí)活動(dòng)不能單純地依賴模仿與記憶,動(dòng)手實(shí)踐、自主探究與合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。所以我在教學(xué)中不只傳授知識(shí),更要激發(fā)學(xué)生的創(chuàng)造思維,引導(dǎo)學(xué)生探究,發(fā)現(xiàn)結(jié)論的方法。正所謂“教是為了不教”。所以我采用引導(dǎo)發(fā)現(xiàn)法為主,情景問答法、討論法、活動(dòng)競賽法、利用多媒體課件輔助教學(xué)等完成本節(jié)的教學(xué),真正做到教師的主導(dǎo)地位。

2.學(xué)法

學(xué)生是學(xué)習(xí)的主體,所以本節(jié)教學(xué)中,引導(dǎo)學(xué)生自主探究、歸納總結(jié),運(yùn)用自主探索與合作交流開拓自己的創(chuàng)造思維。這樣調(diào)動(dòng)學(xué)生的積極性,激發(fā)學(xué)生興趣,使學(xué)生由被動(dòng)學(xué)習(xí)變?yōu)榉e極主動(dòng)的探究,這也符合數(shù)學(xué)的直觀性和形象性。

四、教學(xué)過程與課堂活動(dòng)

為了達(dá)到本節(jié)課的教學(xué)目標(biāo),突出重點(diǎn),突破難點(diǎn),我把教學(xué)過程設(shè)計(jì)為五個(gè)環(huán)節(jié):

1。創(chuàng)設(shè)情境,引入概念

NBA籃球聯(lián)賽情景再現(xiàn),利用世界男籃亞裔球星林書豪激勵(lì)學(xué)生相信自已能夠創(chuàng)造奇跡的勵(lì)志教育,感受數(shù)學(xué)來源于生活,調(diào)動(dòng)學(xué)生順利引入新課。

2。觀察歸納,形成概念

概念的教學(xué),不糾纏于其語言本身,而是通過類比整合形成新的概念。由于學(xué)生對一元一次方程概念已經(jīng)很了解,我主要采用了類比的方法,弱化概念的教學(xué),強(qiáng)化對概念的正確理解,通過學(xué)案與課件相結(jié)合的方式,以題組形式分層漸進(jìn)式訓(xùn)練,讓學(xué)生明晰概念,鞏固概念,強(qiáng)化概念,提升能力。

3拓展延伸,深入概念

知識(shí)的掌握,能力的提升是一個(gè)不斷循序上升的過程,而教學(xué)過程更是一個(gè)生動(dòng)活沷,主動(dòng)和富有個(gè)性的過程,讓學(xué)生認(rèn)真聽講、積極思考,動(dòng)腦動(dòng)口,自主探索,合作交流。

4.當(dāng)堂檢測,強(qiáng)化概念

通過課堂隨機(jī)選題的形式答題,通過合作小組交流,全班展示交流,使學(xué)生互相學(xué)習(xí)、互相促進(jìn)、互相競爭,將小組的認(rèn)知成果轉(zhuǎn)化為全班同學(xué)的共同認(rèn)知成果,從而營造寬松、民主、競爭、快樂的學(xué)習(xí)氛圍,讓學(xué)生體驗(yàn)到學(xué)習(xí)的快樂,成功的喜悅,從而充分體現(xiàn)數(shù)學(xué)教學(xué)主要是學(xué)生數(shù)學(xué)活動(dòng)教學(xué)的基本理念。

5.反思小結(jié),回歸概念

知識(shí)性內(nèi)容的小結(jié),可把課堂教學(xué)傳授的知識(shí)盡快化為學(xué)生的素質(zhì);數(shù)學(xué)思想方法的小結(jié),可使學(xué)生更深刻地理解數(shù)學(xué)思想方法在解題中的地位和應(yīng)用,培養(yǎng)學(xué)生形成完整的知識(shí)體系,養(yǎng)成及時(shí)反思的習(xí)慣。

五、教后反思

美國國家研究委員會(huì)在《人人關(guān)心數(shù)學(xué)教育的未來》的報(bào)告中指出“沒有一個(gè)人能教好數(shù)學(xué),好的教師不是在教數(shù)學(xué),而是在激發(fā)學(xué)生自已去學(xué)數(shù)學(xué)”。只有學(xué)生通過自已的思考建立對數(shù)學(xué)的理解力,才能真正的學(xué)好數(shù)學(xué)。本節(jié)課,我致力于讓學(xué)生自已去發(fā)現(xiàn)數(shù)學(xué),研究數(shù)學(xué),加強(qiáng)數(shù)學(xué)思想、方法及科學(xué)研究方法的指導(dǎo),引導(dǎo)學(xué)生不斷從“學(xué)會(huì)數(shù)學(xué)”到“會(huì)學(xué)數(shù)學(xué)”,但教無止境,課堂仍然留有遺憾,在今后的教學(xué)中,我將從這樣的三個(gè)方面加強(qiáng)對課堂的研究:

一是加強(qiáng)對學(xué)法研究、學(xué)情研究,讓教學(xué)方式與內(nèi)容更符合學(xué)生認(rèn)知規(guī)律,更貼近學(xué)生實(shí)際;

二是重視學(xué)生課堂的學(xué)習(xí)感受,營造民主、開放、合作、競爭的學(xué)習(xí)氛圍;;

三是提高教學(xué)機(jī)智、不斷創(chuàng)新優(yōu)化教學(xué)方法,科學(xué)、合理、靈活地處理課堂上生成的問題。

二元一次方程組課件(篇7)

學(xué)習(xí)目標(biāo) :會(huì)運(yùn)用代入消元法解二元一次方程組.

學(xué)習(xí)重難點(diǎn):

1、會(huì)用代入法解二元一次方程組。

2、靈活運(yùn)用代入法的技巧.

學(xué)習(xí)過程:

一、基本概念

1、二元一次方程組中有兩個(gè)未知數(shù),如果消去其中一個(gè)未知數(shù),那么就把二元一次方程組轉(zhuǎn)化為我們熟悉的一元一次方程。我們可以先求出一個(gè)未知數(shù),然后再求另一個(gè)未知數(shù),。這種將未知數(shù)的個(gè)數(shù)由多化少、逐一解決的思想,叫做____________。

2、把二元一次方程組中一個(gè)方程的一個(gè)未知數(shù)用含另一個(gè)未知數(shù)的式子表示出來,再代入另一個(gè)方程,實(shí)現(xiàn)消元,進(jìn)而求得這個(gè)二元一次方程組的解,這種方法叫做________,簡稱_____。

3、代入消元法的步驟:

二、自學(xué)、合作、探究

1、將方程5x-6y=12變形:若用y的式子表示x,則x=______,當(dāng)y=-2時(shí),x=_______;若用含x的式子表示y,則y=______,當(dāng)x=0時(shí),y=________ 。

2、在方程2x+6y-5=0中,當(dāng)3y=-4時(shí),2x= ____________。

3、若 的解,則a=______,b=_______。

4、若方程y=1-x的解也是方程3x+2y=5的解,則x=____,y=____。

5、用代人法解方程組 ①②,把____代人____,可以消去未知數(shù)______。

6、已知方程組 的解也是方程組 的解,則a=_______,b=________ ,3a+2b=___________。

7、已知x=1和x=2都滿足關(guān)于x的方程x2+px+q=0,則p=_____,q=________ 。

8、當(dāng)k=______時(shí),方程組 的解中x與y的值相等。

9、用代入法解下列方程組:

⑴ ⑵ ⑶

二、訓(xùn)練

1、方程組 的解是( )

A. B. C. D.

2、已知二元一次方程3x+4y=6,當(dāng)x、y互為相反數(shù)時(shí),x=_____,y=______;當(dāng)x、y相等時(shí),x=______,y= _______ 。

3、若2ay+5b3x與-4a2xb2-4y是同類項(xiàng),則a=______,b=_______。

4、對于關(guān)于x、y的方程y=kx+b,k比b大1,且當(dāng)x= 時(shí),y= ,則k、b的值分別是( )

A. B.2,1 C.-2,1 D.-1,0

5、用代入法解下列方程組

⑴ ⑵

6、如果(5a-7b+3)2+ =0,求a與b的值。

7、已知2x2m-3n-7-3ym+3n+6=8是關(guān)于x,y的二元一次方程,求n2m

8、若方程組 與 有公共的解,求a,b.

二元一次方程組課件(篇8)

各位評委、老師:大家好!

我是來自丁莊鎮(zhèn)中心初中的王紅。今天我說課的內(nèi)容是人教版義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書《數(shù)學(xué)》七年級(jí)下冊,第八章第二節(jié)《二元一次方程組的解法》第一課時(shí)代入消元法。

下面我從教材分析、教學(xué)方法、學(xué)法指導(dǎo)、教學(xué)過程、教學(xué)感想這五個(gè)方面匯報(bào)我對這節(jié)課的教學(xué)設(shè)想。

一、教材分析

教材的地位和作用

本節(jié)主要內(nèi)容是在上一節(jié)已學(xué)習(xí)了二元一次方程(組)和二元一次方程(組)的解的概念的基礎(chǔ)上,來學(xué)習(xí)解方程組的第一種方法——代入消元法。并初步體會(huì)解二元一次方程組的基本思想----“消元”。二元一次方程組的求解,用到了前面學(xué)過的一元一次方程的解法,是對過去所學(xué)知識(shí)的一個(gè)回顧和提高,同時(shí),也為后面利用方程組來解決實(shí)際問題打下了基礎(chǔ)。

2、教學(xué)目標(biāo)

根據(jù)本課教材的特點(diǎn)、課程標(biāo)準(zhǔn)對本節(jié)課的教學(xué)要求、學(xué)生的身心發(fā)展的合理需要,我從三個(gè)不同的方面確立了以下教學(xué)目標(biāo):

(1) 知識(shí)技能目標(biāo):1)會(huì)用代入法解二元一次方程組

2)初步體會(huì)解二元一次方程組的基本思想----消元

(2) 能力目標(biāo):通過對方程組中未知數(shù)特點(diǎn)的觀察和分析,明確解二元一次方程組的主要思路是“消元”,由未知向已知的轉(zhuǎn)化,培養(yǎng)觀察能力和體會(huì)化規(guī)思想。通過用代入消元法解二元一次方程組的訓(xùn)練,培養(yǎng)運(yùn)算能力。

(3) 情感目標(biāo):通過研究解決問題的方法,培養(yǎng)學(xué)生合作交流意識(shí)與探究精神。

3、重點(diǎn)、難點(diǎn)

根據(jù)學(xué)生的認(rèn)知特點(diǎn),我確立了本節(jié)課的重難點(diǎn)。

重點(diǎn):用代入消元法解二元一次方程組

難點(diǎn):探索如何用代入法將“二元”轉(zhuǎn)化為“一元”的消元過程。

為了突出重點(diǎn)、突破難點(diǎn),讓學(xué)生動(dòng)手操作,積極參與并主動(dòng)探索解題方法,我設(shè)計(jì)并制作了多媒體課件,幫助學(xué)生理解代入消元法。

成功的教學(xué)必須選擇合適的教法和學(xué)法,因此我確定如下教法和學(xué)法:

二、教學(xué)方法

我采用了探究式教學(xué)方法,設(shè)疑思考、點(diǎn)撥啟發(fā)、小組探究、逐步深入。

三、學(xué)法指導(dǎo)

我采用積極引導(dǎo)學(xué)生主動(dòng)參與,合作交流的方法組織教學(xué),使學(xué)生真正成為教學(xué)的主體,體會(huì)參與的樂趣,成功的喜悅,感知數(shù)學(xué)的奇妙。

四、教學(xué)設(shè)計(jì)

1、根據(jù)以上分析,我設(shè)計(jì)了以下六個(gè)教學(xué)環(huán)節(jié):

2、教學(xué)過程

下面我就每一個(gè)教學(xué)環(huán)節(jié),具體介紹我對本節(jié)課的教學(xué)設(shè)想。

環(huán)節(jié)一:創(chuàng)設(shè)情境

活動(dòng)一:出示引例:我校舉辦“奧運(yùn)杯”籃球聯(lián)賽,每場比賽都要分出勝負(fù),勝1場得2分 ,負(fù)1場得1 分,我班籃球隊(duì)為了取得好名次 ,想在全部22場比賽中得40分,那么我班籃球隊(duì)勝負(fù)場數(shù)應(yīng)分別是多少?

學(xué)生活動(dòng):列方程或方程組解決問題

教師關(guān)注:學(xué)生是否能夠多角度地考慮問題.

設(shè)計(jì)意圖:創(chuàng)設(shè)問題情景,讓學(xué)生從生活中發(fā)現(xiàn)數(shù)學(xué)問題,激發(fā)學(xué)生的學(xué)習(xí)興趣。

環(huán)節(jié)二、嘗試發(fā)現(xiàn)

活動(dòng)二:小組探究:能否將二元一次方程組轉(zhuǎn)化為一元一次方程進(jìn)而求得方程組的解呢?

學(xué)生活動(dòng):小組探究二元一次方程組的解法,初步體驗(yàn)解二元一次方程的步驟。

教師關(guān)注:學(xué)生思維角度是否合理,學(xué)生是否能抓住問題的核心部分。

設(shè)計(jì)意圖:在學(xué)生小組討論的過程中提供充分從事數(shù)學(xué)活動(dòng)的機(jī)會(huì),從而激發(fā)學(xué)生的學(xué)習(xí)積極性,體會(huì)在解決問題的過程中,與他人合作的重要性。

活動(dòng)三:小組展示

學(xué)生活動(dòng):分小組針對老師給出的題目,展示解二元一次方程組的方法。

教師關(guān)注:關(guān)注:學(xué)生用語言表達(dá)自己的觀點(diǎn)的準(zhǔn)確性與全面性。

設(shè)計(jì)意圖:在學(xué)生小組展示的過程中,要讓學(xué)生盡情發(fā)揮,這樣才能因材施教。發(fā)展學(xué)生有條理思考問題的能力和表達(dá)能力。

活動(dòng)四:再看轉(zhuǎn)化、把握解題技巧

學(xué)生活動(dòng):觀察轉(zhuǎn)化過程中的技巧,并嘗試總結(jié)。

設(shè)計(jì)意圖:轉(zhuǎn)化是解方程組的重要環(huán)節(jié),也是提高解題速度和正確度的關(guān)鍵,在這里探討,幫助學(xué)生更好的掌握代入消元法。

環(huán)節(jié)三、 小組闖關(guān)

活動(dòng)五:闖關(guān)練習(xí)一,解二元一次方程組,分小組競爭過關(guān)比例。

學(xué)生活動(dòng):做練習(xí)題

教師關(guān)注:學(xué)生解題的步驟的完整性,和解題的正確并及時(shí)的糾正錯(cuò)誤

設(shè)計(jì)意圖:掌握用代入消元法解方程組的一般過程,會(huì)解二元一次方程組并體會(huì)消元的思想。

活動(dòng)六:闖關(guān)練習(xí)二,給出一個(gè)利用二元一次方程組解決的實(shí)際問題,拓展學(xué)生的思維。

學(xué)生活動(dòng):獨(dú)立完成本題。

設(shè)計(jì)意圖:在前面學(xué)習(xí)解二元一次方程組的基礎(chǔ)上,提出實(shí)際問題,發(fā)展學(xué)生得多角度思維能力。

環(huán)節(jié)四、拓展升華

活動(dòng)七:出示例題2.

學(xué)生活動(dòng):先獨(dú)立思考,在同學(xué)之間交流一下想法,然后解決問題。

教師關(guān)注:學(xué)生是否可以找到等量關(guān)系,列出方程組,解方程組。

設(shè)計(jì)意圖:通過用方程組解決實(shí)際問題,培養(yǎng)學(xué)生運(yùn)用代入消元法解方程組的技能和分析問題,解決問題的能力。達(dá)到將所學(xué)知識(shí)進(jìn)一步升華的目的。

環(huán)節(jié)五: 反思小結(jié)

活動(dòng)八:我有哪些收獲?

學(xué)生活動(dòng):學(xué)生歸納總結(jié)

教師關(guān)注:(1)學(xué)生是否養(yǎng)成歸納、整理、總結(jié)的好習(xí)慣;

(2)評價(jià)學(xué)生是否全面理解并掌握了本節(jié)課的知識(shí)。

環(huán)節(jié)六、布置作業(yè)

1、必做題:

P103 第2題 ⑵ ⑷, 第4題

2、 選做題:

設(shè)計(jì)意圖:分層次,選擇作業(yè)題,有利于學(xué)有余力的學(xué)生的發(fā)展。

最后我以著名數(shù)學(xué)家笛卡爾的一句話結(jié)束這節(jié)課。

五、板書設(shè)計(jì)

8.2二元一次方程組的解法

----代入消元法

1、二元一次方程組 一元一次方程

2、代入消元法的一般步驟:

3、思想方法:轉(zhuǎn)化思想、消元思想、方程(組)思想.

六、教學(xué)感想

在教學(xué)過程中,我始終:

堅(jiān)持一個(gè)原則——教為主導(dǎo),學(xué)為主體

堅(jiān)守一個(gè)理念——先學(xué)后教,以學(xué)定教

貫穿一個(gè)思想——享受數(shù)學(xué),快樂學(xué)習(xí)

以上是我對本節(jié)課的理解,有不當(dāng)之處盡請各位老師批評指正。謝謝!

我的說課到此結(jié)束,謝謝大家!

一元二次方程課件十一篇


本文的主題是教案的重要性。教案可以幫助老師準(zhǔn)備好課程,確保教學(xué)目標(biāo)的實(shí)現(xiàn)。在本文中,小編為讀者準(zhǔn)備了與“教案”有關(guān)的內(nèi)容,并鼓勵(lì)讀者保存這篇文章,因?yàn)樗赡軐λ麄兲峁﹩⑹尽V灰蠋熢趯懡贪笗r(shí)認(rèn)真負(fù)責(zé),就能夠上好課。

一元二次方程課件(篇1)

根據(jù)面積與面積之間的關(guān)系建立一元二次方程的數(shù)學(xué)模型并解決這類問題.

掌握面積法建立一元二次方程的數(shù)學(xué)模型并運(yùn)用它解決實(shí)際問題.

利用提問的方法復(fù)習(xí)幾種特殊圖形的面積公式來引入新課,解決新課中的問題.

1.重點(diǎn):根據(jù)面積與面積之間的等量關(guān)系建立一元二元方程的數(shù)學(xué)模型并運(yùn)用它解決實(shí)際問題.

2.難點(diǎn)與關(guān)鍵:根據(jù)面積與面積之間的等量關(guān)系建立一元二次方程的數(shù)學(xué)模型.

1.直角三角形的面積公式是什么?一般三角形的面積公式是什么呢?

2.正方形的面積公式是什么呢?長方形的面積公式又是什么?

3.梯形的面積公式是什么?

4.菱形的面積公式是什么?

5.平行四邊形的面積公式是什么?

現(xiàn)在,我們根據(jù)剛才所復(fù)習(xí)的面積公式來建立一些數(shù)學(xué)模型,解決一些實(shí)際問題.

例1.某林場計(jì)劃修一條長750m,斷面為等腰梯形的渠道,斷面面積為1.6m2,上口寬比渠深多2m,渠底比渠深多0.4m.

(1)渠道的'上口寬與渠底寬各是多少?

(2)如果計(jì)劃每天挖土48m3,需要多少天才能把這條渠道挖完?

分析:因?yàn)榍钭钚?,為了便于?jì)算,不妨設(shè)渠深為xm,則上口寬為x+2,渠底為x+0.4,那么,根據(jù)梯形的面積公式便可建模.

∴上口寬為2.8m,渠底為1.2m.

答:渠道的上口寬與渠底深各是2.8m和1.2m;需要25天才能挖完渠道.

例2.如圖,要設(shè)計(jì)一本書的封面,封面長27cm,寬21cm,正中央是一個(gè)與整個(gè)封面長寬比例相同的矩形,如果要使四周的彩色邊襯所占面積是封面面積的四分之一,上、下邊襯等寬,左、右邊襯等寬,應(yīng)如何設(shè)計(jì)四周邊襯的寬度(精確到0.1cm)?

老師點(diǎn)評:依據(jù)題意知:中央矩形的長寬之比等于封面的長寬之比=9:7,由此可以判定:上下邊襯寬與左右邊襯寬之比為9:7,設(shè)上、下邊襯的寬均為9xcm,則左、右邊襯的寬均為7xcm,依題意,得:中央矩形的長為(27-18x)cm,寬為(21-14x)cm.

一元二次方程課件(篇2)

教學(xué)目的 1.了解整式方程和一元二次方程的概念;

2.知道一元二次方程的一般形式,會(huì)把一元二次方程化成一般形式。

3.通過本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實(shí)踐又反過來作用于實(shí)踐的辨證唯物主義觀點(diǎn),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

教學(xué)難點(diǎn)和難點(diǎn):重點(diǎn):

1.一元二次方程的有關(guān)概念

2.會(huì)把一元二次方程化成一般形式

難點(diǎn):一元二次方程的含義.

教學(xué)過程設(shè)計(jì)

一、引入新課

引例:剪一塊面積是150cm2的長方形鐵片,使它的長比寬多5cm、這塊鐵片應(yīng)該怎樣剪?

分析:1.要解決這個(gè)問題,就要求出鐵片的長和寬。

2.這個(gè)問題用什么數(shù)學(xué)方法解決?(間接計(jì)算即列方程解應(yīng)用題。

3.讓學(xué)生自己列出方程( x(x十5)=150 )

深入引導(dǎo):方程x(x十5)=150有人會(huì)解嗎?你能叫出這個(gè)方程的名字嗎?

二、新課

1.從上面的引例我們有這樣一個(gè)感覺:在解決日常生活的計(jì)算問題中確需列方程解應(yīng)用題,但有些方程我們解不了,但必須想辦法解出來。事實(shí)上初中代數(shù)研究的主要對象是方程。這部分內(nèi)容從初一一直貫穿到初三。到目前為止我們對方程研究的還很不夠,從今天起我們就開始研究這樣一類方程--------一元一二次方程(板書課題)

2.什么是—元二次方程呢?現(xiàn)在我們來觀察上面這個(gè)方程:它的左右兩邊都是關(guān)于未知數(shù)的整式,這樣的方程叫做整式方程,就這一點(diǎn)來說它與一元一次方程沒有什么區(qū)別、也就是說一元二次方程首先必須是一個(gè)整式方程,但是一個(gè)整式方程未必就是一個(gè)一元二次方程、這還取決于未知數(shù)的最高次數(shù)是幾。如果方程未知數(shù)的最高次數(shù)是2、這樣的整式方程叫做一元二次方程.(板書一元二次方程的定義)

3.強(qiáng)化一元二次方程的概念

下列方程都是整式方程嗎?其中哪些是一元一次方程?哪些是一元二次方程?

(1)3x十2=5x—3:(2)x2=4

(2)(x十3)(3x·4)=(x十2)2;(4)(x—1)(x—2)=x2十8

從以上4例讓學(xué)生明白判斷一個(gè)方程是否是一元二次方程不能只看表面、而是能化簡必須先化簡、然后再查看這個(gè)方程未知數(shù)的最高次數(shù)是否是2。

4.一元二次方程概念的延伸

提問:一元二次方程很多嗎?你有辦法一下寫出所有的一元二次方程嗎?

引導(dǎo)學(xué)生回顧一元二次方程的定義,分析一元二次方程項(xiàng)的情況,啟發(fā)學(xué)生運(yùn)用字母,找到一元二次方程的一般形式

ax2+bx+c=0 (a≠0)

1).提問a=0時(shí)方程還是一無二次方程嗎?為什么?(如果a=0、b≠就成了一元一次方程了)。

2).講解方程中ax2、bx、c各項(xiàng)的名稱及a、b的系數(shù)名稱.

3).強(qiáng)調(diào):一元二次方程的一般形式中“=”的左邊最多三項(xiàng)、其中一次項(xiàng)、常數(shù)項(xiàng)可以不出現(xiàn)、但二次項(xiàng)必須存在、而且左邊通常按x的降冪排列:特別注意的是“=”的右邊必須整理成0。

強(qiáng)化概念(課本p6)

1.說出下列一元二次方程的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)、常數(shù)項(xiàng):

(1)x2十3x十2=o(2)x2—3x十4=0;(3)3x2-5=0

(4)4x2十3x—2=0;(5)3x2—5=0;(6)6x2—x=0。

2.把下列方程先化成二元二次方程的一般形式,再寫出它的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)、常數(shù)項(xiàng):

(1)6x2=3-7x;(3)3x(x-1)=2(x十2)—4;(5)(3x十2)2=4(x-3)2

課堂小節(jié)

(1)本節(jié)課主要介紹了一類很重要的方程—一一元二次方程(如果方程未知數(shù)的最高次數(shù)為2,這樣的整式方程叫做一元一二次方程);

(2)要知道一元二次方程的一般形式ax2十bx十c=0(a≠0)并且注意一元二次方程的一般形式中“=”的左邊最多三項(xiàng)、其中二次項(xiàng)、常數(shù)項(xiàng)可以不出現(xiàn)、但二次項(xiàng)必須存在。特別注意的是“=”的`右邊必須整理成0;

(3)要很熟練地說出隨便一個(gè)一元二次方程中一二次項(xiàng)、一次項(xiàng)、常數(shù)項(xiàng):二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù).

課外作業(yè):略

一元二次方程課件(篇3)

教學(xué)目標(biāo):

(一)知識(shí)與技能:

1、理解并掌握用配方法解簡單的一元二次方程。

2、能利用配方法解決實(shí)際問題,增強(qiáng)學(xué)生的數(shù)學(xué)應(yīng)用意識(shí)和能力。

(二)過程與方法目標(biāo):

1、經(jīng)歷探索利用配方法解一元二次方程的過程,使學(xué)生體會(huì)到轉(zhuǎn)化的數(shù)學(xué)思想。

2、在理解配方法的基礎(chǔ)上,熟練應(yīng)用配方法解一元二次方程的過程,培養(yǎng)學(xué)生用轉(zhuǎn)化的數(shù)學(xué)思想解決實(shí)際問題的能力。

(三)情感,態(tài)度與價(jià)值觀

啟發(fā)學(xué)生學(xué)會(huì)觀察,分析,尋找解題的途徑,提高學(xué)生分析問題,解決問題的能力。

教學(xué)重點(diǎn)、難點(diǎn):

重點(diǎn):理解并掌握配方法,能夠靈活運(yùn)用用配方法解一元二次方程。

難點(diǎn):通過配方把一元二次方程轉(zhuǎn)化為(x+m)2=n(n≥0)的形式。

教學(xué)方法:根據(jù)教學(xué)內(nèi)容的特點(diǎn)及學(xué)生的年齡、心理特征及已有的知識(shí)水平,本節(jié)課采用問題教學(xué)和對比教學(xué)法,用“創(chuàng)設(shè)情境——建立數(shù)學(xué)模型——鞏固與運(yùn)用——反思、拓展”來展示教學(xué)活動(dòng)。

教學(xué)過程

學(xué)生活動(dòng)

設(shè)計(jì)意圖

一 復(fù)習(xí)舊知

用直接開平方法解下列方程:

(1)9x2=4 (2)( x+3)2=0

總結(jié):上節(jié)課我們學(xué)習(xí)了用直接開平方法解形如(x+m)2=n(n≥0)的方程。

二 創(chuàng)設(shè)情境,設(shè)疑引新

在實(shí)際生活中,我們常常會(huì)遇到一些問題,需要用一元二次方程來解決。

例:小明用一段長為 20米的竹籬笆圍成一個(gè)矩形,怎樣設(shè)計(jì)才可以使得矩形的面積為9米?

三 新知探究

1 提問:這樣的方程你能解嗎?

x2+6x+9=0 ①

2、提問:這樣的方程你能解嗎?

x2+6x+4=0 ②

思考:方程②與方程①有什么不同?能否把它化成方程①的形式呢?

歸納總結(jié)配方法:

通過配成完全平方式的方法,得到一元二次方程的解,這樣的解法叫做配方法。

配方法的依據(jù):完全平方公式

配方法的關(guān)鍵:給方程的兩邊同時(shí)加上一次項(xiàng)系數(shù)一半的平方

點(diǎn)撥:先通過移項(xiàng)將方程左邊化為x2+ax形式,然后兩邊同時(shí)加上一次項(xiàng)系數(shù)一半的平方進(jìn)行配方,然后直接開平方求解。

四 合作討論,自主探究

1、 配方訓(xùn)練

(1) x2+12x+( )=(x+6)2

(2) x2-12x+( )=(x- )2

(3) x2+8x+( )=(x+ )2

(4) x2+mx+( )=(x+ )2

強(qiáng)調(diào):當(dāng)一次項(xiàng)系數(shù)為負(fù)數(shù)或分?jǐn)?shù)時(shí),要注意運(yùn)算的準(zhǔn)確性。

2、將下列方程化為(x+m)2=n

(n≥0)的形式并計(jì)算出X值。

(1)x2-4x+3=0

(2)x2+3x-1=0

解:X2-4X+3=0

移向:得X2-4X=-3

配方:得X2-4X+2^2=-3+2^2(兩邊同時(shí)加上一次項(xiàng)系數(shù)一半的平方)

即:(X-2)2=1

開平方,得:X-2=1或X-2=-1

所以:X=3或X=1

方程(2)有學(xué)生完成。

3、鞏固訓(xùn)練:課本55頁隨堂練習(xí)第一題。

五 小結(jié)

1、用配方法解二次項(xiàng)系數(shù)為一的一元二次方程的基本思路:先將方程化為(x+m)2=n(n≥0)的形式,然后兩邊開平方就可以得到方程的解。

2、用配方法解二次項(xiàng)系數(shù)為一的一元二次方程的一般步驟:

(1) 移項(xiàng)(常數(shù)項(xiàng)移到方程右邊)

(2) 配方(方程兩邊都加上一次項(xiàng)系數(shù)的一半的平方)

(3) 開平方

(4) 解出方程的根

六 布置作業(yè)

習(xí)題2.3第1,2題

兩個(gè)學(xué)生黑板上那解題,剩余學(xué)生練習(xí)本上計(jì)算。

學(xué)生觀看課件,思考老師提出的問題,得到:設(shè)該矩形的長為x米,依題意得

x(10-x)=9

但是發(fā)現(xiàn)所列方程無法用直接開平方法解。于是引入新課。

學(xué)生通過觀察發(fā)現(xiàn),方程的左邊是一個(gè)完全平方式,可以化為( x+3)2=0,然后就可以運(yùn)用上節(jié)課學(xué)過的直接開平方法解了。

方程②的左邊不是一個(gè)完全平方式,于是不能直接開平方。學(xué)生陷入思考,給學(xué)生充分思考、交流的時(shí)間和空間。

在學(xué)生思考的時(shí)候,老師引導(dǎo)學(xué)生將方程②與方程①進(jìn)行對比分析,然后得到:

x2+6x=-4

x2+6x+9=-4+9

(x+3)2=5

從而可以用直接開平方法解,給出完整的解題過程。

在學(xué)生充分思考、討論的基礎(chǔ)上總結(jié):配方時(shí),常數(shù)項(xiàng)為一次項(xiàng)系數(shù)的一半的平方。

檢查學(xué)生的練習(xí)情況。小組合作交流。

學(xué)生歸納后教師再做相應(yīng)的補(bǔ)充和強(qiáng)調(diào)。

學(xué)生分組完成方程(2)和課后隨堂練習(xí)第一題

學(xué)生分組總結(jié)本節(jié)課知識(shí)內(nèi)容。

一元二次方程課件(篇4)

知識(shí)技能:掌握應(yīng)用方程解決實(shí)際問題的方法步驟,提高分析問題、解決問題的能力。

過程與方法:通過探索球積分表中數(shù)量關(guān)系的過程,進(jìn)一步體會(huì)方程是解決實(shí)際問題的數(shù)學(xué)模型,并且明確用方程解決實(shí)際問題時(shí),不僅要注意解方程的過程是否正確,還要檢驗(yàn)方程的解是否符合問題的實(shí)際意義。

情感態(tài)度:鼓勵(lì)學(xué)生自主探究,合作交流,養(yǎng)成自覺反思的良好習(xí)慣。

重點(diǎn):把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,不僅會(huì)列方程求出問題的解,還會(huì)進(jìn)行推理判斷。

教師用投影儀展示課本106頁中籃球聯(lián)賽積分榜引導(dǎo)學(xué)生觀察,思考:① 用式子表示總積分能與勝、負(fù)場數(shù)之間的數(shù)量關(guān)系;

②某隊(duì)的勝場總分能等于它的負(fù)場總積分么?

學(xué)生充分思考、合作交流,然后教師引導(dǎo)學(xué)生分析。

師:要解決問題①必須求出勝一場積幾分,負(fù)一場積幾分,你能從積分榜中得到負(fù)一場積幾分么?你選擇哪一行最能說明負(fù)一場積幾分?

生:負(fù)(14-a)場,勝場積分2a,負(fù)場積分14-a,總積分a+14.

師:G,就是,已知里沒說,是不是不能用方程解決了?誰又沒有大膽設(shè)想?

生:如果設(shè)一個(gè)隊(duì)勝了x場,則負(fù)(14-x)場,讓勝場總積分等負(fù)場總積分,方程為:2x=14-x解得x=4/3(學(xué)生掌聲鼓勵(lì))

師:x表示什么?可以是分?jǐn)?shù)么?由此你的出什么結(jié)論?

生:x表示勝得場數(shù),應(yīng)該是一個(gè)整數(shù),所以,x=4/3不符合實(shí)際意義,因此沒有哪個(gè)隊(duì)的勝場總積分等于負(fù)場總積分。

師:此問題說明,利用方程不僅求出具體數(shù)值,而且還可以推理判斷,是否存在某種數(shù)量關(guān)系;還說明用方程解決實(shí)際問題時(shí),不僅要注意方程解得是否正確,還要檢驗(yàn)方程的解是否符合問題的實(shí)際意義。

如果刪去積分榜的最后一行,你還能用式子表示總積分與勝、負(fù)場數(shù)之間的數(shù)量關(guān)系嗎?

師:我們可以從積分榜中積分不相同的兩行數(shù)據(jù)求的勝負(fù)一場各得幾分,如:一、三行。

教師引導(dǎo)學(xué)生設(shè)未知數(shù),列方程。學(xué)生試說。

生:設(shè)勝一場積x分,則前進(jìn)隊(duì)勝場積分10x,負(fù)場積分(24-10x)分,它負(fù)了4場,所以負(fù)一場積分為(24-10x)/4,同理從第三行得到負(fù)一場積分為(23-9x)/5,從而列方程為(24-10x)/4=(23-9x)/5。解得x=2,當(dāng)x=2時(shí),(24-10x)/4=1。仍然可得負(fù)一場積1分,勝一場積2分。

已知某山區(qū)的平均氣溫與該山的海拔高度的關(guān)系見表:

若某種植物適宜生長在18℃20℃(包括18℃20℃)的山區(qū),請問該植物適宜種在海拔為多少米的山區(qū)?

學(xué)生分析題意,思考,在練習(xí)本上完成,然后同桌小議,代表發(fā)言,教師點(diǎn)撥。

四、課堂小結(jié):

讓幾個(gè)學(xué)生談自己的收獲,再讓一個(gè)學(xué)生全面總結(jié)。

五、布置作業(yè):

本節(jié)課主要是借球賽積分表問題傳授數(shù)學(xué)知識(shí)的應(yīng)用。在前面已經(jīng)討論過由實(shí)際問題抽象出一元一次方程模型和解一元一次方程的基礎(chǔ)上,本節(jié)進(jìn)一步以探究的形式討論如何用一元一次方程解決實(shí)際問題。要探究的問題比前幾節(jié)的問題復(fù)雜些,問題情境與實(shí)際情況更接近。本節(jié)的重點(diǎn)是建立實(shí)際問題的方程模型。通過探究活動(dòng),進(jìn)一步體驗(yàn)一元一次方程與實(shí)際的密切聯(lián)系,加強(qiáng)數(shù)學(xué)建模思想,培養(yǎng)運(yùn)用一元一次方程分析和解決問題的能力。

由于本節(jié)問題的背景和表達(dá)都比較貼近實(shí)際,其中的有些數(shù)量關(guān)系比較隱蔽,所以在探究過程中正確建立方程是難點(diǎn),教師要恰當(dāng)?shù)囊龑?dǎo),讓學(xué)生弄清問題背景,分析清楚有關(guān)數(shù)量關(guān)系,找出可作為方程依據(jù)的主要相等關(guān)系,但教師不要代替學(xué)生的思考。

一元二次方程課件(篇5)

學(xué)情分析:

學(xué)生在七年級(jí)和八年級(jí)已經(jīng)學(xué)習(xí)了整式、分式、二次根式、一元一次方程、二元一次方程、分式方程,在此基礎(chǔ)上本節(jié)課將從實(shí)際問題入手,抽象出一元二次方程的概念及一元二次方程的一般形式.

知識(shí)技能:

1、 理解一元二次方程的概念.

2、掌握一元二次方程的一般形式,正確認(rèn)識(shí)二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)及常數(shù)項(xiàng).

數(shù)學(xué)思考:

1、通過一元二次方程的引入,培養(yǎng)學(xué)生建模思想,歸納、分析問題及解決問題的能力.

2、通過一元二次方程概念的學(xué)習(xí),培養(yǎng)學(xué)生對概念理解的完整性和深刻性.

3、由知識(shí)來源于實(shí)際,樹立轉(zhuǎn)化的思想,由設(shè)未知數(shù)、列方程向?qū)W生滲透方程的思想,從而進(jìn)一步提高學(xué)生分析問題、解決問題的能力.

解決問題:

在分析、揭示實(shí)際問題的數(shù)量關(guān)系并把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)模型(一元二次方程)的過程中使學(xué)生感受方程是刻畫現(xiàn)實(shí)世界數(shù)量關(guān)系的工具,增加對一元二次方程的感性認(rèn)識(shí).

情感態(tài)度:

1、培養(yǎng)學(xué)生自主自主學(xué)習(xí)、探究知識(shí)和合作交流的意識(shí).

2、激發(fā)學(xué)生學(xué)數(shù)學(xué)的興趣,體會(huì)學(xué)數(shù)學(xué)的快樂,培養(yǎng)用數(shù)學(xué)的意識(shí).

教學(xué)重點(diǎn):

一元二次方程的概念及一般形式.

教學(xué)難點(diǎn):

1、由實(shí)際問題向數(shù)學(xué)問題的轉(zhuǎn)化過程.

2、正確識(shí)別一元二次方程一般形式中的“項(xiàng)”及“系數(shù)”.

【問題1】有一塊面積為900平方米的長方形綠地,并且長比寬多10米,則綠地的長和寬各為多少?

【分析】設(shè)長方形綠地的寬為x米,依題意列方程為:x(x+10)=900;

【問題2】學(xué)校圖書館去年年底有圖書5萬冊,預(yù)計(jì)至明年年底增加到7.2萬冊,求這兩年的年平均增長率。

【分析】設(shè)這兩年的年平均增長率為x,依題列方程為:5(1+x)2=7.2;

【問題2】學(xué)校要組織一次排球邀請賽,參賽的每兩個(gè)隊(duì)之間都要比賽一場,根據(jù)場地和時(shí)間等條件,賽程計(jì)劃安排7天,每天安排4場比賽,比賽組織者應(yīng)邀請多少個(gè)隊(duì)參賽?

【分析】全部比賽共4×7=28場,設(shè)應(yīng)邀請x個(gè)隊(duì)參賽,則每個(gè)隊(duì)要與其它 (x-1)隊(duì)各賽1場,全場比賽共場,依題意列方程得:;

(設(shè)計(jì)意圖:在現(xiàn)實(shí)生活中發(fā)現(xiàn)并提出簡單的問題,吸引學(xué)生的注意力,激發(fā)學(xué)生自主學(xué)習(xí)的興趣和積極性。 同時(shí)通過解決實(shí)際問題引入一元二次方程的概念,同時(shí)可提高學(xué)生利用方程思想解決實(shí)際問題的能力。)

【探究】(1)上面三個(gè)方程左右兩邊是含未知數(shù)的 整式 (填 “整式”“分式”等);

(2)方程整理后含有 一 個(gè)未知數(shù);

(3)按照整式中的多項(xiàng)式的規(guī)定,它們最高次數(shù)是 二 次。

等號(hào)兩邊都是 整式 ,只含有 一 個(gè)求知數(shù)(一元),并且求知數(shù)的最高次數(shù)是 2 (二次)的方程,叫做一元二次方程。

一般地,任何一個(gè)關(guān)于x的一元二次方程,經(jīng)過整理,都能化成如下形式:

這種形式叫做一元二次方程的一般形式。其中ax2是二次項(xiàng),a是二次項(xiàng)系數(shù),bx是一次項(xiàng),b是一次項(xiàng)系數(shù),c是常數(shù)項(xiàng)。

【強(qiáng)調(diào)】方程ax2+bx+c=0只有當(dāng)a≠0時(shí)才叫一元二次方程,如果a=0,b≠0時(shí)就是一元一次方程了。所以在一般形式中,必須包含a≠0這個(gè)條件。

(設(shè)計(jì)意圖:由于學(xué)生已熟練掌握了整式、分式、一元一次方程等概念,所以從未知數(shù)的個(gè)數(shù)及最高次數(shù)提問,引導(dǎo)學(xué)生歸納共同點(diǎn)是符合學(xué)生的認(rèn)知基礎(chǔ)的。學(xué)生的自主觀察、比較、歸納是活動(dòng)有效的保證,教學(xué)中應(yīng)當(dāng)讓學(xué)生充分的探究和交流。同時(shí),在概念教學(xué)中類比是幫助學(xué)生正確理解概念的有效方法。)

【對應(yīng)練習(xí)】判斷下列方程,哪些是一元二次方程?哪些不是?為什么?

(1)x3-2x2+5=0; (2)x2=1;

(3)5x2-2x-=x2-2x+; (4)2(x+1)2=3(x+1);

(設(shè)計(jì)意圖:此問題采取搶答的形式,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和積極性。其目的是為了及時(shí)鞏固一元二次方程的概念,同時(shí)讓學(xué)生知道判斷一個(gè)方程是不是一元二次方程,首先要對其整理成一般形式,然后根據(jù)定義判斷。)

【例1】 已知方程(a-3)x|a-1|-2x+5=0,當(dāng) a=-1 時(shí),此方程是一元二次方程,當(dāng)a=0,2或3 時(shí),此方程是一元一次方程。

(設(shè)計(jì)意圖:通過例1的學(xué)習(xí),一是使學(xué)生進(jìn)一步鞏固一元二次方程的概念,并注意其最基本的條件:未知數(shù)的最高次數(shù)為2,二次項(xiàng)系數(shù)不為0;二是使學(xué)生了解一元二次方程與一元一次方程的聯(lián)系與區(qū)別。在填第一個(gè)空時(shí)要讓學(xué)生注意a值的取舍,填第二個(gè)空時(shí)要注意引導(dǎo)學(xué)生進(jìn)行分類討論。)

【例2】將方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并寫出其中的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)及常數(shù)項(xiàng).

【分析】一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程3x(x-1)=5(x+2)必須運(yùn)用整式運(yùn)算進(jìn)行整理,包括去括號(hào)、移項(xiàng)等.

其中二次項(xiàng)系數(shù)是3,一次項(xiàng)系數(shù)是-8,常數(shù)項(xiàng)是-10。

(設(shè)計(jì)意圖:通過例2的學(xué)習(xí),一是使學(xué)生進(jìn)一步掌握一元二次方程的一般形式,并注意強(qiáng)調(diào)二次項(xiàng)、二次項(xiàng)系數(shù)、一次項(xiàng)、一次項(xiàng)系數(shù)、常數(shù)項(xiàng)都包括前面的符號(hào);二是使學(xué)生進(jìn)一步了解方程的變形過程。)

本節(jié)課你學(xué)了什么知識(shí)?從中得到了什么啟示?

1、a≠0是ax2+bx+c=0成為一元二次方程的必要條件,否則,方程ax2+bx+c=0變?yōu)閎x+c=0,就不是一元二次方程。

2、找一元二次方程中的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)、常數(shù)項(xiàng),應(yīng)先將方程化為一般形式。

1、下列方程,是一元二次方程的是 ①④⑤ 。

①3x2+x=20, ②2x2-3xy+4=0, ③, ④ x2=0, ⑤

2、某學(xué)校準(zhǔn)備修建一個(gè)面積為200平方米的矩形花圃,它的長比寬多10米,設(shè)花圃的寬為x米,則可列方程為x(x+10)=200,化為一般形式為x2+10x-200=0。

3、方程(m-2)x|m|+3mx+1=0是關(guān)于x的一元二次方程,則 m= -2 。

4、將方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式為 2x2+2x-4=0 ,其中二次項(xiàng)是 2x2 ,二次項(xiàng)系數(shù)是 2 ,一次項(xiàng)是 2x ,一次項(xiàng)系數(shù)是 2 ,常數(shù)項(xiàng)是 -4 。

(設(shè)計(jì)意圖:隨堂檢測學(xué)生對新知識(shí)的掌握情況,及時(shí)了解反饋和調(diào)整后續(xù)教學(xué)內(nèi)容與教法。)

一元二次方程課件(篇6)

1、會(huì)根據(jù)具體問題中的數(shù)量關(guān)系列一元二次方程并求解。

2、能根據(jù)問題的實(shí)際意義,檢驗(yàn)所得結(jié)果是否合理。

3、進(jìn)一步掌握列方程解應(yīng)用題的步驟和關(guān)鍵。

(一)思考課本探究1回答下列問題:

(1)設(shè)每輪傳染中平均一個(gè)人傳染x個(gè)人,那么患流感的這個(gè)人在第一輪傳染中傳染了 人;第一輪傳染后,共有 人患了流感。

(2)在第二輪傳染中,傳染源是 人,這些人中每一個(gè)人又傳染了 人,那么第二輪傳染了 人,第二輪傳染后,共有 人患流感。

(3)根據(jù)等量關(guān)系列方程并求解。為什么要舍去一解?

(4)通過對這個(gè)問題的探究,你對類似的傳播問題中的數(shù)量關(guān)系有新的認(rèn)識(shí)嗎?

(5)完成教材思考:如果按照這樣的傳播速度,三輪傳染后,有多少人患流感?

(學(xué)生在交流中解決問題,教師深入小組討論,對疑惑較多的問題要點(diǎn)撥;前兩個(gè)問是解題的關(guān)鍵,可作適當(dāng)點(diǎn)撥。最后思考題,可讓學(xué)生試試獨(dú)立完成。教給學(xué)生如何審題,分析題。)

三、例題學(xué)習(xí):

例1:青山村種的水稻20xx年平均每公頃產(chǎn)7200kg,20xx年平均每公頃產(chǎn)8450kg,求水稻每公頃產(chǎn)量的年平均增長率。 (學(xué)生獨(dú)立思考、練習(xí)。一學(xué)生板書,教師巡視后講解)

例2:(教材探究2)兩年前生產(chǎn)1噸甲種藥品的成本是5000元,生產(chǎn)1噸乙種藥品的成本是6000元,隨著生產(chǎn)技術(shù)的進(jìn)步,現(xiàn)在生產(chǎn)1噸甲種藥品的成本是3000元,生產(chǎn)1噸乙種藥品的成本是3600元,哪種藥品成本的年平均下降率較大?

(給學(xué)生分組求解,然后比較哪個(gè)小組做的有快又準(zhǔn)。最后比較哪種藥品成本平均下降率較大。)

四、課堂練習(xí):(學(xué)生獨(dú)立思考、練習(xí)。一學(xué)生板書,教師巡視后講解)

1、某種植物的主干長出若干數(shù)目的枝干,每個(gè)枝干又長出同樣數(shù)目的小分支,主干、支干和小分支的總數(shù)是91,每個(gè)支干長出多少小分支?

2、有一人患了流感,經(jīng)過兩輪傳染后共有121人患了流感,奧執(zhí)染中平均一個(gè)人傳染了幾個(gè)人?

1、列一元二次方程解應(yīng)用題的步驟:審、設(shè)、找、列、解、答。最后要檢驗(yàn)根是否符合實(shí)際意義。

2、探究2是平均增長率或降低率問題。若平均增長(降低)率為x,增長(或降低)前的基數(shù)是a,增長(或降低)n次后的量是b,則有: (常見n=2)

教后記:

本節(jié)課是一元二次方程的應(yīng)用第一課時(shí)。通過本節(jié)課的教學(xué),總體感覺調(diào)動(dòng)了學(xué)生的積極性,能夠充分發(fā)揮學(xué)生的主體作用,以現(xiàn)實(shí)生活情境問題入手,激發(fā)了學(xué)生思維的火花,具體我以為有以下幾個(gè)特點(diǎn):

一、通過學(xué)生口答,復(fù)習(xí)了列方程解應(yīng)用題的一般步驟及解一元二次方程的方法,為學(xué)習(xí)本節(jié)知識(shí)打好了基礎(chǔ)。

二、問題探究通過問題串讓學(xué)生解決的問題由淺入深,由易到難,也讓學(xué)生解決問題的能力逐級(jí)上升,這樣學(xué)生感到成功機(jī)會(huì)增加,從而有一種積極的學(xué)習(xí)態(tài)度,同時(shí)學(xué)生在學(xué)習(xí)中相互交流、相互學(xué)習(xí),共同提高。

三、本節(jié)課第一個(gè)例題,是增長率問題中的一個(gè)典型例題,我在引導(dǎo)學(xué)生解決此題之后,進(jìn)一步總結(jié)了列方程解應(yīng)用題的步驟。不僅關(guān)注結(jié)果更關(guān)注過程,讓學(xué)生養(yǎng)成良好的解題習(xí)慣。

四、在課堂中始終貫徹?cái)?shù)學(xué)源于生活又用于生活的數(shù)學(xué)觀念,同時(shí)用方程來解決問題,使學(xué)生樹立一種數(shù)學(xué)建模的思想。

五、課堂上多給學(xué)生展示的機(jī)會(huì),讓學(xué)生走上講臺(tái),向同學(xué)們展示自己的聰明才智。同時(shí)在這個(gè)過程中,更有利于發(fā)現(xiàn)學(xué)生分析問題與解決問題獨(dú)到見解及思維誤區(qū),以便指導(dǎo)今后教學(xué)??傊?,通過各種啟發(fā)、激勵(lì)的教學(xué)手段,幫助學(xué)生形成積極主動(dòng)求知態(tài)度,課堂收效大。

六、需改進(jìn)的方面:

1、由于怕完不成任務(wù),給學(xué)生獨(dú)立思考時(shí)間安排有些不合理,這樣容易讓思維活躍的學(xué)生的回答代替了其他學(xué)生的思考,掩蓋了其他學(xué)生的疑問。例如例2有多種解法,課后一些學(xué)生與老師交流,但課上沒有得到充分的展示、

2、只考慮撲捉學(xué)生的思維亮點(diǎn),一學(xué)生列錯(cuò)了方程,我沒有給予及時(shí)糾正。導(dǎo)致使一些同學(xué)陷入誤區(qū)、

3、下課后很多學(xué)生和我溝通課上一學(xué)生的錯(cuò)誤問題,但他們上課并不敢提出,有點(diǎn)卻場,所以平時(shí)要培養(yǎng)學(xué)生敢想敢說敢于發(fā)表個(gè)人的不同見解的學(xué)風(fēng)。

一元二次方程課件(篇7)

數(shù)學(xué)教案-一元二次方程的根的判別式(一)

1. 知識(shí)結(jié)構(gòu):

2. 重點(diǎn)、難點(diǎn)分析

(1)本節(jié)的重點(diǎn)是會(huì)用判別式判定根的情況.一元二次方程的根的判別式是比較重要的,用它可以判斷一元二次方程根的情況,有助于我們順利地解一元二次方程,也可以利用它進(jìn)一步學(xué)習(xí)函數(shù)的有關(guān)內(nèi)容,所以,它是本節(jié)課的重點(diǎn).

(2)本節(jié)的難點(diǎn)是一元二次方程根的三種情況的推導(dǎo).教科書首先將一元二次方程用配方法變形為 .因?yàn)?,所以方程右邊的符?hào)就由來確定,而方程左邊的不可能是一個(gè)負(fù)數(shù),因此,把分三種情況來討論方程根的情況.推導(dǎo)過程中利用了分類的思想方法,對于分類討論學(xué)生感覺到較難,老師應(yīng)該講明分類的基本思想。

3. 教法建議:

(1)引入要自然、合理

新課引入前,作一個(gè)鋪墊:前面我們講了一元二次方程的解法,我們掌握了開平方法、公式法和因式分解法后,就可以解任何一個(gè)一元二次方程,但是,存在這樣一個(gè)問題,并不是所有的一元二次方程都有解,我們可以通過把解求出來,來解方程,也可以通過判定方程無解,來解方程,這樣我們就面臨著一個(gè)問題,什么時(shí)候方程有解?什么時(shí)候方程無解?我們不解方程能不能判定根的情況?那就是我們本節(jié)所要研究的問題.讓學(xué)生首先感覺到所要學(xué)習(xí)的知識(shí)并不突然,也顯露了本節(jié)課的重點(diǎn).

(2)利用多媒體進(jìn)行教學(xué)

本節(jié)是根的判別式結(jié)論的推導(dǎo),比較抽象,為了便于學(xué)生理解,使用所提供的動(dòng)畫,有助于學(xué)生對所講內(nèi)容的理解,調(diào)動(dòng)學(xué)生主動(dòng)思維的積極性,活躍課堂氣氛,提高學(xué)習(xí)效率.

(3)本節(jié)在推導(dǎo)根的判別式的結(jié)論時(shí),利用了分類的思想,對于學(xué)生這是一個(gè)難點(diǎn),一定給學(xué)生講清楚分類的依據(jù),分類的基本思想,使學(xué)生對所得結(jié)論深信不疑.一、教學(xué)目標(biāo)

1. 理解一元二次方程的根的判別式,并能用判別式判定根的情況;

2. 通過根的判別式的學(xué)習(xí),培養(yǎng)學(xué)生從具體到抽象的觀察、分析、歸納的能力;

3.通過根的情況的'研究過程,讓學(xué)生深刻體會(huì)轉(zhuǎn)化和分類的思想方法.

二、重點(diǎn)·難點(diǎn)及解決辦法

1.教學(xué)重點(diǎn):會(huì)用判別式判定根的情況。

2.教學(xué)難點(diǎn):一元二次方程根的三種情況的推導(dǎo).

3.解決辦法:(1)求判別式時(shí),應(yīng)先將方程化為一般形式,確定a、b、c。(2)利用判別式可以判定一元二次方程的存在性情況(共四種);方程有兩個(gè)實(shí)數(shù)根,方程有兩個(gè)不相等的實(shí)數(shù)根,方程有兩個(gè)相等的實(shí)數(shù)根,方程沒有實(shí)數(shù)根。

三、教學(xué)步驟

(一)教學(xué)過程()

1.復(fù)習(xí)提問

(1)平方根的性質(zhì)是什么?

(2)解下列方程:① ;② ;③ 。

問題(1)為本節(jié)課結(jié)論的得出起到了一個(gè)很好的鋪墊作用。問題(2)通過自己親身感受的根的情況,對本節(jié)課的結(jié)論的得出起到了一個(gè)推波助瀾的作用。

2.任何一個(gè)一元二次方程 用配方法將其變形為 ,因此對于被開方數(shù) 來說,只需研究 為如下幾種情況的方程的根。

(1)當(dāng) 時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根。

(2)當(dāng) 時(shí),方程有兩個(gè)相等的實(shí)數(shù)根,即 。

(3)當(dāng) 時(shí),方程沒有實(shí)數(shù)根。

教師通過引導(dǎo)之后,提問:究竟誰決定了一元二次方程根的情況?

答: 。

3.①定義:把 叫做一元二次方程 的根的判別式,通常用符號(hào)“ ”表示。

②一元二次方程 。

當(dāng) 時(shí),有兩個(gè)不相等的實(shí)數(shù)根;

當(dāng) 時(shí),有兩個(gè)相等的實(shí)數(shù)根;

當(dāng) 時(shí),沒有實(shí)數(shù)根。

反之亦然。

注意以下幾個(gè)問題:

(1) 這一重要條件在這里起了“承上啟下”的作用,即對上式開平方,隨后有下面三種情況。正確得出三種情況的結(jié)論,需對平方根的概念有一個(gè)深刻的、正確的理解,所以,在課前進(jìn)行了鋪墊。在這里應(yīng)向?qū)W生滲透轉(zhuǎn)化和分類的思想方法。

(2)當(dāng) ,說“方程 沒有實(shí)數(shù)根”比較好。有時(shí),也說“方程無解”。這里的前提是“在實(shí)數(shù)范圍內(nèi)無解”,也就是方程無實(shí)數(shù)根的意思。

4.例題講解

例1? 不解方程,判別下列方程的根的情況:

(1) ;(2) ;(3) 。

解:(1)

∴原方程有兩個(gè)不相等的實(shí)數(shù)根。

(2)原方程可變形為

。

∴原方程有兩個(gè)相等的實(shí)數(shù)根。(3)原方程可變形為

。

∴原方程沒有實(shí)數(shù)根。

學(xué)生口答,教師板書,引導(dǎo)學(xué)生總結(jié)步驟,(1)化方程為一般形式,確定a、b、c的(2)計(jì)算 的值;(3)判別根的情況。

強(qiáng)調(diào)兩點(diǎn):(1)只要能判別 值的符號(hào)就行,具體數(shù)值不必計(jì)算出。(2)判別根據(jù)的情況,不必求出方程的根。

練習(xí):不解方程,判別下列方程的情況:

(1) ;(2) ;

(3) ;(4) ;

(5) ;(6)

學(xué)生板演、筆答、評價(jià)。

(4)題可去括號(hào),化一般式進(jìn)行判別,也可設(shè) ,判別方程 根的情況,由此判別原方程根的情況。

例2? 不解方程,判別方程 的根的情況。

解: 。

又? ∵? 不論k取何實(shí)數(shù), ,

∴? 原方程有兩個(gè)實(shí)數(shù)根。

教師板書,引導(dǎo)學(xué)生回答。此題是含有字母系數(shù)的一元二次方程。注意字母的取值范圍,從而確定 的取值。

練習(xí):不解方程,判別下列方程根的情況。

(1) ;

(2) ;

(3) 。

學(xué)生板演、筆答、評價(jià)。教師滲透、點(diǎn)撥。

(3)解:

??????????

∵? 不論m取何值, ,即 。

∴? 方程無實(shí)數(shù)解。

由數(shù)字系數(shù),過渡到字母系數(shù),使學(xué)生體會(huì)到由具體到抽象,并且注意字母的取值。

(二)總結(jié)、擴(kuò)展

1.判別式的意義及一元二次方程根的情況。

(1)定義:把 叫做一元二次方程 的根的判別式,通常用符號(hào)“ ”表示。

(2)一元二次方程 。

當(dāng) 時(shí),有兩個(gè)不相等的實(shí)數(shù)根;

當(dāng) 時(shí),有兩個(gè)相等的實(shí)數(shù)根;

當(dāng) 時(shí),沒有實(shí)數(shù)根。反之亦然。

2.通過根的情況的研究過程,深刻體會(huì)轉(zhuǎn)化的思想方法及分類的思想方法。

四、布置作業(yè)

教材P27A1~4。

5.不解方程,判斷下x的方程的根的情況

(1)

(2)

五、板書設(shè)計(jì)


一元二次方程課件(篇8)

一元二次方程是中學(xué)教學(xué)的主要內(nèi)容,在初中代數(shù)中占有重要的地位,在一元二次方程的前面,學(xué)生學(xué)了實(shí)數(shù)與代數(shù)式的運(yùn)算,一元一次方程(包括可化為一元一次方程的分式方程)和一次方程組,上述內(nèi)容都是學(xué)習(xí)一元二次方程的基礎(chǔ),通過一元二次方程的學(xué)習(xí),就可以對上述內(nèi)容加以鞏固,一元二次方程也是以后學(xué)習(xí)(指數(shù)方式,對數(shù)方程,三角方程以及不等式,函數(shù),二次曲線等內(nèi)容)的基礎(chǔ),此外,學(xué)習(xí)一元二次方程對其他學(xué)科也有重要的意義。

九年義務(wù)教育大綱對這部分的要求是:“使學(xué)生了解一元二次方程的概念”,依據(jù)教學(xué)大綱的要求及教材的內(nèi)容,針對學(xué)生的理解和接受知識(shí)的實(shí)際情況,以提高學(xué)生的素質(zhì)為主要目的而制定如下教學(xué)目標(biāo)。

知識(shí)目標(biāo):使學(xué)生進(jìn)一步理解和掌握一元二次方程的概念及一元二次方程的一般形式。

能力目標(biāo):通過一元二次方程概念的教學(xué),培養(yǎng)學(xué)生善于觀察,發(fā)現(xiàn),探索,歸納問題的能力,培養(yǎng)學(xué)生創(chuàng)造性思維和邏輯推理的能力。

德育目標(biāo):培養(yǎng)學(xué)生把感性認(rèn)識(shí)上升到理性認(rèn)識(shí)的辯證唯物主義的觀點(diǎn)。

“一元二次方程”有著承上啟下的作用,在今后的學(xué)習(xí)中有廣泛的應(yīng)用,因此本節(jié)課做為起始課的重點(diǎn)是一元二次方程的概念,一元二次方程(特別是含有字母系數(shù)的)化成一般形式是本節(jié)課的難點(diǎn)。

在教學(xué)中,我發(fā)現(xiàn)有的學(xué)生對概念背得很熟,但在準(zhǔn)確和熟練應(yīng)用方面較差,缺乏應(yīng)變能力,針對學(xué)生中存在的這些問題,本節(jié)課突出對教學(xué)概念形成過程的教學(xué),采用探索發(fā)現(xiàn)的方法研究概念,并引導(dǎo)學(xué)生進(jìn)行創(chuàng)造性學(xué)習(xí)。

教學(xué)中,我運(yùn)用啟發(fā)引導(dǎo)的方法讓學(xué)生從一元一次方程入手,類比發(fā)現(xiàn)并歸納出一元二次方程的概念,啟發(fā)學(xué)生發(fā)現(xiàn)規(guī)律,并總結(jié)規(guī)律,最后達(dá)到問題解決。

1、新課導(dǎo)入:

課本引例(如圖)由教師提出并分析其中的數(shù)量關(guān)系。(用實(shí)際問題引出一元二次方程,可以幫助學(xué)生認(rèn)識(shí)到一元二次方程是來源于客觀需要的)

1、知識(shí)與技能目標(biāo):認(rèn)識(shí)一元二次方程,并能分析簡單問題中的數(shù)量關(guān)系列出一元二次方程。

2、過程與方法:學(xué)生通過觀察與模仿, 建立起對一元二次方程的感性認(rèn)識(shí),獲得對代數(shù)式的初步經(jīng)驗(yàn),鍛煉抽象思維能力。

3、情感態(tài)度與價(jià)值觀:學(xué)生在獨(dú)立思考的過程中,能將生活中的經(jīng)驗(yàn)與所學(xué)的知識(shí)結(jié)合起來,形成實(shí)事求是的態(tài)度以及進(jìn)行質(zhì)疑和獨(dú)立思考的習(xí)慣。

重點(diǎn):理解一元二次方程的意義,能根據(jù)題目列出一元二次方程,會(huì)將不規(guī)則的一元二次方程化成標(biāo)準(zhǔn)的一元二次方程。

難點(diǎn):找對題目中的數(shù)量關(guān)系從而列出一元二次方程。

師:同學(xué)們我們就要開始學(xué)習(xí)一元二次方程了,在開始講新課之前,我們首先來看一看第二十二章的這張圖片,圖片上有一個(gè)銅雕塑,有哪位同學(xué)能告訴我這是誰嗎?

師:對,這是遼寧省撫順市雷鋒紀(jì)念館前的雷鋒雕像,雷鋒叔叔一生樂于助人,奉獻(xiàn)了自己方便了他人,所以即使他去世了,也活在人們心中,所以人們才給他做一個(gè)雕塑紀(jì)念他,同學(xué)們是不是也要向雷鋒叔叔學(xué)習(xí)啊?

師:可是原來紀(jì)念館的工作人員在建造這座雕像的時(shí)候曾經(jīng)遇到了一個(gè)問題,也就是圖片下面的這個(gè)問題,同學(xué)們想不想為他們解決這個(gè)問題呢?

師:同學(xué)們也都很樂于助人,好那我們看一看這個(gè)問題是什么,然后帶著這個(gè)問題開始我們今天的學(xué)習(xí)一元二次方程。

師:我們來看到這個(gè)題目,要設(shè)計(jì)一座2m高的人體雕像,使雕像的上部(腰以上)與下部(腰以下)的高度比,等于下部與全部(全身)的高度比,雕像的下部應(yīng)設(shè)計(jì)為全高?同學(xué)們用AC來表示上部,BC來表示下部先簡單列一下這個(gè)比例關(guān)系,待會(huì)老師下去看看同學(xué)們的式子。

師:今天大家學(xué)習(xí)了一元二次方程,同學(xué)們回去還要加強(qiáng)鞏固,做練習(xí)題的1、2(2)題。

1. 了解整式方程和一元二次方程的概念;

2. 知道一元二次方程的一般形式,會(huì)把一元二次方程化成一般形式。

3. 通過本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實(shí)踐又反過來作用于實(shí)踐的辨證唯物主義觀點(diǎn),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

難點(diǎn):對一元二次方程的一般形式的正確理解及其各項(xiàng)系數(shù)的確定。

1)知識(shí)結(jié)構(gòu):本小節(jié)首先通過實(shí)例引出一元二次方程的概念,介紹了一元二次方程的一般形式以及一元二次方程中各項(xiàng)的名稱。

理解一元二次方程的定義:

是一元二次方程 的重要組成部分。方程 ,只有當(dāng) 時(shí),才叫做一元二次方程。如果 且 ,它就是一元二次方程了。解題時(shí)遇到字母系數(shù)的方程可能出現(xiàn)以下情況:

(1)一元二次方程的條件是確定的,如方程 ( ),把它化成一般形式為 ,由于 ,所以 ,符合一元二次方程的定義。

(2)條件是用“關(guān)于 的一元二次方程”這樣的語句表述的,那么它就隱含了二次項(xiàng)系數(shù)不為零的條件。如“關(guān)于 的一元二次方程 ”,這時(shí)題中隱含了 的條件,這在解題中是不能忽略的。

(3)方程中含有字母系數(shù)的 項(xiàng),且出現(xiàn)“關(guān)于 的方程”這樣的語句,就要對方程中的字母系數(shù)進(jìn)行討論。如:“關(guān)于 的方程 ”,這就有兩種可能,當(dāng) 時(shí),它是一元一次方程 ;當(dāng) 時(shí),它是一元二次方程,解題時(shí)就會(huì)有不同的結(jié)果。

1.了解整式方程和一元二次方程的概念;

2.知道一元二次方程的一般形式,會(huì)把一元二次方程化成一般形式。

3.通過本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實(shí)踐又反過來作用于實(shí)踐的辨證唯物主義觀點(diǎn),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

教學(xué)難點(diǎn)和難點(diǎn):

引例:剪一塊面積是150cm2的長方形鐵片,使它的長比寬多5cm、這塊鐵片應(yīng)該怎樣剪?

分析:1.要解決這個(gè)問題,就要求出鐵片的長和寬。

2.這個(gè)問題用什么數(shù)學(xué)方法解決?(間接計(jì)算即列方程解應(yīng)用題。

深入引導(dǎo):方程x(x十5)=150有人會(huì)解嗎?你能叫出這個(gè)方程的名字嗎?

1.從上面的引例我們有這樣一個(gè)感覺:在解決日常生活的計(jì)算問題中確需列方程解應(yīng)用題,但有些方程我們解不了,但必須想辦法解出來。事實(shí)上初中代數(shù)研究的主要對象是方程。這部分內(nèi)容從初一一直貫穿到初三。到目前為止我們對方程研究的還很不夠,從今天起我們就開始研究這樣一類方程--------一元一二次方程(板書課題)

2.什么是—元二次方程呢?現(xiàn)在我們來觀察上面這個(gè)方程:它的左右兩邊都是關(guān)于未知數(shù)的整式,這樣的方程叫做整式方程,就這一點(diǎn)來說它與一元一次方程沒有什么區(qū)別、也就是說一元二次方程首先必須是一個(gè)整式方程,但是一個(gè)整式方程未必就是一個(gè)一元二次方程、這還取決于未知數(shù)的次數(shù)是幾。如果方程未知數(shù)的次數(shù)是2、這樣的整式方程叫做一元二次方程.(板書一元二次方程的定義)

下列方程都是整式方程嗎?其中哪些是一元一次方程?哪些是一元二次方程?

(2)(x十3)(3x·4)=(x十2)2; (4)(x—1)(x—2)=x2十8

從以上4例讓學(xué)生明白判斷一個(gè)方程是否是一元二次方程不能只看表面、而是能化簡必須先化簡、然后再查看這個(gè)方程未知數(shù)的次數(shù)是否是2。

提問:一元二次方程很多嗎?你有辦法一下寫出所有的一元二次方程嗎?

引導(dǎo)學(xué)生回顧一元二次方程的定義,分析一元二次方程項(xiàng)的情況,啟發(fā)學(xué)生運(yùn)用字母,找到一元二次方程的一般形式

1).提問a=0時(shí)方程還是一無二次方程嗎?為什么?(如果a=0、b≠就成了一元一次方程了)。

2).講解方程中ax2、bx、c各項(xiàng)的名稱及a、b的系數(shù)名稱.

3).強(qiáng)調(diào):一元二次方程的一般形式中“=”的左邊最多三項(xiàng)、其中一次項(xiàng)、常數(shù)項(xiàng)可以不出現(xiàn)、但二次項(xiàng)必須存在、而且左邊通常按x的降冪排列:特別注意的是“=”的右邊必須整理成0。

1.說出下列一元二次方程的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)、常數(shù)項(xiàng):

(1)x2十3x十2=O (2)x2—3x十4=0; (3)3x2-5=0

(4)4x2十3x—2=0; (5)3x2—5=0; (6)6x2—x=0。

2.把下列方程先化成二元二次方程的一般形式,再寫出它的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)、常數(shù)項(xiàng):

(1)6x2=3-7x; (3)3x(x-1)=2(x十2)—4;(5)(3x十2)2=4(x-3)2

(1)本節(jié)課主要介紹了一類很重要的方程—一一元二次方程(如果方程未知數(shù)的次數(shù)為2,這樣的整式方程叫做一元一二次方程);

(2)要知道一元二次方程的一般形式ax2十bx十c=0(a≠0)并且注意一元二次方程的一般形式中“=”的左邊最多三項(xiàng)、其中二次項(xiàng)、常數(shù)項(xiàng)可以不出現(xiàn)、但二次項(xiàng)必須存在。特別注意的是“=”的右邊必須整理成0;

(3)要很熟練地說出隨便一個(gè)一元二次方程中一二次項(xiàng)、一次項(xiàng)、常數(shù)項(xiàng):二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù).

一元二次方程課件(篇9)

一、教材分析:

1、教材所處的地位:此前學(xué)生已經(jīng)學(xué)習(xí)了應(yīng)用一元一次方程與二元一次方程組來解決實(shí)際問題。本節(jié)仍是進(jìn)一步討論如何建立和利用一元二次方程模型來解決實(shí)際問題,只是在問題中數(shù)量關(guān)系的復(fù)雜程度上又有了新的發(fā)展。

2、教學(xué)目標(biāo)要求:

(1)能根據(jù)具體問題中的數(shù)量關(guān)系,列出一元二次方程,體會(huì)方程是刻畫現(xiàn)實(shí)世界的一個(gè)有效的數(shù)學(xué)模型;

(2)能根據(jù)具體問題的實(shí)際意義,檢驗(yàn)結(jié)果是否合理;

(3)經(jīng)歷將實(shí)際問題抽象為代數(shù)問題的過程,探索問題中的數(shù)量關(guān)系,并能運(yùn)用一元二次方程對之進(jìn)行描述;

(4)通過用一元二次方程解決身邊的問題,體會(huì)數(shù)學(xué)知識(shí)應(yīng)用的價(jià)值,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,了解數(shù)學(xué)對促進(jìn)社會(huì)進(jìn)步和發(fā)展人類理性精神的作用。

3、教學(xué)重點(diǎn)和難點(diǎn):

重點(diǎn):列一元二次方程解與面積有關(guān)問題的應(yīng)用題。

難點(diǎn):發(fā)現(xiàn)問題中的等量關(guān)系。

二.教法、學(xué)法分析:

1、本節(jié)課的設(shè)計(jì)中除了探究3教師參與多一些外,其余時(shí)間都堅(jiān)持以學(xué)生為主體,充分發(fā)揮學(xué)生的主觀能動(dòng)性。教學(xué)過程中,教師只注重點(diǎn)、引、激、評,注重學(xué)生探究能力的培養(yǎng)。還課堂給學(xué)生,讓學(xué)生去親身體驗(yàn)知識(shí)的產(chǎn)生過程,拓展學(xué)生的創(chuàng)造性思維。同時(shí),注意加強(qiáng)對學(xué)生的啟發(fā)和引導(dǎo),鼓勵(lì)培養(yǎng)學(xué)生們大膽猜想,小心求證的科學(xué)研究的思想。

2、本節(jié)內(nèi)容學(xué)習(xí)的關(guān)鍵所在,是如何尋求、抓準(zhǔn)問題中的數(shù)量關(guān)系,從而準(zhǔn)確列出方程來解答。因此課堂上從審題,找到等量關(guān)系,列方程等一系列活動(dòng)都由生生交流,兵教兵從而達(dá)到發(fā)展學(xué)生思維能力和自學(xué)能力的目的,發(fā)掘?qū)W生的創(chuàng)新精神。

三.教學(xué)流程分析:

本節(jié)課是新授課,根據(jù)學(xué)生的知識(shí)結(jié)構(gòu),整個(gè)課堂教學(xué)流程大致可分為:

活動(dòng)1復(fù)習(xí)回顧解決課前參與

活動(dòng)2封面設(shè)計(jì)問題的探究

活動(dòng)3草坪規(guī)劃問題的延伸

活動(dòng)4課堂回眸

這一流程體現(xiàn)了知識(shí)發(fā)生、形成和發(fā)展的過程,讓學(xué)生體會(huì)到觀察、猜想、歸納、驗(yàn)證的思想和數(shù)形結(jié)合的思想。

活動(dòng)1復(fù)習(xí)回顧解決課前參與

由學(xué)生展示課前參與題目,集體訂正。目的在于回顧常用幾何圖形的面積公式,并且引出本節(jié)學(xué)習(xí)內(nèi)容——面積問題。

活動(dòng)2封面設(shè)計(jì)問題的探究

通過學(xué)生自己獨(dú)立審題,找尋等量關(guān)系,教師引導(dǎo)學(xué)生對“正中央矩形與封面長寬比例相同”題意的理解,使學(xué)生明白中央矩形長寬比為9:7,從而進(jìn)一步突破難點(diǎn):上下邊襯與左右邊襯比也為9:7,為學(xué)生設(shè)未知數(shù)提供幫助。之后由學(xué)生分組完成方程的列法,以及取法。講解中注重簡便設(shè)法及解法的指導(dǎo)與評價(jià)。

活動(dòng)3草坪規(guī)劃問題的延伸

放手給學(xué)生處理,以學(xué)生合作完成為主。突出利用平移變換為主的解決方式。多由學(xué)生分析不同的處理方法。

活動(dòng)4課堂回眸

本課小結(jié)從內(nèi)容、應(yīng)用、數(shù)學(xué)思想方法,獲取知識(shí)的途徑等幾個(gè)方面展開,既有知識(shí)的總結(jié),又有方法的提煉,這樣對于學(xué)生學(xué)知識(shí),用知識(shí)是有很大的促進(jìn)的。方法以學(xué)生暢談收獲為主。

一元二次方程課件(篇10)

教學(xué)目標(biāo):

1、經(jīng)歷抽象一元二次方程概念的過程,進(jìn)一步體會(huì)是刻畫現(xiàn)實(shí)世界的有效數(shù)學(xué)模型

2、理解什么是一元二次方程及一元二次方程的一般形式。

3、能將一元二次方程轉(zhuǎn)化為一般形式,正確識(shí)別二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)及常數(shù)項(xiàng)。

教學(xué)重點(diǎn)

1、一元二次方程及其它有關(guān)的概念。

2、利用實(shí)際問題建立一元二次方程的數(shù)學(xué)模型。

教學(xué)難點(diǎn)

1、建立一元二次方程實(shí)際問題的數(shù)學(xué)模型

2、把一元二次方程化為一般形式

教學(xué)方法:指導(dǎo)自學(xué),自主探究

課時(shí):第一課時(shí)

教學(xué)過程:

(學(xué)生通過導(dǎo)學(xué)提綱,了解本節(jié)課自己應(yīng)該掌握的內(nèi)容)

一、自主探索:(學(xué)生通過自學(xué),經(jīng)歷思考、討論、分析的過程,最終形成一元二次方程及其有關(guān)概念)

1、請認(rèn)真完成課本P39—40議一議以上的內(nèi)容;化簡上述三個(gè)方程。

2、你發(fā)現(xiàn)上述三個(gè)方程有什么共同特點(diǎn)?

你能把這些特點(diǎn)用一個(gè)方程概括出來嗎?

3、請同學(xué)看課本40頁,理解記憶一元二次方程的概念及有關(guān)概念

你覺得理解這個(gè)概念要掌握哪幾個(gè)要點(diǎn)?你還掌握了什么?

二、學(xué)以致用:(通過練習(xí),加深學(xué)生對一元二次方程及其有關(guān)概念的理解與把握)

1、下列哪些是一元二次方程?哪些不是?

①②③

④x2+2x-3=1+x2 ⑤ax2+bx+c=0

2、判斷下列方程是不是關(guān)于x的一元二次方程,如果是,寫出它的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)和常數(shù)項(xiàng)。

(1)3-6x2=0(2)3x(x+2)=4(x-1)+7(3)(2x+3)2=(x+1)(4x-1)

3、若關(guān)于x的方程(k-3)x2+2x-1=0是一元二次方程,則k的值是多少?

4、關(guān)于x的方程(k2-1)x2+2(k+1)x+2k+2=0,在什么條件下它是一元二次方程?在什么條件下它是一元一次方程?

5、以-2、3、0三個(gè)數(shù)作為一個(gè)一元二次方程的系數(shù)和常數(shù)項(xiàng),請你寫出滿足條件的不同的一元二次方程?

三、反思:(學(xué)生,進(jìn)一步加深本節(jié)課所學(xué)內(nèi)容)

這節(jié)課你學(xué)到了什么?

四、自查自省:(通過當(dāng)堂小測,及時(shí)發(fā)現(xiàn)問題,及時(shí)應(yīng)對)

1、下列方程中是一元二次方程的有()A、1個(gè)B、2個(gè) C、3個(gè)D、4個(gè)

(1)(2)(3)(4)(5)(6)2、將方程-5x2+1=6x化為一般形式為____________________.其二次項(xiàng)是_________,系數(shù)為_______,一次項(xiàng)系數(shù)為______,常數(shù)項(xiàng)為______。

3、關(guān)于x的方程(㎡-4)x2+(m+2)x+2m+3=0,當(dāng)m__________時(shí),是一元二次方程;當(dāng)m__________時(shí),是一元一次方程.

作業(yè):必做題:習(xí)題7.1

選做題:(挑戰(zhàn)自我)p41隨堂練習(xí)

1、已知關(guān)于的方程是一元二次方程,則為何值?

2、當(dāng)m為何值時(shí),方程(m+1)x+1+27mx+5=0是關(guān)x于的一元二次方程?

3、關(guān)于的一元二次方程(m-1)x2+x+㎡-1=0有一根為,則的值多少?

4、某校為了美化校園,準(zhǔn)備在一塊長32米,寬20米的長方形場地上修筑若干條道路,余下部分作草坪,并請全校同學(xué)參與設(shè)計(jì),現(xiàn)在有兩位學(xué)生各設(shè)計(jì)了一種(如圖),根據(jù)兩種設(shè)計(jì)各列出方程,求圖中道路的寬分別是多少,使圖(1),(2)的草坪面積為540米2?

(1)(2)

板書設(shè)計(jì):一元二次方程

定義:一個(gè)未知數(shù)整式方程可以化為

一般形式ax2+bx+c=0(a、b、c為常數(shù),a≠0)

二次項(xiàng)一次項(xiàng)常數(shù)項(xiàng)

系數(shù)為a系數(shù)為b

教學(xué)反思

這次我參加了區(qū)里組織的優(yōu)質(zhì)

課比賽,這次的優(yōu)質(zhì)課采用市里要求的1/3模式,這對于我們來說具有一定的挑戰(zhàn)性。所謂“1/3模式”,就是把課堂教學(xué)時(shí)間大致分為3個(gè)部分,1/3的時(shí)間個(gè)人自主學(xué)習(xí),1/3的時(shí)間小組合作學(xué)習(xí),1/3的時(shí)間全班交流討論。在1/3模式中,整個(gè)教學(xué)過程由教師和學(xué)生共同參與,每個(gè)環(huán)節(jié)1/3的時(shí)間只是大致的劃分,可根據(jù)學(xué)習(xí)內(nèi)容靈活安排。這就對教師提出了較高的要求。

首先要準(zhǔn)備好學(xué)案。學(xué)案就是學(xué)生學(xué)習(xí)的依據(jù)。在學(xué)案里,教師要提出明確的學(xué)習(xí)要求。學(xué)習(xí)要求可包括以下方面:完成學(xué)習(xí)任務(wù)的時(shí)間、學(xué)習(xí)內(nèi)容的范圍、完成學(xué)習(xí)任務(wù)所要達(dá)到的程度、自主學(xué)習(xí)成果展現(xiàn)的形式等。這就要求教師要提前考慮周全,對于學(xué)生學(xué)習(xí)的要求要一次性提出,內(nèi)容上有梯度。學(xué)生自主學(xué)習(xí)時(shí),教師要深入學(xué)生當(dāng)中,觀察學(xué)生的學(xué)習(xí)狀況,檢查學(xué)習(xí)任務(wù)完成的情況,有針對性的指導(dǎo)和幫助教師對自主學(xué)習(xí)方法和途徑的指導(dǎo)要適度,既要滿足學(xué)生完成學(xué)習(xí)任務(wù)的需要,又不能擠占學(xué)生自主探究的空間

其次,學(xué)習(xí)氛圍是合作學(xué)習(xí)成功的關(guān)鍵之一,教師要營造安全的心理環(huán)境、充裕的時(shí)空環(huán)境、熱情的幫助環(huán)境、真誠的激勵(lì)環(huán)境,只就要求教師在語言上也要有較高水平,會(huì)發(fā)動(dòng)學(xué)生,會(huì)調(diào)動(dòng)學(xué)生的積極性,讓課堂氣氛活躍起來,讓學(xué)生充分發(fā)揮自己的水平。

再是,由于課堂上主要是以學(xué)生為主。這就要求教師盡量少講,要充當(dāng)好組織者、引導(dǎo)者、傾聽者的角色,不要急于發(fā)表自己的觀點(diǎn),只要學(xué)生能講的教師就不要講,要避免因?yàn)榻處煶尸F(xiàn)自己的觀點(diǎn)而打破學(xué)生的討論。學(xué)生說完的東西,如果沒有問題,教師就不要重復(fù)。教師對學(xué)習(xí)內(nèi)容要點(diǎn)的講解要有的放矢,能起到畫龍點(diǎn)睛的作用。要在學(xué)生原有的水平上進(jìn)行提升,有助于學(xué)生加深對知識(shí)的理解。

我們只有在教學(xué)中不斷的學(xué)習(xí),不斷的改進(jìn)自己,才能保證我們的課堂很精彩,是名副其實(shí)的優(yōu)質(zhì)課。

一元二次方程課件(篇11)

教學(xué)目標(biāo)

知識(shí)與技能目標(biāo)

1、構(gòu)建本章的部分知識(shí)框圖。

2、復(fù)習(xí)一元二次方程的概念、解法。

過程與方法

1、通過對本章方程解法的復(fù)習(xí),進(jìn)一步提高學(xué)生的運(yùn)算能力。

2、在解一元二次方程的過程中體會(huì)轉(zhuǎn)化等數(shù)學(xué)思想。

情感、態(tài)度與價(jià)值觀

通過師生共同的活動(dòng),使學(xué)生在交流和反思的過程中建立本章的知識(shí)體系,從而體驗(yàn)學(xué)習(xí)數(shù)學(xué)的成就感.

教學(xué)重點(diǎn)

1、一元二次方程的概念

2、一元二次方程的四種解法:直接開平方法、配方法、公式法、因式分解法;

教學(xué)難點(diǎn)

解法的靈活選擇;例4和例5的解法。

教學(xué)過程

一、創(chuàng)設(shè)情境

導(dǎo)入新課

問題:本章中,我們有哪些收獲?(教師點(diǎn)撥引導(dǎo)學(xué)生構(gòu)建本章部分知識(shí)框圖)

二、師生互動(dòng)

共同探究

1、復(fù)習(xí)概念

例1

例2

2、四種解法

(1)

解法及其關(guān)系

(2)

根的形式

x1=3

x2=4

(3)熟悉解法

例3用四種解法分別解此方程

(4)方法優(yōu)選

3、方法補(bǔ)充

例4

4、解法糾錯(cuò)

例5

解關(guān)于x的方程

錯(cuò)誤解法

正確解法

三、小結(jié)反思

提煉思想

我們有哪些收獲?解方程的思想方法是什么?

四、布置作業(yè)

鞏固提高

解一元一次方程課件分享


我們特別整理了這篇“解一元一次方程課件”,相信會(huì)對您產(chǎn)生濃厚的興趣。愿這些參考資料能夠給您帶來啟發(fā),實(shí)現(xiàn)更好的自我。在上課之前,老師總是提前準(zhǔn)備教案和課件,因此,最好能認(rèn)真完善每一份教案和課件。通過使用教案課件,可以激發(fā)學(xué)生的興趣,促進(jìn)教學(xué)過程的順利進(jìn)行。

解一元一次方程課件【篇1】

探究

(一)銷售中的盈虧 大連世紀(jì)中學(xué) 初秀娟

教案背景:由于本節(jié)問題的背景和表達(dá)都比較貼近實(shí)際,有必要讓學(xué)生了解,所以設(shè)計(jì)了此教案

教材分析:本課是3.4節(jié)《實(shí)際問題與一元一次方程》的第一課時(shí),是在前面已經(jīng)討論過由實(shí)際問題抽象出一元一次方程模型和解一元一次方程的一般步驟的基礎(chǔ)上,進(jìn)一步以“探究”的形式討論如何用一元一次方程解決設(shè)計(jì)及問題————————銷售中的盈虧。

一、教學(xué)目標(biāo)

1、理解商品銷售中所涉及進(jìn)價(jià)、原價(jià)、售價(jià)、利潤、打折、利潤率這些基本量之間關(guān)系。

2、能根據(jù)數(shù)量關(guān)系找出等量關(guān)系列出方程,掌握商品盈虧的解法。

3、能利用一元一次方程解決商品銷售中的實(shí)際問題。

二、重點(diǎn)、難點(diǎn)

重點(diǎn):讓學(xué)生知道商品銷售中盈虧的算法。

難點(diǎn):弄清商品銷售中的“進(jìn)價(jià)”、“標(biāo)價(jià)”、“售價(jià)”及“利潤”的含義。

三、教學(xué)方法:通過創(chuàng)設(shè)“商場打折銷售”這一問題情境,引導(dǎo)學(xué)生認(rèn)識(shí)銷售問題中的有關(guān)概念及其關(guān)系,在此基礎(chǔ)上探究銷售中的盈虧問題。在經(jīng)歷“猜想。計(jì)算驗(yàn)證”之后歸納解決問題的一般方法,反思學(xué)習(xí)過程中值得關(guān)注的細(xì)節(jié)。

四、課時(shí)安排:1課時(shí)

五、教具準(zhǔn)備:多媒體課件

六、教學(xué)過程

(一)創(chuàng)設(shè)情境,導(dǎo)入新課

由一幅商場促銷打折圖片,(百度圖片搜索)創(chuàng)設(shè)問題情境提出問題:引出本節(jié)課題——銷售中的盈虧問題

你能根據(jù)自己的理解說出它的意思嗎? 進(jìn)價(jià):購進(jìn)商品時(shí)的價(jià)格(有時(shí)也叫成本價(jià))

售價(jià):在銷售商品時(shí)的售出價(jià)(有時(shí)叫成交價(jià)、賣出價(jià))標(biāo)價(jià):在銷售時(shí)標(biāo)出的價(jià)(稱原價(jià)、定價(jià))

打折:賣貨時(shí),按照標(biāo)價(jià)乘以十分之幾或百分之幾十。利潤:在銷售過程中的純收入。利潤=售價(jià)-進(jìn)價(jià)

利潤率:在銷售過程中,利潤占進(jìn)價(jià)的百分比。利潤率=利潤÷進(jìn)價(jià)×100% 引例:

1、一件衣服500元打9折是______元。

2、某商品的每件銷售價(jià)是172元,進(jìn)價(jià)120元,則利潤是_______元。

3、某商品進(jìn)價(jià)是100元,利潤是25元,那么利潤率是_________。

4.某商品的進(jìn)價(jià)是200元,利潤率是20%,則利潤是________元,售價(jià)是_______元。5.某商品的售價(jià)是60元,利潤率為2

_______元

商品利潤=_________ ×

_________

售價(jià)=

=

利潤率=

例 1 某商店以240元賣出一件衣服,盈利20%,你能列方程求出它的進(jìn)價(jià)嗎?

變式:某商店以240元賣出一件衣服,虧損20%,你能列方程求出它的進(jìn)價(jià)嗎?

(二)探究新知、講授新課

例:某商店在某一時(shí)間內(nèi)以每件60元的價(jià)格賣出兩件衣服,其中一件盈利

25%,另一件虧損25%。賣這兩件衣服總的是盈利還是虧損,還是不盈不虧? 問題1:

①:你能從大體上估算賣這兩件衣服的盈虧情況嗎? ②:如何說明你的估算是正確的呢? ③:如何判斷盈虧?

問題2:這一問題情境中哪些是已知量?哪些未知量?如何設(shè)未知數(shù)?相等關(guān)系是什么?如何列方程? 問題3:盈利25%、虧損25%的意義? 引導(dǎo)學(xué)生填空:

設(shè)盈利25%的那件衣服的進(jìn)價(jià)是x元,它的商品利潤就是0.25x元,根據(jù)售價(jià)=進(jìn)價(jià)×(1+利潤率)這一相等關(guān)系列出方程x(1 + 0.25)= 60,解得x=48。設(shè)另一件衣服的進(jìn)價(jià)為y元,它的商品利潤是 — 0.25y元,列出方程 y(1— 0.25)= 60,解得 y =80。(虧損就是負(fù)盈利,即利潤為-0.25y元)

兩件衣服的進(jìn)價(jià)是x + y = 48 + 80 = 128 元,而兩件衣服的售價(jià)是60 + 60 = 120元,進(jìn)價(jià) 大 于售價(jià),可知賣這兩件衣服總的盈虧情況是虧損8元。(將結(jié)論與先前的估算進(jìn)行比較)

(三)綜合應(yīng)用

1、鞏固練習(xí)

1.某文具店有兩個(gè)進(jìn)價(jià)不同的計(jì)算器都賣64元,其中一個(gè)盈利60%,另一個(gè)虧本20%.這次交易中的盈虧情況?

2.大連商場把諾基亞手機(jī)按標(biāo)價(jià)的9折出售,仍可獲利20%。若該手機(jī)的進(jìn)價(jià)是1800元,則該手機(jī)標(biāo)價(jià)是多少?

2、拓展延伸

有一款電腦顯示器的進(jìn)價(jià)是1000元,標(biāo)價(jià)為1550元,為促銷商家打折銷售并送35元打的費(fèi),要使利潤不低于5%出售,最低可以打幾折?

(四)課堂小結(jié),鞏固新知

1、本節(jié)學(xué)了哪些知識(shí),你有什么收獲?

2、商品銷售中的盈虧是如何計(jì)算?

(五)布置作業(yè),提高升華

A鞏固型作業(yè):課本習(xí)題3.4第3題、第4題

七、板書設(shè)計(jì)

銷售中的盈虧

1、基本概念: 例題:

2、公式: 練習(xí):

利潤售價(jià)?進(jìn)價(jià)利潤率??

進(jìn)價(jià)進(jìn)價(jià) 售價(jià)?進(jìn)價(jià)?(1?利潤率)教學(xué)反思:(用百度搜索實(shí)際例子,速度快,例子多,借鑒別人的成功經(jīng)驗(yàn),參考別人的課件給我上課帶來了很多好處,也曾大了我的課堂容量)

《商品銷售中的盈虧》問題比較貼合學(xué)生生活實(shí)際,誰不買東西呢?事實(shí)上,我的想法大大錯(cuò)了,看似很熟悉的銷售問題其實(shí)學(xué)生很陌生,他們只不過去買買東西,但大部分根本就不知道買東西的過程中要涉及到所買東西的售價(jià)、進(jìn)價(jià)、利潤、利潤率等因素,沒有這些社會(huì)鋪墊,上起課來就處于被動(dòng)狀態(tài)。因此在教學(xué)設(shè)計(jì)方面從以下幾個(gè)方面著手:

1、用4個(gè)小題的方式補(bǔ)充缺少的那些常識(shí)問題,例如:什么是進(jìn)價(jià)、售價(jià)、利潤、打折、利潤率等常識(shí),等學(xué)生對公式——售價(jià)=進(jìn)價(jià)+利潤理解透徹后在進(jìn)行新課學(xué)習(xí),自然會(huì)順手很多了。

2、細(xì)化目標(biāo),原來的目標(biāo)太大了,缺少層次性,細(xì)化后學(xué)生通過學(xué)習(xí)目標(biāo)知道這節(jié)課自己要干什么。

3、在新課學(xué)習(xí)問題做些修改,把問題中的原題變成小題,(1)某商店在某一時(shí)間以每件60 元的標(biāo)價(jià)賣出一件衣服,盈利25%,問這件衣服的進(jìn)價(jià)為多少元?(2)某商店在某一時(shí)間又以每件60 元的標(biāo)價(jià)賣出另一件衣服,虧損25%,問這件衣服的進(jìn)價(jià)為多少元?(3)賣這兩件衣服總的是盈利還是虧損,或是不盈不虧? 通過這樣逐層深入的引導(dǎo),學(xué)生做題就容易了。

教學(xué)方式上采用編寫學(xué)案,學(xué)生根據(jù)學(xué)案自主學(xué)習(xí),小組討論,學(xué)生講評等方式,起到了一定效果,基本按高效課堂的小組合作學(xué)習(xí)方式在進(jìn)行。

需改進(jìn)之處:

學(xué)案應(yīng)提前發(fā)給學(xué)生,上課學(xué)生討論、交流時(shí)間就較多。.

解一元一次方程課件【篇2】

1、會(huì)根據(jù)實(shí)際問題中的數(shù)量關(guān)系列方程解決問題。

培養(yǎng)學(xué)生的數(shù)學(xué)建模能力,以及分析問題解、決問題的能力。

1、通過問題的`解決,培養(yǎng)學(xué)生解決問題的能力。

2、通過開放性問題的設(shè)計(jì),培養(yǎng)學(xué)生的創(chuàng)新能力和挑戰(zhàn)自我的意識(shí),增強(qiáng)學(xué)生的學(xué)習(xí)興趣。

根據(jù)題意,分析各類問題中的等量關(guān)系,熟練的列方程解應(yīng)用題。

學(xué)生在上一節(jié)課已經(jīng)學(xué)習(xí)了一元一次方程的解法,對于學(xué)生來說解方程已不是問題了,本節(jié)課是以上一節(jié)課為基礎(chǔ),用方程來解決實(shí)際問題,只要學(xué)生讀懂題意,建立數(shù)學(xué)模型,用一元一次方程會(huì)解決就行了。

討論交流:按怎樣的解題步驟解方程才最簡便?由此你能得到怎樣的啟發(fā)。

問題一:

一項(xiàng)工作甲獨(dú)做5天完成,乙獨(dú)做10天完成,那么甲每天的工作效率是,乙每天的工作效率是,兩人合作3天完成的工作量是,此時(shí)剩余的工作量是。

問題二:

某項(xiàng)工作,甲單獨(dú)做需要4小時(shí),乙單獨(dú)做需要6小時(shí),如果甲先做30分鐘,然后甲、乙合作,問甲、乙合作還需要多久才能完成全部工作?

問題三:

整理一批圖書,由一個(gè)人做要40小時(shí)完成.現(xiàn)在計(jì)劃由一部分人先做4小時(shí),再增加兩人和他們一起做8小時(shí),完成這項(xiàng)工作.假設(shè)這些人的工作效率相同。

解一元一次方程課件【篇3】

教學(xué)目的

1.通過對多個(gè)實(shí)際問題的分析,使學(xué)生體會(huì)到一元一次方程作為實(shí)際問題的數(shù)學(xué)模型的作用。

2.使學(xué)生會(huì)列一元一次方程解決一些簡單的應(yīng)用題。

3.會(huì)判斷一個(gè)數(shù)是不是某個(gè)方程的解。

重點(diǎn)、難點(diǎn)

1.重點(diǎn):會(huì)列一元一次方程解決一些簡單的應(yīng)用題。

2.難點(diǎn):弄清題意,找出“相等關(guān)系”。

教學(xué)過程

一、復(fù)習(xí)提問

小學(xué)里已經(jīng)學(xué)過列方程解簡單的應(yīng)用題,讓我們回顧一下,如何列方程解應(yīng)用題?

例如:一本筆記本1.2元。小紅有6元錢,那么她最多能買到幾本這樣的筆記本呢?

解:設(shè)小紅能買到工本筆記本,那么根據(jù)題意,得

1.2x=6

因?yàn)?.2×5=6,所以小紅能買到5本筆記本。

二、新授:

我們再來看下面一個(gè)例子:

問題1:某校初中一年級(jí)328名師生乘車外出春游,已有2輛校車可以乘坐64人,還需租用44座的客車多少輛?

問:你能解決這個(gè)問題嗎?有哪些方法?

(讓學(xué)生思考后,回答,教師再作講評)

算術(shù)法:(328-64)÷44=264÷44=6(輛)

列方程解應(yīng)用題:

設(shè)需要租用x輛客車,那么這些客車共可乘44x人,加上乘坐校車的64人,就是全體師生328人,可得。

44x+64=328 (1)

解這個(gè)方程,就能得到所求的結(jié)果。

問:你會(huì)解這個(gè)方程嗎?試試看?

(學(xué)生可能利用逆運(yùn)算求解,教師加以肯定,同時(shí)指出本章里我們將要學(xué)習(xí)解方程的另一種方法。)

問題2:在課外活動(dòng)中,張老師發(fā)現(xiàn)同學(xué)們的年齡大多是13歲,就問同學(xué):“我今年45歲,幾年以后你們的年齡是我年齡的三分之一?”

小敏同學(xué)很快說出了答案?!叭辍薄K沁@樣算的':

1年后,老師46歲,同學(xué)們的年齡是14歲,不是老師的三分之一。

2年后,老師47歲,同學(xué)們的年齡是15歲,也不是老師的三分之一。

3年后,老師48歲,同學(xué)們的年齡是16歲,恰好是老師的三分之一。

你能否用方程的方法來解呢?

通過分析,列出方程:13+x= (45+x) (2)

問:你會(huì)解這個(gè)方程嗎?你能否從小敏同學(xué)的解法中得到啟發(fā)?

這個(gè)方程不像例l中的方程(1)那樣容易求出它的解,小敏同學(xué)的方法啟發(fā)了我們,可以用嘗試,檢驗(yàn)的方法找出方程(2)的解。也就是只要將x=1,2,3,4,……代人方程(2)的兩邊,看哪個(gè)數(shù)能使兩邊的值相等,這個(gè)數(shù)就是這個(gè)方程的解。

把x=3代人方程(2),左邊=13+3=16,右邊=(45+3)=×48=16,

因?yàn)樽筮叄接疫?,所以x=3就是這個(gè)方程的解。

這種通過試驗(yàn)的方法得出方程的解,這也是一種基本的數(shù)學(xué)思想方法。也可以據(jù)此檢驗(yàn)一下一個(gè)數(shù)是不是方程的解。

問:若把例2中的“三分之一”改為“二分之一”,那么答案是多少?

同學(xué)們動(dòng)手試一試,大家發(fā)現(xiàn)了什么問題?

同樣,用檢驗(yàn)的方法也很難得到方程的解,因?yàn)檫@里x的值很大。另外,有的方程的解不一定是整數(shù),該從何試起?如何試驗(yàn)根本無法人手,又該怎么辦?

這正是我們本章要解決的問題。

三、鞏固練習(xí)

1.教科書第3頁練習(xí)1、2。

2.補(bǔ)充練習(xí):檢驗(yàn)下列各括號(hào)內(nèi)的數(shù)是不是它前面方程的解。

(1)x-3(x+2)=6+x ?(x=3,x=-4)

(2)2y(y-1)=3 ?(y=-1,y= 2)

(3)5(x-1)(x-2)=0 ?(x=0,x=1,x=2)

四、小結(jié)。本節(jié)課我們主要學(xué)習(xí)了怎樣列方程解應(yīng)用題的方法,解決一些實(shí)際問題。談?wù)勀愕膶W(xué)習(xí)體會(huì)。

五、作業(yè)。教科書第3頁,習(xí)題6.1第1、3題。

6.2解一元一次方程

1.方程的簡單變形

教學(xué)目的

通過天平實(shí)驗(yàn),讓學(xué)生在觀察、思考的基礎(chǔ)上歸納出方程的兩種變形,并能利用它們將簡單的方程變形以求出未知數(shù)的值。

重點(diǎn)、難點(diǎn)

1.重點(diǎn):方程的兩種變形。

2.難點(diǎn):由具體實(shí)例抽象出方程的兩種變形。

教學(xué)過程

一、引入

上一節(jié)課我們學(xué)習(xí)了列方程解簡單的應(yīng)用題,列出的方程有的我們不會(huì)解,我們知道解方程就是把方程變形成x=a形式,本節(jié)課,我們將學(xué)習(xí)如何將方程變形。

二、新授

讓我們先做個(gè)實(shí)驗(yàn),拿出預(yù)先準(zhǔn)備好的天平和若干砝碼。

測量一些物體的質(zhì)量時(shí),我們將它放在天干的左盤內(nèi),在右盤內(nèi)放上砝碼,當(dāng)天平處于平衡狀態(tài)時(shí),顯然兩邊的質(zhì)量相等。

如果我們在兩盤內(nèi)同時(shí)加入相同質(zhì)量的砝碼,這時(shí)天平仍然平衡,天平兩邊盤內(nèi)同時(shí)拿去相同質(zhì)量的砝碼,天平仍然平衡。

如果把天平看成一個(gè)方程,課本第4頁上的圖,你能從天平上砝碼的變化聯(lián)想到方程的變形嗎?

讓同學(xué)們觀察圖6.2.1的左邊的天平;天平的左盤內(nèi)有一個(gè)大砝碼和2個(gè)小砝碼,右盤上有5個(gè)小砝碼,天平平衡,表示左右兩盤的質(zhì)量相等。如果我們用x表示大砝碼的質(zhì)量,1表示小砝碼的質(zhì)量,那么可用方程x+2=5表示天平兩盤內(nèi)物體的質(zhì)量關(guān)系。

解一元一次方程課件【篇4】

①經(jīng)歷運(yùn)用方程解決實(shí)際問題的過程,體會(huì)方程是刻畫現(xiàn)實(shí)世界的有效數(shù)學(xué)模型.

②學(xué)會(huì)合并(同類項(xiàng)),會(huì)解“ax+bx=c”類型的一元一次方程.

③能夠找出實(shí)際問題中的已知數(shù)和未知數(shù),分析它們之間的`數(shù)量關(guān)系,列出方程.

④初步體會(huì)一元一次方程的應(yīng)用價(jià)值,感受數(shù)學(xué)文化.

重點(diǎn):建立方程解決實(shí)際問題,會(huì)解 “ax+bx=c”類型的一元一次方程.

難點(diǎn):分析實(shí)際問題中的已知量和未知量,找出相等關(guān)系,列出方程.

(出示背景資料)約公元825年,中亞細(xì)亞數(shù)學(xué)家阿爾一花拉子米寫了一本代數(shù)書,重點(diǎn)論述怎樣解方程.這本書的拉丁文譯本取名為《對消與還原》.“對消”與“還原”是什么意思呢?通過下面幾節(jié)課的學(xué)習(xí)討論,相信同學(xué)們一定能回答這個(gè)問題.

出示教科書76頁問題1:某校三年共購買計(jì)算機(jī)140臺(tái),去年購買數(shù)量是前年的2倍,今年購買的數(shù)量又是去年的2倍。前年這個(gè)學(xué)校購買了多少臺(tái)計(jì)算機(jī)?

設(shè)問2:怎樣解這個(gè)方程?如何將這個(gè)方程轉(zhuǎn)化為x=a的形式?學(xué)生觀察、思考:

根據(jù)分配律,可以把含 x的項(xiàng)合并,即x+2x+4x=(1+2+4)x=7x.

設(shè)問3:以上解方程“合并”起了什么作用?每一步的根據(jù)是什么?

學(xué)生討論、回答,師生共同整理:

“合并”是一種恒等變形,它使方程變得簡單,更接近x=a的形式。

例1 解方程7x-2.5x+3x-1.5x=-15×4-6×3.

對于問題1還有不同的未知數(shù)的設(shè)法嗎?

一個(gè)黑白足球的表面一共有32個(gè)皮塊,其中有若干塊黑色五邊形和白色六邊形,黑、白皮塊的數(shù)目之比為3:5,問黑色皮塊有多少?

學(xué)生思考、討論出多種解法,師生共同講評。

提問:

1、你今天學(xué)習(xí)的解方程有哪些步驟,每一步依據(jù)是什么?

2、今天討論的問題中的相等關(guān)系有何共同特點(diǎn)?

學(xué)生思考后回答、整理:

教科書第93頁習(xí)題3.2中1、3①②、4、6.

解一元一次方程課件【篇5】

1.認(rèn)識(shí)一元一次方程(一)

——你幾歲了

一、教學(xué)目標(biāo)

1、在對實(shí)際問題情境的分析過程中感受方程模型的意義 2、借助類比、歸納的方式概括一元一次方程的概念,并在概括的過程中體驗(yàn)歸納方法;

3、使學(xué)生在分析實(shí)際問題情境的活動(dòng)中體會(huì)數(shù)學(xué)與現(xiàn)實(shí)的密切聯(lián)系。

二、教學(xué)過程 環(huán)節(jié)一:閱讀章前圖

內(nèi)容1:請一位同學(xué)閱讀章前圖中關(guān)于“丟番圖”的故事。(大約1分鐘)

丟番圖是古希臘數(shù)學(xué)家.人們對他的生平事跡知道得很少,但流傳著一篇墓志銘敘述了他的生平:墳中安葬著丟番圖,多么令人驚訝,它忠實(shí)地記錄了其所經(jīng)歷的人生旅程.上帝賜予他的童年占六分之一,又過十二分之一他兩頰長出了胡須,再過七分之一,點(diǎn)燃了新婚的蠟燭.五年之后喜得貴子,可憐遲到的寧馨兒,享年僅及其父之半便入黃泉.悲傷只有用數(shù)學(xué)研究去彌補(bǔ),又過四年,他也走完了人生的旅途。

——出自《希臘詩文選》第126題

目的:通過閱讀章前圖中的故事,激發(fā)同學(xué)們探索丟番圖年齡的興趣,進(jìn)而引導(dǎo)學(xué)生通過列方程解決問題,感受利用方程可以解決實(shí)際問題,感受方程是刻畫現(xiàn)實(shí)世界有效地模型。效果:學(xué)生對丟番圖的故事很感興趣,有的學(xué)生提出問題:他的年齡是多少呢?教師借機(jī)也提出問題:用什么方法可以求解丟番圖的年齡呢?緊接著呈現(xiàn)內(nèi)容2。

內(nèi)容2:回答以下3個(gè)問題:(大約4分鐘)1、你能找到題中的等量關(guān)系,列出方程嗎? 2、你對方程有什么認(rèn)識(shí)?

3、列方程解決實(shí)際問題的關(guān)鍵是什么?

目的:第一個(gè)問題考查學(xué)生根據(jù)等量關(guān)系列方程的能力,對于解方程這里不做要求。第二個(gè)問題意在鼓勵(lì)學(xué)生用自己的語言對方程進(jìn)行描述,鍛煉學(xué)生的數(shù)學(xué)語言表達(dá)能力。第三個(gè)問題強(qiáng)調(diào)列方程解應(yīng)用題的關(guān)鍵是:尋找等量關(guān)系。

實(shí)際效果:第一個(gè)問題學(xué)生可以完成問題。如下: 解:設(shè)丟番圖的年齡為x歲,則:

第二個(gè)問題學(xué)生的表述合理即可,教師可以用規(guī)范的語言再次強(qiáng)調(diào):方程是刻畫現(xiàn)實(shí)世界有效地模型。第三個(gè)問題學(xué)生回答較好。

內(nèi)容3:閱讀學(xué)習(xí)目標(biāo):

學(xué)習(xí)本章內(nèi)容,你將感受方程是刻畫現(xiàn)實(shí)生活中等量關(guān)系的有效模型。掌握等式的基本性質(zhì),能解一元一次方程。能用一元一次方程解決一些簡單的實(shí)際問題。在探索一元一次方程解法的過程中,感受轉(zhuǎn)化思想。

目的:通過閱讀學(xué)習(xí)目標(biāo),學(xué)生了解了本章知識(shí)的學(xué)習(xí)內(nèi)容共有兩部分:解一元一次方程和能用一元一次方程解決一些簡單的實(shí)際問題。學(xué)生對于本章知識(shí)的學(xué)習(xí)和數(shù)學(xué)思想有一個(gè)整體的概念。

實(shí)際效果:學(xué)生通過閱讀,目標(biāo)明確了,學(xué)習(xí)更有針對性。尤其是認(rèn)識(shí)了“轉(zhuǎn)化思想”的重要性。

環(huán)節(jié)二:自主閱讀、學(xué)習(xí)

內(nèi)容:讓學(xué)生閱讀本節(jié)教材P132-P133隨堂練習(xí)之前的內(nèi)容。結(jié)合課本多以問題串的形式呈現(xiàn)內(nèi)容的特點(diǎn),粗讀并完成書上的填空題。(大約10分鐘)

目的:通過讀書的過程,首先讓學(xué)生回憶起小學(xué)學(xué)過的等式的概念、方程的概念,對課文所設(shè)置的較簡單又熟悉的實(shí)例中的各種量的關(guān)系分析清楚,找出等量關(guān)系,列出方程,體會(huì)不同類型的方程.實(shí)際效果:通常,多數(shù)學(xué)生能夠分析教材實(shí)例中所蘊(yùn)含的各種數(shù)量關(guān)系,并列出方程。教學(xué)過程中需要注意學(xué)生在這個(gè)環(huán)節(jié)的活動(dòng)中所表現(xiàn)出來的書寫不規(guī)范,錯(cuò)誤的地方,提醒學(xué)生注意。環(huán)節(jié)三:情境引入

內(nèi)容:與學(xué)生共同分析完成課本呈現(xiàn)的三個(gè)情境:(1)如果設(shè)小紅的年齡為x歲,那么“乘2再減5”就是2x-5,所以得到方程:2x-5=21 組織活動(dòng):四人小組做猜年齡的游戲,每個(gè)小組會(huì)有幾個(gè)不同的等式.如:我的年齡乘2減5等于91,你知道老師多大了嗎? 學(xué)生算出老師48歲了

(2)小麗種了一株樹苗,開始時(shí)樹苗高為40cm,栽種后每周樹苗長高約5cm,大約幾周后樹苗長高到1m?

如果設(shè)x周后樹苗長高到1m,那么可以得到方程:40+5x=100(3)甲、乙兩地相距22km,張叔叔從甲地出發(fā)到乙地,每時(shí)比原計(jì)劃多行走1km,因此提前12min到達(dá)乙地,張叔叔原計(jì)劃每時(shí)行走多少千米?

設(shè)張叔叔原計(jì)劃每時(shí)行走xkm,可以得到方程:

目的:通過準(zhǔn)確列三個(gè)方程,感受:1、列方程解應(yīng)用題的關(guān)鍵是:尋找等量關(guān)系;2、三個(gè)方程可分為三種類型:一元一次方程,分式方程,一元二次方程。

注意事項(xiàng):學(xué)生在列方程時(shí)要注意以下問題: 1、讓學(xué)生讀題、審題,鍛煉學(xué)生的審題能力; 2、(2)中單位換算:1米=100厘米。等量關(guān)系為:最后樹高=初始樹高+每周生長高度;

3、(3)中單位換算:12分=小時(shí)。等量關(guān)系為:原計(jì)劃所用時(shí)間-現(xiàn)在所用時(shí)間=提前時(shí)間;

環(huán)節(jié)四:歸納一元一次方程的定義,了解一元一次方程的解的含義

內(nèi)容:議一議

(1)由上面的問題你得到了哪些方程?其中哪些是你熟悉的方程?與同伴

進(jìn)行交流.共得到三個(gè)方程。其中(1)、(2)都只有一個(gè)未知數(shù),在小學(xué)學(xué)習(xí)時(shí)常見。

(2)方程2x-5=21,40+5x=100,(1+%)x=8930有什么共同點(diǎn)?

它們都只含有一個(gè)未知數(shù),且未知數(shù)的指數(shù)都是1。目的:由(1)引導(dǎo)學(xué)生逐步深入地思考所列的五個(gè)方程的特點(diǎn):未知數(shù)的次數(shù)、位置不同;由(2)得出一元一次方程的定義:在一個(gè)方程中,只含有一個(gè)未知數(shù),且未知數(shù)的指數(shù)都是1,這樣的方程叫做一元一次方程。

實(shí)際效果:逐步引發(fā)學(xué)生對方程特點(diǎn)的研究,由此讓學(xué)生自己說出一元一次方程的定義,并判斷上述五個(gè)方程只有三個(gè)一元一次方程。結(jié)論的得出源于學(xué)生在實(shí)際問題中分析,并不斷地綜合總結(jié),體現(xiàn)了學(xué)生思維的主動(dòng)性.內(nèi)容2:方程的解得含義:使方程左、右兩邊的值相等的未知數(shù)的值,叫做方程的解。

x=2是下列方程的解嗎? 完成(1)3x+(10-x)=20;(2)2+6=7x 目的:了解方程的解的含義;判斷是否為方程的解的方法:將解帶入原方程,分別計(jì)算左和右,看是否相等。相等則為原方程的解。

實(shí)際效果:1、學(xué)生有小學(xué)的基礎(chǔ),能理解方程的解的含義;

2、學(xué)生熟練將方程的解帶入方程進(jìn)行驗(yàn)證,得出結(jié)論。 環(huán)節(jié)五:達(dá)標(biāo)檢測

內(nèi)容1:完成教材上的隨堂練習(xí)1、根據(jù)題意,列出方程:(1)在一卷公元前1600年左右遺留下來的古埃及紙草書中,記載著一些數(shù)學(xué)問題.其中一個(gè)問題翻譯過來是:“啊哈,它的全部,它的,其和等于19.”

你能求出問題中的“它”嗎? 解:設(shè)“它”為x,則:

(2)甲、乙兩隊(duì)開展足球?qū)官?,?guī)定每隊(duì)勝一場得3分,平一場得1分,負(fù)一場得0分.甲隊(duì)與乙隊(duì)一共比賽了10場,甲隊(duì)保持了不敗記錄,一共得了22分.甲隊(duì)勝了多少場?平了多少場?

解:設(shè)甲隊(duì)贏了x場,則乙隊(duì)贏了(10-x)場。則: 2、達(dá)標(biāo)練習(xí):

下列各式中,是方程的是(只填序號(hào))①2x=1②5-4=1③7m-n+1④3(x+y)=4 下列各式中,是一元一次方程的是(只填序號(hào))①x-3y=1②x2+2x+3=0③x=7④x2-y=0 a的20%加上100等于x.則可列出方程:.某數(shù)的一半減去該數(shù)的等于6,若設(shè)此數(shù)為x,則可列出方程

一桶油連桶的重量為8千克,油用去一半后,連桶重量為千克,桶內(nèi)有油多少千克?設(shè)桶內(nèi)原有油x千克,則可列出方程___________________ 小穎的爸爸今年44歲,是小穎年齡的3倍還大2歲,設(shè)小明今年x歲,則可列出方程:___________________ 3年前,父親的年齡是兒子年齡的4倍,3年后父親的年齡是兒子年齡的3倍,求父子今年各是多少歲?設(shè)3年前兒子年齡為x歲,則可列出方程:__________ 目的:對本節(jié)知識(shí)進(jìn)行鞏固練習(xí)實(shí)際效果: 1、學(xué)生基本能很好地對隨堂練習(xí)的問題給出準(zhǔn)確的解答。2、由同學(xué)選自己組的代表發(fā)言,對P133隨堂練習(xí)1中的各個(gè)量及所表示的意義進(jìn)行說明,加深對背景下的數(shù)學(xué)模型的理解。

3、達(dá)標(biāo)練習(xí)中的題可以有選擇的做。 環(huán)節(jié)六:課堂小結(jié)

內(nèi)容:師生互動(dòng),梳理本節(jié)內(nèi)容。(本節(jié)課你的收獲,你的疑惑)

目的:鼓勵(lì)學(xué)生結(jié)合學(xué)習(xí)本節(jié)課本內(nèi)容及課前的預(yù)習(xí),談?wù)勛约旱氖斋@與感想,包括如何調(diào)整自己的讀書方法.實(shí)際效果:

學(xué)生一方面總結(jié)出了:

本節(jié)給出了四個(gè)知識(shí)點(diǎn):等式(回顧鞏固),方程(給出描述性定義),一元一次方程及一元一次的解(根).感覺在解決實(shí)際問題時(shí),列方程相比小學(xué)算術(shù)法,給出的思維方式與途徑更具普遍性.列方程的核心:實(shí)際問題“數(shù)學(xué)化”,關(guān)鍵是找到等量關(guān)系。

另一方面:每位同學(xué)都在現(xiàn)有程度上,適當(dāng)調(diào)整自己的讀書預(yù)習(xí)方式及自己獨(dú)立思考問題的途徑.環(huán)節(jié)七:布置作業(yè) 1、習(xí)題 2、思考:如何得到所列三個(gè)一元一次方程的解? 五、教學(xué)反思:

此階段的學(xué)生有比較強(qiáng)烈的自我發(fā)展意識(shí),對與自己的主觀經(jīng)驗(yàn)相沖突的現(xiàn)象,教師只有進(jìn)行得當(dāng)合理的詮釋方可得到學(xué)生的認(rèn)可。授課時(shí)要設(shè)法讓學(xué)生體會(huì)運(yùn)用方程建模的優(yōu)越性,將能使眾多實(shí)際問題“數(shù)學(xué)化”的重要數(shù)學(xué)模型成為學(xué)生學(xué)習(xí)后續(xù)知識(shí)的自覺選擇。

讓學(xué)生在簡單的背景問題中,一點(diǎn)一滴地體會(huì)分析已知量、未知量之間的數(shù)量關(guān)系,對列方程的幫助,其正做到分解難點(diǎn)、降低難度、突破難點(diǎn)的目的.

解一元一次方程課件【篇6】

1.用白鐵皮制作罐頭盒,每張鐵皮可制16個(gè)盒身或43個(gè)盒底,一個(gè)盒身與兩個(gè)盒底配成一個(gè)罐頭盒.現(xiàn)有150張白鐵皮,用多少張制盒身,多少張制盒底,可以正好制成整數(shù)個(gè)罐頭盒,且盒身和盒底沒有剩余?

2.一項(xiàng)工程,甲單獨(dú)完成要9天,乙單獨(dú)完成要12天,丙單獨(dú)完成要15天.若甲、丙先做3天后,甲因故離開,由乙接替甲的工作,還要多少天能完成這項(xiàng)工程的六分之五?

《一元一次方程》熱點(diǎn)專題高分特訓(xùn)

問題1:解一元一次方程的步驟是什么?舉例說明你是怎么做的?

問題2:行程問題中會(huì)出現(xiàn)的關(guān)鍵詞有哪些?

問題3:分析行程問題的運(yùn)動(dòng)過程通常采用什么樣的方法進(jìn)行?

問題4:你是通過什么樣的方法梳理題中的信息、提取數(shù)據(jù)的?

行程問題(人教版)

一、單選題(共8道,每道12分)

1.汽車上坡時(shí)每小時(shí)走28千米,下坡時(shí)每小時(shí)走35千米,已知下坡路程比上坡路程的2倍少14千米.設(shè)上坡路程為x千米,則汽車下坡共用了( )小時(shí).

解一元一次方程課件【篇7】

淺談列一元一次方程解應(yīng)用題的教學(xué)摘要: 本文分析出七年級(jí)學(xué)生學(xué)“列一元一次方程解應(yīng)用題”難的原因,指出突破的方法,教會(huì)學(xué)生根據(jù)實(shí)際問題巧設(shè)未知數(shù)的方法。關(guān)鍵詞: 一元一次方程解應(yīng)用題難點(diǎn)突破技巧列一元一次方程解應(yīng)用題,既是七年級(jí)上學(xué)期數(shù)學(xué)的重點(diǎn),又是教師教學(xué)的難點(diǎn),并且是運(yùn)用初中數(shù)學(xué)知識(shí)解決實(shí)際問題的重要素材,它對于培養(yǎng)及提高學(xué)生的思維能力和分析能力具有重要的意義。那么,怎樣才能使七年級(jí)的學(xué)生學(xué)好“列一元一次方程解應(yīng)用題”呢?在教學(xué)中,教師要理論聯(lián)系實(shí)際,結(jié)合學(xué)生的實(shí)際來解決問題。用代數(shù)法處理一些實(shí)際問題對于七年級(jí)的學(xué)生來說確實(shí)有點(diǎn)難度,究其原因是以前很少接觸,這一點(diǎn)主要表現(xiàn)在以下四個(gè)方面:1.學(xué)生不習(xí)慣利用代數(shù)法來處理問題,還停留在小學(xué)的算術(shù)解法上;2.抓不住相等關(guān)系。有些應(yīng)用題中“能夠表達(dá)應(yīng)用題全部含義的相等關(guān)系”比較隱蔽,從題目字面上較難找出來,需要認(rèn)真分析關(guān)鍵詞語,細(xì)心揣摩,有時(shí)還要借助圖形分析才能找出,這確實(shí)對七年級(jí)的學(xué)生來說,難度比較大,所以他們時(shí)常感到無從下手;3.即使找出相等關(guān)系,也不能順利地列出代數(shù)式及方程;4.當(dāng)問題中含有不只一個(gè)未知量時(shí),由于審題、分析能力較差,不知道該選擇哪一個(gè)未知量作為未知數(shù)才簡單。通過這幾年的實(shí)際教學(xué)經(jīng)驗(yàn),筆者就此談?wù)勛约涸诮虒W(xué)中突破這些的方法。一、要讓學(xué)生感覺到代數(shù)解法的優(yōu)越性初列方程,對學(xué)生來說確實(shí)不適應(yīng),這就要求教師在教學(xué)中運(yùn)用例題對算術(shù)法和代數(shù)法作比較,找出兩種方法的特點(diǎn),讓學(xué)生認(rèn)識(shí)到代數(shù)解法的優(yōu)點(diǎn),反復(fù)訓(xùn)練,使學(xué)生逐漸體會(huì)到代數(shù)法的妙處。例如:把一些圖書分給某個(gè)班學(xué)生閱讀,如果每人分3本,則剩余20本,如果每人分4本,則還缺25本,這個(gè)班有多少學(xué)生?算術(shù)法:(20+25)/(4-3)=45(人)這對一般學(xué)生來說,是很難做到的。代數(shù)法分析:設(shè)這個(gè)班有x名學(xué)生,共分出3x本,加上剩余20本,這批書共有(3x+20)本,每人分4本,需要4x本,減去缺的25本,這些書共有(4x-25)本。等量關(guān)系:第一種分法書的總量=第二種分法書的總量解:設(shè)這個(gè)班有x名學(xué)生,根據(jù)題意得3x+20=4x-25解得:x=45.答:這個(gè)班有45名學(xué)生。二、教會(huì)學(xué)生自己尋找相等關(guān)系列方程解應(yīng)用題一般有五步:弄清題意,找出能夠表示應(yīng)用題全部含義的相等關(guān)系,設(shè)出未知數(shù)進(jìn)而列出方程,解這個(gè)方程,答。其中最關(guān)鍵的一步是正確找出“能夠表示應(yīng)用題全部含義的相等關(guān)系”.在應(yīng)用題中,相等關(guān)系主要有兩類:一類是題目給出條件的等量關(guān)系,如教材中的“等積變形”問題,“行程”問題等,可按事物發(fā)展的順序來找等量關(guān)系。如:將一個(gè)底面直徑是10厘米,高為36厘米的“瘦長”形圓柱鍛壓成底面直徑為20厘米的“矮胖”形圓柱,高變成了多少?這是一個(gè)典型的等積變形問題,不管鍛壓前還是鍛壓后,總有下面的等量關(guān)系:鍛壓前的體積=鍛壓后的體積另一類是可在事物之間的內(nèi)在聯(lián)系中找到相等關(guān)系,如“工作問題”―“濃度問題”等就要在問題的內(nèi)在聯(lián)系中去找等量關(guān)系。如:要把150克濃度為95%的硫酸溶液加水稀釋成35%的稀硫酸溶液,需要加多少水?這一問題中,由于是在原來的硫酸溶液中又加入一部分水,雖說總重量和濃度都變了,但是純硫酸(溶質(zhì))的重量卻沒有變,于是即有下面的相等關(guān)系:加水前純硫酸的重量=加水后純硫酸的重量三、列方程解應(yīng)用題常用的分析方法1.代數(shù)式法用代數(shù)式將題目中的數(shù)量及數(shù)量之間的關(guān)系表示出來,找到相等關(guān)系,列出方程。如:“數(shù)字”問題,“和、差、倍、分”問題等多運(yùn)用這種方法。2.圖示法有些問題可以用示意圖表示出題目中的條件及它們之間的關(guān)系,這類問題可以通過畫出圖形,可由圖中有關(guān)基本量的內(nèi)在聯(lián)系找到相等關(guān)系,列出方程,如行程問題、等積問題多運(yùn)用這種方法。3.表格法我們可將題目中有關(guān)數(shù)量及其關(guān)系填在設(shè)計(jì)的表格中,然后根據(jù)表格逐層分析,由各量之間的內(nèi)在聯(lián)系找到相等關(guān)系,列出方程,如“日歷中的方程”問題、“濃度配比”問題及其它條件較多的題目多運(yùn)用這種方法。四、指導(dǎo)學(xué)生掌握設(shè)未知數(shù)的技巧和方法應(yīng)用題中,如果未知量特別多時(shí),我們?nèi)裟芮擅畹卦O(shè)未知數(shù),可以給列方程帶來很大方便。設(shè)未知數(shù)是列方程解應(yīng)用題的第一步,對含有多個(gè)未知量而又只允許設(shè)一個(gè)未知數(shù)的問題時(shí),選擇適當(dāng)?shù)奈粗吭O(shè)為未知數(shù)直接關(guān)系到列方程的難易程度。一般來說,有兩種設(shè)法:一種是直接設(shè)法,就是題目怎樣問,就怎樣設(shè)。這種方法主要用于簡單的問題中,如:小穎種了一株樹苗,開始時(shí)樹苗高為40厘米,栽種后每周樹苗長高約5厘米,大約幾周后樹苗長高到1米?這個(gè)問題就宜采用直接設(shè)法;另一種是間接設(shè)法。有些問題,若采用直接設(shè)法,會(huì)給列方程增加麻煩,就采用間接設(shè)法。如一個(gè)兩位數(shù),各位上的數(shù)字之和是7,若把它們十位上的數(shù)字與個(gè)位上的數(shù)字對換,所得的兩位數(shù)比原來的兩位數(shù)大27,求這個(gè)兩位數(shù)?此問題就應(yīng)選用間接設(shè)法。總之,列方程解應(yīng)用題雖然是七年級(jí)教學(xué)中的一個(gè)難點(diǎn),但是,只要我們認(rèn)真分析,具體問題具體對待,就一定能掌握列一元一次方程解應(yīng)用題的方法和技巧。

解一元一次方程課件【篇8】

3.3解一元一次方程(二)(第4課時(shí))

一、教學(xué)目標(biāo)

知識(shí)與技能

1、會(huì)根據(jù)實(shí)際問題中的數(shù)量關(guān)系列方程解決問題。

2、熟練掌握一元一次方程的解法。

過程與方法

培養(yǎng)學(xué)生的數(shù)學(xué)建模能力,以及分析問題解、決問題的能力。

情感態(tài)度與價(jià)值觀

1、通過問題的解決,培養(yǎng)學(xué)生解決問題的能力。

2、通過開放性問題的設(shè)計(jì),培養(yǎng)學(xué)生的創(chuàng)新能力和挑戰(zhàn)自我的意識(shí),增強(qiáng)學(xué)生的學(xué)習(xí)興趣。

二、重點(diǎn)難點(diǎn)

重點(diǎn)

根據(jù)題意,分析各類問題中的等量關(guān)系,熟練的.列方程解應(yīng)用題。

難點(diǎn)弄清題意,用列方程解決實(shí)際問題。

三、學(xué)情分析

學(xué)生在上一節(jié)課已經(jīng)學(xué)習(xí)了一元一次方程的解法,對于學(xué)生來說解方程已不是問題了,本節(jié)課是以上一節(jié)課為基礎(chǔ),用方程來解決實(shí)際問題,只要學(xué)生讀懂題意,建立數(shù)學(xué)模型,用一元一次方程會(huì)解決就行了。

四、教學(xué)過程設(shè)計(jì)

教學(xué)

環(huán)節(jié)問題設(shè)計(jì)師生活動(dòng)備注情境創(chuàng)設(shè)

討論交流:按怎樣的解題步驟解方程才最簡便?由此你能得到怎樣的啟發(fā)。

創(chuàng)設(shè)問題情境,引起學(xué)生學(xué)習(xí)的興趣。

學(xué)生動(dòng)手解方程

自主探究

問題一:

一項(xiàng)工作甲獨(dú)做5天完成,乙獨(dú)做10天完成,那么甲每天的工作效率是,乙每天的工作效率是,兩人合作3天完成的工作量是,此時(shí)剩余的工作量是。

問題二:

某項(xiàng)工作,甲單獨(dú)做需要4小時(shí),乙單獨(dú)做需要6小時(shí),如果甲先做30分鐘,然后甲、乙合作,問甲、乙合作還需要多久才能完成全部工作?

問題三:

整理一批圖書,由一個(gè)人做要40小時(shí)完成.現(xiàn)在計(jì)劃由一部分人先做4小時(shí),再增加兩人和他們一起做8小時(shí),完成這項(xiàng)工作.假設(shè)這些人的工作效率相同。

解一元一次方程課件【篇9】

第一課時(shí)

教學(xué)目的

1.了解一元一次方程的概念。

2.掌握含有括號(hào)的一元一次方程的解法。

重點(diǎn)、難點(diǎn)

1.重點(diǎn):解含有括號(hào)的一元一次方程的解法。

2.難點(diǎn):括號(hào)前面是負(fù)號(hào)時(shí),去括號(hào)時(shí)忘記變號(hào)。

教學(xué)過程

一、復(fù)習(xí)提問

1.解下列方程:

(1)5x-2=8 (2)5+2x=4x

2.去括號(hào)法則是什么?“移項(xiàng)”要注意什么?

二、新授

一元一次方程的概念

如44x+64=328 3+x=(45+x) y-5=2y+l 問:它們有什么共同特征?

只含有一個(gè)未知數(shù),并且含有未知數(shù)的式子都是整式,未知數(shù)的次數(shù)是l,這樣的方程叫做一元一次方程。

例1.判斷下列哪些是一元一次方程

x= 3x-2 x-=-l

5x2-3x+1=0 2x+y=l-3y =5

例2.解方程(1)-2(x-1)=4

(2)3(x-2)+1=x-(2x-1)

強(qiáng)調(diào)去括號(hào)時(shí)把括號(hào)外的因數(shù)分別乘以括號(hào)內(nèi)的每一項(xiàng),若括號(hào)前面是“-”號(hào),注意去掉括號(hào),要改變括號(hào)內(nèi)的每一項(xiàng)的符號(hào)。

補(bǔ)充:解方程3x-[3(x+1)-(1+4)]=l

說明:方程中有多重括號(hào)時(shí),一般應(yīng)按先去小括號(hào),再去中括號(hào),最后去大括號(hào)的方法去括號(hào),每去一層括號(hào)合并同類項(xiàng)一次,以簡便運(yùn)算。

三、鞏固練習(xí)

教科書第9頁,練習(xí),l、2、3。

四、小結(jié)

學(xué)習(xí)了一元一次方程的概念,含有括號(hào)的一元一次方程的解法。用分配律去括號(hào)時(shí),不要漏乘括號(hào)中的項(xiàng),并且不要搞錯(cuò)符號(hào)。

五、作業(yè)

1.教科書第12頁習(xí)題6.2,2第l題。

第二課時(shí)

教學(xué)目的

掌握去分母解方程的方法,體會(huì)到轉(zhuǎn)化的思想。對于求解較復(fù)雜的方程,注意培養(yǎng)學(xué)生自覺反思求解的過程和自覺檢驗(yàn)方程的解是否正確的良好習(xí)慣。

重點(diǎn)、難點(diǎn)

1、重點(diǎn):掌握去分母解方程的方法。

2、難點(diǎn):求各分母的最小公倍數(shù),去分母時(shí),有時(shí)要添括號(hào)。

教學(xué)過程

一、復(fù)習(xí)提問

1.去括號(hào)和添括號(hào)法則。

2.求幾個(gè)數(shù)的最小公倍數(shù)的方法。

二、新授

例1:解方程(見課本)

解一元一次方程有哪些步驟?

一般要通過去分母,去括號(hào),移項(xiàng),合并同類項(xiàng),未知數(shù)的系數(shù)化為1等步驟,把一個(gè)一元一次方程“轉(zhuǎn)化”成x=a的形式。解題時(shí),要靈活運(yùn)用這些步驟。

補(bǔ)充例:解方程 (x+15)=- (x-7)

三、鞏固練習(xí)

教科書第10頁,練習(xí)1、2。

四、小結(jié)

1.解一元一次方程有哪些步驟?

2.掌握移項(xiàng)要變號(hào),去分母時(shí),方程兩邊每一項(xiàng)都要乘各分母的最小公倍數(shù),切勿漏乘不含有分母的項(xiàng),另外分?jǐn)?shù)線有兩層意義,一方面它是除號(hào),另一方面它又代表著括號(hào),所以在去分母時(shí),應(yīng)該將分子用括號(hào)括上。

五、作業(yè)

教科書第13頁習(xí)題6.2,2第2題。

第三課時(shí)

教學(xué)目的

使學(xué)生靈活應(yīng)用解方程的一般步驟,提高綜合解題能力。

重點(diǎn)、難點(diǎn)

1、重點(diǎn):靈活應(yīng)用解題步驟。

2、難點(diǎn):在“靈活”二字上下功夫。

教學(xué)過程 :

一、 一、 復(fù)習(xí)

1、一元一次方程的解題步驟。

2、分?jǐn)?shù)的基本性質(zhì)。

二、新授

例1.解方程(見課本)

分析:此方程的分母是小數(shù),如果能把各分母化為整數(shù),那么就可以用前面學(xué)過的方法求解了。那么怎樣化簡呢?引導(dǎo)學(xué)生分析,并求出方程的解。交流體會(huì)。

例2.解方程(見課本)

例3:已知公式V=中,V=120、D=100、∏=3.14,求n的值。(保留整數(shù))

分析:在公式中,V、D、∏都已知,只要把它們的值代入公式,就可以得到關(guān)于n的一元一次方程。

三、鞏固練習(xí)。

根據(jù)公式V=V0+at,填寫下列表中的空格。

VV0at02848314155476137

四、小結(jié)。

若方程的分母是小數(shù),應(yīng)先利用分?jǐn)?shù)的性質(zhì),把分子、分母同時(shí)擴(kuò)大若干倍,此時(shí)分子要作為一個(gè)整體,需要補(bǔ)上括號(hào),注意不是去分母,不能把方程其余的項(xiàng)也擴(kuò)大若干倍。

五、作業(yè) 。

解一元一次方程課件【篇10】

教學(xué)目標(biāo):

1、能說出什么叫一元一次方程;

2、知道“元”和“次”的含義;

3、熟練掌握最簡一元一次方程的解法及理論依據(jù);

能力目標(biāo):

1、培養(yǎng)學(xué)生準(zhǔn)確運(yùn)算的能力;

2、培養(yǎng)學(xué)生觀察、分析和概括的能力;

3、通過解方程的教學(xué),了解化歸的數(shù)學(xué)思想.

德育目標(biāo):

1、滲透由特殊到一般的辯證唯物主義思想;

2、通過對方程的解進(jìn)行檢驗(yàn)的習(xí)慣的培養(yǎng),培養(yǎng)學(xué)生嚴(yán)謹(jǐn)、細(xì)致的學(xué)習(xí)習(xí)慣和責(zé)任感;

3、在學(xué)習(xí)和探索知識(shí)中提高學(xué)生的學(xué)習(xí)能力、合作精神及勇于探索的精神;

2、最簡方程的解法;

一、舊知識(shí)的復(fù)習(xí):

1.什么叫等式?等式具有哪些性質(zhì)?

2.什么叫方程?方程的解?解方程?

(2)未知數(shù)的次數(shù)都是一次。

想一想:

(1)你認(rèn)為最簡單的一元一次方程是什么樣的?

(2)怎樣求最簡方程(其中是未知數(shù))的解?

1、通過練習(xí),請你總結(jié)一下,解方程(是未知數(shù))把系數(shù)化為1時(shí),怎樣運(yùn)用等式的性質(zhì)2,使計(jì)算比較簡單。

2、最簡方程(其中是未知數(shù));

3、解最簡方程的主要思路和解題的關(guān)鍵步驟及依據(jù)。

五、課堂作業(yè)。

解一元一次方程課件【篇11】

1.認(rèn)識(shí)一維線性方程組(1)

——你多大了

1.教學(xué)目標(biāo)

1.在分析實(shí)際問題情況的過程中感受方程模型的意義。2.用類比和歸納法歸納出一元線性方程的概念,并在歸納過程中體驗(yàn)歸納法;

3.讓學(xué)生在分析實(shí)際問題情境的活動(dòng)中,體驗(yàn)數(shù)學(xué)與現(xiàn)實(shí)的緊密聯(lián)系。

2.教學(xué)過程 第1部分:閱讀章節(jié)前的圖片

內(nèi)容1:請學(xué)生閱讀關(guān)于“丟番圖”故事的章節(jié)前的圖片。 (約1分鐘)

丟番圖是古希臘數(shù)學(xué)家。他的生平事跡鮮為人知,但流傳著一段關(guān)于他生平的墓志銘:丟番圖被埋葬在墳?zāi)估?,多么神奇,它忠?shí)地記錄了他的人生歷程。上帝給了他六分之一的童年,十二分之一后他的臉頰上長了胡須,再過七分之一,他點(diǎn)燃了婚禮蠟燭。五年后,他得到了一個(gè)寶貝兒子,可憐的遲到的寧馨兒,在她父親一半的時(shí)候進(jìn)入了黃泉。悲傷只能通過數(shù)學(xué)研究來彌補(bǔ)。又過了四年,他也走完了人生的旅途。

——摘自《希臘詩集》第126題

目的:通過閱讀本章開頭圖片中的故事,激發(fā)學(xué)生探索詩歌的興趣。丟番圖時(shí)代,然后引導(dǎo)學(xué)生通過建立方程來解決問題,覺得方程可以用來解決實(shí)際問題,覺得方程是描述現(xiàn)實(shí)世界的有效模型。效果:同學(xué)們對丟番圖的故事很感興趣,有同學(xué)問:他幾歲?老師還趁機(jī)問了一個(gè)問題:用什么方法可以查出丟番圖的年齡?然后呈現(xiàn)內(nèi)容 2。

內(nèi)容2:回答以下3個(gè)問題:(約4分鐘) 1.你能找出問題中的等價(jià)關(guān)系并列出方程式嗎? 2. 你對方程了解多少?

3.用列方程解決實(shí)際問題的關(guān)鍵是什么?

目的:第一題考查學(xué)生根據(jù)等價(jià)關(guān)系建立方程的能力。不需要解方程。第二題旨在鼓勵(lì)學(xué)生用自己的語言描述方程,鍛煉他們的數(shù)學(xué)語言表達(dá)能力。第三個(gè)問題強(qiáng)調(diào)解決列方程應(yīng)用問題的關(guān)鍵是找到等價(jià)關(guān)系。

實(shí)際效果:第一個(gè)問題學(xué)生就可以完成問題。如下: 解:設(shè)丟番圖的年齡為x 歲,則:

第二個(gè)問題正好適合學(xué)生表達(dá)。教師可以使用標(biāo)準(zhǔn)語言再次強(qiáng)調(diào)方程是描述現(xiàn)實(shí)世界的有效方式。模型。第三個(gè)問題學(xué)生回答得更好。

內(nèi)容 3:閱讀 學(xué)習(xí)目標(biāo):

當(dāng)你學(xué)習(xí)本章時(shí),你會(huì)覺得方程是描述現(xiàn)實(shí)生活中等價(jià)關(guān)系的有效模型。掌握方程的基本性質(zhì),能夠解一元線性方程組。能夠用一維線性方程解決一些簡單的實(shí)際問題。在探索一維線性方程組解的過程中,感受思維的轉(zhuǎn)變。

目的:通過閱讀學(xué)習(xí)目標(biāo),學(xué)生了解本章的學(xué)習(xí)內(nèi)容由兩部分組成:求解單變量線性方程組和能夠求解單變量線性方程組的一些簡單實(shí)際問題.學(xué)生對本章學(xué)習(xí)的知識(shí)和數(shù)學(xué)思想有一個(gè)整體的概念。

實(shí)際效果:通過閱讀,學(xué)生目標(biāo)明確,學(xué)習(xí)更有針對性。特別是,我意識(shí)到“轉(zhuǎn)變思想”的重要性。

第二課:自讀與學(xué)習(xí)

內(nèi)容:讓學(xué)生閱讀本節(jié)課本P132-P133習(xí)題前的內(nèi)容。結(jié)合教材以題串形式呈現(xiàn)內(nèi)容的特點(diǎn),閱讀并完成書中的填空題。 (約10分鐘)

目的:通過閱讀的過程,讓學(xué)生首先回憶小學(xué)學(xué)過的方程和方程的概念,熟悉課文中設(shè)置的簡單、熟悉的例子。清晰地分析各種量的關(guān)系,找到等式關(guān)系,列出方程,體驗(yàn)不同類型的方程。實(shí)際效果:通常,大多數(shù)學(xué)生都能分析課本示例中包含的各種數(shù)量關(guān)系,并列出方程式。在教學(xué)過程中,需要注意學(xué)生在本環(huán)節(jié)活動(dòng)中表現(xiàn)出來的寫作中的不規(guī)范和錯(cuò)誤的地方,并提醒學(xué)生注意。第三課:語境介紹

內(nèi)容:和學(xué)生一起分析課本中出現(xiàn)的三種情況:(1)如果小紅的年齡是x歲,那么“乘2減5”就是2x- 5、等式:2x-5 =21 組織活動(dòng):四人小組做猜年齡游戲,每組會(huì)有幾個(gè)不同的等式。例如:我的年齡乘以 2 減 5 等于 91,你知道老師的年齡嗎?學(xué)生算出老師48歲

(2)小李種了一棵樹苗。一開始樹苗的高度是40厘米。種植后,樹苗每周長約5cm,幾周后,樹苗長到1m高。 ?

如果x周后樹苗長到1m,則可以得到方程: 40+5x=100 (3) A、B兩地距離為22km。張大爺從A地出發(fā)到B地,比原計(jì)劃多走了1公里,所以提前12分鐘到了B地。張大爺原本打算走多少公里每小時(shí)?

假設(shè)張叔原計(jì)劃每小時(shí)步行xkm,可得方程:

目的:通過準(zhǔn)確列舉三個(gè)方程,我感覺:1.用方程解題的關(guān)鍵是:2.三個(gè)方程可以分為三類:一元線性方程,分?jǐn)?shù)方程,和一元二次方程。

注意:學(xué)生在做方程式時(shí)要注意以下幾個(gè)問題: 1.讓學(xué)生閱讀和復(fù)習(xí)題,鍛煉學(xué)生復(fù)習(xí)題的能力; 2. (2)中的單位換??算:1米=100厘米。等價(jià)關(guān)系為:最終樹高=初始樹高+周生長高度; 等價(jià)關(guān)系是:原計(jì)劃中使用的時(shí)間-現(xiàn)在使用的時(shí)間=提前期;

第四部分:總結(jié)一元線性方程的定義,理解一元線性方程解的意義

內(nèi)容:討論

< p> (1) 你從以上問題得到了哪些方程?您熟悉這些方程式中的哪一個(gè)?與您的伴侶交流

。一共得到三個(gè)方程。其中,(1)和(2)只有一個(gè)未知數(shù),這在小學(xué)很常見。

(2) 方程2x-5=21, 40+5x=100, (1+%)x=8930有什么共同點(diǎn)?

它們都只包含一個(gè)未知數(shù),未知數(shù)的指數(shù)為1。 目的:從(1)中引導(dǎo)學(xué)生思考所列出的五個(gè)方程的特征:未知數(shù)的個(gè)數(shù)和位置是不同的;由(2)式得到一維線性方程的定義:方程中只有一個(gè)未知數(shù),且未知數(shù)的指數(shù)都為1,這樣的方程稱為一維線性方程。

實(shí)際效果:逐步引導(dǎo)學(xué)生研究方程的特點(diǎn),讓學(xué)生自己陳述一維線性方程的定義,判斷以上五個(gè)方程只是三個(gè)一維線性方程。結(jié)論來源于學(xué)生在實(shí)際問題中的分析和不斷的綜合總結(jié),體現(xiàn)了學(xué)生思維的主動(dòng)性。內(nèi)容二:方程解的含義:使方程左右兩邊的值相等的未知值,稱為方程的解。

x=2 是下面方程的解嗎?完成 (1) 3x+(10-x)=20; (2) 2+6=7x 目的:理解方程解的意義;判斷是否為方程解的方法:將解帶入原方程,計(jì)算左和右,看是否相等。等于原方程的解。

實(shí)際效果: 1. 學(xué)生有小學(xué)基礎(chǔ),能理解方程解的含義;

2.學(xué)生能熟練地將方程的解帶入方程進(jìn)行驗(yàn)證,得出結(jié)論。 第五課:合規(guī)性測試

內(nèi)容一:完成課本中的課堂練習(xí) 1. 根據(jù)題目意思,列出方程式: (1) 1600 年左右剩下的一卷BC 古埃及的紙莎草紙記錄了一些數(shù)學(xué)問題。其中一個(gè)問題翻譯為:“啊哈,全部,全部,其總和等于 19?!?/p>

你能在問題中找到“它”嗎?解:設(shè)“it”為x,則:

(2)A、B兩隊(duì)開始一場足球比賽,規(guī)定每隊(duì)一場得3分,一場得1分平局,輸1分。 0分。 A隊(duì)和B隊(duì)一共交手10場,A隊(duì)以22分保持不敗戰(zhàn)績。球隊(duì)贏了多少場比賽?抽了多少場比賽?

解決方案:假設(shè) A 隊(duì)贏了 x 場比賽,然后 B 隊(duì)贏了 (10-x) 場比賽。那么: 2. 標(biāo)準(zhǔn)做法:

下列公式中,方程為(只填序號(hào))①2x=1②5-4=1③7m-n+1④3(x+y)=4 中下面的公式,是一維線性方程(只填序號(hào)) ①x-3y=1②x2+2x+3=0③x=7④x2-y=0 a的20%加100等于x。可以列出方程: .half of a number 減去這個(gè)數(shù)等于6。如果這個(gè)數(shù)設(shè)置為x,方程可以列出。

一桶油和桶的重量是8公斤。油用完一半后,桶的重量為公斤。一桶油有多少公斤?假設(shè)桶里的原油是x公斤,可以列出方程 ___________________ 小英的父親今年44歲,是他的3倍,比小英大2歲,如果小明是x歲,可以列出方程: ___________________ 3 年以前,父親的年齡是兒子年齡的 4 倍。 3年后,父親的年齡是兒子年齡的3倍。這對父子今年幾歲?假設(shè)兒子的年齡是三年前的 x 歲,可以列出方程式: __________ 目的:鞏固本節(jié)的知識(shí) 實(shí)際效果: 1. 學(xué)生在課堂練習(xí)中基本能準(zhǔn)確回答問題。 2. 學(xué)生選擇自己的小組代表發(fā)言,并在P133課堂練習(xí)1中解釋各種量及其含義,加深對背景數(shù)學(xué)模型的理解。

3.標(biāo)準(zhǔn)實(shí)踐中的問題可以選擇性地完成。 第六課:課堂總結(jié)

內(nèi)容:師生互動(dòng)梳理本節(jié)內(nèi)容。 (本課你的收獲,你的疑惑)

目的:鼓勵(lì)學(xué)生結(jié)合課本內(nèi)容和之前的預(yù)習(xí),討論自己的收獲和感受,包括如何調(diào)整閱讀方式班級(jí)。 .實(shí)際效果:

一方面,同學(xué)們總結(jié)了:

本節(jié)給出四個(gè)知識(shí)點(diǎn):方程(復(fù)習(xí)和鞏固),方程(給出描述性定義),一一維線性方程和一維線性解(根)。我覺得在解決實(shí)際問題時(shí),列方程給出的思維方式和方法比小學(xué)算術(shù)更通用。列方程的核心:實(shí)際問題“數(shù)學(xué)化”,關(guān)鍵是找到等價(jià)關(guān)系。

另一方面:每個(gè)學(xué)生都適當(dāng)?shù)卣{(diào)整自己的閱讀準(zhǔn)備方法和自己獨(dú)立思考問題的方式。第 7 節(jié):布置作業(yè) 1,練習(xí) 2,思考:如何獲得列出的一個(gè)變量中的三個(gè)線性方程組的解? 5. 教學(xué)反思:

這個(gè)階段的學(xué)生自我發(fā)展意識(shí)比較強(qiáng)。 對于與自身主觀體驗(yàn)相沖突的現(xiàn)象,教師只有正確、合理地解釋,才能得到學(xué)生的認(rèn)可。 在教學(xué)中,應(yīng)盡量讓學(xué)生意識(shí)到使用方程建模的優(yōu)勢,這將使許多實(shí)際問題“數(shù)學(xué)化”的重要數(shù)學(xué)模型成為學(xué)生學(xué)習(xí)后續(xù)知識(shí)的自覺選擇。

讓學(xué)生在簡單的背景問題中一點(diǎn)一點(diǎn)地理解和分析已知量與未知量之間的定量關(guān)系,幫助他們解決問題,減少困難。 ,突破困難的目的。

解一元一次方程課件【篇12】

一、教學(xué)目標(biāo)

【知識(shí)與技能】

理解一元一次方程及其相關(guān)概念,能根據(jù)實(shí)際問題中的等量關(guān)系列出一元一次方程。

【過程與方法】

通過探究一元一次方程的過程,提升觀察與總結(jié)概括的能力。

【情感、態(tài)度與價(jià)值觀】

在學(xué)習(xí)活動(dòng)中獲得成功的體驗(yàn),提升對數(shù)學(xué)的興趣。

二、教學(xué)重難點(diǎn)

【重點(diǎn)】一元一次方程及其相關(guān)概念,從實(shí)際問題到一元一次方程的分析過程。

【難點(diǎn)】分析實(shí)際問題中的等量關(guān)系列一元一次方程。

三、教學(xué)過程

(一)導(dǎo)入新課

出示問題:(1)用一根長24cm的鐵絲圍成一個(gè)正方形,正方形的邊長是多少?

通過提問如何解決引導(dǎo)學(xué)生想到算術(shù)法和方程法。

(二)講解新知

再出示兩個(gè)問題:

(2)一臺(tái)計(jì)算機(jī)已使用1700h,預(yù)計(jì)每月再使用150h,經(jīng)過多少月這臺(tái)計(jì)算機(jī)的使用時(shí)間達(dá)到規(guī)定的檢修時(shí)間2450h?

(3)某校女生占全體學(xué)生數(shù)的52%,比男生多80人,這個(gè)學(xué)校有多少學(xué)生?

組織同桌合作列方程,并說明等號(hào)兩邊的意義及列式依據(jù)。

在學(xué)生回答的基礎(chǔ)上,教師板書:

組織同桌兩人一組,觀察并討論三個(gè)方程的共同特點(diǎn)。提示學(xué)生從式的角度思考,關(guān)注項(xiàng)、次數(shù)、字母種類等。

通過師生問答形式引出只有一個(gè)未知數(shù)未知數(shù)次數(shù)都是1等號(hào)兩邊都是整式的特征后,教師講解一元一次方程的定義。注意解釋元的含義。

組織學(xué)生總結(jié)從上述實(shí)際問題到一元一次方程的分析過程,歸納得到:

2025解一元二次方程課件


通常老師在上課之前會(huì)帶上教案課件,通常老師都會(huì)認(rèn)真負(fù)責(zé)去設(shè)計(jì)好。教案是實(shí)現(xiàn)復(fù)合型人才培養(yǎng)目標(biāo)的有效實(shí)踐。編輯從各個(gè)方面搜集和整合資料使這篇“解一元二次方程課件”更加全面,閱讀本文您會(huì)得到足夠的收獲和啟發(fā)!

解一元二次方程課件(篇1)

[課??? 題]?§12.1?一元二次方程[教學(xué)目的]? 使學(xué)生了解整式方程、一元二次方程的意義;使學(xué)生知道并能認(rèn)識(shí)一元二次方程的一般形式,會(huì)把一元二次方程化成一般形式。[教學(xué)重點(diǎn)]? 使學(xué)生知道并能認(rèn)識(shí)一元二次方程的一般形式,會(huì)把一元二次方程化成一般形式。[教學(xué)難點(diǎn)?]? 使學(xué)生掌握什么是一元二次方程的二次項(xiàng)和系數(shù)、一次項(xiàng)和系數(shù)以及常數(shù)項(xiàng),[教學(xué)關(guān)鍵]? 使學(xué)生掌握在指出一元二次方程的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)和常數(shù)項(xiàng)時(shí),一定要包括它們的符號(hào)。[教學(xué)用具]? [教學(xué)形式]? 講練結(jié)合法。[教學(xué)用時(shí)]? 45′×1?[教學(xué)過程?][復(fù)習(xí)提問]?例方程解應(yīng)用題的一般步驟是什么?[講解新課]引例可由教師提出并分析其中的數(shù)量關(guān)系,設(shè)出未知數(shù),列出代數(shù)式,并根據(jù)等量關(guān)系列出方程:(80-2x)(60-2x)=1500。(這其中應(yīng)重點(diǎn)復(fù)習(xí)列方程解應(yīng)用題的方法、步驟,或講解或提問應(yīng)視具體情況而定)。提問:如何將上述方程整理?整理后,得:x2-70x+825=0。這里不必多講,只指出:這個(gè)方程(什么方程?這里不談)與我們已經(jīng)學(xué)過的一元一次方程不同,我們學(xué)了這一章,就可以解這個(gè)方程,從而解決上述問題。接著書寫教科書第4頁的問題:剪一塊面積是150cm2的長方形鐵片,使它的長比寬多5cm,這塊鐵片應(yīng)該怎樣剪?引導(dǎo)學(xué)生分析題意,設(shè)未知數(shù),列出代數(shù)式,找出相等關(guān)系,列出方程:x(x+5)=150。去括號(hào),得:? x2+5 x=150。現(xiàn)在來觀察這個(gè)方程:它的兩邊都是關(guān)于未知數(shù)的整式,指出“這樣的方程叫做整式方程?!本瓦@一點(diǎn)來說它與一元一次方程沒有什么區(qū)別,因而,一元一次方程也是整式方程,但一元一次方程未知數(shù)的次數(shù)是1,而上列方程未知數(shù)的最高次數(shù)是2,所以,只含有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是2,這樣的整式方程叫做一元二次方程。(這樣與一元一次方程對比著講,既使整式方程的內(nèi)含擴(kuò)大,以加深學(xué)生的印象,也可使學(xué)生深刻了解一元二次方程的意義。)下列方程都是整式方程嗎?其中哪些是一元一次方程?哪些是一元二次方程?1、3x+2=5x-3;(2x=5)2、x2=4;3、(x-1)(x-2)=x2+8;(3x=-6)4、(x+3)(3x-4)=(x+2)2;(2x2+x-16=0)(上述方程都是整式方程。其中1、3是一元一次方程,2、4是一元二次方程。)上列方程中的4,兩邊展開,得3x2+5x-12=x2+4x+4移項(xiàng),得??? 2x2+x-16=0事實(shí)上,方程x2+5 x=150移項(xiàng),得??? x2+5 x-150=0這就是說,任何一個(gè)關(guān)于x的一元二次方程,經(jīng)過整理,都可以化成下面的形式:??????????? ax2+bx+c=0(a≠0)。這種形式叫做一元二次方程的一般形式。這里應(yīng)強(qiáng)調(diào)指出,方程??????????? ax2+bx+c=0只有當(dāng)a≠0時(shí),才叫一元二次方程。如果a=0,b≠0,就是一元一次方程了。所以在一般形式中,必須包含a≠0這個(gè)條件。隨后指出,在方程中,ax2,bx,c各項(xiàng)的名稱,并舉例說明。(ax2叫做二次項(xiàng),a叫做二次項(xiàng)系數(shù);bx叫做一次項(xiàng),b叫做一次項(xiàng)系數(shù);c叫做常數(shù)項(xiàng)。)例1? 把方程3x(x-1)=2(x+2)+8化成一般形式,并寫出它的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)及常數(shù)項(xiàng)。解:去括號(hào),得?????????????? 3x2-3 x=2x+4+8移項(xiàng),合并同類項(xiàng),得?????????????? x2-5 x-12=0二次項(xiàng)系數(shù)是3;一次項(xiàng)系數(shù)是-5;常數(shù)項(xiàng)是-12。[課堂練習(xí)]教科書第5頁練習(xí)第1,2題。[課堂小結(jié)]通過本節(jié)課的學(xué)習(xí),我們知道了什么是整式方程,什么叫做一元二次方程和一元二次方程的一般形式:ax2+bx+c=0(a≠0)。在這里我們要特別注意a≠0這個(gè)條件。同時(shí)我們還學(xué)習(xí)了一元二次方程化成一般形式后,什么是二次項(xiàng)系數(shù),什么是一次項(xiàng)系數(shù),什么是常數(shù)項(xiàng),在指出這三項(xiàng)內(nèi)容時(shí),要特別注意它們的符號(hào)。[課外作業(yè)?]復(fù)習(xí)教科書第4,5頁的內(nèi)容,預(yù)習(xí)教科第6頁上的內(nèi)容。?[板書設(shè)計(jì)?]課題:??????例題:輔助板書:?[課后記]

通過本節(jié)課的學(xué)習(xí),大部分學(xué)生已掌握了什么是整式方程,什么是一元二次方程的概念,對今后學(xué)習(xí)一元二次方程的解法打下了良好的基礎(chǔ)。

解一元二次方程課件(篇2)

一元二次方程教學(xué)設(shè)計(jì)

海門市海南中學(xué) 顧 健

學(xué)習(xí)目標(biāo):

1.類比一元一次方程,自主探究一元二次方程的定義.2.知道一元二次方程的一般形式和方程的解,會(huì)解簡單方程.3.經(jīng)歷觀察、思考、討論等探究過程,發(fā)展自主學(xué)習(xí)的能力,感悟“從特殊到一般”“轉(zhuǎn)化”“類比”等數(shù)學(xué)思想方法,積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn).4.通過合作、交流,進(jìn)一步學(xué)會(huì)互助、共享,并與同伴得到共同提高.教學(xué)重難點(diǎn):一元二次方程的定義和一般式,會(huì)解簡單方程.教學(xué)過程:

一、在復(fù)習(xí)回顧中,引導(dǎo)學(xué)生類比一元一次方程自主探究一元二次方程定義 1.自主回顧

已知矩形的長比寬大1厘米

問題(1)若矩形的周長是6厘米,求寬。 你會(huì)求解嗎?你準(zhǔn)備怎么做?

問題(2)若矩形的面積是6平方厘米,求寬。 你會(huì)求解嗎?你準(zhǔn)備怎么做? 2.類比歸納

問題(1)中的等式你學(xué)過嗎?是什么方程?你是怎么知道的?(化簡整理) 你能回憶一元一次方程的定義嗎?(學(xué)生補(bǔ)充) 你知道一元一次方程的一般式嗎? 追問:a為什么不等于0?b呢? 還學(xué)習(xí)了一元一次方程的哪些內(nèi)容?

問題(2)中的等式你認(rèn)識(shí)嗎?你是怎么知道的? (一個(gè)未知數(shù)、最高次是

2、整式方程) 你能歸納一元二次方程的定義嗎? 3.你能舉出一些一元二次方程的例子嗎? (轉(zhuǎn)化后介紹項(xiàng)、系數(shù)、常數(shù)) 4.你能歸納一元二次方程的一般式嗎?

追問:a為什么不等于0?b呢?C呢?(正確尋找a、b、c)

二、在合作交流中,引導(dǎo)學(xué)生分享方法,歸納方程解法 1.什么是方程的解?(能使等號(hào)兩邊相等的未知數(shù)的值)

什么是一元二次方程的解?

2.如何解一元一次方程?(形成x=a)它的解有幾個(gè)?

3.猜想:如何解一元二次方程?嘗試解黑板上的一元二次方程。 (先獨(dú)立完成2分鐘,再在小組內(nèi)交流) 4.展示方法,你的依據(jù)是什么?

5.歸納方法,比較一元二次方程的解與一元一次方程的區(qū)別與聯(lián)系。 (降次思想、轉(zhuǎn)化思想)

三、共同反思,小結(jié)提升

1.你是如何理解一元二次方程的定義的? 2.你對一元二次方程中的a、b、c有怎樣的認(rèn)識(shí)?

3.一元二次方程的解有怎樣的特點(diǎn)?今天你學(xué)會(huì)了哪些方法解一元二次方程? 4.通過今天對一元二次方程的學(xué)習(xí),你積累了哪些重要的學(xué)習(xí)方法和經(jīng)驗(yàn)?

一元一次方程教學(xué)設(shè)計(jì)

二元一次方程組教案設(shè)計(jì)模板

認(rèn)識(shí)一元一次方程教學(xué)設(shè)計(jì)

一元二次方程,導(dǎo)學(xué)案

二元一次方程教案模板

解一元二次方程課件(篇3)

教學(xué)目標(biāo):

(一)知識(shí)技能目標(biāo):

1初步感受有些事件的發(fā)生是不確定的,有些事件的發(fā)生是確定的。

2會(huì)區(qū)分生活中的必然事件、不可能事件和隨機(jī)事件。

3在經(jīng)歷猜測、試驗(yàn)、收集與分析試驗(yàn)結(jié)果的過程中,讓學(xué)生學(xué)會(huì)合作交流。

(二)過程方法目標(biāo):

通過實(shí)際情境讓學(xué)生認(rèn)知生活中有確定事件和隨機(jī)事件,結(jié)合合作探索活動(dòng)讓學(xué)生建立數(shù)學(xué)知識(shí)模型并運(yùn)用于生活、服務(wù)于生活。

(三)情感態(tài)度目標(biāo):

激發(fā)學(xué)生的探索精神與創(chuàng)造力,建立起學(xué)習(xí)數(shù)學(xué)的信心,感受數(shù)學(xué)的無限樂趣。

教學(xué)重點(diǎn):

正確理解、區(qū)分生活中與數(shù)學(xué)中的必然事件、不可能事件和隨機(jī)事件。

教學(xué)難點(diǎn):

區(qū)分生活中的事件類型,做出合理決策。

教學(xué)過程:

一聯(lián)系實(shí)際創(chuàng)設(shè)情境引入新課

1教師出示乒乓球,引出下例:

2某次國際乒乓球比賽中,中國選手甲和乙進(jìn)入最后的決賽,那么該項(xiàng)比賽的

(1)冠軍屬于中國嗎?

(2)冠軍屬于外國選手嗎?

(3)冠軍屬于中國選手甲嗎?

(通過學(xué)生熟悉而又簡單的問題讓學(xué)生感知生活中的現(xiàn)象,從而激發(fā)興趣,引入新課)

3通過學(xué)生的回答引出課題《確定與不確定》

二感知生活中的確定與不確定

說一說:(1)生活中有哪些事情是我們確定的?

(2)生活中有哪些事情是我們不確定的?

(小組討論,讓學(xué)生聯(lián)系生活,再次感知,從而進(jìn)一步激發(fā)興趣)

三建立數(shù)學(xué)知識(shí)模型(通過上述學(xué)生的舉例感知生活中的確定與不確定事情,從而給出三種事件的概念,讓學(xué)生更容易理解)

在特定條件下,有些事情我們事先能肯定它一定不會(huì)發(fā)生,這樣的事情是不可能事件.

在特定條件下,有些事情我們事先能肯定它一定會(huì)發(fā)生,這樣的事情是必然事件.

在特定條件下,生活中有很多事情事先無法確定它會(huì)不會(huì)發(fā)生,這樣的事情是隨機(jī)事件.

四知識(shí)理解把握本質(zhì)

練習(xí):下列事件中哪些是不可能事件,那些是必然事件,那些是隨機(jī)事件?

1.拋擲一個(gè)均勻的骰子,6點(diǎn)朝上。

2.打開電視,它正在播廣告。

3.小明家買彩票將獲得500萬元彩票大獎(jiǎng)。

4.明天一定下雨。

5.婦幼保健院,下一個(gè)出生的嬰兒是女孩子。

6.1+3>2

7.三角形三個(gè)內(nèi)角的和是180度。

8.如果a,b都是有理數(shù),那么ab=ba

(對于概念的學(xué)習(xí),要通過多次感知,不斷強(qiáng)化,在初步感知概念后,要通過及時(shí)的辨別分析,真正認(rèn)識(shí)概念的本質(zhì))

(通過第七、八兩小題讓學(xué)仿照再舉幾例,使學(xué)生認(rèn)識(shí)到以前所學(xué)習(xí)的大量的.公式、法則等一般來說都是必然事件。)

五分組學(xué)習(xí),其樂融融

1小組競賽:

分別舉出生活的必然事件、不可能事件和隨機(jī)事件(將全班同學(xué)分成三組,分別舉出必然事件、不可能事件和隨機(jī)事件,通過活動(dòng)更加深了對概念的理解,也調(diào)動(dòng)了學(xué)生的興趣)

2數(shù)學(xué)實(shí)驗(yàn)室:

摸球游戲:規(guī)則:共有15個(gè)白球,5個(gè)黑球.每次只能摸5個(gè)球,摸到5個(gè)黑球?yàn)橐坏泉?jiǎng),依次類推.

(1)學(xué)生動(dòng)手摸獎(jiǎng),體會(huì)中獎(jiǎng)的可能性,感受到身邊的事情.

(2)設(shè)計(jì)游戲:你能仿照上面的游戲自己設(shè)計(jì)幾個(gè)游戲嗎?(一個(gè)是必然事件,一個(gè)是不可能事件,一個(gè)是隨機(jī)事件)

(聯(lián)系生活實(shí)際,體會(huì)生活中處處有數(shù)學(xué),學(xué)有用的數(shù)學(xué))

(用學(xué)生非常感興趣的摸獎(jiǎng),既能加深對三種事件的理解,又能調(diào)動(dòng)學(xué)生的積極性,活躍課堂氣氛,同時(shí)也為下面的可能性埋下伏筆)

六故事:《田忌賽馬》

齊王和田忌都有上等馬、中等馬和下等馬3種,可是田忌的各個(gè)等級(jí)的馬都比齊王同等級(jí)的馬差一些?

想一想:田忌和齊王賽馬是否一定會(huì)輸?為什么?

七觀察分析探究

改變開頭例子中的條件:

(1)如果進(jìn)入決賽的是兩個(gè)外國人問題如何回答?

(2)如果進(jìn)入決賽的一個(gè)中國人,一個(gè)外國人問題又如何回答呢?

通過例子發(fā)現(xiàn)必然事件,不可能事件,隨機(jī)事件三者在一定條件下可以相互轉(zhuǎn)化,讓學(xué)生體會(huì)概念中的“特定條件”。

八小結(jié):通過本節(jié)課的學(xué)習(xí)你有什么感受?

九課后練習(xí):

1用適當(dāng)?shù)恼Z言來表示下列詞語所反映的事件發(fā)生情況?

東邊日出西邊雨?十拿九穩(wěn)?大海撈針???菔癄€

2小名、小芳和小圓每人各買一瓶飲料,在供購買的20瓶飲料中,有兩瓶已經(jīng)過了保質(zhì)期.請根據(jù)以上這段話,設(shè)計(jì)一個(gè)不可能事件,一個(gè)必然事件,一個(gè)隨機(jī)事件?

十板書設(shè)計(jì):

確定與不確定

不可能事件

確定事件

必然事件

隨機(jī)事件---不確定事件---可能會(huì)發(fā)生,也可能不會(huì)發(fā)生

三種事件在一定條件下可以相互轉(zhuǎn)化

解一元二次方程課件(篇4)

教學(xué)目標(biāo)

知識(shí)技能:掌握應(yīng)用方程解決實(shí)際問題的方法步驟,提高分析問題、解決問題的能力。

過程與方法:通過探索球積分表中數(shù)量關(guān)系的過程,進(jìn)一步體會(huì)方程是解決實(shí)際問題的數(shù)學(xué)模型,并且明確用方程解決實(shí)際問題時(shí),不僅要注意解方程的過程是否正確,還要檢驗(yàn)方程的解是否符合問題的實(shí)際意義。

情感態(tài)度:鼓勵(lì)學(xué)生自主探究,合作交流,養(yǎng)成自覺反思的良好習(xí)慣。

重點(diǎn):把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,不僅會(huì)列方程求出問題的解,還會(huì)進(jìn)行推理判斷。

難點(diǎn):把數(shù)學(xué)問題轉(zhuǎn)化為數(shù)學(xué)問題。

關(guān)鍵:從積分表中找出等量關(guān)系。

教具:投影儀。

教法:探究、討論、啟發(fā)式教學(xué)。

教學(xué)過程

一、創(chuàng)設(shè)問題情境

用投影儀展示幾張比賽場面及比分(學(xué)習(xí)是生活需要,引起學(xué)生興趣)

二、引入課題

教師用投影儀展示課本106頁中籃球聯(lián)賽積分榜引導(dǎo)學(xué)生觀察,思考:.

① 用式子表示總積分能與勝、負(fù)場數(shù)之間的數(shù)量關(guān)系;

②某隊(duì)的勝場總分能等于它的負(fù)場總積分么?

學(xué)生充分思考、合作交流,然后教師引導(dǎo)學(xué)生分析。

師:要解決問題①必須求出勝一場積幾分,負(fù)一場積幾分,你能從積分榜中得到負(fù)一場積幾分么?你選擇哪一行最能說明負(fù)一場積幾分?

生:從最下面一行可以發(fā)現(xiàn),負(fù)一場積1分。

師:勝一場呢?

生:2分(有的用算術(shù)法、有的用方程各抒己見)

師:若一個(gè)隊(duì)勝a場,負(fù)多少場,又怎樣積分?

生:負(fù)(14-a)場,勝場積分2a,負(fù)場積分14-a,總積分a+14.

師:問題②如何解決?

學(xué)生通過計(jì)算各隊(duì)勝、負(fù)總分得出結(jié)論:不等。

師:你能用方程說明上述結(jié)論么?

生:老師,沒有等量關(guān)系。

師:欸,就是,已知里沒說,是不是不能用方程解決了?誰又沒有大膽設(shè)想?

生:老師,能不能試著讓它們相等?

師:偉大的發(fā)明都是在嘗試中進(jìn)行的,試試?

生:如果設(shè)一個(gè)隊(duì)勝了x場,則負(fù)(14-x)場,讓勝場總積分等負(fù)場總積分,方程為:2x=14-x解得x=4/3(學(xué)生掌聲鼓勵(lì))

師:x表示什么?可以是分?jǐn)?shù)么?由此你的出什么結(jié)論?

生:x表示勝得場數(shù),應(yīng)該是一個(gè)整數(shù),所以,x=4/3不符合實(shí)際意義,因此沒有哪個(gè)隊(duì)的勝場總積分等于負(fù)場總積分。

師:此問題說明,利用方程不僅求出具體數(shù)值,而且還可以推理判斷,是否存在某種數(shù)量關(guān)系;還說明用方程解決實(shí)際問題時(shí),不僅要注意方程解得是否正確,還要檢驗(yàn)方程的解是否符合問題的實(shí)際意義。

拓展

如果刪去積分榜的最后一行,你還能用式子表示總積分與勝、負(fù)場數(shù)之間的數(shù)量關(guān)系嗎?

師:我們可以從積分榜中積分不相同的兩行數(shù)據(jù)求的勝負(fù)一場各得幾分,如:一、三行。

教師引導(dǎo)學(xué)生設(shè)未知數(shù),列方程。學(xué)生試說。

生:設(shè)勝一場積x分,則前進(jìn)隊(duì)勝場積分10x,負(fù)場積分(24-10x)分,它負(fù)了4場,所以負(fù)一場積分為(24-10x)/4,同理從第三行得到負(fù)一場積分為(23-9x)/5,從而列方程為(24-10x)/4=(23-9x)/5。解得x=2,當(dāng)x=2時(shí),(24-10x)/4=1。仍然可得負(fù)一場積1分,勝一場積2分。

三、鞏固練習(xí)

已知某山區(qū)的平均氣溫與該山的海拔高度的關(guān)系見表:

海拔高度(單位:m)

解一元二次方程課件(篇5)

教學(xué)內(nèi)容

根據(jù)面積與面積之間的關(guān)系建立一元二次方程的數(shù)學(xué)模型并解決這類問題

教學(xué)目標(biāo)

掌握面積法建立一元二次方程的數(shù)學(xué)模型并運(yùn)用它解決實(shí)際問題

利用提問的方法復(fù)習(xí)幾種特殊圖形的面積公式來引入新課,解決新課中的問題

重難點(diǎn)關(guān)鍵

1.重點(diǎn):根據(jù)面積與面積之間的等量關(guān)系建立一元二元方程的數(shù)學(xué)模型并運(yùn)用它解決實(shí)際問題

2.難點(diǎn)與關(guān)鍵:根據(jù)面積與面積之間的等量關(guān)系建立一元二次方程的數(shù)學(xué)模型

教學(xué)過程

一、復(fù)習(xí)引入

1.直角三角形的面積公式是什么?一般三角形的面積公式是什么呢?

2.正方形的面積公式是什么呢?長方形的面積公式又是什么?

3.梯形的面積公式是什么?

4.菱形的面積公式是什么?

5.平行四邊形的面積公式是什么?

6.圓的面積公式是什么?

二、探索新

現(xiàn)在,我們根據(jù)剛才所復(fù)習(xí)的面積公式來建立一些數(shù)學(xué)模型,解決一些實(shí)際問題.

例1、某林場計(jì)劃修一條長750m,斷面為等腰梯形的渠道,斷面面積為1.6m2,上口寬比渠深多2m,渠底比渠深多0.4m

(1)渠道的上口寬與渠底寬各是多少?

(2)如果計(jì)劃每天挖土48m3,需要多少天才能把這條渠道挖完?

分析:因?yàn)榍钭钚?,為了便于?jì)算,不妨設(shè)渠深為xm,則上口寬為x+2,渠底為x+0.4,那么,根據(jù)梯形的面積公式便可建模

解:(1)設(shè)渠深為xm

則渠底為(x+0.4)m,上口寬為(x+2)m

依題意,得: (x+2+x+0.4)x=1.6

整理,得:5x2+6x-8=0

解得:x1= =0.8m,x2=-2(舍)

∴上口寬為2.8m,渠底為1.2m

(2) =25天

答:渠道的上口寬與渠底深各是2.8m和1.2m;需要25天才能挖完渠道

例2、如圖,要設(shè)計(jì)一本書的封面,封面長27cm,寬21cm,正中央是一個(gè)與整個(gè)封面長寬比例相同的矩形,如果要使四周的彩色邊襯所占面積是封面面積的四分之一,上、下邊襯等寬,左、右邊襯等寬,應(yīng)如何設(shè)計(jì)四周邊襯的寬度(精確到0.1cm)?

老師點(diǎn)評:

依據(jù)題意知:中央矩形的長寬之比等于封面的長寬之比=9:7,由此可以判定:上下邊襯寬與左右邊襯寬之比為9:7,設(shè)上、下邊襯的寬均為9xcm,則左、右邊襯的寬均為7xcm,依題意,得:中央矩形的長為(27-18x)cm,寬為(21-14x)cm

解一元二次方程課件(篇6)

教學(xué)目標(biāo):

(一)知識(shí)與技能:

1、理解并掌握用配方法解簡單的一元二次方程。

2、能利用配方法解決實(shí)際問題,增強(qiáng)學(xué)生的數(shù)學(xué)應(yīng)用意識(shí)和能力。

(二)過程與方法目標(biāo):

1、經(jīng)歷探索利用配方法解一元二次方程的過程,使學(xué)生體會(huì)到轉(zhuǎn)化的數(shù)學(xué)思想。

2、在理解配方法的基礎(chǔ)上,熟練應(yīng)用配方法解一元二次方程的過程,培養(yǎng)學(xué)生用轉(zhuǎn)化的數(shù)學(xué)思想解決實(shí)際問題的能力。

(三)情感,態(tài)度與價(jià)值觀

啟發(fā)學(xué)生學(xué)會(huì)觀察,分析,尋找解題的途徑,提高學(xué)生分析問題,解決問題的能力。

教學(xué)重點(diǎn)、難點(diǎn):

重點(diǎn):理解并掌握配方法,能夠靈活運(yùn)用用配方法解一元二次方程。

難點(diǎn):通過配方把一元二次方程轉(zhuǎn)化為(x+m)2=n(n≥0)的形式。

教學(xué)方法:根據(jù)教學(xué)內(nèi)容的特點(diǎn)及學(xué)生的年齡、心理特征及已有的知識(shí)水平,本節(jié)課采用問題教學(xué)和對比教學(xué)法,用“創(chuàng)設(shè)情境——建立數(shù)學(xué)模型——鞏固與運(yùn)用——反思、拓展”來展示教學(xué)活動(dòng)。

教學(xué)過程

學(xué)生活動(dòng)

設(shè)計(jì)意圖

一 復(fù)習(xí)舊知

用直接開平方法解下列方程:

(1)9x2=4 (2)( x+3)2=0

總結(jié):上節(jié)課我們學(xué)習(xí)了用直接開平方法解形如(x+m)2=n(n≥0)的方程。

二 創(chuàng)設(shè)情境,設(shè)疑引新

在實(shí)際生活中,我們常常會(huì)遇到一些問題,需要用一元二次方程來解決。

例:小明用一段長為 20米的竹籬笆圍成一個(gè)矩形,怎樣設(shè)計(jì)才可以使得矩形的面積為9米?

三 新知探究

1 提問:這樣的方程你能解嗎?

x2+6x+9=0 ①

2、提問:這樣的方程你能解嗎?

x2+6x+4=0 ②

思考:方程②與方程①有什么不同?能否把它化成方程①的形式呢?

歸納總結(jié)配方法:

通過配成完全平方式的方法,得到一元二次方程的解,這樣的解法叫做配方法。

配方法的依據(jù):完全平方公式

配方法的關(guān)鍵:給方程的兩邊同時(shí)加上一次項(xiàng)系數(shù)一半的平方

點(diǎn)撥:先通過移項(xiàng)將方程左邊化為x2+ax形式,然后兩邊同時(shí)加上一次項(xiàng)系數(shù)一半的平方進(jìn)行配方,然后直接開平方求解。

四 合作討論,自主探究

1、 配方訓(xùn)練

(1) x2+12x+( )=(x+6)2

(2) x2-12x+( )=(x- )2

(3) x2+8x+( )=(x+ )2

(4) x2+mx+( )=(x+ )2

強(qiáng)調(diào):當(dāng)一次項(xiàng)系數(shù)為負(fù)數(shù)或分?jǐn)?shù)時(shí),要注意運(yùn)算的準(zhǔn)確性。

2、將下列方程化為(x+m)2=n

(n≥0)的形式并計(jì)算出X值。

(1)x2-4x+3=0

(2)x2+3x-1=0

解:X2-4X+3=0

移向:得X2-4X=-3

配方:得X2-4X+2^2=-3+2^2(兩邊同時(shí)加上一次項(xiàng)系數(shù)一半的平方)

即:(X-2)2=1

開平方,得:X-2=1或X-2=-1

所以:X=3或X=1

方程(2)有學(xué)生完成。

3、鞏固訓(xùn)練:課本55頁隨堂練習(xí)第一題。

五 小結(jié)

1、用配方法解二次項(xiàng)系數(shù)為一的一元二次方程的基本思路:先將方程化為(x+m)2=n(n≥0)的形式,然后兩邊開平方就可以得到方程的解。

2、用配方法解二次項(xiàng)系數(shù)為一的一元二次方程的一般步驟:

(1) 移項(xiàng)(常數(shù)項(xiàng)移到方程右邊)

(2) 配方(方程兩邊都加上一次項(xiàng)系數(shù)的一半的平方)

(3) 開平方

(4) 解出方程的根

六 布置作業(yè)

習(xí)題2.3第1,2題

兩個(gè)學(xué)生黑板上那解題,剩余學(xué)生練習(xí)本上計(jì)算。

學(xué)生觀看課件,思考老師提出的問題,得到:設(shè)該矩形的長為x米,依題意得

x(10-x)=9

但是發(fā)現(xiàn)所列方程無法用直接開平方法解。于是引入新課。

學(xué)生通過觀察發(fā)現(xiàn),方程的左邊是一個(gè)完全平方式,可以化為( x+3)2=0,然后就可以運(yùn)用上節(jié)課學(xué)過的直接開平方法解了。

方程②的左邊不是一個(gè)完全平方式,于是不能直接開平方。學(xué)生陷入思考,給學(xué)生充分思考、交流的時(shí)間和空間。

在學(xué)生思考的時(shí)候,老師引導(dǎo)學(xué)生將方程②與方程①進(jìn)行對比分析,然后得到:

x2+6x=-4

x2+6x+9=-4+9

(x+3)2=5

從而可以用直接開平方法解,給出完整的解題過程。

在學(xué)生充分思考、討論的基礎(chǔ)上總結(jié):配方時(shí),常數(shù)項(xiàng)為一次項(xiàng)系數(shù)的一半的平方。

檢查學(xué)生的練習(xí)情況。小組合作交流。

學(xué)生歸納后教師再做相應(yīng)的補(bǔ)充和強(qiáng)調(diào)。

學(xué)生分組完成方程(2)和課后隨堂練習(xí)第一題

學(xué)生分組總結(jié)本節(jié)課知識(shí)內(nèi)容。

解一元二次方程課件(篇7)

一方面新課程要求培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)與能力,作為數(shù)學(xué)教師,我們要充分利用已有的生活經(jīng)驗(yàn),把所學(xué)的數(shù)學(xué)知識(shí)用到現(xiàn)實(shí)中去,體會(huì)數(shù)學(xué)在現(xiàn)實(shí)中應(yīng)用價(jià)值。

這節(jié)課是“列一元二次方程解應(yīng)用題(1)”,講授在幾何問題中以學(xué)生熟悉的現(xiàn)實(shí)生活為問題的背景,讓學(xué)生從具體的問題情境中抽象出數(shù)量關(guān)系,歸納出變化規(guī)律,并能用數(shù)學(xué)符號(hào)表示,最終解決實(shí)際問題。這類注重聯(lián)系實(shí)際考查學(xué)生數(shù)學(xué)應(yīng)用能力的問題,體現(xiàn)時(shí)代性,并且結(jié)合社會(huì)熱點(diǎn)、焦點(diǎn)問題,引導(dǎo)學(xué)生關(guān)注國家、人類和世界的命運(yùn)。既有強(qiáng)烈的德育功能,又可以讓學(xué)生從數(shù)學(xué)的角度分析社會(huì)現(xiàn)象,體會(huì)數(shù)學(xué)在現(xiàn)實(shí)生活中的作用。

通過本節(jié)課的教學(xué),總體感覺調(diào)動(dòng)了學(xué)生的積極性,能夠充分發(fā)揮學(xué)生的`主體作用,以現(xiàn)實(shí)生活情境問題入手,激發(fā)了學(xué)生思維的火花,具體我以為有以下幾個(gè)特點(diǎn):

一、本節(jié)課第一個(gè)例題,是傳播問題中的一個(gè)典型例題,我在引導(dǎo)學(xué)生解決此題之后,總結(jié)了解一元二次應(yīng)用題的步驟。不僅關(guān)注結(jié)果更關(guān)注過程,讓學(xué)生養(yǎng)成良好的解題習(xí)慣。

二、練習(xí)1是例題1的變式與提高,練習(xí)2是例題2的變式與提高。通過變式訓(xùn)練,讓學(xué)生由淺入深,由易到難,也讓學(xué)生解決問題的能力逐級(jí)上升,這是這節(jié)課中的一大亮點(diǎn)。在講完例題的基礎(chǔ)上,將更多教學(xué)時(shí)間留給學(xué)生,這樣學(xué)生感到成功機(jī)會(huì)增加,從而有一種積極的學(xué)習(xí)態(tài)度,同時(shí)學(xué)生在學(xué)習(xí)中相互交流、相互學(xué)習(xí),共同提高。

三、在課堂中始終貫徹?cái)?shù)學(xué)源于生活又用于生活的數(shù)學(xué)觀念,同時(shí)用方程來解決問題,使學(xué)生樹立一種數(shù)學(xué)建模的思想。

四、課堂上多給學(xué)生展示的機(jī)會(huì),比如我所設(shè)計(jì)練習(xí)題可用不同方法去求解,讓學(xué)生走上講臺(tái),向同學(xué)們展示自己的聰明才智。同時(shí)在這個(gè)過程中,更有利于發(fā)現(xiàn)學(xué)生分析問題與解決問題獨(dú)到見解及思維誤區(qū),以便指導(dǎo)今后教學(xué)。總之,通過各種啟發(fā)、激勵(lì)的教學(xué)手段,幫助學(xué)生形成積極主動(dòng)求知態(tài)度,課堂收效大。

五、需改進(jìn)的方面:

3、下課后很多學(xué)生和老師溝通課上一生的錯(cuò)誤問題,但他們上課并不敢提出,有點(diǎn)卻場,所以平時(shí)要培養(yǎng)學(xué)生敢想敢說敢于發(fā)表個(gè)人的不同見解的學(xué)風(fēng)。

2023解一元二次方程課件


通過讀一讀“解一元二次方程課件”您或許能夠找到一些解答,我相信這篇文章會(huì)給您啟示。老師會(huì)對課本中的主要教學(xué)內(nèi)容整理到教案課件中,因此就需要老師自己花點(diǎn)時(shí)間去寫。教案是提高教學(xué)效果的重要手段。

解一元二次方程課件 篇1

第一步:將已知方程化為一般形式,使方程右端為 0;

第二步:將左端的二次三項(xiàng)式分解為兩個(gè)一次因式的積;

第三步:方程左邊兩個(gè)因式分別為 0,得到兩個(gè)一次方程,它們的解就是原方程的解.

一般來說,一元二次方程往往可以用這樣2種方法解答,特別是對配方來說,它可能更實(shí)用,普遍。

1.分解因式:

(1)x2-4x=_________; (2)x-2-x(x-2)=________ (3)m2-9=________;

3.方程2x(x-2)=3(x-2)的解是___________

4.方程(x-1)(x-2)=0的兩根為x1·x2,且x1>x2,則x1-2x2的值等于_______

5.已知y=x2+x-6,當(dāng)x=________時(shí),y的值為0;當(dāng)x=________時(shí),y的值等于24. 6.方程x2+2ax-b2+a2=0的解為__________.

解一元二次方程課件 篇2

在解一元二次方程時(shí),常常需要用到分解因式,但是教材中一般只介紹了提公因式法、平方差公式法和完全平方公式法.

本期我們將介紹一種在因式分解中起著重要作用的方法:十字相乘法.

先來看一個(gè)等式:

(x+a)(x+b)=x2+(a+b)x+ab.

把這個(gè)等式反過來寫就是:

x2+(a+b)x+ab=(x+a)(x+b).

此時(shí)我們可以發(fā)現(xiàn),如果一個(gè)式子可以化成x2+(a+b)x+ab的形式,它就可以通過因式分解得到(x+a)(x+b).

而x2+(a+b)x+ab的特點(diǎn)是:二次項(xiàng)x2的系數(shù)是1,一次項(xiàng)的系數(shù)與常數(shù)項(xiàng)有聯(lián)系,一個(gè)是a+b,一個(gè)是ab.

現(xiàn)在我們來看兩個(gè)例題:

分析:因?yàn)閤的系數(shù)是1,所以我們要找兩個(gè)相加等與1的數(shù),而且這兩個(gè)數(shù)乘積是-6. 于是我們找到了-2和3.

=(x+3)(x-2)=0.

分析:因?yàn)閤的系數(shù)是5,我們就要找兩個(gè)相加等與5的數(shù),而且這兩個(gè)數(shù)乘積是6. 于是我們找到了2和3.

x2+5x-6=0;

x2+7x+12=0;

x2+3x-10=0;

x2-5x+6=0;

x2-4x+3=0.

有的讀者會(huì)問為什么叫十字相乘法,這與用這種方法解題的方式有關(guān). 這要從這種方法的更一般的形式說起.

=acx2+(ad+bc)x+bd.

這個(gè)等式反過來寫就是:

=(ax+b)(cx+d).

我們?nèi)绻讯雾?xiàng)acx2的系數(shù)ac和常數(shù)項(xiàng)bd按下圖的方式寫在一個(gè)正方形的四個(gè)頂點(diǎn)處,那么,讓同一條對角線上的兩個(gè)數(shù)相乘之后,我們就得到兩個(gè)乘積:ad和bc.

讓這兩個(gè)乘積相加,則有ad+bc,這正好是一次項(xiàng)(ad+bc)x的系數(shù).

而在同一行,橫著的兩個(gè)數(shù),讓左邊的數(shù)乘上x再加右邊的數(shù),就得到:ax+b和cx+d兩個(gè)式子,這正是因式分解后得到的結(jié)果(ax+b)(cx+d)中的兩個(gè)因式.

而上圖中出現(xiàn)的那個(gè)“×”,像個(gè)斜放著的“十”字,所以我們稱這種方法為:十字相乘法.

這個(gè)方法的應(yīng)用如下:

分析:分別把6和-28進(jìn)行分解,然后作十字相乘,找可以得到-2的結(jié)果.如圖:

這里,6分解成2×3,-28分解成4×(-7),作十字相乘,得到兩個(gè)乘積:-14和12,讓兩個(gè)積相加,就得到一次項(xiàng)的系數(shù)-2. 每一行,橫著的兩個(gè)數(shù),左邊的數(shù)乘x再加上右邊的數(shù),得到:2x+4和3x-7.

5x2-25x+20=0.

解一元二次方程課件 篇3

1、會(huì)根據(jù)具體問題中的數(shù)量關(guān)系列一元二次方程并求解。

2、能根據(jù)問題的實(shí)際意義,檢驗(yàn)所得結(jié)果是否合理。

3、進(jìn)一步掌握列方程解應(yīng)用題的步驟和關(guān)鍵。

(一)思考課本探究1回答下列問題:

(1)設(shè)每輪傳染中平均一個(gè)人傳染x個(gè)人,那么患流感的這個(gè)人在第一輪傳染中傳染了 人;第一輪傳染后,共有 人患了流感。

(2)在第二輪傳染中,傳染源是 人,這些人中每一個(gè)人又傳染了 人,那么第二輪傳染了 人,第二輪傳染后,共有 人患流感。

(3)根據(jù)等量關(guān)系列方程并求解。為什么要舍去一解?

(4)通過對這個(gè)問題的探究,你對類似的傳播問題中的數(shù)量關(guān)系有新的認(rèn)識(shí)嗎?

(5)完成教材思考:如果按照這樣的傳播速度,三輪傳染后,有多少人患流感?

(學(xué)生在交流中解決問題,教師深入小組討論,對疑惑較多的問題要點(diǎn)撥;前兩個(gè)問是解題的關(guān)鍵,可作適當(dāng)點(diǎn)撥。最后思考題,可讓學(xué)生試試獨(dú)立完成。教給學(xué)生如何審題,分析題。)

三、例題學(xué)習(xí):

例1:青山村種的水稻20xx年平均每公頃產(chǎn)7200kg,20xx年平均每公頃產(chǎn)8450kg,求水稻每公頃產(chǎn)量的年平均增長率。 (學(xué)生獨(dú)立思考、練習(xí)。一學(xué)生板書,教師巡視后講解)

例2:(教材探究2)兩年前生產(chǎn)1噸甲種藥品的成本是5000元,生產(chǎn)1噸乙種藥品的成本是6000元,隨著生產(chǎn)技術(shù)的進(jìn)步,現(xiàn)在生產(chǎn)1噸甲種藥品的成本是3000元,生產(chǎn)1噸乙種藥品的成本是3600元,哪種藥品成本的年平均下降率較大?

(給學(xué)生分組求解,然后比較哪個(gè)小組做的有快又準(zhǔn)。最后比較哪種藥品成本平均下降率較大。)

四、課堂練習(xí):(學(xué)生獨(dú)立思考、練習(xí)。一學(xué)生板書,教師巡視后講解)

1、某種植物的主干長出若干數(shù)目的枝干,每個(gè)枝干又長出同樣數(shù)目的小分支,主干、支干和小分支的總數(shù)是91,每個(gè)支干長出多少小分支?

2、有一人患了流感,經(jīng)過兩輪傳染后共有121人患了流感,奧執(zhí)染中平均一個(gè)人傳染了幾個(gè)人?

1、列一元二次方程解應(yīng)用題的步驟:審、設(shè)、找、列、解、答。最后要檢驗(yàn)根是否符合實(shí)際意義。

2、探究2是平均增長率或降低率問題。若平均增長(降低)率為x,增長(或降低)前的基數(shù)是a,增長(或降低)n次后的量是b,則有: (常見n=2)

教后記:

本節(jié)課是一元二次方程的應(yīng)用第一課時(shí)。通過本節(jié)課的教學(xué),總體感覺調(diào)動(dòng)了學(xué)生的積極性,能夠充分發(fā)揮學(xué)生的主體作用,以現(xiàn)實(shí)生活情境問題入手,激發(fā)了學(xué)生思維的火花,具體我以為有以下幾個(gè)特點(diǎn):

一、通過學(xué)生口答,復(fù)習(xí)了列方程解應(yīng)用題的一般步驟及解一元二次方程的方法,為學(xué)習(xí)本節(jié)知識(shí)打好了基礎(chǔ)。

二、問題探究通過問題串讓學(xué)生解決的問題由淺入深,由易到難,也讓學(xué)生解決問題的能力逐級(jí)上升,這樣學(xué)生感到成功機(jī)會(huì)增加,從而有一種積極的學(xué)習(xí)態(tài)度,同時(shí)學(xué)生在學(xué)習(xí)中相互交流、相互學(xué)習(xí),共同提高。

三、本節(jié)課第一個(gè)例題,是增長率問題中的一個(gè)典型例題,我在引導(dǎo)學(xué)生解決此題之后,進(jìn)一步總結(jié)了列方程解應(yīng)用題的步驟。不僅關(guān)注結(jié)果更關(guān)注過程,讓學(xué)生養(yǎng)成良好的解題習(xí)慣。

四、在課堂中始終貫徹?cái)?shù)學(xué)源于生活又用于生活的數(shù)學(xué)觀念,同時(shí)用方程來解決問題,使學(xué)生樹立一種數(shù)學(xué)建模的思想。

五、課堂上多給學(xué)生展示的機(jī)會(huì),讓學(xué)生走上講臺(tái),向同學(xué)們展示自己的聰明才智。同時(shí)在這個(gè)過程中,更有利于發(fā)現(xiàn)學(xué)生分析問題與解決問題獨(dú)到見解及思維誤區(qū),以便指導(dǎo)今后教學(xué)??傊ㄟ^各種啟發(fā)、激勵(lì)的教學(xué)手段,幫助學(xué)生形成積極主動(dòng)求知態(tài)度,課堂收效大。

六、需改進(jìn)的方面:

1、由于怕完不成任務(wù),給學(xué)生獨(dú)立思考時(shí)間安排有些不合理,這樣容易讓思維活躍的學(xué)生的回答代替了其他學(xué)生的思考,掩蓋了其他學(xué)生的疑問。例如例2有多種解法,課后一些學(xué)生與老師交流,但課上沒有得到充分的展示、

2、只考慮撲捉學(xué)生的思維亮點(diǎn),一學(xué)生列錯(cuò)了方程,我沒有給予及時(shí)糾正。導(dǎo)致使一些同學(xué)陷入誤區(qū)、

3、下課后很多學(xué)生和我溝通課上一學(xué)生的錯(cuò)誤問題,但他們上課并不敢提出,有點(diǎn)卻場,所以平時(shí)要培養(yǎng)學(xué)生敢想敢說敢于發(fā)表個(gè)人的不同見解的學(xué)風(fēng)。

解一元二次方程課件 篇4

1、已知方程 x2—ax—3a=0的一個(gè)根是6,則求a及另一個(gè)根的值。

2、有上題可知一元二次方程的系數(shù)與根有著密切的關(guān)系。其實(shí)我們已學(xué)過的求根公式也反映了根與系數(shù)的關(guān)系,這種關(guān)系比較復(fù)雜,是否有根簡潔的關(guān)系?

3、有求根公式可知,一元二次方程ax2+bx+c=0(a≠0)的兩根為x1= ,x2= 、觀察兩式左邊,分母相同,分子是—b+√b 2—4ac與—b—√b 2—4ac。兩根之間通過什么計(jì)算才能得到更簡潔的關(guān)系?

解下列方程,并填寫表格:

觀察上面的表格,你能得到什么結(jié)論?

(1)關(guān)于x的方程 x2+px+q=0(p,q為常數(shù),p2—4q≥0)的兩根x1,x2與系數(shù)p,q之間有什么關(guān)系?

(2)關(guān)于x的方程ax2+bx+c=0(a≠0)的兩根x1, x2與系數(shù)a,b,c之間又有何關(guān)系呢?你能證明你的猜想嗎?

(1)關(guān)于x的方程x2+px+q=0(p,q為常數(shù),p2—4q≥0)的兩根x1,x2與系數(shù)p,q的關(guān)系是:x1+x2=—p, x1、 x2=q(注意:根與系數(shù)關(guān)系的前提條件是根的判別式必須大于或等于零。)

(2)形如的方程ax2+bx+c=0(a≠0),可以先將二次項(xiàng)系數(shù)化為1,再利用上面的結(jié)論。

例3:已知一元二次方程的兩個(gè)根是—1和2,請你寫出一個(gè)符合條件的方程、(你有幾種方法?)

例4:已知方程 的一個(gè)根是 ,求另一根及k的值、

1、已知方程 的一個(gè)根是1,求另一根及m的值、

2、已知方程 的一個(gè)根為 ,求另一根及c的值、

1、已知關(guān)于x的方程 的一個(gè)根是另一個(gè)根的2倍,求m的值、

2、已知兩數(shù)和為8,積為9,求這兩個(gè)數(shù)、

3、 x2—2x+6=0的兩根為x1,x2,則x1+x2=2,x1x2=6、是否正確?

1、根與系數(shù)的關(guān)系:

1、不解方程,寫出下列方程的兩根和與兩根積。

2、 已知方程x2—3x+m=0的一個(gè)根為1,求另一根及m的值、

3、 已知方程x2+bx+6=0的一個(gè)根為—2求另一根及b的值、

解一元二次方程課件 篇5

1、已知方程x2-6x+q=0可以配方成(x-p)2=7的形式,那么x2-6x+q=2可以配方成下列的( )

2、已知m是方程x2-x-1=0的一個(gè)根,則代數(shù)式m2-m的值等于( )

3、若α、β是方程x2+2x-=0的兩個(gè)實(shí)數(shù)根,則α2+3α+β的值為( )

4、關(guān)于x的方程kx2+3x-1=0有實(shí)數(shù)根,則k的取值范圍是( )

5、關(guān)于x的一元二次方程的兩個(gè)根為x1=1,x2=2,則這個(gè)方程是( )

6、已知關(guān)于x的方程x2-(2k-1)x+k2=0有兩個(gè)不相等的實(shí)根,那么k的最大整數(shù)值是( )

7、某城底已有綠化面積300公頃,經(jīng)過兩年綠化,綠化面積逐年增加,到底增加到363公頃,設(shè)綠化面積平均每年的增長率為x,由題意所列方程正確的是( )

8、甲、乙兩個(gè)同學(xué)分別解一道一元二次方程,甲因把一次項(xiàng)系數(shù)看錯(cuò)了,而解得方程兩根為-3和5,乙把常數(shù)項(xiàng)看錯(cuò)了,解得兩根為2+ 和2- ,則原方程是( )

解一元二次方程課件 篇6

由“倍數(shù)關(guān)系”等問題建立數(shù)學(xué)模型,并通過配方法或公式法或分解因式法解決實(shí)際問題.

掌握用“倍數(shù)關(guān)系”建立數(shù)學(xué)模型,并利用它解決一些具體問題.

通過復(fù)習(xí)二元一次方程組等建立數(shù)學(xué)模型,并利用它解決實(shí)際問題,引入用“倍數(shù)關(guān)系”建立數(shù)學(xué)模型,并利用它解決實(shí)際問題.

下表是某一周甲、乙兩種股票每天每股的收盤價(jià)(收盤價(jià):股票每天交易結(jié)果時(shí)的價(jià)格):

乙 13.5元 13.3元 13.9元 13.4元 13.75元

某人在這周內(nèi)持有若干甲、乙兩種股票,若按照兩種股票每天的收盤價(jià)計(jì)算(不計(jì)手續(xù)費(fèi)、稅費(fèi)等),則在他帳戶上,星期二比星期一增加200元,星期三比星期二增加1300元,這人持有的甲、乙股票各多少股?

老師點(diǎn)評分析:一般用直接設(shè)元,即問什么就設(shè)什么,即設(shè)這人持有的甲、乙股票各x、y張,由于從表中知道每天每股的收盤價(jià),因此,兩種股票當(dāng)天的帳戶總數(shù)就是x或y乘以相應(yīng)的每天每股的收盤價(jià),再根據(jù)已知的等量關(guān)系;星期二比星期一增加200元,星期三比星期二增加1300元,便可列出等式.

上面這道題大家都做得很好,這是一種利用二元一次方程組的數(shù)量關(guān)系建立的數(shù)學(xué)模型,那么還有沒有利用其它形式,也就是利用我們前面所學(xué)過的一元二次方程建立數(shù)學(xué)模型解應(yīng)用題呢?請同學(xué)們完成下面問題.

(學(xué)生活動(dòng))問題2:某工廠第一季度的一月份生產(chǎn)電視機(jī)是1萬臺(tái),第一季度生產(chǎn)電視機(jī)的總臺(tái)數(shù)是3.31萬臺(tái),求二月份、三月份生產(chǎn)電視機(jī)平均增長的百分率是多少?

老師點(diǎn)評分析:直接假設(shè)二月份、三月份生產(chǎn)電視機(jī)平均增長率為x.因?yàn)橐辉路菔?萬臺(tái),那么二月份應(yīng)是(1+x)臺(tái),三月份應(yīng)是在二月份的基礎(chǔ)上以二月份比一月份增長的同樣“倍數(shù)”增長,即(1+x)+(1+x)x=(1+x)2,那么就很容易從第一季度總臺(tái)數(shù)列出等式.

解:設(shè)二月份、三月份生產(chǎn)電視機(jī)平均增長的百分率為x,則1+(1+x)+(1+x)2=3.31

以上這一道題與我們以前所學(xué)的'一元一次、二元一次方程(組)、分式方程等為背景建立數(shù)學(xué)模型是一樣的,而我們借助的是一元二次方程為背景建立數(shù)學(xué)模型來分析實(shí)際問題和解決問題的類型.

例1.某電腦公司20xx年的各項(xiàng)經(jīng)營中,一月份的營業(yè)額為200萬元,一月、二月、三月的營業(yè)額共950萬元,如果平均每月營業(yè)額的增長率相同,求這個(gè)增長率.

分析:設(shè)這個(gè)增長率為x,由一月份的營業(yè)額就可列出用x表示的二、三月份的營業(yè)額,又由三月份的總營業(yè)額列出等量關(guān)系.

(1)某林場現(xiàn)有木材a立方米,預(yù)計(jì)在今后兩年內(nèi)年平均增長p%,那么兩年后該林場有木材多少立方米?

(2)某化工廠今年一月份生產(chǎn)化工原料15萬噸,通過優(yōu)化管理,產(chǎn)量逐年上升,第一季度共生產(chǎn)化工原料60萬噸,設(shè)二、三月份平均增長的百分率相同,均為x,可列出方程為__________.

例2.某人將20xx元人民幣按一年定期存入銀行,到期后支取1000元用于購物,剩下的1000元及應(yīng)得利息又全部按一年定期存入銀行,若存款的利率不變,到期后本金和利息共1320元,求這種存款方式的年利率.

分析:設(shè)這種存款方式的年利率為x,第一次存20xx元取1000元,剩下的本金和利息是1000+20xxx?80%;第二次存,本金就變?yōu)?000+20xxx?80%,其它依此類推.

則:1000+20xxx?80%+(1000+20xxx?8%)x?80%=1320

整理,得:1280x2+800x+1600x=320,即8x2+15x-2=0

解得:x1=-2(不符,舍去),x2= =0.125=12.5%

本節(jié)課應(yīng)掌握:

利用“倍數(shù)關(guān)系”建立關(guān)于一元二次方程的數(shù)學(xué)模型,并利用恰當(dāng)方法解它.

1.教材P53 復(fù)習(xí)鞏固1 綜合運(yùn)用1.

1.20xx年一月份越南發(fā)生禽流感的養(yǎng)雞場100家,后來二、三月份新發(fā)生禽流感的養(yǎng)雞場共250家,設(shè)二、三月份平均每月禽流感的感染率為x,依題意列出的方程是( ).

A.100(1+x)2=250 B.100(1+x)+100(1+x)2=250

2.一臺(tái)電視機(jī)成本價(jià)為a元,銷售價(jià)比成本價(jià)增加25%,因庫存積壓,所以就按銷售價(jià)的70%出售,那么每臺(tái)售價(jià)為( ).

A.(1+25%)(1+70%)a元 B.70%(1+25%)a元

C.(1+25%)(1-70%)a元 D.(1+25%+70%)a元

3.某商場的標(biāo)價(jià)比成本高p%,當(dāng)該商品降價(jià)出售時(shí),為了不虧損成本,售價(jià)的折扣(即降低的百分?jǐn)?shù))不得超過d%,則d可用p表示為( ).

1.某農(nóng)戶的糧食產(chǎn)量,平均每年的增長率為x,第一年的產(chǎn)量為6萬kg,第二年的產(chǎn)量為_______kg,第三年的產(chǎn)量為_______,三年總產(chǎn)量為_______.

2.某糖廠20xx年食糖產(chǎn)量為at,如果在以后兩年平均增長的百分率為x,那么預(yù)計(jì)20xx年的產(chǎn)量將是________.

3.我國政府為了解決老百姓看病難的問題,決定下調(diào)藥品價(jià)格,某種藥品在漲價(jià)30%后,20xx年降價(jià)70%至a元,則這種藥品在年漲價(jià)前價(jià)格是__________.

1.為了響應(yīng)國家“退耕還林”,改變我省水土流失的嚴(yán)重現(xiàn)狀,20xx年我省某地退耕還林1600畝,計(jì)劃到20xx年一年退耕還林1936畝,問這兩年平均每年退耕還林的平均增長率2.洛陽東方紅拖拉機(jī)廠一月份生產(chǎn)甲、乙兩種新型拖拉機(jī),其中乙型16臺(tái),從二月份起,甲型每月增產(chǎn)10臺(tái),乙型每月按相同的增長率逐年遞增,又知二月份甲、乙兩型的產(chǎn)量之比是3:2,三月份甲、乙兩型產(chǎn)量之和為65臺(tái),求乙型拖拉機(jī)每月的增長率及甲型拖拉機(jī)一月份的產(chǎn)量.

3.某商場于第一年初投入50萬元進(jìn)行商品經(jīng)營,以后每年年終將當(dāng)年獲得的利潤與當(dāng)年年初投入的資金相加所得的總資金,作為下一年年初投入的資金繼續(xù)進(jìn)行經(jīng)營.

(1)如果第一年的年獲利率為p,那么第一年年終的總資金是多少萬元?(用代數(shù)式來表示)(注:年獲利率= ×100%)

(2)如果第二年的年獲利率多10個(gè)百分點(diǎn)(即第二年的年獲利率是第一年的年獲利率與10%的和),第二年年終的總資金為66萬元,求第一年的年獲利率.

二、1.6(1+x) 6(1+x)2 6+6(1+x)+6(1+x)2

3.

三、1.平均增長率為x,則1600(1+x)2=1936,x=10%

即16x2+56x-15=0,解得x= =25%,y=20(臺(tái))

(2)50(1+P)(1+P+10%)=66,整理得:P2+2.1P-0.22=0,解得P=10。

解一元二次方程課件 篇7

1. 下列方程中是一元二次方程的是( ).

A.xy+2=1 B. C. x2=0 D.

2. 白云航空公司有若干個(gè)飛機(jī)場,每兩個(gè)飛機(jī)場之間都開辟一條航線,一共開辟了10條航線,則這個(gè)航空公司共有飛機(jī)場( )

3、關(guān)于x的一元二次方程kx2+3x-1=0有實(shí)數(shù)根,則k的取值范圍是( )

A、k≤ B、k≥ 且k≠0 C、k≥ D、k> 且k≠0

4.某班同學(xué)畢業(yè)時(shí)都將自己的照片向全班其他同學(xué)各送一張表示留念,全班共送1035張照片,如果全班有x名同學(xué),根據(jù)題意,列出方程為 ( )

A.x(x+1)=1035 B.x(x-1)=1035×2 C.x(x-1)=1035 D.2x(x+1)=1035

6、工廠技術(shù)革新,計(jì)劃兩年內(nèi)使成本下降51%,則平均每年下降百分率為( )

A.30% B.26.5% C.24.5% D.32%

7、如圖,菱形ABCD的邊長是5,兩條對角線交于O點(diǎn),且AO、BO的長分別是關(guān)于 的方程 的根,則 的值為 ( )

9、(山西省)請你寫出一個(gè)有一根為1的一元二次方程: .

10、一元二次方程3x2-23=-10x的二次項(xiàng)系數(shù)為: ,一次項(xiàng)系數(shù)為: ____ ,常數(shù)項(xiàng)為: ___

11、(20本溪)11.由于甲型H1N1流感(起初叫豬流感)的影響,在一個(gè)月內(nèi)豬肉價(jià)格兩次大幅下降.由原來每斤16元下調(diào)到每斤9元,求平均每次下調(diào)的百分率是多少?設(shè)平均每次下調(diào)的百分率為 ,則根據(jù)題意可列方程為 .

12、已知方程 的兩根平方和是5,則 =

13、已知x2+3x+5的值為11,則代數(shù)式3x2+9x+12的值為 .

14、已知m是方程 的一個(gè)根,則代數(shù)式 的值等于 .

15、設(shè) 是一個(gè)直角三角形兩條直角邊的長,且 ,則這個(gè)直角三角形的斜邊長為

16、若方程x2+px+q=0的兩個(gè)根是-2和3,則p= q=

17、在實(shí)數(shù)范圍內(nèi)定義一種運(yùn)算“﹡”,其規(guī)則為a﹡b=a2-b2,根據(jù)這個(gè)規(guī)則,

18、等腰三角形的底和腰是方程x2-6x+8=0的兩根,則這個(gè)三角形的周長是

22、已知關(guān)于x的一元二次方程 的一個(gè)根為0,求k的值和方程的另外一個(gè)根。

23、 在某次數(shù)字變換游戲中,我們把整數(shù)0,1,2,…,200稱為“舊數(shù)”,游戲的變換規(guī)則是:將舊數(shù)先平方,再除以100,所得到的數(shù)稱為“新數(shù)”。

(1)請把舊數(shù)60按照上述規(guī)則變成新數(shù);

(2)是否存在這樣的舊數(shù),經(jīng)過上述規(guī)則變換后,新數(shù)比舊數(shù)大75,如果存在,請求出這個(gè)舊數(shù);如果不存在,請說明理由。

24、(2009年鄂州)關(guān)于x的方程 有兩個(gè)不相等的實(shí)數(shù)根.

(1)求k的取值范圍。

(2)是否存在實(shí)數(shù)k,使方程的兩個(gè)實(shí)數(shù)根的倒數(shù)和等于0?若存在,求出k的值;若不存在,說明理由

25、 已知a、b、c為三角形三邊長,且方程b (x2-1)-2ax+c (x2+1)=0有兩個(gè)相等的實(shí)數(shù)根. 試判斷此三角形形狀,說明理由.

26、一個(gè)兩位數(shù),十位上的數(shù)字比個(gè)位上的數(shù)字的平方小9,如果把個(gè)位數(shù)字與十位數(shù)字對調(diào),得到的兩位數(shù)比原來的兩位數(shù)小27,求原來的這個(gè)兩位數(shù)

27、某商店將進(jìn)貨為8元的商品按每件10元售出,每天可銷售200件,現(xiàn)在采用提高商品售價(jià)減少銷售量的辦法增加利潤,如果這種商品按每件的銷售價(jià)每提高0.5元其銷售量就減少10件,問應(yīng)將每件售價(jià)定為多少元時(shí),才能使每天利潤為640元?

28、有一面積為150m2的長方形雞場,雞場的一邊靠墻(墻長18 m),另三邊用竹籬笆圍成,如果竹籬笆的長為35 m,求雞場的長與寬各為多少?

29、(2009年寧波市)2009年4月7日,國務(wù)院公布了《醫(yī)藥衛(wèi)生體制改革近期重點(diǎn)實(shí)施方案(2009~》,某市政府決定2009年投入6000萬元用于改善醫(yī)療衛(wèi)生服務(wù),比增加了1250萬元.投入資金的服務(wù)對象包括“需方”(患者等)和“供方”(醫(yī)療衛(wèi)生機(jī)構(gòu)等),預(yù)計(jì)2009年投入“需方”的資金將比20提高30%,投入“供方”的資金將比年提高20%.

(1)該市政府2008年投入改善醫(yī)療衛(wèi)生服務(wù)的資金是多少萬元?

(2)該市政府2009年投入“需方”和“供方”的資金各多少萬元?

(3)該市政府預(yù)計(jì)20將有7260萬元投入改善醫(yī)療衛(wèi)生服務(wù),若從2009~年每年的資金投入按相同的增長率遞增,求2009~2011年的年增長率.

解一元二次方程課件 篇8

知識(shí)技能:掌握應(yīng)用方程解決實(shí)際問題的方法步驟,提高分析問題、解決問題的能力。

過程與方法:通過探索球積分表中數(shù)量關(guān)系的過程,進(jìn)一步體會(huì)方程是解決實(shí)際問題的數(shù)學(xué)模型,并且明確用方程解決實(shí)際問題時(shí),不僅要注意解方程的過程是否正確,還要檢驗(yàn)方程的解是否符合問題的實(shí)際意義。

情感態(tài)度:鼓勵(lì)學(xué)生自主探究,合作交流,養(yǎng)成自覺反思的良好習(xí)慣。

重點(diǎn):把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,不僅會(huì)列方程求出問題的解,還會(huì)進(jìn)行推理判斷。

教師用投影儀展示課本106頁中籃球聯(lián)賽積分榜引導(dǎo)學(xué)生觀察,思考:① 用式子表示總積分能與勝、負(fù)場數(shù)之間的數(shù)量關(guān)系;

②某隊(duì)的勝場總分能等于它的負(fù)場總積分么?

學(xué)生充分思考、合作交流,然后教師引導(dǎo)學(xué)生分析。

師:要解決問題①必須求出勝一場積幾分,負(fù)一場積幾分,你能從積分榜中得到負(fù)一場積幾分么?你選擇哪一行最能說明負(fù)一場積幾分?

生:負(fù)(14-a)場,勝場積分2a,負(fù)場積分14-a,總積分a+14.

師:G,就是,已知里沒說,是不是不能用方程解決了?誰又沒有大膽設(shè)想?

生:如果設(shè)一個(gè)隊(duì)勝了x場,則負(fù)(14-x)場,讓勝場總積分等負(fù)場總積分,方程為:2x=14-x解得x=4/3(學(xué)生掌聲鼓勵(lì))

師:x表示什么?可以是分?jǐn)?shù)么?由此你的出什么結(jié)論?

生:x表示勝得場數(shù),應(yīng)該是一個(gè)整數(shù),所以,x=4/3不符合實(shí)際意義,因此沒有哪個(gè)隊(duì)的勝場總積分等于負(fù)場總積分。

師:此問題說明,利用方程不僅求出具體數(shù)值,而且還可以推理判斷,是否存在某種數(shù)量關(guān)系;還說明用方程解決實(shí)際問題時(shí),不僅要注意方程解得是否正確,還要檢驗(yàn)方程的解是否符合問題的實(shí)際意義。

如果刪去積分榜的最后一行,你還能用式子表示總積分與勝、負(fù)場數(shù)之間的數(shù)量關(guān)系嗎?

師:我們可以從積分榜中積分不相同的兩行數(shù)據(jù)求的勝負(fù)一場各得幾分,如:一、三行。

教師引導(dǎo)學(xué)生設(shè)未知數(shù),列方程。學(xué)生試說。

生:設(shè)勝一場積x分,則前進(jìn)隊(duì)勝場積分10x,負(fù)場積分(24-10x)分,它負(fù)了4場,所以負(fù)一場積分為(24-10x)/4,同理從第三行得到負(fù)一場積分為(23-9x)/5,從而列方程為(24-10x)/4=(23-9x)/5。解得x=2,當(dāng)x=2時(shí),(24-10x)/4=1。仍然可得負(fù)一場積1分,勝一場積2分。

已知某山區(qū)的平均氣溫與該山的海拔高度的關(guān)系見表:

若某種植物適宜生長在18℃20℃(包括18℃20℃)的山區(qū),請問該植物適宜種在海拔為多少米的山區(qū)?

學(xué)生分析題意,思考,在練習(xí)本上完成,然后同桌小議,代表發(fā)言,教師點(diǎn)撥。

四、課堂小結(jié):

讓幾個(gè)學(xué)生談自己的收獲,再讓一個(gè)學(xué)生全面總結(jié)。

五、布置作業(yè):

本節(jié)課主要是借球賽積分表問題傳授數(shù)學(xué)知識(shí)的應(yīng)用。在前面已經(jīng)討論過由實(shí)際問題抽象出一元一次方程模型和解一元一次方程的基礎(chǔ)上,本節(jié)進(jìn)一步以探究的形式討論如何用一元一次方程解決實(shí)際問題。要探究的問題比前幾節(jié)的問題復(fù)雜些,問題情境與實(shí)際情況更接近。本節(jié)的重點(diǎn)是建立實(shí)際問題的方程模型。通過探究活動(dòng),進(jìn)一步體驗(yàn)一元一次方程與實(shí)際的密切聯(lián)系,加強(qiáng)數(shù)學(xué)建模思想,培養(yǎng)運(yùn)用一元一次方程分析和解決問題的能力。

由于本節(jié)問題的背景和表達(dá)都比較貼近實(shí)際,其中的有些數(shù)量關(guān)系比較隱蔽,所以在探究過程中正確建立方程是難點(diǎn),教師要恰當(dāng)?shù)囊龑?dǎo),讓學(xué)生弄清問題背景,分析清楚有關(guān)數(shù)量關(guān)系,找出可作為方程依據(jù)的主要相等關(guān)系,但教師不要代替學(xué)生的思考。

相關(guān)推薦

  • 2025二元一次方程課件 我們聽了一場關(guān)于“二元一次方程課件”的演講讓我們思考了很多,經(jīng)過閱讀本頁你的認(rèn)識(shí)會(huì)更加全面。老師會(huì)對課本中的主要教學(xué)內(nèi)容整理到教案課件中,所以老師寫教案可不能隨便對待。教案是評估學(xué)生學(xué)習(xí)效果的有效依據(jù)。...
    2024-09-28 閱讀全文
  • 二元一次方程組課件 教案課件是我們教師工作中不可或缺的組成部分,相信教師們對于編寫教案課件已經(jīng)非常熟悉了。在上課時(shí),教師會(huì)按照教案課件的內(nèi)容進(jìn)行教學(xué)。希望本篇"二元一次方程組課件"能夠?yàn)槟鉀Q問題,給您提供一些幫助,同時(shí)希望您能從這篇文章中學(xué)到一些新的知識(shí)!...
    2023-11-15 閱讀全文
  • 一元二次方程課件十一篇 本文的主題是教案的重要性。教案可以幫助老師準(zhǔn)備好課程,確保教學(xué)目標(biāo)的實(shí)現(xiàn)。在本文中,小編為讀者準(zhǔn)備了與“教案”有關(guān)的內(nèi)容,并鼓勵(lì)讀者保存這篇文章,因?yàn)樗赡軐λ麄兲峁﹩⑹?。只要老師在寫教案時(shí)認(rèn)真負(fù)責(zé),就能夠上好課。...
    2023-10-29 閱讀全文
  • 解一元一次方程課件分享 我們特別整理了這篇“解一元一次方程課件”,相信會(huì)對您產(chǎn)生濃厚的興趣。愿這些參考資料能夠給您帶來啟發(fā),實(shí)現(xiàn)更好的自我。在上課之前,老師總是提前準(zhǔn)備教案和課件,因此,最好能認(rèn)真完善每一份教案和課件。通過使用教案課件,可以激發(fā)學(xué)生的興趣,促進(jìn)教學(xué)過程的順利進(jìn)行。...
    2023-12-14 閱讀全文
  • 2025解一元二次方程課件 通常老師在上課之前會(huì)帶上教案課件,通常老師都會(huì)認(rèn)真負(fù)責(zé)去設(shè)計(jì)好。教案是實(shí)現(xiàn)復(fù)合型人才培養(yǎng)目標(biāo)的有效實(shí)踐。編輯從各個(gè)方面搜集和整合資料使這篇“解一元二次方程課件”更加全面,閱讀本文您會(huì)得到足夠的收獲和啟發(fā)!...
    2024-06-17 閱讀全文

我們聽了一場關(guān)于“二元一次方程課件”的演講讓我們思考了很多,經(jīng)過閱讀本頁你的認(rèn)識(shí)會(huì)更加全面。老師會(huì)對課本中的主要教學(xué)內(nèi)容整理到教案課件中,所以老師寫教案可不能隨便對待。教案是評估學(xué)生學(xué)習(xí)效果的有效依據(jù)。...

2024-09-28 閱讀全文

教案課件是我們教師工作中不可或缺的組成部分,相信教師們對于編寫教案課件已經(jīng)非常熟悉了。在上課時(shí),教師會(huì)按照教案課件的內(nèi)容進(jìn)行教學(xué)。希望本篇"二元一次方程組課件"能夠?yàn)槟鉀Q問題,給您提供一些幫助,同時(shí)希望您能從這篇文章中學(xué)到一些新的知識(shí)!...

2023-11-15 閱讀全文

本文的主題是教案的重要性。教案可以幫助老師準(zhǔn)備好課程,確保教學(xué)目標(biāo)的實(shí)現(xiàn)。在本文中,小編為讀者準(zhǔn)備了與“教案”有關(guān)的內(nèi)容,并鼓勵(lì)讀者保存這篇文章,因?yàn)樗赡軐λ麄兲峁﹩⑹?。只要老師在寫教案時(shí)認(rèn)真負(fù)責(zé),就能夠上好課。...

2023-10-29 閱讀全文

我們特別整理了這篇“解一元一次方程課件”,相信會(huì)對您產(chǎn)生濃厚的興趣。愿這些參考資料能夠給您帶來啟發(fā),實(shí)現(xiàn)更好的自我。在上課之前,老師總是提前準(zhǔn)備教案和課件,因此,最好能認(rèn)真完善每一份教案和課件。通過使用教案課件,可以激發(fā)學(xué)生的興趣,促進(jìn)教學(xué)過程的順利進(jìn)行。...

2023-12-14 閱讀全文

通常老師在上課之前會(huì)帶上教案課件,通常老師都會(huì)認(rèn)真負(fù)責(zé)去設(shè)計(jì)好。教案是實(shí)現(xiàn)復(fù)合型人才培養(yǎng)目標(biāo)的有效實(shí)踐。編輯從各個(gè)方面搜集和整合資料使這篇“解一元二次方程課件”更加全面,閱讀本文您會(huì)得到足夠的收獲和啟發(fā)!...

2024-06-17 閱讀全文